
AVRDUDE
A program for download/uploading AVR microcontroller flash and eeprom.

For AVRDUDE, Version 5.11, 26 August 2011.

by Brian S. Dean

Send comments on AVRDUDE to avrdude-dev@nongnu.org.
Use http://savannah.nongnu.org/bugs/?group=avrdude to report bugs.
Copyright c© 2003,2005 Brian S. Dean
Copyright c© 2006 - 2008 Jörg Wunsch

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Free Software Foundation.

mailto:avrdude-dev@nongnu.org
http://savannah.nongnu.org/bugs/?group=avrdude

i

Table of Contents

1 Introduction . 1
1.1 History and Credits . 2

2 Command Line Options . 3
2.1 Option Descriptions . 3
2.2 Programmers accepting extended parameters 13
2.3 Example Command Line Invocations . 15

3 Terminal Mode Operation 19
3.1 Terminal Mode Commands. 19
3.2 Terminal Mode Examples . 20

4 Configuration File . 23
4.1 AVRDUDE Defaults . 23
4.2 Programmer Definitions . 23
4.3 Part Definitions . 24

4.3.1 Instruction Format . 24
4.4 Other Notes . 25

5 Programmer Specific Information 26
5.1 Atmel STK600 . 26

Appendix A Platform Dependent Information
. 29

A.1 Unix . 29
A.1.1 Unix Installation . 29

A.1.1.1 FreeBSD Installation . 29
A.1.1.2 Linux Installation . 29

A.1.2 Unix Configuration Files . 30
A.1.2.1 FreeBSD Configuration Files . 30
A.1.2.2 Linux Configuration Files . 30

A.1.3 Unix Port Names. 30
A.1.4 Unix Documentation . 30

A.2 Windows . 30
A.2.1 Installation . 30
A.2.2 Configuration Files . 31

A.2.2.1 Configuration file names . 31
A.2.2.2 How AVRDUDE finds the configuration files. 31

A.2.3 Port Names . 31
A.2.3.1 Serial Ports . 31
A.2.3.2 Parallel Ports . 31

ii

A.2.4 Using the parallel port . 32
A.2.4.1 Windows NT/2K/XP . 32
A.2.4.2 Windows 95/98 . 32

A.2.5 Documentation . 32
A.2.6 Credits. 32

Appendix B Troubleshooting 34

Chapter 1: Introduction 1

1 Introduction

AVRDUDE - AVR Downloader Uploader - is a program for downloading and uploading
the on-chip memories of Atmel’s AVR microcontrollers. It can program the Flash and
EEPROM, and where supported by the serial programming protocol, it can program fuse
and lock bits. AVRDUDE also supplies a direct instruction mode allowing one to issue any
programming instruction to the AVR chip regardless of whether AVRDUDE implements
that specific feature of a particular chip.

AVRDUDE can be used effectively via the command line to read or write all chip memory
types (eeprom, flash, fuse bits, lock bits, signature bytes) or via an interactive (terminal)
mode. Using AVRDUDE from the command line works well for programming the entire
memory of the chip from the contents of a file, while interactive mode is useful for exploring
memory contents, modifying individual bytes of eeprom, programming fuse/lock bits, etc.

AVRDUDE supports the following basic programmer types: Atmel’s STK500, Atmel’s
AVRISP and AVRISP mkII devices, Atmel’s STK600, Atmel’s JTAG ICE (both mkI and
mkII, the latter also in ISP mode), appnote avr910, appnote avr109 (including the AVR
Butterfly), serial bit-bang adapters, and the PPI (parallel port interface). PPI represents a
class of simple programmers where the programming lines are directly connected to the PC
parallel port. Several pin configurations exist for several variations of the PPI programmers,
and AVRDUDE can be be configured to work with them by either specifying the appropriate
programmer on the command line or by creating a new entry in its configuration file. All
that’s usually required for a new entry is to tell AVRDUDE which pins to use for each
programming function.

A number of equally simple bit-bang programming adapters that connect to a serial port
are supported as well, among them the popular Ponyprog serial adapter, and the DASA
and DASA3 adapters that used to be supported by uisp(1). Note that these adapters are
meant to be attached to a physical serial port. Connecting to a serial port emulated on top
of USB is likely to not work at all, or to work abysmally slow.

The STK500, JTAG ICE, avr910, and avr109/butterfly use the serial port to commu-
nicate with the PC. The STK600, JTAG ICE mkII, AVRISP mkII, USBasp, avrftdi (and
derivitives), and USBtinyISP programmers communicate through the USB, using libusb
as a platform abstraction layer. The avrftdi adds support for the FT2232C/D, FT2232H,
and FT4232H devices. These all use the MPSSE mode, which has a specific pin mapping.
Bit 1 (the lsb of the byte in the config file) is SCK. Bit 2 is MOSI, and Bit 3 is MISO. Bit
4 usually reset. The 2232C/D parts are only supported on interface A, but the H parts
can be either A or B (specified by the usbdev config parameter). The STK500, STK600,
JTAG ICE, and avr910 contain on-board logic to control the programming of the target
device. The avr109 bootloader implements a protocol similar to avr910, but is actually
implemented in the boot area of the target’s flash ROM, as opposed to being an external
device. The fundamental difference between the two types lies in the protocol used to con-
trol the programmer. The avr910 protocol is very simplistic and can easily be used as the
basis for a simple, home made programmer since the firmware is available online. On the
other hand, the STK500 protocol is more robust and complicated and the firmware is not
openly available. The JTAG ICE also uses a serial communication protocol which is similar
to the STK500 firmware version 2 one. However, as the JTAG ICE is intended to allow
on-chip debugging as well as memory programming, the protocol is more sophisticated.

Chapter 1: Introduction 2

(The JTAG ICE mkII protocol can also be run on top of USB.) Only the memory program-
ming functionality of the JTAG ICE is supported by AVRDUDE. For the JTAG ICE mkII,
JTAG, debugWire and ISP mode are supported, provided it has a firmware revision of at
least 4.14 (decimal). See below for the limitations of debugWire. For ATxmega devices,
the JTAG ICE mkII is supported in PDI mode, provided it has a revision 1 hardware and
firmware version of at least 5.37 (decimal).

The AVR Dragon is supported in all modes (ISP, JTAG, PDI, HVSP, PP, debugWire).
When used in JTAG and debugWire mode, the AVR Dragon behaves similar to a JTAG
ICE mkII, so all device-specific comments for that device will apply as well. When used
in ISP and PDI mode, the AVR Dragon behaves similar to an AVRISP mkII (or JTAG
ICE mkII in ISP mode), so all device-specific comments will apply there. In particular, the
Dragon starts out with a rather fast ISP clock frequency, so the -B bitclock option might
be required to achieve a stable ISP communication. For ATxmega devices, the AVR Dragon
is supported in PDI mode, provided it has a firmware version of at least 6.11 (decimal).

Wiring boards are supported, utilizing STK500 V2.x protocol, but a simple DTR/RTS
toggle to set the boards into programming mode. The programmer type is “wiring”.

The Arduino (which is very similar to the STK500 1.x) is supported via its own pro-
grammer type specification “arduino”.

The BusPirate is a versatile tool that can also be used as an AVR programmer. A single
BusPirate can be connected to up to 3 independent AVRs. See the section on extended
parameters below for details.

The USBasp ISP and USBtinyISP adapters are also supported, provided AVRDUDE
has been compiled with libusb support. They both feature simple firmware-only USB
implementations, running on an ATmega8 (or ATmega88), or ATtiny2313, respectively.

1.1 History and Credits

AVRDUDE was written by Brian S. Dean under the name of AVRPROG to run on the
FreeBSD Operating System. Brian renamed the software to be called AVRDUDE when
interest grew in a Windows port of the software so that the name did not conflict with
AVRPROG.EXE which is the name of Atmel’s Windows programming software.

The AVRDUDE source now resides in the public CVS repository on savannah.gnu.org
(http://savannah.gnu.org/projects/avrdude/), where it continues to be enhanced and
ported to other systems. In addition to FreeBSD, AVRDUDE now runs on Linux and Win-
dows. The developers behind the porting effort primarily were Ted Roth, Eric Weddington,
and Joerg Wunsch.

And in the spirit of many open source projects, this manual also draws on the work
of others. The initial revision was composed of parts of the original Unix manual page
written by Joerg Wunsch, the original web site documentation by Brian Dean, and from
the comments describing the fields in the AVRDUDE configuration file by Brian Dean. The
texi formatting was modeled after that of the Simulavr documentation by Ted Roth.

http://savannah.gnu.org/projects/avrdude/

Chapter 2: Command Line Options 3

2 Command Line Options

2.1 Option Descriptions

AVRDUDE is a command line tool, used as follows:
avrdude -p partno options ...

