Python Requests

SELCHINEEREE]
Amrita University, India
sakshi.aprils@gmail.com

Mini DebConf - Women

Barcelona




Why use Python on Web

e (an write scripts to automate interaction with a web-page.

e (an just use Python to fetch the HTML pages and process them.
e (an get and parse RSS feeds.

e (an create a web spider to test your site or search other sites.

e Uses Beautifulsoup (Python module) for parsing HTML
and XML files.




Urllib/Urllib2 are the default Python modules used for opening HTTP URL'’s.

Urllib cannot be completely replaced by urllib2 since the former has methods
that are absent in the later. Eg: urlencode()

The documentation for both urllib and urllib2 is extremely difficult to
understand.

Even for a simple GET request it is impossible to write a short script using
urllib2.



Python Requests




Introduction

e Requests is a simple, easy-to-use HTTP library written in Python.

e Lead developer is Kenneth Reitz who is also a member of the Python
Software Foundation.

e [t can be used for various Operating Systems like Debian, Unix etc.



Parsing JSON

e Web pages usually have JSON embedded in their code.

e While receiving requests we often get response in JSON format.

e Requests have a built-in JSON decoder which helps in parsing JSON code.

e We can justimport the JSON module.



a) How to know if the response is in JSON format

import requests

r = requests.get(“http://www.example.com”)
print r.status_code

print r.headers['content-type']

Output:
200

‘application/json’



b) How to parse using JSON built-in module and Requests

import json

import requests

response = requests.get(url=url, params=params)

data = json.load(response)

json.load(response) - used for decoding the response

json.dump(request) - used for encoding request



e Keep-Alive & Connection Pooling:

o Keep-alive is available and automatic within a session.

o There is a pool of connections and a connection is released for
only once all its data has been read.



e (Cookies: We can get the cookies set by the server from the response
o url = 'http://example.com/cookie’

r = requests.get(url)

r.cookies['cookie_name']

o We can also send cookies to the server:
m url = 'http://example2.com/cookies'

cookies = dict(cookiel="This_is_a_cookie')

r = requests.get(url, cookies=cookies)


http://example.com/cookie

Requests can automatically decode the response based on the header values.

Using .encoding method we can change the encoding type.

Supports various types of exceptions such as DNS failure, Invalid HTTP
response etc.

Supports the entire restful APl i.e, all its methods- PUT, GET, DELETE, POST.



Python Requests
vis
Urllib/Urllib2



Example 1: Making a POST request
L1 usi Lib2 /urllil

import urllib
import urllib2

url = "http://www.example.com”

values = {"firstname":" abc ", "lastname":" xyz "}
header = {"User-Agent":"Mozilla/4.0(compatible;MSIE 5.5;Windows NT)"}

values = urllib.urlencode(values)
request = urllib2.Request(url, values, header)



response = urllib2.urlopen(request)
html_content = response.read()

Note: In the above example 2.1 we had to make a use of both the urllib and urllib2 modules in
order to write a script for a simple POST request.



1.2 using requests

import requests

mnm.n mnm.n
. .

values = {""firstname":" abc ", "lastname":" xyz "}

r = requests.post('https://www.example.com, data=values)

print r.status_code

print r.text



Thank You!!!




