
Version 0.2

Enrico Zini (enrico@debian.org)

Copyright-Zeile

(C)2004 Enrico Zini (enrico@debian.org). This paper is released under
the GNU General Public License v.2.1 or later.

Zen and the art of Free Software: know your
user, know yourself

Many free software projects don't seem to have a direction, and seem to
proceed randomly in the dark. In order to better direct your project, you have
to know your users, and you have to know the most important one among
them: yourself.

The paper introduces some cheap, stupid and tremendously useful user-
centered design techniques that can be used in the free software world, and
some unexpected outcomes of the gained insight.

In Free Software there's a strange Heisenberg-like principle, in which you're
both part of the developer and part of the user community. Better insight of
your users, can turn out to be better insight of yourself.

You goals may be the same as your user's, and often they may be different.
Why would we want to develop something that isn't addressing our goals?
Why would we want to offer users something that isn't addressing theirs?
Confusing goals bring to frustration; uderstanding them this brings to peace,
harmony, and Total World Domination!

Introduction

Dear fellow free software developer,

first of all, thanks! Thanks a lot! Whoever you are, whatever the reasons you
may have for developing free software, just by uploading source code to the
'net you're adding a gear to the big machine that gets my work done.

More than that, you're adding letters to a great alphabet that me, you and
thousands of other people can use to create new systems, just as with the
letters of the alphabet you can create new poems. No wonder Free Software
has been declared World Treasure by UNESCO in November, 2003![see
http://www.fwtunesco.org/welcome.html and
http://www.fwtunesco.org/atmlist/freesoftware.html]

But what if I told you that you are shaping the society?

What if I told you that you're shaping your own identity?

This paper is written for free software developers, but users are warmly invited
to stay and listen.

In the first part („Software and Society“) I'll introduce some concepts which can
be used to understand social aspects of software.

In the second part („Social Specifications“) I'll show some practical techniques
on how to plan and specify the social aspects of your software.

In the third part („Social Design“) I'll show some useful concepts and tools you
can use when designing the user side of your software.

In the last part („Social Testing and Debugging“) I'll try to show some practical
techniques on how to assess and possibly correct some of the social issues of
your software.

I write this paper for four reasons

● For developers to pay attention at the social aspects of their software,
possibly creating software which better fits the needs of their users.

● For users to pay attention at the social aspects of the software they use, and
to start taking an active part in shaping it for their real needs. Free Software
explicitly gives exactly this power, and it's a shame that we hardly harness it

● For bringing up happiness and harmony among developers and users.
In Free Software, developers are often part of their user community, but
don't always share the same goals of the other users. This causes
frustration, misunderstanding, anger, and flamewars. Understanding this
brings happiness, harmony, enlightenment, and Total World Domination.

● For me, to clear my mind about knowledge and ideas that I've been
absorbing for some time, and I now want to try to put into some use.

Before I start, an important notice:
please consider this paper as version 0.1 in a „Release early, release often“
scheme. Its contents are not intended to be a conclusion: they're intended to
be the beginning of a long work.

Of course, everyone is welcome to join!

Related work

This paper puts together informations collected from various different places.

The part about situated action and situated identity comes from the extremely
interesting and much wider work of prof. Giuseppe Mantovani[1].

Most of the part about what I called „social specifications“ come from the

excellent „Inmates“ book of Alan Cooper[2], which also tells a big deal about
frustration, and contains the 12 magic rules of software politeness.

Beyond Cooper, there is a wide literature on user and task analysis, with a lot
of notations, methods, processes and tools; a good presentation of it is in the
book by Hackos and Redish[3]. The ConcurTaskTrees resources [4] are also a
good starting point from where to explore notation and tools.

Nielsen's Euristic Evaluation comes of course from the Usability work of Jakob
Nielsen[5], whose Useit website[6] is a very good usability resource. If you're
into unsability, don't miss the POET[7] book by Donald Norman, which is a very
good place to start learning things and a very nice read.

The Flanagan Critical Incident Technique comes of course from the work of
Flanagan[8] in the field of ergonomics.

