
Packaging shared libraries

Josselin Mouette

19 may 2006

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 1 / 28



A Debian package from a shared library

./configure --prefix=/usr

make

make install DESTDIR=debian/tmp

The libfoo3 package contains:

the shared library /usr/lib/*.so.*.

The libfoo-dev package contains:

the /usr/lib/*.so symbolic link;
the static library /usr/lib/*.a;
the headers in /usr/include;
the libtool file, /usr/lib/*.la;
the pkgconfig file, /usr/lib/pkgconfig/*.pc.

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 2 / 28



That’s all.

Or not?

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 3 / 28



That’s all. Or not?

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 3 / 28



Outline

1 Basic library packaging

2 Common developer mistakes

3 Symbol versioning

4 The inter-library dependency hell

5 Conclusion

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 4 / 28



What is a shared library after all?

Shared objects: code that can be loaded at runtime

Shared libraries: automatically loaded at startup time

API: interface description for the programmer.
API breaks → sources need to be changed.

ABI: low-level interface between the binary and the library.
ABI breaks → binaries need a rebuild.

SONAME: canonical name for a given ABI.
ABI breakage imply a SONAME change.

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 5 / 28



What is a shared library after all?

Shared objects: code that can be loaded at runtime

Shared libraries: automatically loaded at startup time

API: interface description for the programmer.
API breaks → sources need to be changed.

ABI: low-level interface between the binary and the library.
ABI breaks → binaries need a rebuild.

SONAME: canonical name for a given ABI.
ABI breakage imply a SONAME change.

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 5 / 28



Updating a libray package

General rule: the package manager has to know when an interface
changes.

1 No ABI change (bugfix) → no change in packaging.

2 Backwards compatible ABI change (new symbols) → inform the
shlibs system.

dh_makeshlibs -V’libfoo3 (>= 3.1.0)’

3 Symbols removed or their meaning changed (ABI breakage)
→ change the SONAME.
Change the library package name: libfoo3 → libfoo4.

4 API breakage → change the development package name:
libfoo3-dev → libfoo4-dev.

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 6 / 28



Library transitions

A transition starts when the ABI breaks.

All packages using the library have to be rebuilt.

They all have to go to testing together.

→ Ask the release team before uploading.

Possible courses of action:

1 Upload right to unstable and trigger binary NMUs for all reverse
dependencies.

2 Upload to experimental and rebuild depending packages in
experimental.

3 Keep several sources at once. See gnutls or libpng.

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 7 / 28



Library transitions

A transition starts when the ABI breaks.

All packages using the library have to be rebuilt.

They all have to go to testing together.

→ Ask the release team before uploading.

Possible courses of action:

1 Upload right to unstable and trigger binary NMUs for all reverse
dependencies.

2 Upload to experimental and rebuild depending packages in
experimental.

3 Keep several sources at once. See gnutls or libpng.

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 7 / 28



Case study: gconf2

Some libraries are more than a .so and some headers. Our example is split
into several packages:

libgconf2-4 contains the shared library;

gconf2-common contains the configuration and
architecture-independent data;

libgconf2-dev contains the development library and documentation;

gconf2 contains support binaries like gconftool.

But there is something else...

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 8 / 28



Case study: gconf2

Some libraries are more than a .so and some headers. Our example is split
into several packages:

libgconf2-4 contains the shared library;

gconf2-common contains the configuration and
architecture-independent data;

libgconf2-dev contains the development library and documentation;

gconf2 contains support binaries like gconftool.

But there is something else...

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 8 / 28



Case study: gconf2

What to do with the daemon, /usr/lib/gconf2/gconfd-2, which is
spawned by programs using the library?

In gconf2, circular dependency with libgconf2-4 (RC bug).

In libgconf2-4, goes against policy and breaks multiarch.

Solution: relocate the daemon to /usr/lib/libgconf2-4/ and
include it in libgconf2-4.

General rule about circular dependencies: a circular dependency that can’t
be removed means the two pieces of software should belong to the same
package.

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 9 / 28



Case study: gconf2

What to do with the daemon, /usr/lib/gconf2/gconfd-2, which is
spawned by programs using the library?

