CHERI and Morello: Arming systems
with hardware-enforced memory safety

capabilities

Jessica Clarke
jessica.clarke@cl.cam.ac.uk

jrtc27 @debian.org
MiniDebConfCambridge 2023

SRI

& CHERI 2 SRI

Approved for public release; distribution is unlimited.

This work was supported in part by the Innovate UK project 105694 (“Digital Security by Design (DSbD) Technology Platform
Prototype”, and Innovate UK project 10027440 (“Developing and Evaluating an Open-Source Desktop for Arm Morello”).

This work was also supported by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research
Laboratory (AFRL), under contract FA8750-10-C-0237 (“CTSRD”), with additional support from FA8750-11-C-0249 (“MRC2"),
HR0011-18-C-0016 (“ECATS”), FA8650-18-C-7809 (“CIFV”), HR001122C0110 (“ETC”), and HR001123C0031 (“MTSS”) as part of
the DARPA 120 CRASH, 120 MRC, and MTO SSITH research programs. The views, opinions, and/or findings contained in this
report are those of the authors and should not be interpreted as representing the official views or policies of the Department
of Defense or the U.S. Government.

We further acknowledge EPSRC REMS (EP/K008528/1), EPSRC CHaOS (EP/V000292/1), ERC ELVER (789108), the Isaac Newton
Trust, the UK Higher Education Innovation Fund (HEIF), Thales E-Security, Microsoft Research Cambridge, Arm Limited,
Google, Google DeepMind, HP Enterprise, and the Gates Cambridge Trust.

| UNIVERSITY OF
CAMBRIDGE

CHERI Research and Development Timeline

Nov. 2012: ¢ Sep. 2014: MIT LL red- Sep. 2015: CheriABI
Sandboxed code on | team Iiye Heartbleed pure-capabil'ity POSIX Sep. 2020: Arm to
Oct. 2011: Capability CheriBSD; live A mitigation demo process environment release Morello
microkernel runs FI?GA-pase Trojan Ml | Nov. 2014: tcpdump + Apr. 2016: CHERI Microkernel Issp:j::‘ll?lﬁon and
sandoox on FPGA | 2012: LLYM Mitigation demo kiis petissier Workshop with ARM, Broadcom, ;LA g i e
%‘:‘E';altes 4 Dec. 2013: domain switches demo gggbgdgel, E;:IZunch, W,
code - : » Oracle, . July 2019: Sep. 2019: ISCF DSbD Sep./Oct. 2020: SRV/
Jul. 2010: ShetioD June 2019: CheriBSD experimental CHERI-ARM Cambridge, Al
CTSRD Jun. 2012: CCall Jan. 2014: Jun. 2015: CHERI RISC-V amoricge, Arm,
4 - i £ : Jul. 2016: CHERI : . temporal CPU, SoC, and board and Linaro open Jan. 2022: Arm ships
proposal | CheriBSD capability excepion: ChedBSD 1eateLIvi run-time linker, R Thorocontroller with memory safety announced: “Morello” source Morello experimental Morello
i itchi I LLV heri , i :
submitted context switching \ Cl-;EF\‘ LLVM and CheriBSD for dynamic linking CheriFreeRTOS \ e are tack CPU, SoC, and board
\
l | | | S ot ! 7 Y L 1 | 1 | N | >
! 12011 , 12012 \ 12013 « 12014 \ 12015 , 2016 12017 12018 12019 12020 N 12021 !
\ / I
i Oct. 2020:
' Nov. 2015: Jun. 2016: April 2017: ICCD 2018: Jun. 2019: Sep. 2019:
$\ 8 y Jul. 2014: Merged ’ ; : ; ep- : CHERI ISAvS -
Oct: 2010: capabilities and fat CHERI ISAv4 - CHtE RIS Avs EHERll ISAvsn ’ CheriRTOS, fCHER;I ISAW,(- Introduction to mature RISC-V,
CTSRD project pointers; ISA + 128-bit caps, mature ernel compartments, 32-bit ISAs ormal semantics, - cHERI lemporal safoly;
B kj FPGA ’ t fast domain- CHERI-128, tag reconstruction, CHERI concentrate, 32/64-bit 2
egins worl = J prototype switching code efficiency | efficiency, other ISA architecture IEEE S&P 2020: b M L .
Nov. 2011: A instructions improvements | : sketches POPL 2019: neutrality, temporal .) fmviore’o
May 2012: .] . : ornucopia Jun. 2020:
FPGA tablet + Capabilities/MMU in April 2013: multi- Jun. 2015: 128-bit C pointer safety, RISC-V temporal un. y
LAW 2010: CHERI-specific [SA + FPGA FreeBSD FPGA CheriCloud “candidate 3" ISA + provenance memory safety CHERIC/C++
Capabilities microkernel S b0 B PRGOS FPGA prototype ACM CCS 2015: IEEE Micro Journal: | ICCD 2017: ASPLOS 2019: Programming Guide
revisited Program analysis, Fast ISA-supported Efficient tagged Pure-capability
compartmentalization domain switching memory UNIX userspace |EEE S&P 2020:
Py EGS 2019: CHERI ISA modeling
RESOLVE 2012: _ ISCA2014: ASPLOS 2015: IEEE S&P 2015: PLDI 2016 ALBLOE 201 ompresse MICRO 2019: e el proct
Hybrid MMU/ Hybrid MMU/capability C-language Operating systems, CHERI C-language CHERI-JNI capabilities Temporal memory-
capability model model + architecture compatibility compartmentalization formal semantics safety feasibility study