The 7∓2 magic number is explained in Miller's works[9] in cognitive psycology.

Software and Society

In this chapter I'll introduce a few concepts which have a key role in
understanding social aspects of software.

To avoid making this paper hard to read, I'll try to keep the number of new
concepts small; however, please pay attention to them: words, and the
concepts encloses, are in our brain powerful cognitive tools with which we
understand and control reality.

In Orwell's 1984, the regime of Oceania reducing freedom by reducing the
amount of words to be used. Almost 2000 years before Orwell, someone wrote:

In the beginning was the Word,
and the Wordwas with God,
and the Word was God.

(john1:1)

Could it be explained any clearer?

Situated action

Take a talk listener at a conference. He's sitting, watching the speaker,
listening carefully, sometimes nodding. How much can we tell about him? You
probably think he's interested in the talk. But what if I tell you that the speaker
is going to receive the listener for a job interview in a few days? What if I tell
you that the speaker is a gorgeous woman and the listener is single?

In order to interpretate the meaning of an action, we need a context. Situated
action is the term that identifies an action considered in its specific context.

This is no breaking news, really, but for some reason we tend to think in
absolute terms. The sky is blue. Vim is hard to learn. Users are clueless. This

needs to be broken in order to work beyond the technical details of our
software.

Just like we need to have runtime informations to understand bug reports on
tecnical issues, it's important that we look at the situated actions when we try
to understand non-technical issues like frustrations, difficulties in picking up
concepts, lack of documentations, „suck“ reports („your software sux!“).

Looking at situated action is like looking at users and usage of your software
including runtime informations. It sounds tremendously useful, isn't it?

Situated identity

We can go further and talk about situated identity: are you the same person
when you go out with your friends and when you go out with your parents?

Our identity expresses itself in different ways as we continuously adjust our
perception of ourselves with the frame of what we are allowed to do and say
and be in a given context. This is natural, it happens all the time, and makes
us wonderfully adaptive and successful in a wide variety of conditions.

Consider now that the whole point of software is changing our notion of what
we can do: I install a piece of software to be able to do something that I wasn't
able to do before, or that I could do differently. If software changes our notion
of what we can do, then software itself situates the user!

Have you noticed that when run vim you are probably a bit different than when
you run OpenOffice? Different softwares give you a different perception of
what you can do and what you can't do, and this affects your situated identity.
Software can make you feel smart, agile and powerful or goofy and vulnerable.
The effects will be non-permanent until the advent of computerized body
implants :)

If it can happen with editors, think of what can happen with communication
software: we already reckon that people write „your software sux“ in a mailing
list, but they will rarely attack you frontally like that in real life. In a mailing list
you don't have empathy, while on real life you hopefully do. In a mailing list
you don't see who's around, in real life you usually do. the situation changes,
your identity changes as well.

Could it be that Outlook users are more likely than mutt users to be seen as
fancily dressed jerks that get into conversations at the wrong time? Could it be
because mutt has good threading support and no HTML mail support while
Outlook has poor threading support and a very powerful HTML mail composer?

How much can we say it's only the user's fault if s/he appears as a jerk? Is s/he
a jerk in real life, too? Won't s/he be angry if s/he'd discover that s/he's got a
jerk reputation mainly because of the mail software that came installed on
her/his PC? Wouldn't s/he be frustrated if s/he hadn't the possibility of
switching to some other software?

Being aware that software contributes to the situated identity of its users gives
us developers a lot of power, and a lot of responsibility. But there's more: we
could start designing software that supports an identity that we decide. We
can even take the challenge to design software that supports our own identity!

A nice thing of doing this, is that the process overlaps with the one of
discovering who we really are :)

Frustration

n. The feeling that accompanies an experience of being thwarted in
attaining your goals

from WordNet 2.0 dict database

We use software to attain some goals. To put it in a simple way, if we can't
attain it, we get frustration from using that software.

Like segfaults are a good indicator of a technical bug, frustration is a good
indicator of a social bug: the software fails when you are unable to attain the
goals you were expecting to attain.