In gconf2, circular dependency with libgconf2-4 (RC bug).

In libgconf2-4, goes against policy and breaks multiarch.

Solution: relocate the daemon to /usr/lib/libgconf2-4/ and
include it in libgconf2-4.

General rule about circular dependencies: a circular dependency that can’t
be removed means the two pieces of software should belong to the same
package.

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 9 / 28



Case study: gconf2

What to do with the daemon, /usr/lib/gconf2/gconfd-2, which is
spawned by programs using the library?

In gconf2, circular dependency with libgconf2-4 (RC bug).

In libgconf2-4, goes against policy and breaks multiarch.

Solution: relocate the daemon to /usr/lib/libgconf2-4/ and
include it in libgconf2-4.

General rule about circular dependencies: a circular dependency that can’t
be removed means the two pieces of software should belong to the same
package.

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 9 / 28



Outline

1 Basic library packaging

2 Common developer mistakes

3 Symbol versioning

4 The inter-library dependency hell

5 Conclusion

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 10 / 28



Non-PIC code

Dynamic loading: the code isn’t loaded at a given address.

Code must not depend on its position.
→ Build with -fPIC.

Insufficient for assembly code: has to be written with position
independence in mind.

Run lintian. Twice.

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 11 / 28



Unexpected ABI breakage

New upstream version with incompatible ABI but the same SONAME.

Sometimes upstream acknowledges the error but doesn’t come back
on an already released package.
→ Random and various breakages in related packages.

Small issues of the kind can be solved with package conflicts.

If not, the package is renamed: libfoo3 → libfoo3a.

A library transition starts.

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 12 / 28



Unexpected ABI breakage

New upstream version with incompatible ABI but the same SONAME.

Sometimes upstream acknowledges the error but doesn’t come back
on an already released package.
→ Random and various breakages in related packages.

Small issues of the kind can be solved with package conflicts.

If not, the package is renamed: libfoo3 → libfoo3a.

A library transition starts.

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 12 / 28



Unstable ABI

ABI breakage happens for all versions and the SONAME remains.

HDF5: developers don’t know what the SONAME means.

Mozilla suite: overly complicated framework with unstable interfaces.

. . .
→ handle the SONAME specifically in Debian.

Breaks binary compatibility with other distributions. . .
What compatibility?

libxpcom.so → libxpcom.so.0d

libhdf5.so.0 → libhdf5-1.6.5.so.0

libtool --mode=link -release $(VERSION) ...

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 13 / 28



Unstable ABI

ABI breakage happens for all versions and the SONAME remains.

HDF5: developers don’t know what the SONAME means.

Mozilla suite: overly complicated framework with unstable interfaces.

. . .
→ handle the SONAME specifically in Debian.

Breaks binary compatibility with other distributions

. . .
What compatibility?

libxpcom.so → libxpcom.so.0d

libhdf5.so.0 → libhdf5-1.6.5.so.0

libtool --mode=link -release $(VERSION) ...

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 13 / 28



Unstable ABI

ABI breakage happens for all versions and the SONAME remains.

HDF5: developers don’t know what the SONAME means.

Mozilla suite: overly complicated framework with unstable interfaces.

. . .
→ handle the SONAME specifically in Debian.

Breaks binary compatibility with other distributions. . .
What compatibility?

libxpcom.so → libxpcom.so.0d

libhdf5.so.0 → libhdf5-1.6.5.so.0

libtool --mode=link -release $(VERSION) ...

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 13 / 28



Unstable ABI

ABI breakage happens for all versions and the SONAME remains.

HDF5: developers don’t know what the SONAME means.

Mozilla suite: overly complicated framework with unstable interfaces.

. . .
→ handle the SONAME specifically in Debian.

Breaks binary compatibility with other distributions. . .
What compatibility?

libxpcom.so → libxpcom.so.0d

libhdf5.so.0 → libhdf5-1.6.5.so.0

libtool --mode=link -release $(VERSION) ...

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 13 / 28



Exporting private symbols

Non-static functions and global variables are all exported.

Developers only include useful functions in the public API.

Other functions are exported but their ABI is not stable.

