
Jessica Clarke
jessica.clarke@cl.cam.ac.uk

jrtc27@debian.org
MiniDebConfCambridge 2023

CHERI and Morello: Arming systems
with hardware-enforced memory safety

capabilities

Approved for public release; distribution is unlimited.

This work was supported in part by the Innovate UK project 105694 (“Digital Security by Design (DSbD) Technology Platform
Prototype”, and Innovate UK project 10027440 (“Developing and Evaluating an Open-Source Desktop for Arm Morello”).

This work was also supported by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research
Laboratory (AFRL), under contract FA8750-10-C-0237 (“CTSRD”), with additional support from FA8750-11-C-0249 (“MRC2”),
HR0011-18-C-0016 (“ECATS”), FA8650-18-C-7809 (“CIFV”), HR001122C0110 (“ETC”), and HR001123C0031 (“MTSS”) as part of
the DARPA I2O CRASH, I2O MRC, and MTO SSITH research programs. The views, opinions, and/or findings contained in this
report are those of the authors and should not be interpreted as representing the official views or policies of the Department
of Defense or the U.S. Government.

We further acknowledge EPSRC REMS (EP/K008528/1), EPSRC CHaOS (EP/V000292/1), ERC ELVER (789108), the Isaac Newton
Trust, the UK Higher Education Innovation Fund (HEIF), Thales E-Security, Microsoft Research Cambridge, Arm Limited,
Google, Google DeepMind, HP Enterprise, and the Gates Cambridge Trust.

2

Years 1-2: Research platform, prototype architecture
Years 2-4: Hybrid C/OS model, compartment model

Years 4-7: Efficiency, CheriABI/C/C++/linker, Armv8-A
Years 8-12: RISC-V, temporal safety, proof,
Arm Morello, Microsoft CHERIoT

3

CHERI Research and Development Timeline

35 Years Ago

• 2nd November 1988: Morris Worm appeared
• Four methods of propagation

1. rsh to host that trusts this one
2. rexec with same username and password as local system
3. sendmail compiled with debug mode (command injection) enabled
4. Buffer overflow of on-stack string buffer in fingerd

4

Two Weeks of DSAs

?

Out of bounds
read / write

Use after free

5

Pointers Today

• To the hardware, pointers are just integer addresses
• Can be forged / injected
• Raw data and pointers indistinguishable

• No programmer intent conveyed
• Just check that the address is mapped

6

Virtual address space

64
-b

it
ad

dr
es

s

64-bit virtual address

Upper bound

Lower bound

Pointer address
Memory
allocation

Some Limited Solutions

• Various extensions exist to make attacks harder: BTI, PAC, shadow
stack, MTE, …

• Generally suffer from at least one of:
• Probabilistic
• Rely on secrets
• Target symptom not cause
• Target secondary cause

7

CHERI Capabilities

8

• Capabilities extend integer memory addresses
• Bounds restrict the range of memory addresses they can access
• Permissions restrict how the capability can be used (e.g. read-only)
• Tags protect capability integrity/derivation in registers + memory
• Guarded manipulation controls how capabilities may be manipulated;

e.g., provenance validity and monotonicity

Virtual address space

v

1-
bi

t
ta

g

permissions Bounds compressed relative to address

12
8-

bi
t

ca
pa

bi
lit

y otype

64-bit virtual address

Upper bound

Lower bound

Pointer address
Memory
allocation

PCC

CLR

C1

CSP

v

v

v

GPRs extended to 129 bits

Capabilities in Registers and Memory

9

General-purpose register file (GPRs)

SP
LR

X1

PC

vDDC

vCELR

System registers

Physical memory

dd

vCapability

Capability width

-

1-bit tags
added to

DRAM

• 64-bit general-purpose registers (GPRs) are extended with 64 bits of metadata and a 1-bit validity
tag

• Program counter (PC) is extended to be the program-counter capability (PCC)
• Default data capability (DDC) constrains legacy integer-relative ISA load and store instructions
• Tagged memory protects capability-sized and -aligned words in DRAM by adding a 1-bit validity tag
• Various system mechanisms are extended (e.g., new TLB/PTE permission bits, exception codes,

exception/interrupt vectors etc.)

