
© 2024 Arm

Guarded Control Stack
(FEAT_GCS) for Debian

Steve Capper steve.capper@arm.com

Debian Miniconf – 2024-10-12

mailto:steve.capper@arm.com

2 © 2024 Arm

Introduction

I’ll be talking about a new Arm architectural feature, Guarded Control Stack (FEAT_GCS),

FEAT_GCS is OPTIONAL from Armv9.3,

The target Debian distro for this will be Forky (not Trixie! ☺),

We’ll start with a brief intro behind the architecture and then move on to how we’d like
to enable this in the distros,

Support for FEAT_GCS is still going through the upstream process, so there may be small
variations in what the deployed solution looks like (f.e. names of flags/etc),

Content warning: this talk does contain some assembler.

© 2024 Arm

Quick intro to the
architecture

4 © 2024 Arm

Let’s dive in!
Let’s take a look at a motivating example: x29 = frame pointer, x30 = link register

#include <stdio.h>

void world(void)

{

printf("world!");

}

void hello(void)

{

printf("Hello ");

world();

}

int main(void)

{

hello();

printf("\n");

return 0;

}

world:

stp x29, x30, [sp, -16]!

mov x29, sp

adrp x0, .string_world

add x0, x0, :lo12:.string_world

bl printf

ldp x29, x30, [sp], 16

ret

hello:

stp x29, x30, [sp, -16]!

mov x29, sp

adrp x0, .string_hello

add x0, x0, :lo12:.string_hello

bl printf

bl world

ldp x29, x30, [sp], 16

ret

main:

stp x29, x30, [sp, -16]!

mov x29, sp

bl hello

mov w0, 10

bl putchar

mov w0, 0

ldp x29, x30, [sp], 16

ret

5 © 2024 Arm

Two big takeaways from the assembler example

1. The control flow could be influenced by modifications to the stack,
• I mentioned PAC + BTI in my previous mini-conf talk which help mitigate against return oriented and

jump oriented programming style attacks.

2. It is fiddly to unwind the call frames, and it becomes a lot fiddlier with custom
assembler and different runtimes being involved

• I’ve omitted the Call Frame Information (CFI) directives,
• (Try a sneaky gcc -s hello.c to reveal more details),
• Profiling tools (f.e. perf record) have to do a lot of call stack unwinding.

With FEAT_GCS, the return addresses are placed in their own area of memory (in
addition to being on the stack) where they can be parsed quickly but not be modified
maliciously/accidentally.

6 © 2024 Arm

Our example running under FEAT_GCS
Big takeaway from this slide: no instructions have changed!

world:

stp x29, x30, [sp, -16]! Break

mov x29, sp

adrp x0, .string_world

add x0, x0, :lo12:.string_world

bl printf

ldp x29, x30, [sp], 16

ret

hello:

stp x29, x30, [sp, -16]!

mov x29, sp

adrp x0, .string_hello

add x0, x0, :lo12:.string_hello

bl printf

bl world

ldp x29, x30, [sp], 16 2

ret

main:

stp x29, x30, [sp, -16]!

mov x29, sp

bl hello

mov w0, 10 1

bl putchar

mov w0, 0

ldp x29, x30, [sp], 16

ret

Let’s imagine we have set a breakpoint in
world and started our program,

Program execution starts at main, which then
calls hello, which then eventually calls
world.

Our guarded control stack is a table of return
addresses which looks like this when we hit the
breakpoint:

⠇

⠇

GCSPR_EL0: hello + 24 - 2

main + 12 - 1

7 © 2024 Arm

So how did our example work?

FEAT_GCS, when activated, subtly changes how some instructions work,

In our example the branch with link (bl) instruction would additionally “push” the
return address onto the guarded control stack memory space,

A return (ret) instruction would compare the contents of the guarded control stack
with the return address and, if equal, “pop” from the guarded control stack and return.

The guarded control stack (pointed to by GCSPR_EL0) can be read as normal by
userspace, but normally can’t be written to explicitly.

More formal (and correct!) terminology can be found in the Arm Architecture Reference
Manual:

https://developer.arm.com/documentation/ddi0487/ka/?lang=en

(Chapter D11 The Guarded Control Stack)

https://developer.arm.com/documentation/ddi0487/ka/?lang=en

© 2024 Arm

Getting FEAT_GCS into a
distro
“How do I make it go?”

9 © 2024 Arm

A subtle change to deployment strategy for FEAT_GCS

With Pointer Authentication (PAC), we “baked in” prologue/epilogue code sequences
into functions to sign and authenticate return addresses.
• The user could disable PAC globally via arm64.nopauth on the kernel command line,

For Branch Target Identifiers (BTI), we placed BTI instructions into functions, where
needed, and annotated compatible binaries – custom assembler without annotations
would result in the final executable not advertising BTI.
• The user could disable BTI globally via arm64.nobti on the kernel command line.