Years 1-2: Research platform, prototype architecture Years 4-7: Efficiency, CheriABI/C/C++/linker, Armv8-A

Years 2-4: Hybrid C/OS model, compartment model Years 8-12: RISC-V, temporal safety, proof,
Arm Morello, Microsoft CHERIoT

& CHERI 3 SRI

UNIVERSITY OF
CAMBRIDGE

35 Years Ago

e 2nd November 1988: Morris Worm appeared

* Four methods of propagation
1. rsh to host that trusts this one
2. rexec with same username and password as local system
3. sendmail compiled with debug mode (command injection) enabled
4. Buffer overflow of on-stack string buffer in fingerd

2. UNIVERSITY OF
a CHERI 4 SR % cAMBRIDGE

Two Weeks of DSAs

G CHERI

eoe M- < & www.debian.org/security/#DSAS © ©® h +
Recent Advisories
These web pages include a condensed archive of security advisories posted to the a

debian-security-announce list.

(Check out the new list format.)

[22
[22
[20
[19
[18
2117
[15
[15
[13
[13
[12
[09
[08

Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov
Nov

Out of bounds

read / write

2023] DSA-5562-1 tor security update

2023] DSA-5561-1 firefox-esr security update
2023] DSA-5560-1 strongswan security update
2023] DSA- -1 wireshark security update
2023] DSA-5558-1 netty security update
2023] DSA-5557-1 webkit2gtk security update
2023] DSA-5556-1 chromium security update
2023] DSA-5555-1 openvpn security update Use after free
2023] DSA-5554-1 postgresql-13 security update
2023] DSA-5553-1 postgresql-15 security update
2023] DSA-5552-1 ffmpeg security update
2023] DSA-5551-1 chromium security update
2023] DSA-5550-1 cacti security update

Pointers Today

64-bit
address

Upper bound
{ Pointer address
Memory

L allocation

* To the hardware, pointers are just integer addresses et
* Can be forged / injected |
* Raw data and pointers indistinguishable Virtual address space

* No programmer intent conveyed
® Just check that the address is mapped

UNIVERSITY OF
CAMBRIDGE

s

B

llll HA“‘I
i

oS
(\;'),—\“ x“
1y

G CHERI 6 SRI

Some Limited Solutions

®* Various extensions exist to make attacks harder: BTI, PAC, shadow
stack, MTE, ...

* Generally suffer from at least one of:
* Probabilistic
* Rely on secrets
* Target symptom not cause
* Target secondary cause

G T
& CHERI 7 SR Uiy or

CHERI Capabilities

1-bit

tag
F__L__W
E

Memory
L allocation

128-bit
capability
A

—

* Capabilities extend integer memory addresses Virtual address space
* Bounds restrict the range of memory addresses they can access

* Permissions restrict how the capability can be used (e.g. read-only)

* Tags protect capability integrity/derivation in registers + memory

* Guarded manipulation controls how capabilities may be manipulated;
e.g., provenance validity and monotonicity

& CHERI 8 SRI

UNIVERSITY OF
CAMBRIDGE

ES B

W

‘‘‘‘ [P
i

B
‘»;'),—\“ il
g i

Capabilities in Registers and Memory

Capability width
A

* ; D Capability M oo

added to
System registers DRAM

GPRs extended to 129 bits

Physical memory

General-purpose register file (GPRs)

. ?4-bit general-purpose registers (GPRs) are extended with 64 bits of metadata and a 1-bit validity
ag

* Program counter (PC) is extended to be the program-counter capability (PCC)
* Default data capability (DDC) constrains legacy integer-relative ISA load and store instructions
* Tagged memory protects capability-sized and -aligned words in DRAM by adding a 1-bit validity tag

* Various system mechanisms are extended (e.g., new TLB/PTE permission bits, exception codes,
exception/interrupt vectors etc.)

