Weeding out security bugs in Debian

How to Improve security for our users
http://people.debian.org/” jfs/debconf6/security/

Javier Fernandez-Sanguino Peha

] fs@ebi an. org

B

I Weeding out security bugs

® Main Goal: Provide information to DDs on how to
avolid/fix security issues Iin their packages.

o How?
» Describe status of security in our OS (risks?)

» Describe the work of the different security-related
teams.

o Show some tools to audit source code.
o Present lessons from the audit team.
» Discuss recommendations for improvement.

B

I Impact of security bugs in the OS

What happens when a serious security issue Is found in
our OS?

® Our users are at risk.

DDs and security teams have to work fast to provide
a patch.

Our security mirror servers/bandwidth are stressed.
Some systems might get compromised.

Our public image is affected.

Resources required to deal with these bugs increase with

time.

I First comments on security bugs

All software has bugs.

Security bugs are of varying severity (CVVS):
remote vs. local
o DO0S vs. code execution

#® Security bug types vary with time (investigators shift
focus).

Note: Coverity analysis: 0.3 per 100k LOC in stable (and

audited) projects.

I Status of security issues in Debian

#® The size of the distribution keeps increasing in every
release, so do the bugs in it.

We are not much better than we were 3 years ago
(see my Debconf-3 talk)

s But there are now more teams than the Security
Team.

® Let’s see some lies” W data... (download file
data.tgz)

B

I Security bugs in Debian: somelies

Total advisories published for Debian: 1231 advisories

Potato: 197 DSAs (256) - 59 MLOC, maintenance
2.79 yr

Woody: 699 DSAs (1070) - 105 MLOC, maintenance
3.7 yr

#® Sarge: 271 DSAs (570) - 216 MLOC

Based on CVE Names: 1047 advisories since 2001 for
1387 distinct vulnerabilities.

|

I Security in Debian: Fancy graph take 1

Accumulated DSAs

700
650 o
4

600

550

500 /
/

450

400 \ Sarge

350 // \. Woody

300 \ Potato

250 /’/ /'

200

50

06/12/99 19/04/01 01/09/02 14/01/04 28/05/05 10/10/06
Date

In sarge, most of them In packages of section net (" 16%) I
or web (" 23%)

I Security bugs in Debian: moredamn lies

Different types:

® Buffer overflows: 26,9%

Improper data handling: 26,3%
Design issues: 18,2%

Exceptional condition handling: 7,4%
Boundary condition: 5,7%

Access validation: 5,6%
Unclassified: 3,9%

® Race condition: 2,8%

Approx. 65% remotely exploitable.
Note: Data of 1369 distinct CVE names from vulnerabilities from

September 1998 to March 2006. I

L I I B N I

I Security in Debian: Fancy graph take 2

CVSS score of DSAs

110

Median CVSS value is 7:
See http://nvd.nist.gov/ and http://www.first.org/cvss/

I Hands-on: hello-1nsecure

Download hello-sample.tgz from either
ftp://lnomer.mexico.debconf.org/share/jfs/ or
http://people.debian.org/” jfs/debconf6/security/samples/:
hello-insecure-2.1.1.debian.diff: changes to the hello
package

hello-daemon-insecure_2.1.1-5 1386.deb: the binary
package. WARNING: installing this opens up a remote
root hole in 1025, is your firewall up?

® server-spotted.c: Security bugs in the server daemon
commented in.

How many (security) bugs can you spot? I

I Teams handling security bugs

There are three different teams handling security bugs in
Debian:

#® Security Team: handles security bugs (aka patches)
In stable.

Security Testing Team: handles security bugs in
testing.

Security Audit Team: looks for security bugs.

B

I The Debian Security Team

°

Made up of 4-6 members.

°

Relates with other teams through vendor-sec and
CERT.

Reviews public-disclosure bugs (do they affect us?).
Produces and tests security patches.

Writes security advisories.

Publish patches through a specific buildd network.

© o o o 0

(sometimes) Follow up on compromise of Debian

systems.

I The Debian Security Testing Team

Made up of 6 (?) members.
#® Works with public information (CVE names)

#® Reviews status of security fix propagation from sid to
testing.

® |[ssue DTSAS.

Security support for testing started September 2005,
Integrated in main archive in May 2006.

B

I The Debian Security Audit Team

Made up of 4 members.

Some members started auditing in year 2003, group
formed year 2004.

Priorise packages.