Command line options are used to control AVRDUDE’s behaviour. The following options
are recognized:

-p partno

This is the only mandatory option and it tells AVRDUDE what type of part
(MCU) that is connected to the programmer. The partno parameter is the
part’s id listed in the configuration file. Specify -p ? to list all parts in the
configuration file. If a part is unknown to AVRDUDE, it means that there
is no config file entry for that part, but it can be added to the configuration
file if you have the Atmel datasheet so that you can enter the programming
specifications. Currently, the following MCU types are understood:
1200 AT90S1200
2313 AT90S2313
2333 AT90S2333
2343 AT90S2343 (*)
4414 AT90S4414
4433 AT90S4433
4434 AT90S4434
8515 AT90S8515
8535 AT90S8535
c128 AT90CAN128
c32 AT90CAN32
c64 AT90CAN64
m103 ATmega103
m128 ATmega128
m1280 ATmega1280
m1281 ATmega1281
m1284p ATmega1284P
m128rfa1 ATmega128RFA1
m16 ATmega16
m161 ATmega161
m162 ATmega162
m163 ATmega163
m164 ATmega164
m164p ATmega164P
m168 ATmega168
m168p ATmega168P
m169 ATmega169
m16u2 ATmega16U2
m2560 ATmega2560 (**)
m2561 ATmega2561 (**)

Chapter 2: Command Line Options 4

m32 ATmega32
m324p ATmega324P
m325 ATmega325
m3250 ATmega3250
m328p ATmega328P
m329 ATmega329
m3290 ATmega3290
m329p ATmega329P
m3290p ATmega3290P
m32u2 ATmega32U2
m32u4 ATmega32U4
m48 ATmega48
m64 ATmega64
m640 ATmega640
m644p ATmega644P
m644 ATmega644
m645 ATmega645
m6450 ATmega6450
m649 ATmega649
m6490 ATmega6490
m8 ATmega8
m8515 ATmega8515
m8535 ATmega8535
m88 ATmega88
m88p ATmega88P
m8u2 ATmega8U2
pwm2 AT90PWM2
pwm2b AT90PWM2B
pwm3 AT90PWM3
pwm3b AT90PWM3B
t10 ATtiny10
t12 ATtiny12 (***)
t13 ATtiny13
t15 ATtiny15
t2313 ATtiny2313
t25 ATtiny25
t26 ATtiny26
t261 ATtiny261
t4 ATtiny4
t4313 ATtiny4313
t44 ATtiny44
t45 ATtiny45
t461 ATtiny461
t5 ATtiny5
t84 ATtiny84
t85 ATtiny85
t861 ATtiny861

Chapter 2: Command Line Options 5

t88 ATtiny88
t9 ATtiny9
ucr2 AT32uca0512
usb1286 ATmega1286
usb1287 ATmega1287
usb162 ATmega162
usb646 ATmega647
usb647 ATmega647
usb82 ATmega82
x128a1 ATxmega128A1
x128a1d ATxmega128A1revD
x128a3 ATxmega128A3
x128a4 ATxmega128A4
x16a4 ATxmega16A4
x192a1 ATxmega192A1
x192a3 ATxmega192A3
x256a1 ATxmega256A1
x256a3 ATxmega256A3
x256a3b ATxmega256A3B
x32a4 ATxmega32A4
x64a1 ATxmega64A1
x64a3 ATxmega64A3
x64a4 ATxmega64A4
(*) The AT90S2323 and ATtiny22 use the same algorithm.
(**) Flash addressing above 128 KB is not supported by all programming hard-
ware. Known to work are jtag2, stk500v2, and bit-bang programmers.
(***) The ATtiny11 uses the same algorithm, but can only be programmed in
high-voltage serial mode.

-b baudrate

Override the RS-232 connection baud rate specified in the respective program-
mer’s entry of the configuration file.

-B bitclock

Specify the bit clock period for the JTAG interface or the ISP clock (JTAG ICE
only). The value is a floating-point number in microseconds. The default value
of the JTAG ICE results in about 1 microsecond bit clock period, suitable for
target MCUs running at 4 MHz clock and above. Unlike certain parameters in
the STK500, the JTAG ICE resets all its parameters to default values when the
programming software signs off from the ICE, so for MCUs running at lower
clock speeds, this parameter must be specified on the command-line. It can
also be set in the configuration file by using the ’default bitclock’ keyword.

-c programmer-id

Specify the programmer to be used. AVRDUDE knows about several common
programmers. Use this option to specify which one to use. The programmer-id
parameter is the programmer’s id listed in the configuration file. Specify -c ? to
list all programmers in the configuration file. If you have a programmer that is

Chapter 2: Command Line Options 6

unknown to AVRDUDE, and the programmer is controlled via the PC parallel
port, there’s a good chance that it can be easily added to the configuration
file without any code changes to AVRDUDE. Simply copy an existing entry
and change the pin definitions to match that of the unknown programmer.
Currently, the following programmer ids are understood and supported:

2232HIO FT2232H based generic programmer
89isp Atmel at89isp cable
abcmini ABCmini Board, aka Dick Smith HOTCHIP
alf Nightshade ALF-PgmAVR,

http://nightshade.homeip.net/

arduino Arduino
board, protocol
similar to
STK500 1.x
atisp AT-ISP V1.1 programming cable for AVR-SDK1

from,
http://micro-research.co.th/

avr109 Atmel AppNote AVR109 Boot Loader
avr910 Atmel Low Cost Serial Programmer
avr911 Atmel AppNote AVR911 AVROSP (an alias for

avr109)
avrftdi FT2232D based generic programmer
avrisp Atmel AVR ISP (an alias for stk500)
avrisp2 Atmel AVR ISP mkII in ISP mode, in PDI

mode for ATxmega devices, or in TPI mode for
ATtiny4/5/9/10

avrispmkII Atmel AVR ISP mkII (alias for stk500v2)
avrispv2 Atmel AVR ISP, running a version 2.x firmware (an

alias for stk500v2)
bascom Bascom SAMPLE programming cable
blaster Altera ByteBlaster
bsd Brian Dean’s Programmer,

http://www.bsdhome.com/avrdude/

buspirate The Bus Pirate
butterfly Atmel Butterfly Development Board
c2n232i C2N232I, reset=dtr sck=!rts mosi=!txd miso=!cts,

http://www.ktverkko.fi/~msmakela/8bit/c2n232/hardware/index.en.html

dapa Direct AVR Parallel Access cable
dasa serial port banging, reset=rts sck=dtr mosi=txd

miso=cts
dasa3 serial port banging, reset=!dtr sck=rts mosi=txd

miso=cts
dragon_dw AVR Dragon in debugWire mode
dragon_hvsp AVR Dragon in high-voltage serial programming

mode

http://nightshade.homeip.net/
http://micro-research.co.th/
http://www.bsdhome.com/avrdude/
http://www.ktverkko.fi/~msmakela/8bit/c2n232/hardware/index.en.html

Chapter 2: Command Line Options 7

dragon_isp AVR Dragon in ISP mode
dragon_jtag AVR Dragon in JTAG mode
dragon_pdi AVR Dragon in PDI mode
dragon_pp AVR Dragon in (high-voltage) parallel programming

mode
dt006 Dontronics DT006
ere-isp-avr ERE ISP-AVR,

http://www.ere.co.th/download/sch050713.pdf

frank-stk200 Frank’s STK200 clone,
http://electropol.free.fr/spip/spip.php?article15

futurlec Futurlec.com programming cable
jtag1 Atmel JTAG ICE mkI, running at 115200 Bd
jtag1slow Atmel JTAG ICE mkI, running at 19200 Bd
jtag2 Atmel JTAG ICE mkII, running at 115200 Bd
jtag2avr32 Atmel JTAG ICE mkII in AVR32 mode.
jtag2dw Atmel JTAG ICE mkII in debugWire mode.
jtag2fast Atmel JTAG ICE mkII, running at 115200 Bd
jtag2isp Atmel JTAG ICE mkII in ISP mode.
jtag2pdi Atmel JTAG ICE mkII in PDI mode.
jtag2slow Atmel JTAG ICE mkII (default speed 19200 Bd)
jtagmkI Atmel JTAG ICE mkI, running at 115200 Bd
jtagmkII Atmel JTAG ICE mkII (default speed 19200 Bd)
jtagmkII_avr32 Atmel JTAG ICE mkII in AVR32 mode.
mib510 Crossbow MIB510 programming board
pavr Jason Kyle’s pAVR Serial Programmer
picoweb Picoweb Programming Cable,

http://www.picoweb.net/

pony-stk200 Pony Prog STK200
ponyser design ponyprog serial, reset=!txd sck=rts mosi=dtr

miso=cts
siprog Lancos SI-Prog,

http://www.lancos.com/siprogsch.html

sp12 Steve Bolt’s Programmer
stk200 STK200
stk500 Atmel STK500, probing for either version 1.x or 2.x

firmware
stk500hvsp Atmel STK500 in high-voltage serial programming

mode(version 2.x firmware only)
stk500pp Atmel STK500 in parallel programming mode (ver-

sion 2.xfirmware only)
stk500v1 Atmel STK500, running a version 1.x firmware
stk500v2 Atmel STK500, running a version 2.x firmware
stk600 Atmel STK600 in ISP mode, in PDI mode

for ATxmega devices, or in TPI mode for
ATtiny4/5/9/10

http://www.ere.co.th/download/sch050713.pdf
http://electropol.free.fr/spip/spip.php?article15
http://www.picoweb.net/
http://www.lancos.com/siprogsch.html

Chapter 2: Command Line Options 8

stk600hvsp Atmel STK600 in high-voltage serial programming
mode

stk600pp Atmel STK600 in parallel programming mode
usbasp USBasp,

http://www.fischl.de/usbasp/

usbtiny USBtiny simple USB programmer,
http://www.ladyada.net/make/usbtinyisp/

wiring Wiring board, utilizing STK500 V2.x protocol,
http://wiring.org.co/

xil Xilinx JTAG cable

-C config-file

Use the specified config file for configuration data. This file contains all pro-
grammer and part definitions that AVRDUDE knows about. If you have a
programmer or part that AVRDUDE does not know about, you can add it to
the config file (be sure and submit a patch back to the author so that it can
be incorporated for the next version). If not specified, AVRDUDE reads the
configuration file from /usr/local/etc/avrdude.conf (FreeBSD and Linux). See
Appendix A for the method of searching for the configuration file for Windows.