G CHERI 9

2B UNIVERSITY OF
{¥ CAMBRIDGE

Hardware Prototypes

° Origgr;al research used home-grown pipelined “BERI” MIPS core (CHERI-
MIP

* Transitioned CHERI research to extended versions of open-source off-the-
shelf BSV RISC-V cores (CHERI-RISC-V)

* CHERI-Piccolo 3-stage pipeline, 32-bit, no MMU
* CHERI-Flute 5-stage pipeline, 32- or 64-bit, MMU
®* CHERI-Toooba Superscalar out-of-order, 64-bit, MMU

* Novel microarchitectural contributions include capability compression
model, tagged memory implementation techniques

* All our CPU designs are open source
* QEMU full-system and user-level simulators for CHERI-RISC-V and Morello
* Arm Morello and Microsoft CHERIoT (later slides)

B UNIVERSITY OF
a CHERI . SRI @ cameriDGE

Microsoft CHERIoT (2023)

CHERIoT: Complete Memory Safety for Embedded Devices

Saar Amar* David Chisnall’ Tony Chen
saaramar5@gmail.com David.Chi 1.cam.ac.uk 1 i com
Microsoft Microsoft Microsoft

Tel Aviv, Israel

Cambridge, UK

Redmond, Washington, USA

Nathaniel Wesley Filardo* Ben Laurie Kunyan Liu*
nwf20@cam.ac.uk benl@google.com kunyanliu@microsoft.com
Microsoft Google Microsoft
Cambridge, UK London, UK San Diego, California, USA
Robert Norton® Simon W. Moore Yucong Tao
robert.nor i com Simon.].cam.ac.uk Yucong.Tao@microsoft.com
Microsoft University of Cambridge Microsoft

Cambridge, UK

Robert N. M. Watson
robert.watson@cl.cam.ac.uk
University of Cambridge
Cambridge, UK

ABSTRACT
The ubiquity of embedded devices is apparent. The desire for in-
creased functionality and connectivity drives ever larger software
stacks, with components from multiple vendors and entities. These
stacks should be replete with isolation and memory safety tech-
nologies, but existing solutions impinge upon development, unit
power, scalability, and/or real-time constraints, limiting their
adoption and production-grade deployments. As memory safety
vulnerabilities mount, the situation is clearly not tenable and a new
approach is needed.

To slake this need, we present a novel adaptation of the CHERI

cos

capability i designed with a field, security-
centric RTOS. Tt is scaled for embedded systems, is capable of
i d software ion, and provides affor-

dances for full inter-compartment memory safety. We highlight
central design decisions and offloads and summarize how our pro-
totype RTOS uses these to enable memory-safe, compartmentalized
applications. Unlike many state-of-the-art schemes, our solution
deterministically (not probabilistically) eliminates memory safety

‘while level ility. We

the power, p and area

impacts, run microbenchmarks of key facilities, and exhibit the

“These authors made significant contributions to the design and implementation
without which the project would not have been possible.
*Work conducted while at Microsoft.

‘This work s licensed under a Creative Commons Attribution International
4.0 License.

MICRO '23, October 28-November 01, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0329-4/23/10.
hitps:/doi.org/10.145/3613424.3614266

Cambridge, UK

Mountain View, California, USA

Hongyan Xia®™
Jerryxia32@gmail.com
Arm Ltd.
Cambridge, UK

of an end-tc d ToT c: The i
shows that full memory safety for compartmentalized embedded
systems is achievable without violating resource constraints or real-
time guarantees, and that hardware assists need not be expensive,
intrusive, or power-hungry.

ACM Reference Format:

Saar Amar, David Chisnall, Tony Chen, Nathaniel Wesley Filardo, Ben
Laurie, Kunyan Liu, Robert Norton, Simon W. Moore, Yucong Tao, Robert
N. M. Watson, and Hongyan Xia. 2023. CHERIoT: Complete Memory Safety
for Embedded Devices. In 56th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO °23), October 28-November 01, 2023, Toronto,
ON, Canada. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145

3613424.3614266

1 INTRODUCTION

The attack surface of embedded devices is no longer limited to
physical attacks, in an increasingly connected world. From con-
sumer electronics (smart watches, WiFi chips) to security-critical
devices (self-driving vehicles, aviation and smart grids) and more
recently IoT applications, physical isolation is rarely the boundary
in modern day embedded devices. With the increase of connectiv-
ity comes combinatorial growth of the attack surface. Sadly, the
resource constraints and the low-level programming environment
‘mean solving even the most basic problem of memory safety still
poses as a monumental challenge. Worse, the gap between the at-
tack surface area and the level of defense widens further when such
embedded devices are deployed into complicated multi-tasking sce-
narios with a Real-Time Operating System (RTOS) and multiple
software stacks from different vendors.