Focused on certain things:
» bugs in setuid/setgid applications (games)
» misuse of sprintf/fscanf/syslog/...
s temporary file race conditions

#® Developed some tools developed to do automatic
code review.

#® As aresult: 81 DSAs (13 %), 121 security (non-DSA) I
bugs

I Debian Security Audit Team: tools

Some tools used by the audit team
(http://www.debian.org/security/audit/tools):

® RATS: C tool to review C/C++/Perl/PHP/Python, works with an
XML database to detect problematic functions.

® Flawfinder: Python tool to analyse C/C++, looks at functions
and how they are used

® pscan:. not general purpose, just format string overflows.

® Audit::Source (http://hinterhof.net/” max/audit-perl): Run all of
these at the same time (and colour the code)

® Other tools: grep, bfbtester, other black box tools...

|

I Hands-on: multiple-bugs.c

Download multiple-bugs.tgz from either
ftp://lnomer.mexico.debconf.org/share/jfs/ or
http://people.debian.org/” jfs/debconf6/security/samples/:

Review multiple-bugs-nocomments.c: how many
security bugs can you spot?

Run RATS, Flawfinder and pscan in it: how many did
they spot?

#® Review comments in multiple-bugs.c
Compare source with multiple-bugs-fixed.c
Run RATS, Flawfinder and pscan in

multiple-bugs-fixed.c: how many did they spot? I

I Audit Team: Lessons learned

Some lessons learned by the security audit team:

Many developers are not aware of common security
flaws: incorrect design of software (setuid/setgid, root
daemons...), buffer overflows, sanitise user input..

Many more security bugs waiting to be fixed
(specially in software which is not popular)

Too much software to audit, no easy way to do
source code review (no centralized repo).

#® FLOSS source code reviewing tools useful but need
Improvements.

Fixing security bugs takes a lot of time. I

I Audit Team: Lessons learned DSA-656

Some lessons learned DSA-656 (see DSA-656.t9z),
arbitrary file overwrite in vdr (network music daemon):

Having a server disabled per default is not a security
measure, users will start it up anyway.

Maintainers don’t heep upstream’s comments, from
the INSTALL file: don’t run this as root!

|t's difficult to do a redesign in a DSA (see #287899),
thus stable users do not get all the benefits of an

audit.

I Hands-on: DSA-893

Pick up DSA-893.tgz from either
ftp://lnomer.mexico.debconf.org/share/jfs/ or
http://people.debian.org/” jfs/debconf6/security/samples/:

acidbase CVE-2005-3325.bad.diff: upstream’s fix

acidbase.CVE-2005-3325.diff: my fix for DSA-893
(actual package changes in
acidlab.CVE-2005-3325.pack.sarge.diff)

acidlab-0.9.6b20-12to13.diff: changes between

version in sid/sarge (checkout changes to

acidlab.apache.conf)

I Audit Team: Lessons learned DSA-893

Some lessons learned DSA-893, SQL injection in
acidlab:

#® Upstream doesn’t always know how to fix security
bugs

#® Security bugs of some packages might affect other
packages with common codebase (BASE -> ACID)

|It's better to restrict access to sensitive web
Interfaces by default (security bug in default install ->
security bug enabled by admin)

Fixes for SQL injection bugs and XSS bugs in PHP
apps are similar: review user’s input!

A security fix Is not always 100% thorough ("time to I

fix" pressure)

I Audit Team; More lessons

Some more lessons learned:

® DSA-647, Temporary filename race condition in MySQL.: even
popular software has obvious security bugs.

® DSA-334, 354, 356, 368, 369...> vulnerability in application
setGID games = compromise of users running any games in
the system. Also #291613 (setGID games writing in user’s dirs
without dropping privs). Are global hiscores worth it?

® #334616, yiff-server running as root can "play" any file: why
does a sound daemon need root privs.

® #329365, mailleds can be used to kill any system process:

watch your umasks!

I Audit Team: Even more lessons

® #291389, tcl: No tempfile/mktemp/mkstemp implementation in
toolkit language - some bugs do not help implement secure
code.

® #255033, securecgi design flaws: writting security code is not
simple, a secure in the name does not make it so.

® #291376, cdrtools: Unsafe recommendation (and
Implementation) of debugging in rscsi - some maintainers sit on
security bugs (lack of time?). Please do credit where credit is
due.

® #291635, format string bug in man2html: some unaudited

sofware ends up being used in CGI gateways.