This is very important to know! As a user, in this regard, you have a possibility
of being aware of the cause of your frustration before you convince yourself
you are wortless with computing and start reading mail only if someone prints
it on paper. As developers, we have to be able to spot and investigate a social
bug, and to justify the patience and care needed to interact with someone who
is frustrated because of us.

Coping with frustration should be one of the first things people get told when
put in front of a computer for the first time! As a user, what I do now when I
feel frustrated with software is:

● ask myself what goal do I have. This is not easy at the beginning, but after a
while you get good at it

● see what tasks I was performing in order to attain my goals.

● if I think I chose the tasks correctly (my strategy was correct), then I isolate
the reason why I'm stuck and file a „wishlist“ bug report in which I explain
what I wanted to do, how I wanted to do it, where I got stuck and a possible
way around the problem.

In the end, I still don't get to my goals, but I do feel better and I have also
made a valuable contribution... if I've been wise enough not to leak some bad
words from the frustrating moments into the bug report :)

Social specifications

We techies all more or less got to love reading feature lists. We drool on
reading them, tasting the feel of power and feeling our range of possibilities
getting larger and larger item after item. We got so used to feature lists that
we even design software around feature list.

Let's see a feature list-like specification:

● 2-wheeled vehicle

● small

● agile

● carrying up to 2 persons

Doesn't it seem to lack something? What if before the feature list I added this:

● motorbike for single parents to go to work in the traffic

Wouldn't it feel like it would lead to a much, much smarter design?

The feature list lacks two important design parts: users and goals. It risks
building something cool, but that would serve no one.

Users

Creating a persona

First thing: ask yourself: „who are you developing this for?“.

When you start designing a piece of software, you are trying to solve
someone's problem. It is imperative that you know very well what kind of
person you're working for, and keep it clear during all the design and
implementation. Create a prototype target user (Cooper calls it „persona“),
give it a name of a person that doesn't exist, write down its profile on a piece
of paper and stick it to the wall. Write it in the beginning of your README file.
Put as many details as you can, even pointless, but anything that can make you
remember who's your target.

It can be that you are designing for yourself; but who will you be using that
software? Which of your situated identities are you addressing? It could even
be a new identity you want to give to yourself. Even so, nothing changes:
create a persona, give it a name, write down its profile in great detail, add
some pointless details even, and stick to it.

Just one small note: a persona must not be any real person. You are usually
address a type of user more than a single user, so your persona should reflect
that stereotype. Real persons have unique quirks, and if you take them into
account you risk losing time and efforts in something pointless. Choose your
stereotypes wisely. Whatever kind of user you are designing for, your persona
must be the average sample of that kind.

Using a persona

The persona you created has an extremely valuable potential: it describes what
kind of person is supposed to be happy and satisfied when using the software
you're designing. It will be the main scaffold of your design: all other design
and implementation choices will depend on the persona.

Pay extra care in not changing the persona during further development stages:
it's quite instinctive to say „Sure, Mr. Aldo Waldorf is a 60 years old man who
just wants to store his digital pictures, but maybe he's curious to see a raw
dump of the EXIF details: let's implement an Advanced menu with stuff like
that“. It's really not „Aldo Waldorf“, your prototype persona, that needs that
feature: it's you! Aldo will most probably see „Advanced“, try the option, see
some incomprehensible gadget and conclude he's not advanced enough for
computers. That feature is more likely to make Aldo feel stupid. If you tend to
bend and stretch your persona, you are creating in Cooper words an elastic
user, which justifies any choice you make and renders the entire point of
having persona completely useless.

Please read again the discussion about Aldo in the previous paragraph. See
how it's easy to reason about users when you have a persona defining what
concept of user you are doing?

Using personas rocks! The concept was proposed by Cooper in 1999 already.
Why does it take so long for us to start mastering the idea?

Goals

After defining the persona, the next step is to define its goals. Goals are what
will define the functionality of your software. Goals tell what problems your
software is supposed to solve. Goals are your challenge as a developer. Goals
are your reason to write software in the first place.