Even though researchers have disclosed an alarming number
of memory vulnerabilities in recent years [6, 11, 15, the lessons
learned from desktop and server systems do not directly translate
to embedded systems. Page table techniques, sanitizers, dynamic

Ge CHERI

Production CHERI-extended Ibex microcontroller
* Small-scale microcontroller used in OpenTitan, etc.
®* CHERI-RISC-V tuned for small microcontrollers

* (Clean-slate memory-safe, compartmentalized
embedded OS for high-risk applications

* QOpen sourced in February 2023
®* RISC-V embedded standardization candidate

Collaboration across Microsoft Research, MSRC,
Azure Silicon, and Azure Edge + Platform

lowRISC Sunburst FPGA board reference platform
Published in [EEE MICRO 2023

. SRI

UNIVERSITY OF
CAMBRIDGE

Codasip (2023)

eoe M - 5] codasip. lease/2023/10/31/codasip-delivers-pr urity-to-actively-prevent- ¢, h + ©

ENG

Jo

@
.' CodaSIp Products Solutions Codasip Labs Resources Company Q

Press Release

Codasip delivers processor
security to actively prevent the

most common cyberattacks
)

31 0ctober, 2023

Introducing fine-grained memory protection with the first
commercial implementation of CHERI

Munich, Germany, 31 October 2023 - Codasip, the leader in RISC-V Custom Compute, today announced the
first commercial implementation of CHERI, the advanced security mechanism the semiconductor industry
needs. Capability Hardware Enhanced RISC Instructions (CHERI) technology was developed at the University
of Cambridge as the result of research aimed at revisiting fundamental design choices in hardware and
software to improve system security. The technology has been proven in experimental processors and will
now for the first time be available in a commercial offering, enabling secure-by-design products. Codasip’s

G CHERI .

UNIVERSITY OF
CAMBRIDGE

DSbD and
Arm Morello

* S$225M government, academia, and
industrial research program led by
UK Research and Innovation (UKRI)

* Announced partners: Arm, Google,

Microsoft
®* 15+ UK universities with research
grants
® 70+ funded business incubation
projects
* Baseline for design: Neoverse N1

core
* 2.5GHz quad-core, superscalar

* Roughly a thousand chips
manufactured for use by research +

i || O O O

development labs ' o) O SRS

G CHERI

Pure-Capability ABI

®* CHERI introduces new “pure-capability” ABI

* All C/C++ language pointers are CHERI capabilities
* NB: includes (u)intptr_t

* All “sub-language” pointers also CHERI capabilities
®* Return addresses, C++ vtables, GOT and stack pointers, varargs, ...

* Provides full always-on CHERI protection
* Often just called “CHERI C/C++”
* Most source code requires few, if any, changes

2. UNIVERSITY OF
a CHERI) SR % cAMBRIDGE

Hybrid ABI

®* Compatible extension of existing non-CHERI ABI
® (Capabilities are opt-in:

* void * - void * capability

* (u)intptr t > (u)intcap t
* Allows interfacing between “legacy” and pure-capability code
* Very limited protection
* Awkward to use at scale
* Not for widespread use, but useful in very specific scenarios

18 TYO
Ge CHERI - SRI @ civsriDGE

Compatibility

* Familiar with running 32-bit application on 64-bit system: COMPAT
in Linux, COMPAT_FREEBSD32 in FreeBSD

® Similarly, can run non-CHERI (or hybrid) 64-bit process on a CHERI
system via compatibility interface
* All your existing binaries continue to run
* ... but no security benefit

* Intheory can also run 32-bit applications on a CHERI system, but no
current hardware prototypes support 32-bit mode

2. UNIVERSITY OF
a CHERI . SR % cAMBRIDGE

Subobject Bounds

®* Current security extensions generally protect only the allocation

* Some vulnerabilities involve overflowing between adjacent “sub-
objects” within the same allocation

®* Qur bounds (and permissions) tied to the pointer, not the allocation;
can derive subsets

* Compiler can (optionally”) do this automatically
* &p->x - cheri bounds set (&p->x, sizeof (p->x))

" With varying levels of aggressiveness, at the cost of decreased C
compatibility

2 UNIVERSITY OF
a CHERI ; SRI @ cameriDGE

Temporal Safety

* So far, illustrated referential and spatial memory safety
* Tag bit allows us to find all capabilities

* On free, “quarantine” allocation: references remain valid, memory
not yet repurposed

* When quarantine grows too large, sweep through process’s memory
and invalidate (“revoke”) all capabilities to freed memory

