GROFF_SANITIZE(7) Miscellaneous Information Manual GROFF_SANITIZE(7)

NAME

groff_sanitize — filter unwanted constructs out of groff data streams

DESCRIPTION
The groff_sanitize auxiliary macro package provides a collection of filters, all of which are accessed
through a common .sanitize macro call, for substitution, or removal of particular groff(7) constructs,
from copies of selected fragments of the document source input data stream. Such filtering of the input
data may be useful, for example, when creating a PDF document outline, or similar, derived from some
content within the document body, whence any specified formatting controls may not be appropriate for
inclusion within the outline specification.

USAGE
The groff_sanitize macros may be loaded using a command line option, as prescribed in compliance
with the conventional syntax for groff(1) and pdfroff(1) commands:
groff [—option ...] —m sanitize [-option ...] [file ...]
pdfroff [—option ...] —m sanitize [—option ...] [file ...]

However, these macros may be more commonly loaded from within document source, or, perhaps even
more commonly still, from within another dependent macro package, using a request of the form:

.mso sanitize.tmac

After the groff_sanitize macros have been loaded, the entire gamut of their associated filters may be
applied, to some specific text, by a macro call of the form:

.sanitize <varname> <text ...>

in which the <varname> argument is required; it must represent a valid groff(7) name for a string, in
which the filtered value of the <fext ...> argument is to be stored.

In practice, there is little to be gained by calling .sanitize directly from the top level of any document
source; more practical usage encapsulates a .sanitize macro call within another macro, (which may be
either user-defined, or provided by another macro package), such that the original text is used, in two or
more distinct contexts, with at least one context using the filtered text, while another uses the original
unfiltered form; such usage is illustrated in the EXAMPLES section of this manual page.

PRINCIPLE OF OPERATION

On entry to the sanitize macro, its first argument, which is designated as “<varname>”, and which
must represent a valid groff(7) identifier, is interpreted as the name of a string in which the resultant
sanitized text is to be returned to the calling macro; this string is defined, and initialized as an empty
(i.e. zero-length) string, and is also assigned an internal alias of sanitize:result. A further internally
named string, sanitize:residual, is also defined, and initialized with a value which is comprised of the
aggregate content of the second, and any additional arguments, (designated as “<fext ...>”); when
more than one argument is incorporated into the aggregate which forms “<fext ...>”), then, before the
content of each additional argument, a token for one word-space is introduced into sanitize:residual, to
separate the content of that argument from that of its predecessor.

Following this initialization, sanitize enters a cyclic processing phase, wherein one token is removed
from the beginning of sanitize:residual in each cycle, with additional cycles continuing until no further
tokens remain. The token which is removed, within each cycle, is examined to determine how it should
be processed in that particular cycle; the token-specific processing actions are:

* Any regular character token is simply appended to sanitize:result, and processing continues
with the next cycle.

A special token, which corresponds to one of groff(7)’s escape sequences with a single-token
representation, and for which an associated groff_sanitize filter, (see the FILTER ACTIONS
section), has been specified, will either be discarded, or it will be replaced by some designated
substitute text, which is appended to sanitize:result, before commencing the next cycle.

* Any instance of the groff(7) escape character token will initiate an intermediate look-ahead
processing cycle; this will examine subsequent tokens, within sanitize:residual, to identify a
particular groff(7) escape sequence, and any arguments which may be associated with it.
When any such escape sequence has been identified, and it is associated with a groff_sanitize
filter, all tokens which have been consumed by the look-ahead cycles will be removed from
sanitize:residual, and will either simply be discarded, or some designated substitute text will

groff-pdfmark 25.04 2025-04-28 1

https://manned.org/groff.7
https://manned.org/groff.1
https://download-mirror.savannah.nongnu.org/releases/groff-pdfmark/pdfroff.1.pdf
https://manned.org/groff.7
https://manned.org/groff.7
https://manned.org/groff.7
https://manned.org/groff.7
https://manned.org/groff.7

GROFF_SANITIZE(7) Miscellaneous Information Manual GROFF_SANITIZE(7)

be appended to sanitize:result, depending on which of the particular FILTER ACTIONS
have been specified, before proceeding to the next principal token analysis cycle.