-D Disable auto erase for flash. When the -U option with flash memory is speci-
fied, avrdude will perform a chip erase before starting any of the programming
operations, since it generally is a mistake to program the flash without per-
forming an erase first. This option disables that. Auto erase is not used for
ATxmega devices as these devices can use page erase before writing each page
so no explicit chip erase is required. Note however that any page not affected
by the current operation will retain its previous contents.

-e Causes a chip erase to be executed. This will reset the contents of the flash ROM
and EEPROM to the value ‘0xff’, and clear all lock bits. Except for ATxmega
devices which can use page erase, it is basically a prerequisite command before
the flash ROM can be reprogrammed again. The only exception would be if the
new contents would exclusively cause bits to be programmed from the value ‘1’
to ‘0’. Note that in order to reprogram EERPOM cells, no explicit prior chip
erase is required since the MCU provides an auto-erase cycle in that case before
programming the cell.

-E exitspec[,...]
By default, AVRDUDE leaves the parallel port in the same state at exit as it
has been found at startup. This option modifies the state of the ‘/RESET’
and ‘Vcc’ lines the parallel port is left at, according to the exitspec arguments
provided, as follows:

reset The ‘/RESET’ signal will be left activated at program exit, that
is it will be held low, in order to keep the MCU in reset state
afterwards. Note in particular that the programming algorithm for
the AT90S1200 device mandates that the ‘/RESET’ signal is active
before powering up the MCU, so in case an external power supply
is used for this MCU type, a previous invocation of AVRDUDE

http://www.fischl.de/usbasp/
http://www.ladyada.net/make/usbtinyisp/
http://wiring.org.co/

Chapter 2: Command Line Options 9

with this option specified is one of the possible ways to guarantee
this condition.

noreset The ‘/RESET’ line will be deactivated at program exit, thus al-
lowing the MCU target program to run while the programming
hardware remains connected.

vcc This option will leave those parallel port pins active (i. e. high)
that can be used to supply ‘Vcc’ power to the MCU.

novcc This option will pull the ‘Vcc’ pins of the parallel port down at
program exit.

d_high This option will leave the 8 data pins on the parallel port active (i.
e. high).

d_low This option will leave the 8 data pins on the parallel port inactive
(i. e. low).

Multiple exitspec arguments can be separated with commas.

-F Normally, AVRDUDE tries to verify that the device signature read from the
part is reasonable before continuing. Since it can happen from time to time that
a device has a broken (erased or overwritten) device signature but is otherwise
operating normally, this options is provided to override the check. Also, for
programmers like the Atmel STK500 and STK600 which can adjust parameters
local to the programming tool (independent of an actual connection to a target
controller), this option can be used together with ‘-t’ to continue in terminal
mode.

-i delay For bitbang-type programmers, delay for approximately delay microseconds be-
tween each bit state change. If the host system is very fast, or the target runs off
a slow clock (like a 32 kHz crystal, or the 128 kHz internal RC oscillator), this
can become necessary to satisfy the requirement that the ISP clock frequency
must not be higher than 1/4 of the CPU clock frequency. This is implemented
as a spin-loop delay to allow even for very short delays. On Unix-style operat-
ing systems, the spin loop is initially calibrated against a system timer, so the
number of microseconds might be rather realistic, assuming a constant system
load while AVRDUDE is running. On Win32 operating systems, a preconfig-
ured number of cycles per microsecond is assumed that might be off a bit for
very fast or very slow machines.

-n No-write - disables actually writing data to the MCU (useful for debugging
AVRDUDE).

-O Perform a RC oscillator run-time calibration according to Atmel application
note AVR053. This is only supported on the STK500v2, AVRISP mkII, and
JTAG ICE mkII hardware. Note that the result will be stored in the EEPROM
cell at address 0.

-P port Use port to identify the device to which the programmer is attached. Normally,
the default parallel port is used, but if the programmer type normally connects
to the serial port, the default serial port will be used. See Appendix A, Platform
Dependent Information, to find out the default port names for your platform.
If you need to use a different parallel or serial port, use this option to specify
the alternate port name.

Chapter 2: Command Line Options 10

On Win32 operating systems, the parallel ports are referred to as lpt1 through
lpt3, referring to the addresses 0x378, 0x278, and 0x3BC, respectively. If the
parallel port can be accessed through a different address, this address can be
specified directly, using the common C language notation (i. e., hexadecimal
values are prefixed by 0x).

For the JTAG ICE mkII, if AVRDUDE has been built with libusb support, port
may alternatively be specified as usb[:serialno]. In that case, the JTAG ICE
mkII will be looked up on USB. If serialno is also specified, it will be matched
against the serial number read from any JTAG ICE mkII found on USB. The
match is done after stripping any existing colons from the given serial number,
and right-to-left, so only the least significant bytes from the serial number
need to be given. For a trick how to find out the serial numbers of all JTAG
ICEs attached to USB, see Section 2.3 [Example Command Line Invocations],
page 15.

As the AVRISP mkII device can only be talked to over USB, the very same
method of specifying the port is required there.

For the USB programmer "AVR-Doper" running in HID mode, the
port must be specified as avrdoper. Libusb support is required on Unix
but not on Windows. For more information about AVR-Doper see
http://www.obdev.at/avrusb/avrdoper.html.

For the USBtinyISP, which is a simplicistic device not implementing serial num-
bers, multiple devices can be distinguished by their location in the USB hier-
archy. See Appendix B [Troubleshooting], page 34 for examples.

For programmers that attach to a serial port using some kind of higher level
protocol (as opposed to bit-bang style programmers), port can be specified as
net:host:port. In this case, instead of trying to open a local device, a TCP
network connection to (TCP) port on host is established. The remote endpoint
is assumed to be a terminal or console server that connects the network stream
to a local serial port where the actual programmer has been attached to. The
port is assumed to be properly configured, for example using a transparent 8-bit
data connection without parity at 115200 Baud for a STK500.

This feature is currently not implemented for Win32 systems.

-q Disable (or quell) output of the progress bar while reading or writing to the
device. Specify it a second time for even quieter operation.

-u Disables the default behaviour of reading out the fuses three times before pro-
gramming, then verifying at the end of programming that the fuses have not
changed. If you want to change fuses you will need to specify this option, as
avrdude will see the fuses have changed (even though you wanted to) and will
change them back for your "safety". This option was designed to prevent cases
of fuse bits magically changing (usually called safemode).

-t Tells AVRDUDE to enter the interactive “terminal” mode instead of up- or
downloading files. See below for a detailed description of the terminal mode.

http://www.obdev.at/avrusb/avrdoper.html

Chapter 2: Command Line Options 11

-U memtype:op:filename[:format]
Perform a memory operation. Multiple ‘-U’ options can be specified in order
to operate on multiple memories on the same command-line invocation. The
memtype field specifies the memory type to operate on. Use the ‘-v’ option
on the command line or the part command from terminal mode to display
all the memory types supported by a particular device. Typically, a device’s
memory configuration at least contains the memory types flash and eeprom.
All memory types currently known are:

calibration
One or more bytes of RC oscillator calibration data.

eeprom The EEPROM of the device.

efuse The extended fuse byte.

flash The flash ROM of the device.

fuse The fuse byte in devices that have only a single fuse byte.

hfuse The high fuse byte.

lfuse The low fuse byte.

lock The lock byte.

signature
The three device signature bytes (device ID).

fuseN The fuse bytes of ATxmega devices, N is an integer number for
each fuse supported by the device.

application
The application flash area of ATxmega devices.

apptable The application table flash area of ATxmega devices.

boot The boot flash area of ATxmega devices.

prodsig The production signature (calibration) area of ATxmega devices.

usersig The user signature area of ATxmega devices.

The op field specifies what operation to perform:

r read the specified device memory and write to the specified file
w read the specified file and write it to the specified device memory
v read the specified device memory and the specified file and perform

a verify operation

The filename field indicates the name of the file to read or write. The format
field is optional and contains the format of the file to read or write. Possible
values are:

i Intel Hex
s Motorola S-record
r raw binary; little-endian byte order, in the case of the flash ROM

data
m immediate mode; actual byte values specified on the command line,

separated by commas or spaces in place of the filename field of the

Chapter 2: Command Line Options 12

‘-U’ option. This is useful for programming fuse bytes without
having to create a single-byte file or enter terminal mode. If the
number specified begins with 0x, it is treated as a hex value. If
the number otherwise begins with a leading zero (0) it is treated as
octal. Otherwise, the value is treated as decimal.

a auto detect; valid for input only, and only if the input is not pro-
vided at stdin.

d decimal; this and the following formats are only valid on output.
They generate one line of output for the respective memory section,
forming a comma-separated list of the values. This can be partic-
ularly useful for subsequent processing, like for fuse bit settings.

h hexadecimal; each value will get the string 0x prepended.
o octal; each value will get a 0 prepended unless it is less than 8 in

which case it gets no prefix.
b binary; each value will get the string 0b prepended.

The default is to use auto detection for input files, and raw binary format for
output files.
Note that if filename contains a colon, the format field is no longer optional
since the filename part following the colon would otherwise be misinterpreted
as format.
As an abbreviation, the form -U filename is equivalent to specifying -U
flash:w:filename:a. This will only work if filename does not have a colon in it.