* Tricks with special page table bits to allow sweeping concurrently
with process execution

2 UNIVERSITY OF
a CHERI) SRI @ cameriDGE

Compartmentalisation Scalability

* CHERI dramatically improves compartmentalisation scalability

* More compartments Early benchmarks show 1-to-2 order of

) .. magnitude performance improvement
* More frequent and faster domain transitions " for inter-compartment communication

* Faster shared memory between compartments | compared to conventional designs

* Compartment can only access memory it has capabilities for

* Many potential use cases — e.g., sandbox processing of each image
in web browser, processing each message in mail application

* Unlike memory protection, software compartmentalisation requires
careful software refactoring to support strong encapsulation, and
affects software operational model

G CHERI .

2.7 UNIVERSITY OF
¥ CAMBRIDGE

Compartmentalisation Models

* Two models being explored:

1. Intra-process compartmentalisation
* Every library is its own compartment
* Simple programming model — compartment invocation is normal function call
* Automatically provide additional robustness for unmodified source code

2. Co-process compartmentalisation
* Multiple processes share address space
* CHERI allows fast IPC and domain transitions
* Fits into existing process-based compartmentalisation designs
* Requires structuring code into multiple processes

& CHERI . SRI

& UNIVERSITY OF
¥ CAMBRIDGE

Prototype Software Stack

* Complete open-source software stack from bare metal up: compilers, toolchain,
debuggers, hypervisor, OS, applications — all demonstrating CHERI

* Rich CHERI feature use, but fundamentally incremental/hybridized deployment
Open-source application suite (KDE Plasma, Wayland, WebKit, OpenSSH, nginx, ...)

CheriBSD/Morello (funded by DARPA and UKRI)
(Morello and CHERI-RISC-V)

* FreeBSD kernel + userspace, application stack

* Kernel spatial and referential memory protection

* Userspace spatial, referential, and temporal memory protection
* Co-process compartmentalization (development branch)

* Linker-based compartmentalization

* Morello-enabled bhyve Type-2 hypervisor

Baseline CHERI

* AArch64 64-bit binary compatibility for legacy binaries Clang/LLVM from
SRI/Cambridge;

Morello adaptation
CHERI Clang/LLVM compiler suite, LLD, GDB Morello GCC, LLDB (Arm) (Morello only) 4\ by Arm + Linaro

8 UNIVERSITY OF
¥ CAMBRIDGE

& CHERI , SRI

CHERI C/C++ vs High-Level Languages

Language Approximate open- Memory safe Memory safe with CHERI
source LoC*

C 10,317,800,000 X v
C++ 2,937,550,000 X v
Java 2,600,000,000 v v
Rust 39,500,000 v v

More lines of open-source code have been ported to CHERI C/C++ memory
safety than the Rust ecosystem has created in its entire history

f\ * Synopsys Black Duck Open Hub: https://www.openhub.net/languages
G CHERI ; SRHI

5. UNIVERSITY OF
@V CAMBRIDGE

https://www.openhub.net/languages

2021 Desktop Pilot Study

Developed:

* 6 million lines of C/C++ code compiled
for memory safety; modest dynamic
testing

Three compartmentalization
Rob(-:rt N. N:.Watso::.jimonw Moore, Peter Sewell, Peter G. Neumann Wh Ite boa rd ca Se St u d Ies I n Qt/ K D E

ong, Peter Blandford-Baker, John Baldwin, Hadrien Barrel, Thomas Bauereiss,

CHERI — Software stack status update ‘ o

ar} 3
Dapeng Gao, Khilan Gudk: utstein, nou, Mark Johnston, Robert Ko , Ben eo Markettos, E | . o
). Edward Maste, Alfredo Ma i, Alan Muj th Mundkur, Steven J. Murdoch, aj ge Neville-Neil, et 2 Va u at I O n re S u tS
Robert Norton-Wright, Philip Paeps, Lucian Paul-Trifu, Alli e *
Peter Rugg, Hassen Saidi, Peter Sewell, Thomas Sewell, Stacey Son, Domagoj Stolfa, Andrew Turner, Munraj Vadera, Konrad Witaszczyk,

e * 0.026% LoC modification rate across

University of Cambridge, SRI International, Capabilities Limited, Ararat River, and MSB As:

full corpus for memory safety

:":ERII\\APRI;IEIIII;&b opt/cheri-exercises/buffer . @ -
* 73.8% mitigation rate across full
opt/cheri-exercises/buffer| Corpus’ USIng m.em.ory Safety and
_—— _ L . compartmentalization
root@morello:~/cheri-exercises/src/exercises # ls

