
Portable Document Format

Publishing with GNU Troff

Keith Marshall
<author@address.hidden>

A G N U M A N U A L

First published 2005

Revised 2009 (twice), 2010, 2012, 2013, 2014, 2018, 2021 (4 times), 2022 (4 times), 2023, 2024, 2025

This edition published 2025

Copyright © 2005, 2009, 2010, 2012, 2013, 2014, 2018, 2021, 2022, 2023, 2024, 2025, Free Software Foundation, Inc.

Keith Marshall has asserted his moral right to be identified as the author of this work, in

accordance with the UK Copyright, Designs and Patents Act, 1988.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free

Documentation License, Version 1.3, (or any later version published by the Free Software Foundation),

with the Front-Cover Texts being “A GNU MANUAL”, with one Invariant Section, this being the content of

Appendix A, and with no Back-Cover Texts.

A copy of the license is included in Appendix A, entitled “GNU Free Documentation License”.

Table of Contents

1. Introduction . 5

2. Exploiting PDF Document Features . 6

2.1. The pdfmark Operator . 6

2.2. Selecting an Initial Document View . 6

2.3. Adding Document Identification Meta-Data . 7

2.4. Creating a Document Outline . 7

2.4.1. A Basic Document Outline . 7

2.4.2. Hierarchical Structure in a Document Outline . 8

2.4.3. Associating a Document View with an Outline Reference . 8

2.4.4. Folding the Outline to Conceal Less Significant Headings . 9

2.4.5. Outlines for Multipart Documents . 9

2.4.6. Delegation of the Outline Definition . 10

2.5. Adding Reference Marks and Links . 10

2.5.1. Optional Features of the pdfhref Macro . 11

2.5.2. Marking a Reference Destination . 13

2.5.2.1. Mapping a Destination for Cross Referencing . 13

2.5.2.2. Associating a Document View with a Reference Mark 14

2.5.3. Linking to a Marked Reference Destination . 14

2.5.3.1. References within a Single PDF Document . 14

2.5.3.2. References to Destinations in Other PDF Documents 15

2.5.4. Linking to Internet Resources . 16

2.5.5. Establishing a Format for References . 16

2.5.5.1. Using Colour to Demarcate Link Regions . 16

2.5.5.2. Specifying Reference Text Explicitly . 17

2.5.5.3. Using Automatically Formatted Reference Text . 18

2.5.5.4. Customizing Automatically Formatted Reference Text 19

2.5.6. Problematic Links . 22

2.5.6.1. Links with a Page Transition in the Active Region . 22

2.6. Annotating a PDF Document using Pop-Up Notes . 22

2.6.1. Controlling pdfnote Icon Placement . 23

2.6.2. Options for Manipulating pdfnote Annotation Attributes . 25

2.6.3. Controlling pdfnote Te xt Layout . 26

2.7. Synchronizing Output and pdfmark Contexts . 27

3. PDF Document Layout . 29

3.1. Using pdfmark Macros with the ms Macro Package . 29

3.1.1. Document Structuring Considerations when using ms Macros 29

3.1.2. Using ms Section Headings in PDF Documents . 30

3.1.2.1. The XH and XN Macros . 30

3.1.2.2. The XH−INIT and XN−INIT Macros . 30

3.1.2.3. The XH−UPDATE−TOC Macro . 30

3.1.2.4. The XH−REPLACEMENT and XN−REPLACEMENT Macros 32

3.1.3. Layout Adjustment to Support Duplex Printing . 32

-iv-

4. The PDF Publishing Process . 34

4.1. The pdfroff Program . 34

4.1.1. Principles of pdfroff Operation . 35

4.1.2. How pdfroff Resolves Cross References . 36

4.1.3. Using In-Document Hints to Control pdfroff Processing Options 37

4.1.4. Using a pdfroff Style-Sheet to Specify Document Front-Matter 38

4.1.5. How pdfroff Collates Tables of Contents . 40

4.1.6. How pdfroff Formats a Document Body . 42

4.1.7. How pdfroff Assembles a Finished Document . 43

4.2. Preparing Documents for On-Screen Reading versus Hard-Copy Printing 44

4.2.1. Establishing a Page Layout for On-Screen Reading . 44

4.2.2. Establishing a Page Layout for Hard-Copy Typesetting . 45

4.2.3. Ensuring that Content is Printed on a Particular Side of the Page 45

4.2.3.1. Recto-Verso Page Break Handling when Using the ms Macros 47

4.3. Considerations for Working with Document References . 52

4.3.1. Creating a Document Reference Dictionary . 52

4.3.2. Deploying a Document Reference Dictionary . 53

4.3.3. Using Custom Reference Formatting Keywords . 54

4.3.4. Avoiding Reference Name Conflicts . 54

4.4. Alternative Techniques for Generating Tables of Contents . 55

Appendix A. The GNU Free Documentation License . lvii

A.0. PREAMBLE . lvii

A.1. APPLICABILITY AND DEFINITIONS . lvii

A.2. VERBATIM COPYING . lviii

A.3. COPYING IN QUANTITY . lviii

A.4. MODIFICATIONS . lix

A.5. COMBINING DOCUMENTS . lx

A.6. COLLECTIONS OF DOCUMENTS . lx

A.7. AGGREGATION WITH INDEPENDENT WORKS . lx

A.8. TRANSLATION . lx

A.9. TERMINATION . lx

A.10. FUTURE REVISIONS OF THIS LICENSE . lxi

A.11. RELICENSING . lxi

ADDENDUM: How to use this License for your documents . lxi

1. Introduction
It might appear that it is a fairly simple matter to produce documents in Adobe® “Portable Document Format”,

commonly known as PDF, using GNU Troff (groff) as the document formatter. Indeed, groff’s default output

format is the native Adobe® PostScript® format, which PDF producers such as Adobe® Acrobat® Distiller,® or

GhostScript, expect as their input format. Thus, the PDF production process would seem to entail simply formatting the