Cooper defines 4 interesting kinds of goals:

● personal goals: the main goals of the person using the program. They may
even be unrelated to the program domain, such as „don't feel stupid“ and
„don't make errors“, but they are the main reason your users use your
program. They have priority over everything: if you miss personal goals, your
program just won't be used.
When you get to understand goals a bit better, try to remember how many
otherwise very good pieces of software miserably stay unused and
disappear. One of the most likely reasons for it, is that they were missing
their users' personal goals.

● work goals: the goal for which the person is requested to use the program.
They may be something like „increase sales“ or „submit a paper to the
conference“. Work goals are said to be hygienic goals: they are required to
use the program, but they are not the users' motivation of using the
program. A program that targets work goals but misses personal goals, fails.

● practical goals: practical goals are required goals needed to reach personal
or work goals. If your personal goal is to view a nicely rendered 3D model of
a scene, before getting that you'll have the practical goal of creating the

scene model. Practical goals are hygienic, too: they are required, but they
aren't the main cause for motivation.

● false goals: there are thing we tend to take for granted and strongly
influence our design, but which are not really goals. For example, „use few
CPU cycles“ can be a false goal which makes our application more dumb.
Word processors and smart editors got away with this false goal and do use
CPU cycles while we type, providing features like error highlighting, word
completion, method name completion that we all tend to love.
Even „be easy to use“ can be a false goal: if you're designing a plane
cockpit, you don't want it to be easy to use, but you want it to be efficient:
you don't mind the pilot requiring 4 years of training to use it, as soon as she
doesn't make errors and can spot and correct anomalies in the most efficient
way.

Try to work out a list of the various goals of your persona, and try to sort them
out in the categories of „personal“, „work“, „practical“ or „false“. It may not
be easy at first, because we're used at a huge level of confusion in this field;
but once you built yourself a good picture of the goals you are addressing,
you'll discover that the rest of the design, and even the implementation, will be
just a downhill ride.

Social design

Tasks

For most small software projects, once you get persona and goals right you
already have a clear idea of all the rest of the design and implementation, and
will code your successful application with great enthousiasm and satisfaction.

If you are building a bigger application, however, and especially if you are
building an interface for something new, for concepts for which no interaction
has been implemented and tested yet, you may want to take an additional
step: task analysis.

Performing task analysis means working to figure out, for every goal, what
tasks your persona will need to perform in order to attain it. Here are some
examples of task analysis you could do:

● investigating how people work towards those goals nowadays, maybe
without using a computer.

● decompose tasks in subtasks (hierarchical task analysis), both to understand
them better and as a basis to lay out the various parts of your interface.

There are notations and tools to assist in task analysis and other related steps
[4].

If you want to know more, you can find a lot, and I mean a lot of techniques,
suggestions, examples about user and task analysis on [3].

Software politeness

Alan Cooper provided a very nice checklist of for designing good applications,
tailored like politeness rules for clerks and waiters: the 14 principles of polite
software:

1. Polite Software Is Interested in Me
trying to remember my preferences and to adapt to my habits; the proposed
defaults, for example, could be computed based on the values I input more
frequently

2. Polite Software Is Deferential to Me
error messages should not insult me, but soggest the right way of doing
things. Likewise, tooltips, labels, hints and other messages should appear as
suggestions on how to do things in the right waay, not as orders to make
lusers comply

3. Polite Software Is Forthcoming
software should be ready to answer to my requests doing all what is
necessary: if I ask for the soup at the restaurant, the waiter will also bring a
spoon even if I didn't explicitly ask for it

4. Polite Software Has Common Sense
software should satisfy users' goals in the most appropriate way possible,
without digressing in useless things

5. Polite Software Anticipates My Needs
where possible, it'd be nice to anticipate future options of users and get
somehow ready for them. For example, a web browser could preload the
text content of every link target in a page, so that whenever we click on one,
we can see the link contents right away.