- README . md buffer-overflow-heap cheri-tags control-flow-pointer p

ST Lk i S e B Useful observation to be made about
E root@morello:~/cheri-exercises/src/exercises # D - . me m O r.y Safety: a ISO need
compartmentalization to address the de

facto threat model of quite a few libraries

B UNIVERSITY OF
¥ CAMBRIDGE

23

CHERI Desktop

©
File

) New
|_1 < > | C bufferoverflow-stack.c x 4 00| Locals M| |
(=] L

src > exercises > buffer-overflow-stack > C buffer-overflow-stack.c

buffer-overflow-stack.c — Kate

Edit

Selection View Go Projects LSPClient Debug Sessions Tools Settings Help

[& open save [B saveAs = [} Close C Redo I Toggle Breakpoint / Break {*} StepIn { } Step Over >

Symbol Value

E #include ert.h>
#include f.h> buf Oxfffffff7ff40 [rwRW, . R
#include tdio.h> 0x 7ff40-0xfffffff7ff501 "5\t\021
ix 16

Home — Dolphin

#pragma weak write buf
void
write buf(char *buf, size t ix)

> Home

Places

| buffix] = 'b';
(a1 Home }

] pesktop
int
[D Documents cheri-exercises Desktop main(void)
z {
X Downloads char upper([0x10];
3 Music char lower[6x10]; Nr | Frame
E Pictures
i o buffer-overflow-stack.c:13

B Ristees Fubliy GDB Output | Settings

1CE0S, 1 buffer-overflow-stack.c:31

: Continuing.
D Searct o
Demo o = 2 Program received signal SIGPROT, CHERI protection violation.
Capability bounds fault.
D Evanies v write buf (buf=0xfffffff7ff4e [rwRW,oxfffffff7ff40-oxfffffff7ff50] "5\t\021", ix=16)
E at buffer-overflow-stack.c:13
s 13 buf[ix] = *
Ei] All Applications _ z
Firefox Web System Dolphin
. Browser Settings
& Development -
@ Graphics O Output Q Search [E Project Terminal E LSP [3 Debug 13:1 INSERT TabSize:4 UTF-8 C
@& internet
] ~ : bash — Konsole
ﬂ i File Edit View Bookmarks Plugins Settings Help
B settings [C NewTab I Split View + Co [® Paste Q Find
B system - ~1$ sysctl hw.machine arch hw.model
arch64c
ﬁutihties - hw.model: Research Morello SoC r@p@
102.4 GiB free $ file /usr/local/bin/konsole
1/bin/konsole: ELF 64-bit LSB pie executable, ARM aarch64, C64, CheriABI, version 1 (SYSV), dynamical
ly linked, interpreter /libexec/ld-elf.so.l, for FreeBSD 14.0 (1400064), FreeBSD-style, with debug info, not s
orello ~1$ []
BE Applications (@) Places ®©

17:29
10 Jan 2023 =]

PH We

Ge CHERI 2

UNIVERSITY OF
CAMBRIDGE

Obtaining CHERI Software Stack

README.md

cheribuild.py - A script to build CHERI-related
software (requires Python 3.5.2+)

This script automates all the steps required to build various CHERI-related software. For example cheribuild.py
[options] sdk will create a SDK that can be used to compile software for the CHERI CPU and cheribuild.py
[options] run-riscv64-purecap will start an instance of CheriBSD built for RISC-V in QEMU.

cheribuild.py also allows building software for Arm's adaption of CHERI, the Morello platform, however not all
targets are supported yet.

Supported operating systems
cheribuild.py has been tested and should work on FreeBSD 11 and 12. On Linux, Ubuntu 16.04, Ubuntu 18.04

and OpenSUSE Tumbleweed are supported. Ubuntu 14.04 may also work but is no longer tested. macOS 10.14
and newer is also supported.

Pre-Build Setup
mac0S

When building on macOS the following packages are required:

brew install cmake ninja libarchive git glib automake autoconf coreutils llvm make wget pixman f
Install samba for shared mounts between host and CheriBSD on QEMU

brew install arichardson/cheri/samba

If you intend to run the morello FVP model you will also need the following:

brew install homebrew/cask/docker homebrew/cask/xquartz socat dtc

Ubuntu

If you are building CHERI on a Debian/Ubuntu-based machine, please install the following packages:
apt-get install libtool pkg-config clang bison cmake ninja-build samba flex texinfo libglib2.0-c

Older versions of Ubuntu may report errors when trying to install libarchive-tools . In this case try using apt-
get install bsdtar instead.