X0 C0 v

v

Hardware Prototypes

• Original research used home-grown pipelined “BERI” MIPS core (CHERI-
MIPS)

• Transitioned CHERI research to extended versions of open-source off-the-
shelf BSV RISC-V cores (CHERI-RISC-V)
• CHERI-Piccolo 3-stage pipeline, 32-bit, no MMU
• CHERI-Flute 5-stage pipeline, 32- or 64-bit, MMU
• CHERI-Toooba Superscalar out-of-order, 64-bit, MMU

• Novel microarchitectural contributions include capability compression
model, tagged memory implementation techniques

• All our CPU designs are open source
• QEMU full-system and user-level simulators for CHERI-RISC-V and Morello
• Arm Morello and Microsoft CHERIoT (later slides)

10

Microsoft CHERIoT (2023)

• Production CHERI-extended Ibex microcontroller
• Small-scale microcontroller used in OpenTitan, etc.
• CHERI-RISC-V tuned for small microcontrollers
• Clean-slate memory-safe, compartmentalized

embedded OS for high-risk applications
• Open sourced in February 2023
• RISC-V embedded standardization candidate

• Collaboration across Microsoft Research, MSRC,
Azure Silicon, and Azure Edge + Platform

• lowRISC Sunburst FPGA board reference platform
• Published in IEEE MICRO 2023

11

CHERIoT: Complete Memory Safety for Embedded Devices
Saar Amar∗

saaramar5@gmail.com
Microsoft

Tel Aviv, Israel

David Chisnall∗
David.Chisnall@cl.cam.ac.uk

Microsoft
Cambridge, UK

Tony Chen
tonychen@microsoft.com

Microsoft
Redmond, Washington, USA

Nathaniel Wesley Filardo∗
nwf20@cam.ac.uk

Microsoft
Cambridge, UK

Ben Laurie
benl@google.com

Google
London, UK

Kunyan Liu∗
kunyanliu@microsoft.com

Microsoft
San Diego, California, USA

Robert Norton∗
robert.norton@microsoft.com

Microsoft
Cambridge, UK

Simon W. Moore
Simon.Moore@cl.cam.ac.uk
University of Cambridge

Cambridge, UK

Yucong Tao
Yucong.Tao@microsoft.com

Microsoft
Mountain View, California, USA

Robert N. M. Watson
robert.watson@cl.cam.ac.uk
University of Cambridge

Cambridge, UK

Hongyan Xia†∗
Jerryxia32@gmail.com

Arm Ltd.
Cambridge, UK

ABSTRACT
The ubiquity of embedded devices is apparent. The desire for in-
creased functionality and connectivity drives ever larger software
stacks, with components from multiple vendors and entities. These
stacks should be replete with isolation and memory safety tech-
nologies, but existing solutions impinge upon development, unit
cost, power, scalability, and/or real-time constraints, limiting their
adoption and production-grade deployments. As memory safety
vulnerabilities mount, the situation is clearly not tenable and a new
approach is needed.

To slake this need, we present a novel adaptation of the CHERI
capability architecture, co-designed with a green-�eld, security-
centric RTOS. It is scaled for embedded systems, is capable of
�ne-grained software compartmentalization, and provides a�or-
dances for full inter-compartment memory safety. We highlight
central design decisions and o�oads and summarize how our pro-
totype RTOS uses these to enable memory-safe, compartmentalized
applications. Unlike many state-of-the-art schemes, our solution
deterministically (not probabilistically) eliminates memory safety
vulnerabilities while maintaining source-level compatibility. We
characterize the power, performance, and area microarchitectural
impacts, run microbenchmarks of key facilities, and exhibit the

∗These authors made signi�cant contributions to the design and implementation
without which the project would not have been possible.
†Work conducted while at Microsoft.

This work is licensed under a Creative Commons Attribution International
4.0 License.