document source with groff, to produce a PostScript® version of the document, which can subsequently be processed

by Acrobat® Distiller® or GhostScript, to generate the final PDF document.

For many PDF production requirements, the production cycle described above may be sufficient. However, this is a

limited PDF production method, in which the resultant PDF document represents no more than an on screen image of

the printed form of the document, if groff’s PostScript® output were printed directly.

The Portable Document Format provides a number of features, which significantly enhance the experience of reading a

document on screen, but which are of little or no value to a document which is merely printed. It is possible to exploit

these PDF features, which are described in the Adobe® “pdfmark Reference Manual”, with some refinement of the

simple PDF production method, provided appropriate “feature implementing” instructions can be embedded into

groff’s PostScript® rendering of the document. This, of course, implies that the original document source, which

groff will process to generate the PostScript® description of the document, must include appropriate markup to

exploit the desired PDF features. It is this preparation of the groff document source to exploit a number of these

features, which provides the principal focus of this document.

The markup techniques to be described have been utilized in the production of the PDF version of this document itself.

This has been formatted using groff’s ms macro package; thus, usage examples may be found in the document source

file, pdfmark.ms, to which copious comments have been added, to help identify appropriate markup examples for

implementing PDF features, such as:–

• Selecting a default document view, which defines how the document will appear when opened in the reader

application; for example, when this document is opened in Acrobat® Reader, it should display the top of the

cover sheet, in the document view pane, while a document outline should appear to the left, in the

“Bookmarks” pane.

• Adding document identification “meta-data”, which can be accessed, in Acrobat® Reader, by inspecting the

“File / Document Properties / Summary”.

• Creating a document outline, which will be displayed in the “Bookmarks” pane of Acrobat® Reader, such that

readers may quickly navigate to any section of the document, simply by clicking on the associated heading in

the outline view.

• Embedding active links in the body of the document, such that readers may quickly navigate to related

material at another location within the same document, or in another PDF document, or even to a related

Internet resource, specified by its URI.

• Adding annotations, in the form of “sticky notes”, at strategic points within the PDF document.

All of the techniques described have been tested on both GNU/Linux, and on Microsoft® Windows™2000 operating

platforms, using groff 1.19.1,1 in association with AFPL GhostScript 8.14.2 Other tools employed, which

should be readily available on any Unix™ or GNU/Linux system, are sed, awk and make, together with an

appropriate text editor, for creating and marking up the groff input files. These additional utilities are not provided,

as standard, on the Microsoft® Windows™ platform, but several third party implementations are available. Some worth

considering include the MKS® Toolkit,3 Cygwin,4 or MSYS.5 This list is by no means exhaustive, and should in no way

be construed as an endorsement of any of these packages, nor to imply that other similar packages, which may be

available, are in any way inferior to them.

1. Later versions should, and some earlier versions may, be equally suitable. See http://www.gnu.org/software/groff for information

and availability of the latest version.

2. Again, other versions may be suitable. See http://ghostscript.com for information and availability.

3. A commercial offering; see http://mkssoftware.com/products/tk/default.asp for information.

4. A free but comprehensive POSIX emulation environment and Unix™ toolkit for 32-bit Microsoft® Windows™ platforms; see

http://cygwin.com for information and download.

5. Another free, but minimal suite of common Unix™ tools for 32-bit Microsoft® Windows™, available for download from

https://mingw.osdn.io; it does include those tools listed above, and is the package which was actually used when performing the

Windows™2000 platform tests referred to in the text.

https://www.adobe.com/go/acrobatsdk_pdfmark
http://www.gnu.org/software/groff
http://ghostscript.com
http://mkssoftware.com/products/tk/default.asp
http://cygwin.com
https://mingw.osdn.io

-6-

2. Exploiting PDF Document Features
To establish a consistent framework for adding PDF features, a groff macro package, named pdfmark.tmac, has

been provided. Thus, to incorporate PDF features in a document, the appropriate macro calls, as described below, may

be placed in the groff document source, which should then be processed with a groff command of the form6

groff [-Tps|-Tpdf] [-m name] -m pdfmark [-options ...] file ...