-v Enable verbose output.

-V Disable automatic verify check when uploading data.

-x extended_param

Pass extended param to the chosen programmer implementation as an extended
parameter. The interpretation of the extended parameter depends on the pro-
grammer itself. See below for a list of programmers accepting extended param-
eters.

-y Tells AVRDUDE to use the last four bytes of the connected parts’ EEPROM
memory to track the number of times the device has been erased. When this
option is used and the ‘-e’ flag is specified to generate a chip erase, the previous
counter will be saved before the chip erase, it is then incremented, and written
back after the erase cycle completes. Presumably, the device would only be
erased just before being programmed, and thus, this can be utilized to give an
indication of how many erase-rewrite cycles the part has undergone. Since the
FLASH memory can only endure a finite number of erase-rewrite cycles, one
can use this option to track when a part is nearing the limit. The typical limit
for Atmel AVR FLASH is 1000 cycles. Of course, if the application needs the
last four bytes of EEPROM memory, this option should not be used.

-Y cycles

Instructs AVRDUDE to initialize the erase-rewrite cycle counter residing at the
last four bytes of EEPROM memory to the specified value. If the application
needs the last four bytes of EEPROM memory, this option should not be used.

Chapter 2: Command Line Options 13

2.2 Programmers accepting extended parameters

JTAG ICE mkII
AVR Dragon

When using the JTAG ICE mkII or AVR Dragon in JTAG mode, the following
extended parameter is accepted:

‘jtagchain=UB,UA,BB,BA’
Setup the JTAG scan chain for UB units before, UA units after, BB
bits before, and BA bits after the target AVR, respectively. Each
AVR unit within the chain shifts by 4 bits. Other JTAG units
might require a different bit shift count.

AVR910

The AVR910 programmer type accepts the following extended parameter:

‘devcode=VALUE’
Override the device code selection by using VALUE as the device
code. The programmer is not queried for the list of supported
device codes, and the specified VALUE is not verified but used
directly within the T command sent to the programmer. VALUE
can be specified using the conventional number notation of the C
programming language.

‘no_blockmode’
Disables the default checking for block transfer capability. Use
‘no_blockmode’ only if your ‘AVR910’ programmer creates errors
during initial sequence.

BusPirate
The BusPirate programmer type accepts the following extended parameters:

‘reset=cs,aux,aux2’
The default setup assumes the BusPirate’s CS output pin connected
to the RESET pin on AVR side. It is however possible to have
multiple AVRs connected to the same BP with MISO, MOSI and
SCK lines common for all of them. In such a case one AVR should
have its RESET connected to BusPirate’s CS pin, second AVR’s
RESET connected to BusPirate’s AUX pin and if your BusPirate
has an AUX2 pin (only available on BusPirate version v1a with
firmware 3.0 or newer) use that to activate RESET on the third
AVR.
It may be a good idea to decouple the BusPirate and the AVR’s
SPI buses from each other using a 3-state bus buffer. For example
74HC125 or 74HC244 are some good candidates with the latches
driven by the appropriate reset pin (cs, aux or aux2). Otherwise
the SPI traffic in one active circuit may interfere with programming
the AVR in the other design.

‘speed=0..7’

0 30 kHz (default)

Chapter 2: Command Line Options 14

1 125 kHz

2 250 kHz

3 1 MHz

4 2 MHz

5 2.6 MHz

6 4 MHz

7 8 MHz

‘ascii’ Use ASCII mode even when the firmware supports BinMode (bi-
nary mode). BinMode is supported in firmware 2.7 and newer,
older FW’s either don’t have BinMode or their BinMode is buggy.
ASCII mode is slower and makes the above ‘reset=’ and ‘speed=’
parameters unavailable.

Wiring

When using the Wiring programmer type, the following optional extended pa-
rameter is accepted:

‘snooze=0..32767’
After performing the port open phase, AVRDUDE will
wait/snooze for snooze milliseconds before continuing to the
protocol sync phase. No toggling of DTR/RTS is performed if
snooze > 0.

Chapter 2: Command Line Options 15

2.3 Example Command Line Invocations

Download the file diag.hex to the ATmega128 chip using the STK500 programmer con-
nected to the default serial port:� �

% avrdude -p m128 -c stk500 -e -U flash:w:diag.hex

avrdude: AVR device initialized and ready to accept instructions

Reading | ## | 100% 0.03s

avrdude: Device signature = 0x1e9702

avrdude: erasing chip

avrdude: done.

avrdude: performing op: 1, flash, 0, diag.hex

avrdude: reading input file "diag.hex"

avrdude: input file diag.hex auto detected as Intel Hex

avrdude: writing flash (19278 bytes):

Writing | ## | 100% 7.60s

avrdude: 19456 bytes of flash written

avrdude: verifying flash memory against diag.hex:

avrdude: load data flash data from input file diag.hex:

avrdude: input file diag.hex auto detected as Intel Hex

avrdude: input file diag.hex contains 19278 bytes

avrdude: reading on-chip flash data:

Reading | ## | 100% 6.83s

avrdude: verifying ...

avrdude: 19278 bytes of flash verified

avrdude: safemode: Fuses OK

avrdude done. Thank you.

%
 	

Chapter 2: Command Line Options 16

Upload the flash memory from the ATmega128 connected to the STK500 programmer and
save it in raw binary format in the file named c:/diag flash.bin:� �

% avrdude -p m128 -c stk500 -U flash:r:"c:/diag flash.bin":r

avrdude: AVR device initialized and ready to accept instructions

Reading | ## | 100% 0.03s

avrdude: Device signature = 0x1e9702

avrdude: reading flash memory:

Reading | ## | 100% 46.10s

avrdude: writing output file "c:/diag flash.bin"

avrdude: safemode: Fuses OK

avrdude done. Thank you.

%
 	

Chapter 2: Command Line Options 17

Using the default programmer, download the file diag.hex to flash, eeprom.hex to EEP-
ROM, and set the Extended, High, and Low fuse bytes to 0xff, 0x89, and 0x2e respectively:� �

% avrdude -p m128 -u -U flash:w:diag.hex \

> -U eeprom:w:eeprom.hex \

> -U efuse:w:0xff:m \

> -U hfuse:w:0x89:m \

> -U lfuse:w:0x2e:m

avrdude: AVR device initialized and ready to accept instructions

Reading | ## | 100% 0.03s

avrdude: Device signature = 0x1e9702

avrdude: NOTE: FLASH memory has been specified, an erase cycle will be performed

To disable this feature, specify the -D option.

avrdude: erasing chip

avrdude: reading input file "diag.hex"

avrdude: input file diag.hex auto detected as Intel Hex

avrdude: writing flash (19278 bytes):

Writing | ## | 100% 7.60s

avrdude: 19456 bytes of flash written

avrdude: verifying flash memory against diag.hex:

avrdude: load data flash data from input file diag.hex:

avrdude: input file diag.hex auto detected as Intel Hex

avrdude: input file diag.hex contains 19278 bytes

avrdude: reading on-chip flash data:

Reading | ## | 100% 6.84s

avrdude: verifying ...

avrdude: 19278 bytes of flash verified

[... other memory status output skipped for brevity ...]

avrdude done. Thank you.

%
 	

Chapter 2: Command Line Options 18

Connect to the JTAG ICE mkII which serial number ends up in 1C37 via USB, and enter
terminal mode:� �

% avrdude -c jtag2 -p m649 -P usb:1c:37 -t

avrdude: AVR device initialized and ready to accept instructions

Reading | ## | 100% 0.03s

avrdude: Device signature = 0x1e9603

[... terminal mode output skipped for brevity ...]

avrdude done. Thank you.
 	
List the serial numbers of all JTAG ICEs attached to USB. This is done by specifying an
invalid serial number, and increasing the verbosity level.� �

% avrdude -c jtag2 -p m128 -P usb:xx -v

[...]

Using Port : usb:xxx

Using Programmer : jtag2

avrdude: usbdev_open(): Found JTAG ICE, serno: 00A000001C6B

avrdude: usbdev_open(): Found JTAG ICE, serno: 00A000001C3A

avrdude: usbdev_open(): Found JTAG ICE, serno: 00A000001C30

avrdude: usbdev_open(): did not find any (matching) USB device "usb:xxx"
 	

Chapter 3: Terminal Mode Operation 19

3 Terminal Mode Operation

AVRDUDE has an interactive mode called terminal mode that is enabled by the ‘-t’ option.
This mode allows one to enter interactive commands to display and modify the various de-
vice memories, perform a chip erase, display the device signature bytes and part parameters,
and to send raw programming commands. Commands and parameters may be abbreviated
to their shortest unambiguous form. Terminal mode also supports a command history so
that previously entered commands can be recalled and edited.

3.1 Terminal Mode Commands

The following commands are implemented:

dump memtype addr nbytes

Read nbytes from the specified memory area, and display them in the usual
hexadecimal and ASCII form.

dump Continue dumping the memory contents for another nbytes where the previous
dump command left off.

write memtype addr byte1 ... byteN

Manually program the respective memory cells, starting at address addr, using
the values byte1 through byteN. This feature is not implemented for bank-
addressed memories such as the flash memory of ATMega devices.

erase Perform a chip erase.

send b1 b2 b3 b4

Send raw instruction codes to the AVR device. If you need access to a feature
of an AVR part that is not directly supported by AVRDUDE, this command
allows you to use it, even though AVRDUDE does not implement the command.
When using direct SPI mode, up to 3 bytes can be omitted.

sig Display the device signature bytes.

spi Enter direct SPI mode. The pgmled pin acts as slave select. Only supported on
parallel bitbang programmers.

part Display the current part settings and parameters. Includes chip specific infor-
mation including all memory types supported by the device, read/write timing,
etc.

pgm Return to programming mode (from direct SPI mode).