Not part of the public API: not a problem?

Application developers write broken software using these functions.

Libtool comes to the rescue:

libSDL_mixer_la_LDFLAGS += -export-symbols-regex Mix_.*

With a symbol list: use libtool’s -export-symbols or a version script.

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 14 / 28



Exporting private symbols

Non-static functions and global variables are all exported.

Developers only include useful functions in the public API.

Other functions are exported but their ABI is not stable.

Not part of the public API: not a problem?

Application developers write broken software using these functions.

Libtool comes to the rescue:

libSDL_mixer_la_LDFLAGS += -export-symbols-regex Mix_.*

With a symbol list: use libtool’s -export-symbols or a version script.

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 14 / 28



Namespace conflicts

GNU ld loads all symbols in the global symbol table.

Exporting private symbols also leads to namespace conflicts if a
program has a local function of the same name.

For libraries, this happens occasionally.

Library plugins: code that can be added to the context of any
application using the library.

Example GTK+ theme engines or input modules.

Applications are not tested against all plugins.

Application code can override plugin code.

Solution: always build plugins with -Wl,-Bsymbolic.

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 15 / 28



Namespace conflicts

GNU ld loads all symbols in the global symbol table.

Exporting private symbols also leads to namespace conflicts if a
program has a local function of the same name.

For libraries, this happens occasionally.

Library plugins: code that can be added to the context of any
application using the library.

Example GTK+ theme engines or input modules.

Applications are not tested against all plugins.

Application code can override plugin code.

Solution: always build plugins with -Wl,-Bsymbolic.

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 15 / 28



Outline

1 Basic library packaging

2 Common developer mistakes

3 Symbol versioning

4 The inter-library dependency hell

5 Conclusion

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 16 / 28



The problem

Consider a (not so hypothetical) package: a picture viewer using GTK+:

uses libgtk for the GUI;

uses libpng to read PNG files;

libgtk already depends on libpng.

Now libpng changes its ABI: libpng.so.2 → libpng.so.3

The package is rebuilt against libpng3.

Upon startup, libgtk still brings libpng.so.2.

All symbols are in the global symbol table.

No way to tell the symbols from both libpng versions.

→ Crash!

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 17 / 28



The problem

Consider a (not so hypothetical) package: a picture viewer using GTK+:

uses libgtk for the GUI;

uses libpng to read PNG files;

libgtk already depends on libpng.

Now libpng changes its ABI: libpng.so.2 → libpng.so.3

The package is rebuilt against libpng3.

Upon startup, libgtk still brings libpng.so.2.

All symbols are in the global symbol table.

No way to tell the symbols from both libpng versions.

→ Crash!

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 17 / 28



The solution

libpng12_la_LDFLAGS += -Wl,--version-script=libpng.vers

The version script looks like:

PNG12_0 {
*; };

This gives a version names PNG12_0 to the symbols in libpng.so.3.

For libpng.so.2 (version 1.0.x), version PNG10_0 is used.

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 18 / 28



The result

$ objdump -T libpng.so.2 | grep png_init_io
00006260 g DF .text 00000011 PNG10_0 png_init_io
$ objdump -T libpng.so.3 | grep png_init_io
000067a0 g DF .text 00000011 PNG12_0 png_init_io

When a binary is linked against this library, it now retains the needed
version for each symbol:

$ objdump -T pngtest | grep png_init_io
00000000 DF *UND* 00000011 PNG12_0 png_init_io

If two symbols with the same name appear in the global symbol table, the
dynamic linker will choose the one with the PNG12_0 version.

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 19 / 28



The result

$ objdump -T libpng.so.2 | grep png_init_io
00006260 g DF .text 00000011 PNG10_0 png_init_io
$ objdump -T libpng.so.3 | grep png_init_io
000067a0 g DF .text 00000011 PNG12_0 png_init_io

When a binary is linked against this library, it now retains the needed
version for each symbol:

$ objdump -T pngtest | grep png_init_io
00000000 DF *UND* 00000011 PNG12_0 png_init_io

If two symbols with the same name appear in the global symbol table, the
dynamic linker will choose the one with the PNG12_0 version.