RHEL/Fedora

If you are building CHERI on a RHEL/Fedora-based machine, please install the following packages:

dnf install libtool clang-devel bison cmake ninja-build samba flex texinfo glib2-devel pixman-de

Basic usage

If vou want to start up a QEMU VM running CheriBSD run cheribuild.py run-riscv64-purecap -d (-d means

G CHERI

One build tool to rule them all: cheribuild
https://github.com/CTSRD-CHERI/cheribuild

Builds, installs, and/or runs:

* CHERI/Morello QEMU (or Morello FVP
®* CheriBSD disk images
* Small suite of adapted third-party applications

Up and running with one command (CHERI-RISC-V):
/cheribuild.py --include-dependencies run-riscv64-purecap

Pre-built CheriBSD installer for Morello available
from https://www.cheribsd.org

. SRI

UNIVERSITY OF
CAMBRIDGE

https://github.com/CTSRD-CHERI/cheribuild
http://www.cheribsd.org/

Getting Involved

Testing code on CHERI improves code quality
* Find potential bugs
* Find bad assumptions (e.g. pointers <= 8 bytes, uintptr_t == long)

Hosting board for GCC Compile Farm project, usable for any open
source development: cfarm240.cfarm.net

UK and international organisations can request a Morello board:
https://www.dsbd.tech/get-involved/morello-board-request/

Technical Access Program (UK-only), support and funding for small
companies: https://www.dsbd.tech/technology-access-programme/

Talk to us if interested

2. UNIVERSITY OF
a CHERI . SR % cAMBRIDGE

https://www.dsbd.tech/get-involved/morello-board-request/
https://www.dsbd.tech/technology-access-programme/

Demo / Q&A

=B UNIVERSITY OF
G CHERI 27 SR & cavsripGE

Extra Slides

»H% UNIVERSITY OF
(% CHERI 28 SRI CAMBRIDGE

eeoe [~

Il
'\

Early performance results from the
prototype Morello microarchitecture

-

. Introduction

N

. Headline results
2.1. Architectural integration
2.2. Software ecosystem enablement
2.3. Microarchitectural objectives
2.4. Dynamic performance
2.4.1. Essential overheads

2.4.2. Initial measured performance
results

2.4.3. Next steps

w

Performance methodology

3.1. Baseline and comparison
framework

3.2. Morello microarchitectural
limitations

3.3. ABIs, code generation, and
compilation

>

Performance analysis of SPECint 2006
4.1. SPECint 2006 benchmark suite

4.2. Specific hardware and software
configurations

4.3. Initial results
5. Caveats
6. Future work
7. Acknowledgements
8. Version history

9. Bibliography

G CHERI

ctsrd-cheri.github.io/morello-early-performance-results/ &

Early performance results from the prototype Morello microarchitecture

Early performance results from the prototype
Morello microarchitecture

e Robert N. M. Watson (University of Cambridge),
o Jessica Clarke (University of Cambridge),

o Peter Sewell (University of Cambridge),

¢ Jonathan Woodruff (University of Cambridge),
Simon W. Moore (University of Cambridge),
Graeme Barnes (Arm Limited),

Richard Grisenthwaite (Arm Limited),

Kathryn Stacer (Arm Limited),

Silviu Baranga (Arm Limited), and

Alexander Richardson (Google LLC)

This is a living document; feedback and contributions are welcomed. Please see our GitHub Repository for
source code and an issue tracker. There is a rendered version on the web, which is automatically updated
when the git repository is committed to.

Citation

Please cite this report as:

Robert N. M. Watson, Jessica Clarke, Peter Sewell, Jonathan Woodruff, Simon W. Moore, Graeme
Barnes, Richard Grisenthwaite, Kathryn Stacer, Silviu Baranga, and Alexander Richardson. Early
performance results from the prototype Morello microarchitecture. Technical Report UCAM-CL-
TR-986, University of Cambridge, Computer Laboratory, 30 September 2023.

Or in BibTeX:

@TechReport{UCAM-CL-TR-986,
author = {Watson, Robert N. M. and Clarke, Jessica and Sewell, Peter
and Woodruff, Jonathan and Moore, Simon W. and Barnes,
Graeme and Grisenthwaite, Richard and Stacer, Kathryn and
Baranga, Silviu and Richardson, Alexander},

title = {{Early performance results from the prototype Morello
microarchitecture}},

institution = {University of Cambridge, Computer Laboratory},

address = {15 11 Thoamean Avenua Camhridoa CR2 _AFN llnitad Kinadam

+

Technical Report N e

Number 986

BB UNIVERSITY OF
¥ CAMBRIDGE

Computer Laboratory

Early performance results from the
prototype Morello microarchitecture

Robert N. M. Watson, Jessica Clarke,
Peter Sewell, Jonathan Woodruff,
Simon W. Moore, Graeme Barnes,