I Audit Team: Bored of |essons?

® #298114, nvi init script can be used for mischiveous purposes:
bugs can remain undetected for a very long time and not all
security fixes reach stable.

® #323386, kismet, CAN-2005-2626 and CAN-2005-2627
present in sarge and etch: lazy maintainers do not want to track
bugs in stable.

® #289560 vim, Race conditions and symlink attacks in vim
scripts: why provide obsolete/unsupported stuff? rewritting
security patches sometimes introduce new mistakes, why take
patches from Ubuntu when we have our own?

B

I Weeding out security bugs: How can | help?

Learn how to spot security bugs, review upstream’s
code.

QA your own code for security bugs.

Learn how to program with security in mind and do
proper design of your packages.

Review applications you maintain:
s Track security bugs upstream.
s Follow guidelines for handling security bugs.

|

Join one of the security teams.

I Prevent/minimize security bugs

Do not package or include alpha/beta/unsupported
software (or prevent it into getting into stable.

#® Use low-privilege users for daemons and cron tasks
(see #337086)

Avoid setgid and setuid software (review the Policy)
Default safe configurations

#® Review applications you maintain:
s Security track record?
» Responsiveness of upstream for security bugs?

|

I Conclusions

Some new technologies (SElinux, GCC 4.1 SPP,
PaX, exec-shield, RSBAC..) might enhance
protection of our users, but they might not cover all
possible security bugs.

Removal of security bug is a group work: make sure
you've done your part.

Try to code in a secure way (learn how if you don’t
know) and review your upstream’s code (help them
learn too0)

Use tools to help you in review (but don’t trust them
fully)

Learn from past mistakes (even other’s). I

I Thanks

Thanks!

I For more information

Recommended reading thingies:

® Debian specific:

» Debian Security Team FAQ:
http://www.debian.org/security/faq

» Debian Securing Manual:
http://www.debian.org/doc/manuals/securing-debian-howto/

Debian Security Audit Team:
http://www.debian.org/security/audit/

® David Wheeler's Secure Programming for Linux and Unix
HOWTO: http://www.dwheeler.com/secure-programs/

B

® Fortify’s Taxonomoy of Coding Errors:
http://vulncat.fortifysoftware.com/

I For more information

® Courses:

Dan Bernstein’s UNIX Security Holes Course:
http://cr.yp.to/2004-494 .html

» University of Purdue’s Secure Programming Educational
Material: http://www.cerias.purdue.edu/secprog

® Books:

» Practical Unix Security: Simon Garfinkel and Gene
Spafford. ISBN 0-596-00323-4

Secure Coding, Principles and Practices: Mark Graff and

Kenneth R.van Wyk. ISBN: 0-596-00242-4

I Answers: hello-1nsecure

Hello-insecure security bugs (knowingly introduced):

Design problems: running as root, startup a debug
daemon listening in all interfaces

Maintainer postinst bug: create stuff in /tmp
Maintainer compile bugs: why -DDEBUG?

Server code bugs: format string, buffer overflow, log
In /tmp and DoS due to memory exhaust

|

I Answers. multiple-bugs

Hello-insecure security bugs (knowingly introduced):
BoF using getenv with sprintf

Hardcoded path of logfile in /tmp

fopen use with race condition

Stack overflow due to gets

Static bof due to fixed size buffer (sprintf)

Format string overflow because of misuse of syslog

© o o o o o 0

Command injection due to misuse of system ()

B

	Weeding out security bugs
	Impact of security bugs in the OS
	First comments on security bugs
	Status of security issues in Debian
	Security bugs in Debian: some {em lies}
	Security in Debian: Fancy graph take 1
	Security bugs in Debian: more {em damn lies}
	Security in Debian: Fancy graph take 2
	Hands-on: hello-insecure
	Teams handling security bugs
	The Debian Security Team
	The Debian Security Testing Team
	The Debian Security Audit Team
	Debian Security Audit Team: tools
	Hands-on: multiple-bugs.c
	Audit Team: Lessons learned
	Audit Team: Lessons learned DSA-656
	Hands-on: DSA-893
	Audit Team: Lessons learned DSA-893
	Audit Team: More lessons
	Audit Team: Even more lessons
	Audit Team: Bored of lessons?
	Weeding out security bugs: How can I help?
	Prevent/minimize security bugs
	Conclusions
	Thanks
	For more information
	For more information
	Answers: hello-insecure
	Answers: multiple-bugs