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0329-4/23/10.
https://doi.org/10.1145/3613424.3614266

practicality of an end-to-end IoT application. The implementation
shows that full memory safety for compartmentalized embedded
systems is achievable without violating resource constraints or real-
time guarantees, and that hardware assists need not be expensive,
intrusive, or power-hungry.

ACM Reference Format:
Saar Amar, David Chisnall, Tony Chen, Nathaniel Wesley Filardo, Ben
Laurie, Kunyan Liu, Robert Norton, Simon W. Moore, Yucong Tao, Robert
N. M. Watson, and Hongyan Xia. 2023. CHERIoT: Complete Memory Safety
for Embedded Devices. In 56th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO ’23), October 28–November 01, 2023, Toronto,
ON, Canada. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3613424.3614266

1 INTRODUCTION
The attack surface of embedded devices is no longer limited to
physical attacks, in an increasingly connected world. From con-
sumer electronics (smart watches, WiFi chips) to security-critical
devices (self-driving vehicles, aviation and smart grids) and more
recently IoT applications, physical isolation is rarely the boundary
in modern day embedded devices. With the increase of connectiv-
ity comes combinatorial growth of the attack surface. Sadly, the
resource constraints and the low-level programming environment
mean solving even the most basic problem of memory safety still
poses as a monumental challenge. Worse, the gap between the at-
tack surface area and the level of defense widens further when such
embedded devices are deployed into complicated multi-tasking sce-
narios with a Real-Time Operating System (RTOS) and multiple
software stacks from di�erent vendors.

Even though researchers have disclosed an alarming number
of memory vulnerabilities in recent years [6, 11, 15], the lessons
learned from desktop and server systems do not directly translate
to embedded systems. Page table techniques, sanitizers, dynamic

Codasip (2023)

12

• $225M government, academia, and
industrial research program led by
UK Research and Innovation (UKRI)
• Announced partners: Arm, Google,

Microsoft
• 15+ UK universities with research

grants
• 70+ funded business incubation

projects

• Baseline for design: Neoverse N1
core
• 2.5GHz quad-core, superscalar

• Roughly a thousand chips
manufactured for use by research +
development labs

DSbD and
Arm Morello

13

Pure-Capability ABI

• CHERI introduces new “pure-capability” ABI
• All C/C++ language pointers are CHERI capabilities
• NB: includes (u)intptr_t

• All “sub-language” pointers also CHERI capabilities
• Return addresses, C++ vtables, GOT and stack pointers, varargs, …

• Provides full always-on CHERI protection
• Often just called “CHERI C/C++”
• Most source code requires few, if any, changes

14

Hybrid ABI

• Compatible extension of existing non-CHERI ABI
• Capabilities are opt-in:
• void * → void * __capability

• (u)intptr_t → (u)intcap_t

• Allows interfacing between “legacy” and pure-capability code
• Very limited protection
• Awkward to use at scale
• Not for widespread use, but useful in very specific scenarios

15

Compatibility

• Familiar with running 32-bit application on 64-bit system: COMPAT
in Linux, COMPAT_FREEBSD32 in FreeBSD

• Similarly, can run non-CHERI (or hybrid) 64-bit process on a CHERI
system via compatibility interface
• All your existing binaries continue to run
• … but no security benefit

• In theory can also run 32-bit applications on a CHERI system, but no
current hardware prototypes support 32-bit mode

16

Subobject Bounds

• Current security extensions generally protect only the allocation
• Some vulnerabilities involve overflowing between adjacent “sub-

objects” within the same allocation
• Our bounds (and permissions) tied to the pointer, not the allocation;

can derive subsets
• Compiler can (optionally*) do this automatically
• &p->x → cheri_bounds_set(&p->x, sizeof(p->x))

* With varying levels of aggressiveness, at the cost of decreased C
compatibility

17

Temporal Safety

• So far, illustrated referential and spatial memory safety
• Tag bit allows us to find all capabilities
• On free, “quarantine” allocation: references remain valid, memory

not yet repurposed
• When quarantine grows too large, sweep through process’s memory

and invalidate (“revoke”) all capabilities to freed memory
• Tricks with special page table bits to allow sweeping concurrently

with process execution

18

Compartmentalisation Scalability

• CHERI dramatically improves compartmentalisation scalability
• More compartments
• More frequent and faster domain transitions
• Faster shared memory between compartments