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 19 / 28



Caveats

1 All packages have to be rebuilt.

For libpng, fixed packages uploaded early in the sarge development
process.
All depending packages have been rebuilt before the sarge release.
After the sarge release, libpng 1.0.x was removed.

→ A clean transition takes a whole release to complete.
2 Such changes cannot be easily reverted.

Warning when a package requires symbol versions the library hasn’t.
Failure when a package requires different symbol versions from the
ones found.
If another distribution starts using different symbol versions, they
become incompatible.

→ Forward changes upstream.
→ Ensure they are accepted as is: remember libmysqlclient.

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 20 / 28



Versioned symbols + export restriction

Generally it is a good idea to have both.
The version script looks like:

PNG12_0 { global:
png_init_io;
png_read_image;
[...]
local: *; };

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 21 / 28



Outline

1 Basic library packaging

2 Common developer mistakes

3 Symbol versioning

4 The inter-library dependency hell

5 Conclusion

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 22 / 28



Libtool

Tool to build libraries in a standard way, integrated with
autoconf/automake.

Builds a libfoo.la to include in the development package.

Among other things, contains the dependency information necessary
to build static libraries.

At link time, .la files are read recursively to link in all dependencies.

Not necessary for shared libraries, which already include a dependency
system.

In the context of a moving distribution this is harmful:

Dependencies: libfoo1 → libbar3 → libbaz0
Added by libtool: libfoo1 → libbaz0
Now libfoo1 has to be rebuilt against libbaz1!

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 23 / 28



Libtool

Tool to build libraries in a standard way, integrated with
autoconf/automake.

Builds a libfoo.la to include in the development package.

Among other things, contains the dependency information necessary
to build static libraries.

At link time, .la files are read recursively to link in all dependencies.

Not necessary for shared libraries, which already include a dependency
system.

In the context of a moving distribution this is harmful:

Dependencies: libfoo1 → libbar3 → libbaz0
Added by libtool: libfoo1 → libbaz0
Now libfoo1 has to be rebuilt against libbaz1!

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 23 / 28



Libtool

Tool to build libraries in a standard way, integrated with
autoconf/automake.

Builds a libfoo.la to include in the development package.

Among other things, contains the dependency information necessary
to build static libraries.

At link time, .la files are read recursively to link in all dependencies.

Not necessary for shared libraries, which already include a dependency
system.

In the context of a moving distribution this is harmful:

Dependencies: libfoo1 → libbar3 → libbaz0

Added by libtool: libfoo1 → libbaz0
Now libfoo1 has to be rebuilt against libbaz1!

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 23 / 28



Libtool

Tool to build libraries in a standard way, integrated with
autoconf/automake.

Builds a libfoo.la to include in the development package.

Among other things, contains the dependency information necessary
to build static libraries.

At link time, .la files are read recursively to link in all dependencies.

Not necessary for shared libraries, which already include a dependency
system.

In the context of a moving distribution this is harmful:

libfoo1 → libbar3 → libbaz0
Added by libtool: libfoo1 → libbaz0

Now libfoo1 has to be rebuilt against libbaz1!

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 23 / 28



Libtool

Tool to build libraries in a standard way, integrated with
autoconf/automake.

Builds a libfoo.la to include in the development package.

Among other things, contains the dependency information necessary
to build static libraries.

At link time, .la files are read recursively to link in all dependencies.

Not necessary for shared libraries, which already include a dependency
system.

In the context of a moving distribution this is harmful:

libbaz migrates: libfoo1 → libbar3 → libbaz1

Added by libtool:

libfoo1 → libbaz0

Now libfoo1 has to be rebuilt against libbaz1!

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 23 / 28



Libtool

Tool to build libraries in a standard way, integrated with
autoconf/automake.

Builds a libfoo.la to include in the development package.

Among other things, contains the dependency information necessary
to build static libraries.

At link time, .la files are read recursively to link in all dependencies.

Not necessary for shared libraries, which already include a dependency
system.

In the context of a moving distribution this is harmful:

libfoo1 → libbar3 → libbaz1

Added by libtool:

libfoo1 → libbaz0
Now libfoo1 has to be rebuilt against libbaz1!