When the preceding cyclic processing has exhausted all of the tokens from sanitize:residual, al/l of the
sanitize macro’s internally defined local identifiers, including sanitize:residual, and sanitize:result,
will be deleted, leaving the sanitized text, which had been accumulated in sanitize:result, in the string
named by the <varname> argument, for return to the caller.

RESERVED IDENTIFIERS
The groff_sanitize macro package reserves regions of both the groff(7) string and the numeric register
namespaces, in which all internal identifiers begin with the label “sanitize:”; with the exception of
those macros, strings, or numeric registers which are explicitly documented as “user definable”, or
“user modifiable”, in the FILTER ACTIONS section, users are strongly advised to avoid defining, or
modifying, any macro, string, or numeric register with a name which begins with this label.

FILTER ACTIONS

The collection of filters, which is predefined by the groff_sanitize package, comprises:

* sanitize:scan.reject <token-list> ...

This is a token elimination filter. Implemented as a groff(7) string, its value represents a se-
quence of optionally quoted <foken-list> specifications, each of which takes the form:

["1<opening-delimiter><reject-token .. .><closing-delimiter>["]

Within each such <token-list> specification, the <reject-token> part comprises a list of one or
more groff(7) entities, each of which yields a single input token when read in copy mode.
Each <reject-token> list must be enclosed within a pair of arbitrary delimiter tokens, the
<opening-delimiter> and the <closing-delimiter>, which must be represented by identically
the same input token; this must not appear anywhere within the enclosed <reject-token> list.

During sanitize macro processing, each token which is abstracted from sanitize:residual is
compared, in turn, with each token which appears in the aggregate collection of <token-list>
constituents, which comprise the value of sanitize:scan.reject, until either a matching token is
found, or all tokens in the aggregate <token-list> have been compared, and no matching token
has been found. If a matching token is found, nothing is added to sanitize:result, and the
sanitize macro moves on, to process the next available token, if any, in sanitize:residual.

By default, groff_sanitize defines sanitize:scan.reject with an aggregate <foken-list> which
comprises the trio of tokens, “\&”, “\%”, and “\ :”, as established by the specification:

.ds sanitize:scan.reject "'\ &\%\:"\"

This specification is user-modifiable, either by use of an alternative “.ds” request, to redefine
the collection of <token-list> specifications, (of which there is just the one in the default case),
in its entirety, or by use of an “.as” request, to append additional <foken-list> specifications to
it; in the latter case, each additional <foken-list> specification, which is individually defined,
must conform, to the

<opening-delimiter><reject-token . ..><closing-delimiter>

pattern, and must be separated from its predecessor by one or more white space tokens, within
the definition of the sanitize:scan.reject string.

When sanitize:scan.reject is defined to incorporate more than one <token-list> specification,
while the <opening-delimiter> and <closing-delimiter> within each must be represented by
the same token, it is not necessary to use the same delimiter token for every individual
<token-list> specification; it is permitted, and may be convenient, to employ a token which is
included within the <reject-token> list of one <token-list> specification, as the delimiter for
another, or analogously, to include the delimiter token of one <token-list> specification in the
<reject-token> list of another.

Subject to the restrictions that each must be represented by a single groff(7) input token, and
that the chosen token must not appear within any <reject-token> list for which it is specified as

a delimiter, the choice of delimiter tokens is entirely arbitrary. The ASCII apostrophe, “'”, is
usually a suitable choice. As an alternative, the ASCII double quote character, ‘" ’, may be

groff-pdfmark 25.04 2025-04-28 2

https://manned.org/groff.7
https://manned.org/groff.7
https://manned.org/groff.7
https://manned.org/groff.7

GROFF_SANITIZE(7) Miscellaneous Information Manual GROFF_SANITIZE(7)

considered, but this is a less convenient choice, for reasons which will be explained later, in
the CAVEATS AND BUGS section.

 sanitize:scan.subst <substitution-group> . ..