With Guarded Control Stack (GCS) most userspace code is unchanged. Binaries are
annotated and again custom assembler needs to be reviewed and manually annotated
for an executable to be advertised as GCS compatible.

Big change: The end user needs to opt-in per-process for GCS via glibc tunable.

This means we can phase in GCS support as a low risk feature.

10 © 2024 Arm

Running a program with FEAT_GCS
(Patches still under review, naming of these tunables may change)

To run with GCS enabled, one sets the tunable
as follows:

GLIBC_TUNABLES=glibc.cpu.aarch64_gcs=1:glibc.cpu.a

arch64_gcs_policy=2 ./hello

This will cause the runtime loader to then call
the relevant kernel APIs to enable “shadow
stacks” (borrowing the x86 terminology),

prctl(PR_SET_SHADOW_STACK_STATUS,

PR_SHADOW_STACK_ENABLE, 0, 0, 0);

Any GCS errors would be picked up as SIGSEGV
with an si_code of SEGV_CPERR (control
protection error).

Explanation of the glibc tunables:

glibc.cpu.aarch64_gcs=<x>

0 GCS disabled (default)

1 GCS enabled depending on policy selected
below:

glibc.cpu.aarch64_gcs_policy=<x>

0 GCS enabled regardless (default)

1 GCS enabled where executable is marked
as compatible, any later dlopen to an
incompatible binary is an error

2 GCS enabled, but any incompatible binary
is an error

11 © 2024 Arm

Getting FEAT_GCS into a test distro

At the moment GCS is still under review upstream,

Whilst various upstreams were discussing overall design we have staged a Yocto Project
GCS layer that allows one to build and run a small test distro on an arm64 or x86 host.

Quick start steps can be found here:
https://git.yoctoproject.org/meta-arm/tree/meta-arm-gcs/README?h=testing/gcs
(I used the above to test the code sequences in this talk)

The Fixed Virtual Platform – “Armv-A Base RevC AEM”, is used:
https://developer.arm.com/Tools%20and%20Software/Fixed%20Virtual%20Platforms

https://git.yoctoproject.org/meta-arm/tree/meta-arm-gcs/README?h=testing/gcs
https://developer.arm.com/Tools%20and%20Software/Fixed%20Virtual%20Platforms

12 © 2024 Arm

Getting FEAT_GCS into Debian

Once the binutils and gcc patches are upstream and merged into Debian Unstable…

To annotate binaries as being GCS aware, one needs to employ the following CFLAG:

-mbranch-protection=standard

(This CFLAG is already used for PAC + BTI deployment in Debian Trixie),

One can check existing binaries via:
$ readelf -n ./hello | grep AArch64

Properties: AArch64 feature: BTI, PAC, GCS

Then it is a case of hunting for stragglers, most of which will likely be due to hand-coded
assembler being present, the following LDFLAG can be employed to aid diagnostics:

-z experimental-gcs=always -z experimental-gcs-report=error

(flag naming may change as patches are still under review)

13 © 2024 Arm

I need to write GCS aware code; how do I detect it?

For any manual manipulation of the stack (f.e.
for implementing something like
longjmp/setjmp), code needs to detect
whether or not GCS is enabled,

One can use the Linux kernel API:
prctl(PR_GET_SHADOW_STACK_STATUS, &status, 0,

0, 0);

There may be circumstances where one is
unable to make a syscall, in which case, we have
an instruction to aid with detection of GCS,

CHKFEAT x16

From the Arm Architecture Reference Manual:
(D1.10 Check Feature)

MOV X16, #0x1 ; X16 has bit [0] set to select GCS

CHKFEAT X16 ; Updates X16 with the status of GCS

; Skip over GCS code if GCS is not enabled

TBNZ X16, #0, skipgcs

... ; GCS related code

skipgcs:

; no more GCS code

CHKFEAT above runs as a NOP on cores that
don’t implement FEAT_GCS (or where GCS
hasn’t been enabled),

so can be used safely in general purpose code.

14 © 2024 Arm

Enabling GCS in assembler
The first rule of assembler is… not to use assembler!