• Compartment can only access memory it has capabilities for
• Many potential use cases – e.g., sandbox processing of each image

in web browser, processing each message in mail application
• Unlike memory protection, software compartmentalisation requires

careful software refactoring to support strong encapsulation, and
affects software operational model

Early benchmarks show 1-to-2 order of
magnitude performance improvement
for inter-compartment communication
compared to conventional designs

19

Compartmentalisation Models

• Two models being explored:

1. Intra-process compartmentalisation
• Every library is its own compartment
• Simple programming model – compartment invocation is normal function call
• Automatically provide additional robustness for unmodified source code

2. Co-process compartmentalisation
• Multiple processes share address space
• CHERI allows fast IPC and domain transitions
• Fits into existing process-based compartmentalisation designs
• Requires structuring code into multiple processes

20

Prototype Software Stack

• Complete open-source software stack from bare metal up: compilers, toolchain,
debuggers, hypervisor, OS, applications – all demonstrating CHERI

• Rich CHERI feature use, but fundamentally incremental/hybridized deployment

CHERI Clang/LLVM compiler suite, LLD, GDB Morello GCC, LLDB (Arm) (Morello only)

CheriBSD/Morello (funded by DARPA and UKRI)
(Morello and CHERI-RISC-V)

• FreeBSD kernel + userspace, application stack
• Kernel spatial and referential memory protection
• Userspace spatial, referential, and temporal memory protection
• Co-process compartmentalization (development branch)
• Linker-based compartmentalization
• Morello-enabled bhyve Type-2 hypervisor
• AArch64 64-bit binary compatibility for legacy binaries

Open-source application suite (KDE Plasma, Wayland, WebKit, OpenSSH, nginx, …)

Android (Arm)
(Morello only)

Linux (Arm)
(Morello only)

Baseline CHERI
Clang/LLVM from
SRI/Cambridge;

Morello adaptation
by Arm + Linaro

21

CHERI C/C++ vs High-Level Languages

Language Approximate open-
source LoC*

Memory safe Memory safe with CHERI

C 10,317,800,000 ❌ ✓

C++ 2,937,550,000 ❌ ✓

Java 2,600,000,000 ✓ ✓

Rust 39,500,000 ✓ ✓

22

More lines of open-source code have been ported to CHERI C/C++ memory
safety than the Rust ecosystem has created in its entire history

* Synopsys Black Duck Open Hub: https://www.openhub.net/languages

https://www.openhub.net/languages

2021 Desktop Pilot Study

Developed:
• 6 million lines of C/C++ code compiled

for memory safety; modest dynamic
testing

• Three compartmentalization
whiteboard case studies in Qt/KDE

Evaluation results:
• 0.026% LoC modification rate across

full corpus for memory safety
• 73.8% mitigation rate across full

corpus, using memory safety and
compartmentalization

Useful observation to be made about
memory safety: also need
compartmentalization to address the de
facto threat model of quite a few libraries

23

CHERI Desktop

24

Obtaining CHERI Software Stack

• One build tool to rule them all: cheribuild
https://github.com/CTSRD-CHERI/cheribuild

• Builds, installs, and/or runs:
• CHERI/Morello QEMU (or Morello FVP)
• CheriBSD disk images
• Small suite of adapted third-party applications

• Up and running with one command (CHERI-RISC-V):
./cheribuild.py --include-dependencies run-riscv64-purecap

• Pre-built CheriBSD installer for Morello available
from https://www.cheribsd.org

25

https://github.com/CTSRD-CHERI/cheribuild
http://www.cheribsd.org/

Getting Involved

• Testing code on CHERI improves code quality
• Find potential bugs
• Find bad assumptions (e.g. pointers <= 8 bytes, uintptr_t == long)

• Hosting board for GCC Compile Farm project, usable for any open
source development: cfarm240.cfarm.net