This is a token substitution filter. Like the sanitize:scan.reject filter, this is also implemented
as a groff(7) string; in this case its value represents a sequence of space separated, optionally
quoted token <substitution-group> specifications, each of which takes the form:

["1<start-delimiter><token . ..><mid-delimiter><substitute-text><end-delimiter>["]

Processing of this filter occurs after the sanitize:scan.reject filter, and then only if that filter
did not match the current input token.

The effect of this filter is fundamentally analogous to that of sanitize:scan.reject, insofar as it
processes each of its <substitution-group> specifications in turn, comparing the current input
token from sanitize:residual to each individual <foken> which has been specified between the
<start-delimiter> and the <mid-delimiter> tokens, in turn; if a token match is found, whereas
the sanitize:scan.reject filter terminates its processing without adding any further content to
sanitize:result, the sanitize:scan.subst filter appends the content which is specified within the
<substitute-text> field of the matching <substitution-group>, to sanitize:result, discards the
matching input token from sanitize:residual, and terminates its action, with no consideration
of any further <substitution-group> comparisons for the input token.

Analogously to the choice of <opening-delimiter> and <closing-delimiter> tokens, within the
definition of the sanitize:scan.reject filter, the <start-delimiter>, <mid-delimiter>, and
<end-delimiter> tokens, within each individual <substitution-group> within the definition of
the sanitize:scan.subst filter, must all be represented by the same token, but it is permitted to
choose different delimiter tokens, in distinct <substitution-group> specifications.

By default, groff_sanitize provides a definition of the sanitize:scan.subst filter, comprising
two initial <substitution-group> specifications, thus:

.ds sanitize:scan.subst "'\-'—' "'\ \~' ""\"

the effect of which is to request replacement of any instance of a “\-" input token with an
ASCII hyphen-minus token, and any instance of either a “\<SP>” input token, or a “\~" input
token, with an ASCII space (i.e. “<SP>”) token, in the resultant sanitized text.

Notice that, in both of these default <substitution-group> specifications, the ASCII apostrophe
is employed as the delimiter token. Also note that the second of these <substitution-group>
specifications, in its entirety, is enclosed within a pair of ASCII double quote tokens. This is
necessary, because the specification for this <substitution-group> contains white space tokens;
the rationale for this requirement is explained later, in the CAVEATS AND BUGS section.

As is the case for the sanitize:scan.reject filter, the sanitize:scan.subst filter may be modified
by the user, either by redefining the specification string in its entirety, or by appending desired
additional <substitution-group> specifications to the end of the existing definition. Note that,
when modifying the specification string, individual <substitution-group> specifications must
be separated by white space; within each <substitution-group>, all three delimiters must be
represented by identically the same token, and any <substitution-group>, in which white space
is included, must be enclosed, within the specification string, between a pair of ASCII double
quote character tokens.

 sanitize:esc-char.subst <substitution-group> ...

This is an analogue of the sanitize:scan.subst filter, except that, whereas the latter specifies
substitutions for escape sequences such as “\~”, and “\<SP>”, each of which is represented
by a single input token, the sanitize:esc-char.subst filter supports defined substitutions for any
syntactically similar, but semantically different escape sequence, such as “\0”, for which the
groff(7) representation comprises two separate input tokens.