?
help Give a short on-line summary of the available commands.

quit Leave terminal mode and thus AVRDUDE.

In addition, the following commands are supported on the STK500 and STK600 program-
mer:

vtarg voltage

Set the target’s supply voltage to voltage Volts.

Chapter 3: Terminal Mode Operation 20

varef [channel] voltage

Set the adjustable voltage source to voltage Volts. This voltage is normally
used to drive the target’s Aref input on the STK500 and STK600. The STK600
offers two reference voltages, which can be selected by the optional parameter
channel (either 0 or 1).

fosc freq[M|k]
Set the master oscillator to freq Hz. An optional trailing letter M multiplies by
1E6, a trailing letter k by 1E3.

fosc off Turn the master oscillator off.

sck period

STK500 and STK600 only: Set the SCK clock period to period microseconds.

JTAG ICE only: Set the JTAG ICE bit clock period to period microseconds.
Note that unlike STK500 settings, this setting will be reverted to its default
value (approximately 1 microsecond) when the programming software signs off
from the JTAG ICE. This parameter can also be used on the JTAG ICE mkII
to specify the ISP clock period when operating the ICE in ISP mode.

parms STK500 and STK600 only: Display the current voltage and master oscillator
parameters.

JTAG ICE only: Display the current target supply voltage and JTAG bit clock
rate/period.

3.2 Terminal Mode Examples

Display part parameters, modify eeprom cells, perform a chip erase:

Chapter 3: Terminal Mode Operation 21

� �
% avrdude -p m128 -c stk500 -t

avrdude: AVR device initialized and ready to accept instructions

avrdude: Device signature = 0x1e9702

avrdude: current erase-rewrite cycle count is 52 (if being tracked)

avrdude> part

>>> part

AVR Part : ATMEGA128

Chip Erase delay : 9000 us

PAGEL : PD7

BS2 : PA0

RESET disposition : dedicated

RETRY pulse : SCK

serial program mode : yes

parallel program mode : yes

Memory Detail :

Page Polled

Memory Type Paged Size Size #Pages MinW MaxW ReadBack

----------- ------ ------ ---- ------ ----- ----- ---------

eeprom no 4096 8 0 9000 9000 0xff 0xff

flash yes 131072 256 512 4500 9000 0xff 0x00

lfuse no 1 0 0 0 0 0x00 0x00

hfuse no 1 0 0 0 0 0x00 0x00

efuse no 1 0 0 0 0 0x00 0x00

lock no 1 0 0 0 0 0x00 0x00

calibration no 1 0 0 0 0 0x00 0x00

signature no 3 0 0 0 0 0x00 0x00

avrdude> dump eeprom 0 16

>>> dump eeprom 0 16

0000 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff |................|

avrdude> write eeprom 0 1 2 3 4

>>> write eeprom 0 1 2 3 4

avrdude> dump eeprom 0 16

>>> dump eeprom 0 16

0000 01 02 03 04 ff ff ff ff ff ff ff ff ff ff ff ff |................|

avrdude> erase

>>> erase

avrdude: erasing chip

avrdude> dump eeprom 0 16

>>> dump eeprom 0 16

0000 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff |................|

avrdude>
 	

Program the fuse bits of an ATmega128 (disable M103 compatibility, enable high speed ex-
ternal crystal, enable brown-out detection, slowly rising power). Note since we are working
with fuse bits the -u (unsafe) option is specified, which allows you to modify the fuse bits.
First display the factory defaults, then reprogram:

Chapter 3: Terminal Mode Operation 22

� �
% avrdude -p m128 -u -c stk500 -t

avrdude: AVR device initialized and ready to accept instructions

avrdude: Device signature = 0x1e9702

avrdude: current erase-rewrite cycle count is 52 (if being tracked)

avrdude> d efuse

>>> d efuse

0000 fd |. |

avrdude> d hfuse

>>> d hfuse

0000 99 |. |

avrdude> d lfuse

>>> d lfuse

0000 e1 |. |

avrdude> w efuse 0 0xff

>>> w efuse 0 0xff

avrdude> w hfuse 0 0x89

>>> w hfuse 0 0x89

avrdude> w lfuse 0 0x2f

>>> w lfuse 0 0x2f

avrdude>
 	

Chapter 4: Configuration File 23

4 Configuration File

AVRDUDE reads a configuration file upon startup which describes all of the parts and
programmers that it knows about. The advantage of this is that if you have a chip that
is not currently supported by AVRDUDE, you can add it to the configuration file without
waiting for a new release of AVRDUDE. Likewise, if you have a parallel port programmer
that is not supported by AVRDUDE, chances are good that you can copy and existing
programmer definition, and with only a few changes, make your programmer work with
AVRDUDE.

AVRDUDE first looks for a system wide configuration file in a platform dependent
location. On Unix, this is usually /usr/local/etc/avrdude.conf, while on Windows it
is usally in the same location as the executable file. The name of this file can be changed
using the ‘-C’ command line option. After the system wide configuration file is parsed,
AVRDUDE looks for a per-user configuration file to augment or override the system wide
defaults. On Unix, the per-user file is .avrduderc within the user’s home directory. On
Windows, this file is the avrdude.rc file located in the same directory as the executable.

4.1 AVRDUDE Defaults

default_parallel = "default-parallel-device";
Assign the default parallel port device. Can be overridden using the ‘-P’ option.

default_serial = "default-serial-device";
Assign the default serial port device. Can be overridden using the ‘-P’ option.

default_programmer = "default-programmer-id";
Assign the default programmer id. Can be overridden using the ‘-c’ option.

default_bitclock = "default-bitclock";
Assign the default bitclock value. Can be overridden using the ‘-B’ option.

4.2 Programmer Definitions

The format of the programmer definition is as follows:
programmer

id = <id1> [, <id2> [, <id3>] ...] ; # <idN> are quoted strings

desc = <description> ; # quoted string

type = par | stk500 ; # programmer type

baudrate = <num> ; # baudrate for serial ports

vcc = <num1> [, <num2> ...] ; # pin number(s)

reset = <num> ; # pin number

sck = <num> ; # pin number

mosi = <num> ; # pin number

miso = <num> ; # pin number

errled = <num> ; # pin number

rdyled = <num> ; # pin number

pgmled = <num> ; # pin number

vfyled = <num> ; # pin number

;

Chapter 4: Configuration File 24

4.3 Part Definitions
part

id = <id> ; # quoted string

desc = <description> ; # quoted string

devicecode = <num> ; # numeric

chip_erase_delay = <num> ; # micro-seconds

pagel = <num> ; # pin name in hex, i.e., 0xD7

bs2 = <num> ; # pin name in hex, i.e., 0xA0

reset = dedicated | io;

retry_pulse = reset | sck;

pgm_enable = <instruction format> ;

chip_erase = <instruction format> ;

memory <memtype>

paged = <yes/no> ; # yes / no

size = <num> ; # bytes

page_size = <num> ; # bytes

num_pages = <num> ; # numeric

min_write_delay = <num> ; # micro-seconds

max_write_delay = <num> ; # micro-seconds

readback_p1 = <num> ; # byte value

readback_p2 = <num> ; # byte value

pwroff_after_write = <yes/no> ; # yes / no

read = <instruction format> ;

write = <instruction format> ;

read_lo = <instruction format> ;

read_hi = <instruction format> ;

write_lo = <instruction format> ;

write_hi = <instruction format> ;

loadpage_lo = <instruction format> ;

loadpage_hi = <instruction format> ;

writepage = <instruction format> ;

;

;

4.3.1 Instruction Format

Instruction formats are specified as a comma separated list of string values containing
information (bit specifiers) about each of the 32 bits of the instruction. Bit specifiers may
be one of the following formats:

1 The bit is always set on input as well as output

0 the bit is always clear on input as well as output

x the bit is ignored on input and output

a the bit is an address bit, the bit-number matches this bit specifier’s position
within the current instruction byte

aN the bit is the Nth address bit, bit-number = N, i.e., a12 is address bit 12 on
input, a0 is address bit 0.

i the bit is an input data bit

o the bit is an output data bit

Each instruction must be composed of 32 bit specifiers. The instruction specification
closely follows the instruction data provided in Atmel’s data sheets for their parts. For

Chapter 4: Configuration File 25

example, the EEPROM read and write instruction for an AT90S2313 AVR part could be
encoded as:

read = "1 0 1 0 0 0 0 0 x x x x x x x x",

"x a6 a5 a4 a3 a2 a1 a0 o o o o o o o o";

write = "1 1 0 0 0 0 0 0 x x x x x x x x",

"x a6 a5 a4 a3 a2 a1 a0 i i i i i i i i";

4.4 Other Notes

• The devicecode parameter is the device code used by the STK500 and is obtained
from the software section (avr061.zip) of Atmel’s AVR061 application note available
from http://www.atmel.com/atmel/acrobat/doc2525.pdf.