• UK and international organisations can request a Morello board:
https://www.dsbd.tech/get-involved/morello-board-request/

• Technical Access Program (UK-only), support and funding for small
companies: https://www.dsbd.tech/technology-access-programme/

• Talk to us if interested

26

https://www.dsbd.tech/get-involved/morello-board-request/
https://www.dsbd.tech/technology-access-programme/

Demo / Q&A

27

Extra Slides

28

29

https://ctsrd-cheri.github.io/morello-early-performance-results/

Technical Report
Number 986

Computer Laboratory

UCAM-CL-TR-986
ISSN 1476-2986

Early performance results from the
prototype Morello microarchitecture

Robert N. M. Watson, Jessica Clarke,
Peter Sewell, Jonathan Woodruff,
Simon W. Moore, Graeme Barnes,

Richard Grisenthwaite, Kathryn Stacer,
Silviu Baranga, Alexander Richardson

September 2023

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

https://www.cl.cam.ac.uk/

https://ctsrd-cheri.github.io/morello-early-performance-results/cover/index.html

Headline results

30

Unmodified H/W Modified H/W

128-bit integer pointers

Benchmark ABI

Capability branch prediction

• Microarchitecture only predicts PCC’s address in the Morello
prototype
• This is due to the research engineering timeline, lack of optimization data,

and desire to avoid floorplan changes
• Arm has strong confidence that this could be addressed in a production

microarchitecture

• Instructions that consume PCC’s metadata (e.g. C64 BL/BLR and
ADRP) need to wait for prior capability branches (NB: includes RET)
to execute
• Includes ADRP+LDR sequence to load from GOT for globals

• Capability branch-heavy code incurs additional stalls

31

Benchmark ABI: Overview

• Aims to work around lack of capability branch prediction
• Models expected performance of an improved second-generation

microarchitecture
• PCC given bounds for the whole address space
• Indirect branches and returns use integer branches
• Return addresses and function pointers remain as capabilities in memory;

only branches themselves altered

• NB: Weakens control flow protection, not intended for security
evaluation

32

Data-dependent exception delivery

• Used to track capabilities for heap temporal safety
• Deliver a precise exception based on the value stored to memory, not just

the address it is stored to

• Not a requirement in the baseline Neoverse N1 design, and as a
result there isn’t the necessary plumbing to make it
microarchitecturally efficient
• Stores of capabilities stall until both address and data are known

• A similar requirement affects recent Arm microarchitectures
• Modified Morello design on FPGA allows us to experiment with

eliminating this overhead

33

Untuned store queues

• The baseline Neoverse N1 has store-buffer queues (which track in-
flight memory stores) tuned to the memory traffic generated by the
Armv8-A
• With a 128-bit bus, “store pair” instructions for 64-bit integers could be

issued as a single operation
• Morello has “store pair” instructions for 128-bit capabilities
• These cannot be satisfied by a single 128-bit memory operation
• Store pair capability is therefore “cracked” microarchitecturally into two 128-

bit operations
• The store-buffer queue can become full as a result of the potential to double

the number of in-flight transactions, stalling memory accesses
• Modified Morello design on FPGA allows us to experiment with increasing

the store-buffer queue size

34

P128 code generation

• A key conclusion of the Morello project is somewhat expected: that the
essential overhead to CHERI is pointer-size growth (64 → 128 bits)
• Other costs, such as the implementation of tags, capability compression, instruction

scheduling, etc., turned out not to be significant in this work
• To understand how a more optimized and mature microarchitecture

might perform, we modified Morello LLVM to target the Armv8.2-A ISA
while using 128-bit storage for language-level pointers to identify new
upper bounds for overheads
• Sub-language pointers (GOT entries, return addresses, etc.) currently remain as 64-

bit integers
• Treated as 64-bit values when in registers (NB: including spilling to stack)

• Two variants depending on whether (a) all loads and stores are forced
through the GOT, or (b) PC-relative loads and stores are used
• A mature CHERI-enabled compiler would use a combination of the two strategies

based on security and performance considerations

35