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 23 / 28



Relibtoolizing packages

Debian’s libtool is fixed: dependencies are only used for static linking.
→ Patch packages to use this libtool instead.

libtoolize --force --copy ; aclocal ;
automake --force-missing --add-missing --foreign --copy ;
autoconf ; rm -rf autom4te.cache

Must be done for each new upstream release.

Generally insufficient to get rid of indirect dependencies.

Last move is to entirely remove .la files.

Start with leaf libraries: remember Xrender/Xcursor?

Only when the library uses pkgconfig.

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 24 / 28



Relibtoolizing packages

Debian’s libtool is fixed: dependencies are only used for static linking.
→ Patch packages to use this libtool instead.

libtoolize --force --copy ; aclocal ;
automake --force-missing --add-missing --foreign --copy ;
autoconf ; rm -rf autom4te.cache

Must be done for each new upstream release.

Generally insufficient to get rid of indirect dependencies.

Last move is to entirely remove .la files.

Start with leaf libraries: remember Xrender/Xcursor?

Only when the library uses pkgconfig.

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 24 / 28



Pkgconfig

Tool to provide and access metadata concerning libraries.

CFLAGS, LDFLAGS and dependencies.

Dependencies are recursed.
→ Another source of unneeded indirect dependencies.

Recent changes allow Requires.private and Libs.private in .pc
files.

Private dependencies are only used for static linking.

Fix your .pc files!

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 25 / 28



Pkgconfig

Tool to provide and access metadata concerning libraries.

CFLAGS, LDFLAGS and dependencies.

Dependencies are recursed.
→ Another source of unneeded indirect dependencies.

Recent changes allow Requires.private and Libs.private in .pc
files.

Private dependencies are only used for static linking.

Fix your .pc files!

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 25 / 28



GNU linker magic

When everything else fails,

when there is no more hope,
GNU ld comes to the rescue.

with the --as-needed option, it will skip unused dependencies it is
passed.

LDFLAGS="-Wl,--as-needed" ./configure --prefix=/usr [...]

A change in libtool reorders arguments.

--as-needed becomes a dummy option.

Patch available for ltmain.sh.

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 26 / 28



GNU linker magic

When everything else fails,

when there is no more hope,

GNU ld comes to the rescue.

with the --as-needed option, it will skip unused dependencies it is
passed.

LDFLAGS="-Wl,--as-needed" ./configure --prefix=/usr [...]

A change in libtool reorders arguments.

--as-needed becomes a dummy option.

Patch available for ltmain.sh.

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 26 / 28



GNU linker magic

When everything else fails,

when there is no more hope,
GNU ld comes to the rescue.

with the --as-needed option, it will skip unused dependencies it is
passed.

LDFLAGS="-Wl,--as-needed" ./configure --prefix=/usr [...]

A change in libtool reorders arguments.

--as-needed becomes a dummy option.

Patch available for ltmain.sh.

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 26 / 28



GNU linker magic

When everything else fails,

when there is no more hope,
GNU ld comes to the rescue.

with the --as-needed option, it will skip unused dependencies it is
passed.

LDFLAGS="-Wl,--as-needed" ./configure --prefix=/usr [...]

A change in libtool reorders arguments.

--as-needed becomes a dummy option.

Patch available for ltmain.sh.

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 26 / 28



Outline

1 Basic library packaging

2 Common developer mistakes

3 Symbol versioning

4 The inter-library dependency hell

5 Conclusion

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 27 / 28



Final words

No magic recipes.

Many known solutions to many problems.

Release management is impossible without cooperation from library
maintainers

Forward patches upstream.

Help upstream.

Kick upsteam.

Any questions?

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 28 / 28



Final words

No magic recipes.

Many known solutions to many problems.

Release management is impossible without cooperation from library
maintainers

Forward patches upstream.

Help upstream.

Kick upsteam.

Any questions?

Josselin Mouette (Debconf 6) Packaging shared libraries 19 may 2006 28 / 28


	Basic library packaging
	Common developer mistakes
	Symbol versioning
	The inter-library dependency hell
	Conclusion