6. Polite Software Is Responsive
if I have an obvious need that can easily be understood by the computer, the
computer could provide it even if I don't ask for it explicitly

7. Polite Software Is Taciturn About Its Personal Problems
many programs continuously interrupt us with popups, messages and
useless informations about their internal state, which often have no purpose
besides disturbing or annoying the user

8. Polite Software Is Well-Informed
it shouldn't offer to do impossible things: web links bringing to a 404 error
could be rendered in a different way, so that we can just avoid to click them

9. Polite Software Is Perceptive
Software should be able to perceive my needs from my usage patterns, and
behave accordingly. if every time I open a window I maximize it, after some
time that window could open already maximized

10.Polite Software Is Self-Confident
there is no sense if a program always asks „are you sure?“ for any order it
gets: it would be better if it just did as said, and then allowed us to undo
possible undesired actions.

11.Polite Software Stays Focused
a program should ask a thousand questions for every operation, but only ask

the minimum it needs and allow to care for the details only when necessary

12.Polite Software Is Fudgable
in many processes, the possibility of making exceptions to rules can be
esential to be able to cope with the mundane complexity. For example, if I
am asked 100 pieces of informations but I can only enter 99, the computer
should not totally abort the transaction, but could remember the 99 items I
entered and allow me to insert the 100th at a second time. Likewise,
sometimes it could be vitally important that an urgent print job could jump in
front of the print queue. Obviously, software should also allow to verify that
exceptions keep being exceptions and don't become the rule

13.Polite Software Gives Instant Gratification
software should start to do what we ask as soon as possible, as long as it
can, without waiting for us to enter all data

14.Polite Software Is Trustworthy
if we use a software, it's to make it part of our job: it shuold therefore be
possible to trust the result, without needing to check it every time

Summarized from A.Cooper, „The Inmates are Running the
Asylum“, SAMS 1999

Social testing and debugging

Once your software is implemented (or even while you're implementing it, or
trying out prototypes), there are some nice ways of assessing its behaviour. I'll
present here a couple of simple evaluation heuristics, a nice investigation
technique and a magical number that noone should ever forget.

Nielsen's euristic evaluation technique

Famous usability expert Jackob Nielsen (you probably know its usability website
www.userit.com) gathered over time some usability wisdom in 10 simply
euristic rules that form a useful checklist with which a program can be
evaluated:

1. Visibility of system status
The system should always keep users informed about what is going on,
through appropriate feedback within reasonable time.

2. Match between system and the real world
The system should speak the users' language1, with words, phrases and
concepts familiar to the user, rather than system-oriented terms. Follow real-
world conventions, making informations appear in a natural and logical
order.

1 An example of this problem is in:
http://www.prdomain.com/companies/a/amd/news_releases/200307july/pr_amd_nr_2003070
7.htm

3. User control and freedom
Users often choose system functions by mistake and will need a clearly
marked "emergency exit" to leave the unwanted state without having to go
through an extended dialogue. Support undo and redo.

4. Consistency and standards
Users should not have to worry wonder whether different words, situations,
or actions mean the same thing. Follow platform conventions.

5. Error prevention
Even better than good error messages is a careful design which prevents a
problem from occurring in the first place.

6. Recognition rather than recall
Make objects, actions, and options visible. The user should not have to
remember informations from one part of the dialogue to another. Instructions
for use of the system should be visible or easily retrievable whenever
appropriate.

7. Flexibility and efficiency of use
Accelerators -- unseen by the novice user -- may often speed up the
interaction for the expert user such that the system can cater to both
inexperienced and experienced users. Allow users to tailor frequent actions.

8. Aesthetic and minimalist design
Dialogues should not contain informations which is irrelevant or rarely
needed. Every extra unit of informations in a dialogue competes with the
relevant units of informations and diminishes their relative visibility.

9. Help users recognize, diagnose, and recover from errors
Error messages should be expressed in plain language (no codes), precisely
indicate the problem, and constructively suggest a solution.

10.Help and documentation
Even though it is better if the system can be used without documentation, it
may be necessary to provide help and documentation. Any such informations
should be easy to search, focused on the user's task, list concrete steps to
be carried out, and not be too large.

Jakob Nielsen quoted from
http://www.useit.com/papers/heuristic/heuristic_list.html

Flanagan Critical Incident Technique

John Flanagan developed the critical incident technique (CIT) to
identify behaviors that contribute to the success or failure of
individuals or organizations in specific situations.