• Not all memory types will implement all instructions.
• AVR Fuse bits and Lock bits are implemented as a type of memory.
• Example memory types are: flash, eeprom, fuse, lfuse (low fuse), hfuse (high fuse),

efuse (extended fuse), signature, calibration, lock.
• The memory type specified on the AVRDUDE command line must match one of the

memory types defined for the specified chip.
• The pwroff_after_write flag causes AVRDUDE to attempt to power the device off

and back on after an unsuccessful write to the affected memory area if VCC programmer
pins are defined. If VCC pins are not defined for the programmer, a message indicating
that the device needs a power-cycle is printed out. This flag was added to work around
a problem with the at90s4433/2333’s; see the at90s4433 errata at:
http://www.atmel.com/atmel/acrobat/doc1280.pdf

• The boot loader from application note AVR109 (and thus also the AVR Butterfly) does
not support writing of fuse bits. Writing lock bits is supported, but is restricted to
the boot lock bits (BLBxx). These are restrictions imposed by the underlying SPM
instruction that is used to program the device from inside the boot loader. Note that
programming the boot lock bits can result in a “shoot-into-your-foot” scenario as the
only way to unprogram these bits is a chip erase, which will also erase the boot loader
code.
The boot loader implements the “chip erase” function by erasing the flash pages of the
application section.
Reading fuse and lock bits is fully supported.
Note that due to the unability to write the fuse bits, the safemode functionality does
not make sense for these boot loaders.

http://www.atmel.com/atmel/acrobat/doc2525.pdf
http://www.atmel.com/atmel/acrobat/doc1280.pdf

Chapter 5: Programmer Specific Information 26

5 Programmer Specific Information

5.1 Atmel STK600

The following devices are supported by the respective STK600 routing and socket card:
Routing card Socket card Devices

STK600-ATTINY10 ATtiny4 ATtiny5 ATtiny9 ATtiny10
STK600-RC008T-2 STK600-DIP ATtiny11 ATtiny12 ATtiny13 ATtiny13A

ATtiny25 ATtiny45 ATtiny85
STK600-RC008T-7 STK600-DIP ATtiny15
STK600-RC014T-42 STK600-SOIC ATtiny20
STK600-RC020T-1 STK600-DIP ATtiny2313 ATtiny2313A ATtiny4313

STK600-TinyX3U ATtiny43U
STK600-RC014T-12 STK600-DIP ATtiny24 ATtiny44 ATtiny84 ATtiny24A

ATtiny44A
STK600-RC020T-8 STK600-DIP ATtiny26 ATtiny261 ATtiny261A AT-

tiny461 ATtiny861 ATtiny861A
STK600-RC020T-43 STK600-SOIC ATtiny261 ATtiny261A ATtiny461 AT-

tiny461A ATtiny861 ATtiny861A
STK600-RC020T-23 STK600-SOIC ATtiny87 ATtiny167
STK600-RC028T-3 STK600-DIP ATtiny28
STK600-RC028M-6 STK600-DIP ATtiny48 ATtiny88 ATmega8 ATmega8A

ATmega48 ATmega88 ATmega168 AT-
mega48P ATmega48PA ATmega88P AT-
mega88PA ATmega168P ATmega168PA
ATmega328P

QT600-ATTINY88-
QT8

ATtiny88

STK600-RC040M-4 STK600-DIP ATmega8515 ATmega162
STK600-RC044M-30 STK600-TQFP44 ATmega8515 ATmega162
STK600-RC040M-5 STK600-DIP ATmega8535 ATmega16 ATmega16A AT-

mega32 ATmega32A ATmega164P AT-
mega164PA ATmega324P ATmega324PA
ATmega644 ATmega644P ATmega644PA
ATmega1284P

STK600-RC044M-31 STK600-TQFP44 ATmega8535 ATmega16 ATmega16A AT-
mega32 ATmega32A ATmega164P AT-
mega164PA ATmega324P ATmega324PA
ATmega644 ATmega644P ATmega644PA
ATmega1284P

QT600-ATMEGA324-
QM64

ATmega324PA

STK600-RC032M-29 STK600-TQFP32 ATmega8 ATmega8A ATmega48
ATmega88 ATmega168 ATmega48P
ATmega48PA ATmega88P ATmega88PA
ATmega168P ATmega168PA ATmega328P

Chapter 5: Programmer Specific Information 27

STK600-RC064M-9 STK600-TQFP64 ATmega64 ATmega64A ATmega128
ATmega128A ATmega1281 ATmega2561
AT90CAN32 AT90CAN64 AT90CAN128

STK600-RC064M-10 STK600-TQFP64 ATmega165 ATmega165P ATmega169 AT-
mega169P ATmega169PA ATmega325 AT-
mega325P ATmega329 ATmega329P AT-
mega645 ATmega649 ATmega649P

STK600-RC100M-11 STK600-TQFP100 ATmega640 ATmega1280 ATmega2560
STK600-
ATMEGA2560

ATmega2560

STK600-RC100M-18 STK600-TQFP100 ATmega3250 ATmega3250P ATmega3290
ATmega3290P ATmega6450 ATmega6490

STK600-RC032U-20 STK600-TQFP32 AT90USB82 AT90USB162 ATmega8U2
ATmega16U2 ATmega32U2

STK600-RC044U-25 STK600-TQFP44 ATmega16U4 ATmega32U4
STK600-RC064U-17 STK600-TQFP64 ATmega32U6 AT90USB646 AT90USB1286

AT90USB647 AT90USB1287
STK600-RCPWM-22 STK600-TQFP32 ATmega32C1 ATmega64C1 ATmega16M1

ATmega32M1 ATmega64M1
STK600-RCPWM-19 STK600-SOIC AT90PWM2 AT90PWM3 AT90PWM2B

AT90PWM3B AT90PWM216
AT90PWM316

STK600-RCPWM-26 STK600-SOIC AT90PWM81
STK600-RC044M-24 STK600-TSSOP44 ATmega16HVB ATmega32HVB

STK600-HVE2 ATmega64HVE
STK600-
ATMEGA128RFA1

ATmega128RFA1

STK600-RC100X-13 STK600-TQFP100 ATxmega64A1 ATxmega128A1
ATxmega128A1 revD ATxmega128A1U

STK600-
ATXMEGA1281A1

ATxmega128A1

QT600-
ATXMEGA128A1-
QT16

ATxmega128A1

STK600-RC064X-14 STK600-TQFP64 ATxmega64A3 ATxmega128A3
ATxmega256A3 ATxmega64D3
ATxmega128D3 ATxmega192D3
ATxmega256D3

STK600-RC064X-14 STK600-MLF64 ATxmega256A3B
STK600-RC044X-15 STK600-TQFP44 ATxmega32A4 ATxmega16A4

ATxmega16D4 ATxmega32D4
STK600-ATXMEGAT0 ATxmega32T0
STK600-uC3-144 AT32UC3A0512 AT32UC3A0256

AT32UC3A0128

Chapter 5: Programmer Specific Information 28

STK600-RCUC3A144-
33

STK600-TQFP144 AT32UC3A0512 AT32UC3A0256
AT32UC3A0128

STK600-RCuC3A100-
28

STK600-TQFP100 AT32UC3A1512 AT32UC3A1256
AT32UC3A1128

STK600-RCuC3B0-21 STK600-TQFP64-2 AT32UC3B0256 AT32UC3B0512RevC
AT32UC3B0512 AT32UC3B0128
AT32UC3B064 AT32UC3D1128

STK600-RCuC3B48-27 STK600-TQFP48 AT32UC3B1256 AT32UC3B164
STK600-RCUC3A144-
32

STK600-TQFP144 AT32UC3A3512 AT32UC3A3256
AT32UC3A3128 AT32UC3A364
AT32UC3A3256S AT32UC3A3128S
AT32UC3A364S

STK600-RCUC3C0-36 STK600-TQFP144 AT32UC3C0512 AT32UC3C0256
AT32UC3C0128 AT32UC3C064

STK600-RCUC3C1-38 STK600-TQFP100 AT32UC3C1512 AT32UC3C1256
AT32UC3C1128 AT32UC3C164

STK600-RCUC3C2-40 STK600-TQFP64-2 AT32UC3C2512 AT32UC3C2256
AT32UC3C2128 AT32UC3C264

STK600-RCUC3C0-37 STK600-TQFP144 AT32UC3C0512 AT32UC3C0256
AT32UC3C0128 AT32UC3C064

STK600-RCUC3C1-39 STK600-TQFP100 AT32UC3C1512 AT32UC3C1256
AT32UC3C1128 AT32UC3C164

STK600-RCUC3C2-41 STK600-TQFP64-2 AT32UC3C2512 AT32UC3C2256
AT32UC3C2128 AT32UC3C264

STK600-RCUC3L0-34 STK600-TQFP48 AT32UC3L064 AT32UC3L032
AT32UC3L016

QT600-AT32UC3L-
QM64

AT32UC3L064

Ensure the correct socket and routing card are mounted before powering on the STK600.
While the STK600 firmware ensures the socket and routing card mounted match each other
(using a table stored internally in nonvolatile memory), it cannot handle the case where
a wrong routing card is used, e. g. the routing card STK600-RC040M-5 (which is meant
for 40-pin DIP AVRs that have an ADC, with the power supply pins in the center of the
package) was used but an ATmega8515 inserted (which uses the “industry standard” pinout
with Vcc and GND at opposite corners).

Note that for devices that use the routing card STK600-RC008T-2, in order to use ISP
mode, the jumper for AREF0 must be removed as it would otherwise block one of the ISP
signals. High-voltage serial programming can be used even with that jumper installed.