The form of <substitution-group> specifications for the sanitize:esc-char.subst filter:
["1<start-delimiter><escape . ..><mid-delimiter><substitute-text><end-delimiter>["]

groff-pdfmark 25.04 2025-04-28 3

https://manned.org/groff.7
https://manned.org/groff.7

GROFF_SANITIZE(7) Miscellaneous Information Manual GROFF_SANITIZE(7)

may appear to be syntactically similar to that for the sanitize:scan.subst filter:
["]<start-delimiter><token . ..><mid-delimiter><substitute-text><end-delimiter>["]

However, the two differ semantically insofar as, whereas the <foken> list specification for the
sanitize:scan.subst filter is expected to comprise only entities which are each represented by a
single groff(7) input token, the corresponding <escape> list specification, which is expected
by the sanitize:esc-char.subst filter, should comprise one or more groff(7) escape sequences,
each of which is represented by exactly two input tokens, the first of which should be the
groff(7) escape character, while the second is any other input token which is representative of
any valid groff(7) escape sequence, which does not take an argument.

Apart from this semantic difference, in the expression of their respective <substitution-group>
specifications, the sanitize:esc-char.subst filter exhibits, fundamentally, the same behaviour as
the sanitize:scan.subst filter: when any escape sequence which is represented in an <escape>
list specification is encountered, within the input text, it is discarded, and its corresponding
<substitute-text> is appended to the resultant sanitized text, in its place.

The groff_sanitize default definition of sanitize:esc-char.subst is:
.ds sanitize:esc-char.subst ""'\0' '" "\,\/""\"

which results in replacement, within sanitized text, of the “\0” input escape sequence by a
simple ASCII space, and removal of both the “\,” and “\/” escape sequences, (effectively
achieved by replacing each by nothing).

Just as the sanitize:scan.reject and sanitize:scan.subst filters may be modified, or redefined,
to handle additional single-token escape sequences, the sanitize:esc-char.subst filter may be
modified, or redefined, to accommodate additional dual-token sequences; as before, when any
<substitution-group> specification includes white space, that specification must be enclosed in
ASCII double quotes, within the string definition, while all individual <substitution-group>
specifications must be separated by unquoted white space.

Notice that there is no direct analogue of the sanitize:scan.reject filter, for the removal of
dual-token escape sequences; however, an equivalent effect may be achieved by use of the
sanitize:esc-char.subst filter, as is illustrated within it default definition for the removal of the
“\,” and “\/” escape sequences, by definition of a <substitution-group> specification with
nothing in the <substitute-text> field.

* sanitize:esc—(?? <substitute-string>

This is a generic template for a special character substitution filter; it may be instantiated, as
required, by defining strings of the form:
.ds sanitize:esc—(?? "substitute-string\"

in which the “??” place-holder is replaced by any two-character special character name, as
documented in groff_char(7), to implement a substitution filter for the corresponding named
special character escape sequence, such that, when this escape sequence is encountered by the
sanitize macro, while processing its local sanitize:residual string, the value which is specified
as <substitute-string> will be appended to sanitize:result, in place of the escape sequence.

groff_sanitize defines four default instances of the sanitize:esc—(?? filter, namely:

.ds sanitize:esc—(hy "-\"

.als sanitize:esc—(mi sanitize:esc—(hy

.als sanitize:esc—(en sanitize:esc—(hy

.ds sanitize:esc—(em "——\"
which result in the substitution of a single ASCII hyphen-minus character, in sanitized text, in
place of each “\ (hy”, “\(mi”, or “\(en” input token, and substitution of a conjoined pair of
ASCII hyphen-minus characters, in place of each “\(em” input token.