Richard Grisenthwaite, Kathryn Stacer,

Silviu Baranga, Alexander Richardson

September 2023

15 J] Thomson Avenue
Cambridge CB3 OFD
United Kingdom

phone +44 1223 763500

https:/hwww.cl.cam.ac.uk/

https://ctsrd-cheri.github.io/morello-early-performance-results/

29

UNIVERSITY OF
CAMBRIDGE

SRI

https://ctsrd-cheri.github.io/morello-early-performance-results/cover/index.html

Headline results

Mean SPECint overheads for memory-safe code on Morello (FPGA)

15%
é) B 14.97% Geomean Benchmark ABI
o (w/o data-dependency fix)
8 Unmodified H/W Modified H/W (w/o larger store queue)
<
€ 1ov B 7.40% Geomean Benchmark ABI
g ° (w/ data-dependency fix)
®© (w/o larger store queue)
L o .
5 128-bit integer pointers = 5.70% Geomean Benchmark ABI
© (w/ data-dependency fix)
g— (w/ larger store queue)
(]
o 5% B 2.98% Geomean P128 Forced GOT
o (w/ data-dependency fix)
£ (w/ larger store queue)
5 Benchmark ABI
o
X

B 1.82% Geomean P128
(w/ data-dependency fix)
(w/ larger store queue)

Hardware and compiler configuration

& CHERI . SRI

0%

2.7 UNIVERSITY OF

iy
(gc; e

) CAMBRIDGE

Capability branch prediction

®* Microarchitecture only predicts PCC’s address in the Morello
prototype

* Thisis due to the research engineering timeline, lack of optimization data,
and desire to avoid floorplan changes

* Arm has strong confidence that this could be addressed in a production
microarchitecture

* |nstructions that consume PCC’s metadata (e.g. C64 BL/BLR and
ADRP) need to wait for prior capability branches (NB: includes RET)
to execute
* Includes ADRP+LDR sequence to load from GOT for globals

®* (Capability branch-heavy code incurs additional stalls

2 UNIVERSITY OF
a CHERI) SRI @ cameriDGE

Benchmark ABI: Overview

* Aims to work around lack of capability branch prediction

* Models expected performance of an improved second-generation
microarchitecture

* PCCgiven bounds for the whole address space

* Indirect branches and returns use integer branches

®* Return addresses and function pointers remain as capabilities in memory;
only branches themselves altered

* NB: Weakens control flow protection, not intended for security
evaluation

2 UNIVERSITY OF
a CHERI) SRI @ cameriDGE

Data-dependent exception delivery

* Used to track capabilities for heap temporal safety
* Deliver a precise exception based on the value stored to memory, not just
the address it is stored to

* Not arequirement in the baseline Neoverse N1 design, and as a
result there isn’t the necessary plumbing to make it
microarchitecturally efficient
* Stores of capabilities stall until both address and data are known

* Asimilar requirement affects recent Arm microarchitectures

* Modified Morello design on FPGA allows us to experiment with
eliminating this overhead

2 UNIVERSITY OF
a CHERI) SRI @ cameriDGE

Untuned store queues

* The baseline Neoverse N1 has store-buffer queues (which track in-
flight memory stores) tuned to the memory traffic generated by the
Armv8-A

* With a 128-bit bus, “store pair” instructions for 64-bit integers could be
issued as a single operation

* Morello has “store pair” instructions for 128-bit capabilities
* These cannot be satisfied by a single 128-bit memory operation

* Store pair capability is therefore “cracked” microarchitecturally into two 128-
bit operations

* The store-buffer queue can become full as a result of the potential to double
the number of in-flight transactions, stalling memory accesses

* Modified Morello design on FPGA allows us to experiment with increasing
the store-buffer queue size

) TYO
Ge CHERI . SRI & civsrince

P128 code generation

* A key conclusion of the Morello project is somewhat expected: that the
essential overhead to CHERI is pointer-size growth (64 - 128 bits)

* Other costs, such as the implementation of tags, capability compression, instruction
scheduling, etc., turned out not to be significant in this work

* To understand how a more optimized and mature microarchitecture
might perform, we modified Morello LLVM to target the Armv8.2-A ISA
while using 128-bit storage for language-level pointers to identify new
upper bounds for overheads

* Sub-language pointers (GOT entries, return addresses, etc.) currently remain as 64-
bit integers

* Treated as 64-bit values when in registers (NB: including spilling to stack)

* Two variants depending on whether (a) all loads and stores are forced
through the GOT, or (b) PC-relative loads and stores are used

* A mature CHERI-enabled compiler would use a combination of the two strategies
based on security and performance considerations

o TYO
Ge CHERI . SRI & civsrince