The ISP system of the STK600 contains a detection against shortcuts and other wiring
errors. AVRDUDE initiates a connection check before trying to enter ISP programming
mode, and display the result if the target is not found ready to be ISP programmed.

High-voltage programming requires the target voltage to be set to at least 4.5 V in order
to work. This can be done using Terminal Mode, see Chapter 3 [Terminal Mode Operation],
page 19.

Appendix A: Platform Dependent Information 29

Appendix A Platform Dependent Information

A.1 Unix

A.1.1 Unix Installation

To build and install from the source tarball on Unix like systems:

$ gunzip -c avrdude-5.11.tar.gz | tar xf -
$ cd avrdude-5.11
$./configure
$ make
$ su root -c ’make install’

The default location of the install is into /usr/local so you will need to be sure that
/usr/local/bin is in your PATH environment variable.

If you do not have root access to your system, you can do the the following instead:

$ gunzip -c avrdude-5.11.tar.gz | tar xf -
$ cd avrdude-5.11
$./configure --prefix=$HOME/local
$ make
$ make install

A.1.1.1 FreeBSD Installation

AVRDUDE is installed via the FreeBSD Ports Tree as follows:

% su - root
cd /usr/ports/devel/avrdude
make install

If you wish to install from a pre-built package instead of the source, you can use the
following instead:

% su - root
pkg_add -r avrdude

Of course, you must be connected to the Internet for these methods to work, since that
is where the source as well as the pre-built package is obtained.

A.1.1.2 Linux Installation

On rpm based Linux systems (such as RedHat, SUSE, Mandrake, etc), you can build and
install the rpm binaries directly from the tarball:

$ su - root
rpmbuild -tb avrdude-5.11.tar.gz
rpm -Uvh /usr/src/redhat/RPMS/i386/avrdude-5.11-1.i386.rpm

Note that the path to the resulting rpm package, differs from system to system. The
above example is specific to RedHat.

Appendix A: Platform Dependent Information 30

A.1.2 Unix Configuration Files

When AVRDUDE is build using the default ‘--prefix’ configure option, the default con-
figuration file for a Unix system is located at /usr/local/etc/avrdude.conf. This can be
overridden by using the ‘-C’ command line option. Additionally, the user’s home directory
is searched for a file named .avrduderc, and if found, is used to augment the system default
configuration file.

A.1.2.1 FreeBSD Configuration Files

When AVRDUDE is installed using the FreeBSD ports system, the system configuration
file is always /usr/local/etc/avrdude.conf.

A.1.2.2 Linux Configuration Files

When AVRDUDE is installed using from an rpm package, the system configuration file will
be always be /etc/avrdude.conf.

A.1.3 Unix Port Names

The parallel and serial port device file names are system specific. The following table lists
the default names for a given system.
System Default Parallel Port Default Serial Port
FreeBSD /dev/ppi0 /dev/cuad0
Linux /dev/parport0 /dev/ttyS0
Solaris /dev/printers/0 /dev/term/a

On FreeBSD systems, AVRDUDE uses the ppi(4) interface for accessing the parallel
port and the sio(4) driver for serial port access.

On Linux systems, AVRDUDE uses the ppdev interface for accessing the parallel port
and the tty driver for serial port access.

On Solaris systems, AVRDUDE uses the ecpp(7D) driver for accessing the parallel port
and the asy(7D) driver for serial port access.

A.1.4 Unix Documentation

AVRDUDE installs a manual page as well as info, HTML and PDF documentation. The
manual page is installed in /usr/local/man/man1 area, while the HTML and PDF doc-
umentation is installed in /usr/local/share/doc/avrdude directory. The info manual is
installed in /usr/local/info/avrdude.info.

Note that these locations can be altered by various configure options such as ‘--prefix’.

A.2 Windows

A.2.1 Installation

A Windows executable of avrdude is included in WinAVR which can be found at
http://sourceforge.net/projects/winavr. WinAVR is a suite of executable, open
source software development tools for the AVR for the Windows platform.

There are two options to build avrdude from source under Windows. The first one is to
use Cygwin (http://www.cygwin.com/).

To build and install from the source tarball for Windows (using Cygwin):

http://sourceforge.net/projects/winavr
http://www.cygwin.com/

Appendix A: Platform Dependent Information 31

$ set PREFIX=<your install directory path>
$ export PREFIX
$ gunzip -c avrdude-5.11.tar.gz | tar xf -
$ cd avrdude-5.11
$./configure LDFLAGS="-static" --prefix=$PREFIX --datadir=$PREFIX
--sysconfdir=$PREFIX/bin --enable-versioned-doc=no
$ make
$ make install

Note that recent versions of Cygwin (starting with 1.7) removed the MinGW support
from the compiler that is needed in order to build a native Win32 API binary that
does not require to install the Cygwin library cygwin1.dll at run-time. Either try
using an older compiler version that still supports MinGW builds, or use MinGW
(http://www.mingw.org/) directly.

A.2.2 Configuration Files

A.2.2.1 Configuration file names

AVRDUDE on Windows looks for a system configuration file name of avrdude.conf and
looks for a user override configuration file of avrdude.rc.

A.2.2.2 How AVRDUDE finds the configuration files.

AVRDUDE on Windows has a different way of searching for the system and user configu-
ration files. Below is the search method for locating the configuration files:
1. The directory from which the application loaded.
2. The current directory.
3. The Windows system directory. On Windows NT, the name of this directory is

SYSTEM32.
4. Windows NT: The 16-bit Windows system directory. The name of this directory is

SYSTEM.
5. The Windows directory.
6. The directories that are listed in the PATH environment variable.

A.2.3 Port Names

A.2.3.1 Serial Ports

When you select a serial port (i.e. when using an STK500) use the Windows serial port
device names such as: com1, com2, etc.

A.2.3.2 Parallel Ports

AVRDUDE will accept 3 Windows parallel port names: lpt1, lpt2, or lpt3. Each of these
names corresponds to a fixed parallel port base address:

lpt1 0x378

lpt2 0x278

lpt3 0x3BC

http://www.mingw.org/

Appendix A: Platform Dependent Information 32

On your desktop PC, lpt1 will be the most common choice. If you are using a laptop,
you might have to use lpt3 instead of lpt1. Select the name of the port the corresponds to
the base address of the parallel port that you want.

If the parallel port can be accessed through a different address, this address can be
specified directly, using the common C language notation (i. e., hexadecimal values are
prefixed by 0x).

A.2.4 Using the parallel port

A.2.4.1 Windows NT/2K/XP

On Windows NT, 2000, and XP user applications cannot directly access the parallel port.
However, kernel mode drivers can access the parallel port. giveio.sys is a driver that can
allow user applications to set the state of the parallel port pins.

Before using AVRDUDE, the giveio.sys driver must be loaded. The accompanying
command-line program, loaddrv.exe, can do just that.

To make things even easier there are 3 batch files that are also included:
1. install giveio.bat Install and start the giveio driver.
2. status giveio.bat Check on the status of the giveio driver.
3. remove giveio.bat Stop and remove the giveio driver from memory.

These 3 batch files calls the loaddrv program with various options to install, start, stop,
and remove the driver.

When you first execute install giveio.bat, loaddrv.exe and giveio.sys must be in the
current directory. When install giveio.bat is executed it will copy giveio.sys from your
current directory to your Windows directory. It will then load the driver from the Windows
directory. This means that after the first time install giveio is executed, you should be able
to subsequently execute the batch file from any directory and have it successfully start the
driver.

Note that you must have administrator privilege to load the giveio driver.

A.2.4.2 Windows 95/98

On Windows 95 and 98 the giveio.sys driver is not needed.

A.2.5 Documentation

AVRDUDE installs a manual page as well as info, HTML and PDF documentation. The
manual page is installed in /usr/local/man/man1 area, while the HTML and PDF doc-
umentation is installed in /usr/local/share/doc/avrdude directory. The info manual is
installed in /usr/local/info/avrdude.info.

Note that these locations can be altered by various configure options such as ‘--prefix’
and ‘--datadir’.

A.2.6 Credits.

Thanks to:
• Dale Roberts for the giveio driver.
• Paula Tomlinson for the loaddrv sources.

Appendix A: Platform Dependent Information 33

• Chris Liechti <cliechti@gmx.net> for modifying loaddrv to be command line driven and
for writing the batch files.

Appendix B: Troubleshooting 34

Appendix B Troubleshooting

In general, please report any bugs encountered via
http://savannah.nongnu.org/bugs/?group=avrdude.
• Problem: I’m using a serial programmer under Windows and get the following error:

avrdude: serial_open(): can’t set attributes for device "com1",
Solution: This problem seems to appear with certain versions of Cygwin. Specifying
"/dev/com1" instead of "com1" should help.

• Problem: I’m using Linux and my AVR910 programmer is really slow.
Solution (short): setserial port low_latency

Solution (long): There are two problems here. First, the system may wait some time
before it passes data from the serial port to the program. Under Linux the following
command works around this (you may need root privileges for this).
setserial port low_latency

Secondly, the serial interface chip may delay the interrupt for some time. This be-
haviour can be changed by setting the FIFO-threshold to one. Under Linux this can
only be done by changing the kernel source in drivers/char/serial.c. Search the file
for UART_FCR_TRIGGER_8 and replace it with UART_FCR_TRIGGER_1. Note that overall
performance might suffer if there is high throughput on serial lines. Also note that you
are modifying the kernel at your own risk.