It may be observed that, whereas any instance of a filter, which is derived from this template,
is always defined in a format which may seem to be indicative of troff’s traditional “\(??2”
representation of two-character special character escape sequences, the sanitize macro will
recognize groff(7)’s alternative “\[?2]” representation as being equivalent, and will process
it accordingly, and so, also append the assigned value, corresponding to <substitute-string> to
sanitize:result, in place of this alternative representation of the escape sequence.

groff-pdfmark 25.04 2025-04-28 4

https://manned.org/groff.7
https://manned.org/groff.7
https://manned.org/groff.7
https://manned.org/groff.7
https://manned.org/groff_char.7
https://manned.org/groff.7

GROFF_SANITIZE(7) Miscellaneous Information Manual GROFF_SANITIZE(7)

* sanitize:esc—generic
This is a generic template for an escape sequence elimination filter; it may be instantiated to
recognize groff(7) escape sequences in any of the three forms, “\?¢”, “\? (cc”, or “\?[...17,
in which the “?” placeholder represents any single-character function identifier for an escape
sequence which takes a single-character argument, “c”, a two-character argument, “cc”, or an
arbitrary length argument, “[...]”. It may be instantiated for any specific escape sequence,
with function identifier “?”, by defining an alias of the form:
.als sanitize:esc—? sanitize:esc—generic

which then has the effect of removing any instance of “\?”, together with its argument, in any
of the three supported formats, from sanitize:residual, while adding nothing to the sanitized
text which is to be returned through sanitize:result.

groff_sanitize defines rwo default instances of the sanitize:esc—generic filter, namely:

.als sanitize:esc—f sanitize:esc—generic

.als sanitize:esc—F sanitize:esc—generic
the combined effect of which prevents the propagation of any “\fc”, “\f(cc”, “\f[...]17,
“NFc”, “\F (cc”, or “\F[...]17, escape sequence into sanitized text; users may wish to extend
the effect of this filter, by defining additional aliases, modelled on this default pair, to suppress
propagation of other syntactically similar escape sequences.

¢ sanitize:esc—delimited

This is a complement for the “\ ?[...]” form of the sanitize:esc—generic filter; like the latter,
it eliminates a functional escape sequence, in which the function identifier token is followed
by an arbitrary length argument, from the resultant sanitized text; it differs from the latter in
the form in which that argument is expressed.

Whereas the sanitize:esc—generic filter expects an arbitrary length escape sequence argument

to be expressed in the form “[...]”, the sanitize:esc—delimited filter expects the argument to

the escape sequence to have the form:
<opening-delimiter><argument-text><closing-delimiter>

with the <opening-delimiter> and the <closing-delimiter> being represented by identically the
same arbitrarily chosen input token; it is assumed that this arbitrarily chosen delimiter token
does not appear anywhere within <argument-text>.

By default, groff_sanitize defines rwo instances of the sanitize:esc-delimited filter, namely:

.als sanitize:esc—s sanitize:esc—delimited
.als sanitize:esc—v sanitize:esc—delimited

Users may add additional filters, similar to these, to support any other escape sequences which
exhibit similar semantics to this default pair.

FILES

/usr/local/share/groff/site-tmac/sanitize.tmac
Implements the sanitize macro, and its supporting predefined groff_sanitize filters.

CAVEATS AND BUGS
Inclusion of any escape sequence, which lacks an associated groff_sanitize filter action assignment,
within text which is to be sanitized, may have unpredictable, and undesirable effects.

Passing input text, which includes any use of the “\s” escape sequence, in any of its supported forms
other than the “\ s<delimiter><expression><delimiter>" form, to the sanitize macro, will confuse the
sanitize:esc—s filter, producing unpredictable, and probably undesirable, results in the sanitized text.

If redefining either the sanitize:scan.reject, or the sanitize:scan.subst filter, their associated <token>
list specifications are interpreted strictly as sequences of single-token entities, each of which nominally
represents a special escape sequence, with no associated argument; inclusion of any token sequence,
which does not represent such an entity, will have unpredictable, and most likely undesirable results.