To analyze a situation using CIT, a researcher first asks people
familiar with the situation for a recent example of effective or

ineffective behavior — that is, a critical incident. A critical incident
is determined from answers to the following questions:

● Describe what led up to the situation.

● Exactly what did the person do or not do that was especially
effective or ineffective?

● What was the outcome or result of this action?

● Why was this action effective, or what more effective action might
have been expected?

The researcher uses the answers to these questions to identify
themes represented by the incidents, and asks other involved parties
to sort the incidents into proposed content dimensions. These
retranslation exercises help identify the incidents that represent
different dimensions of the behavior under consideration.

The critical incident technique has been applied in studies of
numerous occupations, including aircraft pilots, dentists, teachers,
plumbers, and infantrymen. The Society of Industrial and
Organizational Psychology recently recognized Flanagan's 1954
CIT article as the most frequently cited article in the field of industrial
and organizational psychology.

from http://www.air.org/overview/cit.htm

We've been having a debugging technique for social aspects of software since
1954! Let's use it! (just remember to ask questions a bit more nicely than the
samples above :)

The magic number 7∓2

7∓2 is a magic number related to our brain which is known since at least 1956
[9], and roughly represent the average capacity, in items, of our short-term
memory.

Spelled in more familiar terms (uh, well, for software developers :) our brain
processes items (arbitrarily complex but atomic pieces of informations) using a
cache (the short term memory) which size is something like 7∓2 items.

Never forget this number because it has tremendous connection with the
cognitive load of the informations you present to the user. For example, tasks
which require to process more than 7∓2 items at a time are perceived to be
difficult.

Try an experiment: write a perl script to print lists of totally unrelated items (for
example random small digits or random dictionary words), and read the output
at increasing lengths. If the size of the list is under 7∓2 items, then you'll be
able to easily remember all the list after reading it just once. As soon as the
list gets longer, items will start being pushed out of your brain cache and

remembering everything will be a more difficult task.

Of course our brain can process more than 7∓2 pieces of informations. We do
that with a trick called recoding, which consists in creating a new item which
groups related items together, and then we process the macro items. The
long term memory can be thought as the collection of the recodings we have
created over our lifetime.

Given this, we can learn many lessons:

● Don't expect users to be able to remember more than 7∓2 pieces of
informations at the same time. Cognitive load works like phisical load: if you
load yourself too much, you get tired quickly or simply can't carry the
weight.

● Don't present more than 7∓2 similar pieces of interface together. If you
need to, try to group them with some meaningful relationship.

● Give items a chance to form recondings: present related informations
visually together, so that it can be thought as a single item.

This is only the beginning. 7∓2 is an omnipresent magic number in cognitive
tasks: try to to see where you can spot it, and you'll get to be able to estimate
the mental difficulty of cognitive tasks just as easily as we are able to estimate
the physical loads of physical tasks.

Bibliography

[1] Giuseppe Mantovani, "New Communication Environments: From Everyday
to Virtual", Taylor & Francis, February 1996

[2] Alan Cooper, „The Inmates Are Running the Asylum: Why High Tech
Products Drive Us Crazy and How to Restore the Sanity“, Sams Publishing,
1999

[3] Hackos, Redish, „User and Task Analysis for Interface Design“, Wiley&Sons,
1998.

[4] Fabio Paternò et al., „The ConcurTaskTrees Environment“ website,
http://giove.cnuce.cnr.it/ctte.html

[5] Jakob Nielsen, „Ten Usability Euristics“,
http://www.useit.com/papers/heuristic/heuristic_list.html

[6] www.useit.com

[7] Donald Norman, „The Design of Everyday Things“, Basic Books

[8] http://www.air.org/overview/cit.htm. also see Fitzpatrick, R. and Bolton, M.
(1994) „Qualitative methods for assessing health care“ in Quality in Health
Care 3: 107-113

[9] George A. Miller, „The magical number seven, plus or minus two: Some
limits on our capacity for processing information“, 1956, Psycological
Review n.63 pp. 81-91, http://www.well.com/user/smalin/miller.html