• Problem: I’m not using Linux and my AVR910 programmer is really slow.
Solutions: The reasons for this are the same as above. If you know how to work around
this on your OS, please let us know.

• Problem: Updating the flash ROM from terminal mode does not work with the JTAG
ICEs.
Solution: None at this time. Currently, the JTAG ICE code cannot write to the flash
ROM one byte at a time.

• Problem: Page-mode programming the EEPROM (using the -U option) does not erase
EEPROM cells before writing, and thus cannot overwrite any previous value != 0xff.
Solution: None. This is an inherent feature of the way JTAG EEPROM program-
ming works, and is documented that way in the Atmel AVR datasheets. In order to
successfully program the EEPROM that way, a prior chip erase (with the EESAVE
fuse unprogrammed) is required. This also applies to the STK500 and STK600 in
high-voltage programming mode.

• Problem: How do I turn off the DWEN fuse?
Solution: If the DWEN (debugWire enable) fuse is activated, the /RESET pin is not
functional anymore, so normal ISP communication cannot be established. There are
two options to deactivate that fuse again: high-voltage programming, or getting the
JTAG ICE mkII talk debugWire, and prepare the target AVR to accept normal ISP
communication again.
The first option requires a programmer that is capable of high-voltage programming
(either serial or parallel, depending on the AVR device), for example the STK500.
In high-voltage programming mode, the /RESET pin is activated initially using a

http://savannah.nongnu.org/bugs/?group=avrdude

Appendix B: Troubleshooting 35

12 V pulse (thus the name high voltage), so the target AVR can subsequently be
reprogrammed, and the DWEN fuse can be cleared. Typically, this operation cannot
be performed while the AVR is located in the target circuit though.
The second option requires a JTAG ICE mkII that can talk the debugWire protocol.
The ICE needs to be connected to the target using the JTAG-to-ISP adapter, so the
JTAG ICE mkII can be used as a debugWire initiator as well as an ISP programmer.
AVRDUDE will then be activated using the jtag2isp programmer type. The initial ISP
communication attempt will fail, but AVRDUDE then tries to initiate a debugWire
reset. When successful, this will leave the target AVR in a state where it can accept
standard ISP communication. The ICE is then signed off (which will make it signing
off from the USB as well), so AVRDUDE has to be called again afterwards. This time,
standard ISP communication can work, so the DWEN fuse can be cleared.
The pin mapping for the JTAG-to-ISP adapter is:
JTAG pin ISP pin
1 3
2 6
3 1
4 2
6 5
9 4

• Problem: Multiple USBasp or USBtinyISP programmers connected simultaneously are
not found.
Solution: The USBtinyISP code supports distinguishing multiple programmers based
on their bus:device connection tuple that describes their place in the USB hierarchy
on a specific host. This tuple can be added to the -P usb option, similar to adding a
serial number on other USB-based programmers.
The actual naming convention for the bus and device names is operating-system de-
pendant; AVRDUDE will print out what it found on the bus when running it with (at
least) one -v option. By specifying a string that cannot match any existing device (for
example, -P usb:xxx), the scan will list all possible candidate devices found on the bus.
Examples:

avrdude -c usbtiny -p atmega8 -P usb:003:025 (Linux)
avrdude -c usbtiny -p atmega8 -P usb:/dev/usb:/dev/ugen1.3 (FreeBSD 8+)
avrdude -c usbtiny -p atmega8 \
-P usb:bus-0:\\.\libusb0-0001--0x1781-0x0c9f (Windows)

• Problem: I cannot do . . . when the target is in debugWire mode.
Solution: debugWire mode imposes several limitations.
The debugWire protocol is Atmel’s proprietary one-wire (plus ground) protocol to
allow an in-circuit emulation of the smaller AVR devices, using the /RESET line.
DebugWire mode is initiated by activating the DWEN fuse, and then power-cycling
the target. While this mode is mainly intended for debugging/emulation, it also offers
limited programming capabilities. Effectively, the only memory areas that can be read
or programmed in this mode are flash ROM and EEPROM. It is also possible to read
out the signature. All other memory areas cannot be accessed. There is no chip erase
functionality in debugWire mode; instead, while reprogramming the flash ROM, each

Appendix B: Troubleshooting 36

flash ROM page is erased right before updating it. This is done transparently by the
JTAG ICE mkII (or AVR Dragon). The only way back from debugWire mode is to
initiate a special sequence of commands to the JTAG ICE mkII (or AVR Dragon), so
the debugWire mode will be temporarily disabled, and the target can be accessed using
normal ISP programming. This sequence is automatically initiated by using the JTAG
ICE mkII or AVR Dragon in ISP mode, when they detect that ISP mode cannot be
entered.

• Problem: I want to use my JTAG ICE mkII to program an Xmega device through PDI.
The documentation tells me to use the XMEGA PDI adapter for JTAGICE mkII that
is supposed to ship with the kit, yet I don’t have it.
Solution: Use the following pin mapping:
JTAGICE Target Squid cab- PDI
mkII probe pins le colors header
1 (TCK) Black
2 (GND) GND White 6
3 (TDO) Grey
4 (VTref) VTref Purple 2
5 (TMS) Blue
6 (nSRST) PDI CLK Green 5
7 (N.C.) Yellow
8 (nTRST) Orange
9 (TDI) PDI DATA Red 1
10 (GND) Brown

• Problem: I want to use my AVR Dragon to program an Xmega device through PDI.
Solution: Use the 6 pin ISP header on the Dragon and the following pin mapping:
Dragon Target
ISP Header pins
1 (MISO) PDI DATA
2 (VCC) VCC
3 (SCK)
4 (MOSI)
5 (RESET) PDI CLK /

RST
6 (GND) GND

• Problem: I want to use my AVRISP mkII to program an ATtiny4/5/9/10 device
through TPI. How to connect the pins?
Solution: Use the following pin mapping:
AVRISP Target ATtiny
connector pins pin #
1 (MISO) TPIDATA 1
2 (VTref) Vcc 5
3 (SCK) TPICLK 3
4 (MOSI)
5 (RESET) /RESET 6
6 (GND) GND 2

Appendix B: Troubleshooting 37

• Problem: I want to program an ATtiny4/5/9/10 device using a serial/parallel bitbang
programmer. How to connect the pins?
Solution: Since TPI has only 1 pin for bi-directional data transfer, both MISO and
MOSI pins should be connected to the TPIDATA pin on the ATtiny device. However,
a 1K resistor should be placed between the MOSI and TPIDATA. The MISO pin
connects to TPIDATA directly. The SCK pin is connected to TPICLK.
In addition, the Vcc, /RESET and GND pins should be connected to their respective
ports on the ATtiny device.

• Problem: How can I use a FTDI FT232R USB-to-Serial device for bitbang program-
ming?
Solution: When connecting the FT232 directly to the pins of the target Atmel device,
the polarity of the pins defined in the programmer definition should be inverted by pre-
fixing a tilde. For example, the dasa programmer would look like this when connected
via a FT232R device (notice the tildes in front of pins 7, 4, 3 and 8):

programmer
id = "dasa_ftdi";
desc = "serial port banging, reset=rts sck=dtr mosi=txd miso=cts";
type = serbb;
reset = ~7;
sck = ~4;
mosi = ~3;
miso = ~8;

;

Note that this uses the FT232 device as a normal serial port, not using the FTDI
drivers in the special bitbang mode.

• Problem: My ATtiny4/5/9/10 reads out fine, but any attempt to program it (through
TPI) fails. Instead, the memory retains the old contents.
Solution: Mind the limited programming supply voltage range of these devices.
In-circuit programming through TPI is only guaranteed by the datasheet at Vcc = 5
V.

• Problem: My ATxmega. . .A1/A2/A3 cannot be programmed through PDI with my
AVR Dragon. Programming through a JTAG ICE mkII works though, as does pro-
gramming through JTAG.
Solution: None by this time (2010 Q1).
It is said that the AVR Dragon can only program devices from the A4 Xmega sub-
family.

• Problem: when programming with an AVRISPmkII or STK600, AVRDUDE hangs
when programming files of a certain size (e.g. 246 bytes). Other (larger or smaller)
sizes work though.
Solution: This is a bug caused by an incorrect handling of zero-length packets (ZLPs)
in some versions of the libusb 0.1 API wrapper that ships with libusb 1.x in certain
Linux distributions. All Linux systems with kernel versions < 2.6.31 and libusb >=
1.0.0 < 1.0.3 are reported to be affected by this.
See also: http://www.libusb.org/ticket/6

http://www.libusb.org/ticket/6

	Introduction
	History and Credits

	Command Line Options
	Option Descriptions
	Programmers accepting extended parameters
	Example Command Line Invocations

	Terminal Mode Operation
	Terminal Mode Commands
	Terminal Mode Examples

	Configuration File
	AVRDUDE Defaults
	Programmer Definitions
	Part Definitions
	Instruction Format

	Other Notes

	Programmer Specific Information
	Atmel STK600

	Platform Dependent Information
	Unix
	Unix Installation
	FreeBSD Installation
	Linux Installation

	Unix Configuration Files
	FreeBSD Configuration Files
	Linux Configuration Files

	Unix Port Names
	Unix Documentation

	Windows
	Installation
	Configuration Files
	Configuration file names
	How AVRDUDE finds the configuration files.

	Port Names
	Serial Ports
	Parallel Ports

	Using the parallel port
	Windows NT/2K/XP
	Windows 95/98

	Documentation
	Credits.

	Troubleshooting