Conversely, the <escape> list specifications for the sanitize:esc-char.subst filter must comprise only
sequences of dual-token escape sequences, none of which accept any argument; inclusion of any tokens
which are not paired, with the escape character token as the first of the pair, will not be interpreted as
required, to deliver the intended behaviour of this filter.

groff-pdfmark 25.04 2025-04-28 5

https://manned.org/groff.7

GROFF_SANITIZE(7) Miscellaneous Information Manual GROFF_SANITIZE(7)

When redefining, or otherwise modifying, any of the sanitize:scan.reject, sanitize:scan.subst, or
sanitize:esc-char.subst filter specifications, it is important to understand how any ASCII double quote
tokens will be interpreted, within these specification strings. Effectively, each of these strings may be
passed, unquoted, within an argument list to an internal groff_sanitize macro, and thus, the argument
grouping effect of the ASCII double quote token will override any other intended effect. Consequently,
while it is certainly possible to work around the limitation, the choice of the ASCII double quote as a
<substitution-group> delimiter token may be less convenient than some alternative choice.

EXAMPLES
The sanitize macro is not, typically, called directly from any user’s groff(7) document source; it is,
however, often incorporated into higher level macros, such as the following example, which inserts text,
the specification of which may incorporate some arbitrary format controlling escape sequences, as a
heading, into a PDF document body, while placing a sanitized copy of the same text into an associated
PDF document outline:

.de H

.\" Usage: .H <level> <text>

.\"

.\" Save the heading level argument.
.\"

nr \\$0.level \\51

.\" Set each new heading one paragraph space below any
.\" text which precedes it.
.\"

sp \\n (PDu

.\" Reduce arguments to heading text, and copy this to the
.\" PDF document outline, at the specified nesting level.

AT
shift
sanitize \\$0.text \\$@
pdfhref O \\n[\\$0.level]l —- *[\\S$0.text]

.\" Write a formatted copy of the heading text to the body
.\" of the PDF document.
A"

ft B

nop \&\\$*

ft 1

.\" Clean up temporary local storage.
A

rr \\$0.level

rm \\$0.text

This heading macro might be invoked by a call such as:
.H 1 An Example PDF Heading with \F[Clsanitize\F[] Requirement

which, in the absence of the sanitize macro call within the H macro definition, would result in artefacts
of the embedded change of font family escape sequences infiltrating the corresponding PDF document
outline reference.

AUTHORS
The groff_sanitize macros are provided by the groff-pdfmark auxiliary package, which was written by
Keith Marshall <author@address.hidden>; this is maintained independently of GNU roff, at Keith’s
groff-pdfmark project hosting web-site <https://savannah.nongnu.org/projects/groff-pdfmark/>, whence
the latest version may always be obtained.

groff-pdfmark 25.04 2025-04-28 6

https://manned.org/groff.7
mailto:author@address.hidden
https://savannah.nongnu.org/projects/groff-pdfmark/

GROFF_SANITIZE(7) Miscellaneous Information Manual GROFF_SANITIZE(7)

SEE ALSO
groff(1), pdfroff(1), groff(7), groff_char(7)

More comprehensive documentation, on the use of the groff-pdfmark macro suite may be found, in
PDF format, in the reference guide “Portable Document Format Publishing with GNU Troff”, which
has also been written by Keith Marshall; the most recently published version of this guide may be read
online, by following the appropriate document reference link on the groff-pdfmark project hosting
web-site <https://savannah.nongnu.org/projects/groff-pdfmark/>, whence a copy may also be down-
loaded.

groff-pdfmark 25.04 2025-04-28 7

https://manned.org/groff.1
https://download-mirror.savannah.nongnu.org/releases/groff-pdfmark/pdfroff.1.pdf
https://manned.org/groff.7
https://manned.org/groff_char.7
https://savannah.nongnu.org/projects/groff-pdfmark/

	GROFF_SANITIZE(7)
	NAME
	DESCRIPTION
	USAGE
	PRINCIPLE OF OPERATION
	RESERVED IDENTIFIERS
	FILTER ACTIONS
	FILES
	CAVEATS AND BUGS
	EXAMPLES
	AUTHORS
	SEE ALSO