Advertising GCS compliance in assembler is done in a very similar way employed for BTI,
we have an extra flag to set in the NOTE section:
.pushsection .note.gnu.property, "a"

.balign 8

.long 4 /* size of the name - "GNU\0" */

.long 0x10 /* size of descriptor */

.long 0x5 /* NT_GNU_PROPERTY_TYPE_0 */

.asciz "GNU"

.long 0xc0000000 /* pr_type - GNU_PROPERTY_AARCH64_FEATURE_1_AND */

.long 4 /* pr_datasz - 4 bytes */

.long 7 /* pr_data - GNU_PROPERTY_AARCH64_FEATURE_1_BTI | GNU_PROPERTY_AARCH64_FEATURE_1_PAC

| GNU_PROPERTY_AARCH64_FEATURE_1_GCS */

.long 0 /* pr_padding - bring everything to 8 byte alignment */

.popsection

The GCS flag is documented here:
https://github.com/ARM-software/abi-
aa/blob/853286c7ab66048e4b819682ce17f567b77a0291/sysvabi64/sysvabi64.rst#proc
ess-gnu-property-aarch64-feature-1-gcs

https://github.com/ARM-software/abi-aa/blob/853286c7ab66048e4b819682ce17f567b77a0291/sysvabi64/sysvabi64.rst
https://github.com/ARM-software/abi-aa/blob/853286c7ab66048e4b819682ce17f567b77a0291/sysvabi64/sysvabi64.rst
https://github.com/ARM-software/abi-aa/blob/853286c7ab66048e4b819682ce17f567b77a0291/sysvabi64/sysvabi64.rst

15 © 2024 Arm

Current status and enablement strategy

GCS support for upstream is under way for:
• Linux kernel, binutils, GCC, Glibc, gdb

GCS support is available already in LLVM-18,

Our enablement strategy for Forky is to:
1. Put up a GCS page on the Debian wiki,
2. Once gcc gets upstream support and makes its way into Debian…

any packages built in Debian using -mbranch-protection=standard (which is what we’re
doing already for PAC + BTI), will start also annotating binaries with GCS support,
(This is the bit that will take most time as it’s a rebuild everything job)

3. Once glibc has GCS support, it should naturally translate over,
4. Once the Linux kernel gets GCS support, we’ll check that it’s enabled in Kconfig

• additional work may be required to ensure that GCS works with uprobes

5. We can then hunt down stragglers and test incrementally
• As the feature is opt-in, we do not believe that incremental enablement poses a risk to users.

Thank You
Danke

Gracias
Grazie
谢谢

ありがとう
Asante
Merci

감사합니다
धन्यवाद

Kiitos
شكرًا

ধন্যবাদ
תודה

ధన్యవాదములు
© 2024 Arm

Thank you for your attention!

Any Questions/Comments?

17 © 2024 Arm

References

Shadow stacks for 64-bit Arm systems
• https://lwn.net/Articles/940403/

Procedure Call Standard for the Arm 64-bit Architecture(AAPCS64)
• https://github.com/ARM-software/abi-aa/releases

The Arm Architecture Reference Manual (Chapter D11 The Guarded Control Stack)
• https://developer.arm.com/documentation/ddi0487/ka/?lang=en

What is new in LLVM 18? (part 2) – discusses clang + gcs
• https://community.arm.com/arm-community-blogs/b/tools-software-ides-blog/posts/p2-whats-new-

in-llvm-18

Arm A-Profile Architecture Developments 2022
• https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/arm-

a-profile-architecture-2022

https://lwn.net/Articles/940403/
https://github.com/ARM-software/abi-aa/releases
https://developer.arm.com/documentation/ddi0487/ka/?lang=en
https://community.arm.com/arm-community-blogs/b/tools-software-ides-blog/posts/p2-whats-new-in-llvm-18
https://community.arm.com/arm-community-blogs/b/tools-software-ides-blog/posts/p2-whats-new-in-llvm-18
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/arm-a-profile-architecture-2022
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/arm-a-profile-architecture-2022

18 © 2024 Arm

Gratuitous Recruitment Spam
Apologies, nothing for Debian directly this time.

We are recruiting software and hardware engineers at Arm, for roles including:
• Linux kernel,
• Firmware,
• Performance optimisation and profiling,

Many of the software roles are geared towards Open Source Software development,

Should anyone here be interested (or know anyone who may be interested); please do
get in touch with me: steve.capper@arm.com

There is a careers page which I can help folk navigate too:
• https://careers.arm.com

I would be more than happy to answer any recruitment queries.

mailto:steve.capper@arm.com
https://careers.arm.com/

	Slide 1: Guarded Control Stack (FEAT_GCS) for Debian
	Slide 2: Introduction
	Slide 3: Quick intro to the architecture
	Slide 4: Let’s dive in!
	Slide 5: Two big takeaways from the assembler example
	Slide 6: Our example running under FEAT_GCS
	Slide 7: So how did our example work?
	Slide 8: Getting FEAT_GCS into a distro “How do I make it go?”
	Slide 9: A subtle change to deployment strategy for FEAT_GCS
	Slide 10: Running a program with FEAT_GCS
	Slide 11: Getting FEAT_GCS into a test distro
	Slide 12: Getting FEAT_GCS into Debian
	Slide 13: I need to write GCS aware code; how do I detect it?
	Slide 14: Enabling GCS in assembler
	Slide 15: Current status and enablement strategy
	Slide 16
	Slide 17: References
	Slide 18: Gratuitous Recruitment Spam