It may be noted that the pdfmark macros have no dependencies on, and no known conflicts with, any other groff
macro package; thus, users are free to use any other macro package, of their choice, to format their documents, while

also using the pdfmark macros to add PDF features.

2.1. The pdfmark Operator

All PDF features are implemented by embedding instances of the pdfmark operator, as described in the Adobe®

“pdfmark Reference Manual”, into groff’s PostScript® output stream. To facilitate the use of this operator, the

pdfmark macro package defines the primitive pdfmark macro; it simply emits its argument list, as arguments to a

pdfmark operator, in the PostScript® output stream.

To illustrate the use of the pdfmark macro, the following is a much simplified example of how a bookmark may be

added to a PDF document outline

.pdfmark \
/Count 2 \
/Title (An Example of a Bookmark with Two Children) \
/View [/FitH \n[PDFPAGE.Y]] \
/OUT

In general, users should rarely need to use the pdfmark macro directly. In particular, the above example is too simple

for general use; it will create a bookmark, but it does not address the issues of setting the proper value for the /Count
key, nor of computing the PDFPAGE.Y value used in the /View key. The pdfmark macro package includes a more

robust mechanism for creating bookmarks, (see section 2.4, “Creating a Document Outline”), which addresses these

issues automatically. Nev ertheless, the pdfmark macro may be useful to users wishing to implement more advanced

PDF features, than those currently supported directly by the pdfmark macro package.

2.2. Selecting an Initial Document View

By default, when a PDF document is opened, the first page will be displayed, at the default magnification set for the

reader, and outline and thumbnail views will be hidden. When using a PDF reader, such as Acrobat® Reader, which

supports the /DOCVIEW class of the pdfmark operator, these default initial view settings may be overridden, using the

pdfview macro. For example

.pdfview /PageMode /UseOutlines

will cause Acrobat® Reader to open the document outline view, to the left of the normal page view, while

.pdfview /PageMode /UseThumbs

will open the thumbnail view instead.

Note that the two /PageMode examples, above, are mutually exclusive — it is not possible to have both outline and

thumbnail views open simultaneously. Howev er, it is permitted to add /Page and /View keys, to force the document

to open at a page other than the first, or to change the magnification at which the document is initially displayed; see the

“pdfmark Reference Manual” for more information.

It should be noted that the view controlling meta-data, defined by the pdfview macro, is not written immediately to

the PostScript® output stream, but is stored in an internal meta-data “cache”, (simply implemented as a groff
diversion). This “cached“ meta-data must be written out later, by inv oking the pdfsync macro, (see section 2.7,

“Synchronizing Output and pdfmark Contexts”).

6. Note that, if any -Tdev option is specified, it should be either -T ps, or -T pdf; any other explicit choice is unlikely to be

compatible with -m pdfmark, and will have an unpredictable (possibly erroneous) effect on the output. If no -Tdev option is

specified, (in which case -T ps is implicitly assumed), or if -T ps is explicitly specified, then the output will be produced in

PostScript® format, and will require conversion to PDF, (e.g. by using GhostScript tools); explicit specification of -T pdf will

result in direct output in PDF format, thus obviating the need for conversion.

https://www.adobe.com/go/acrobatsdk_pdfmark
https://www.adobe.com/go/acrobatsdk_pdfmark

-7-

2.3. Adding Document Identification Meta-Data

In addition to the /DOCVIEW class of meta-data described above, (see section 2.2, “Selecting an Initial Document

View”), we may also wish to include document identification meta-data, which belongs to the PDF /DOCINFO class.

To do this, we use the pdfinfo macro. As an example of how it is used, the identification meta-data attached to this

document was specified using a macro sequence similar to:–

.pdfinfo /Title PDF Document Publishing with GNU Troff

.pdfinfo /Author Keith Marshall

.pdfinfo /Subject How to Exploit PDF Features with GNU Troff

.pdfinfo /Keywords groff troff PDF pdfmark

Notice that the pdfinfo macro is repeated, once for each /DOCINFO record to be placed in the document. In each

case, the first argument is the name of the applicable /DOCINFO key, which must be named with an initial solidus

character; all additional arguments are collected together, to define the value to be associated with the specified key.

As is the case with the pdfview macro, (see section 2.2, “Selecting an Initial Document View”), the /DOCINFO
records specified with the pdfinfo macro are not immediately written to the PostScript® output stream; they are

stored in the same meta-data cache as /DOCVIEW specifications, until this cache is explicitly flushed, by invoking the

pdfsync macro, (see section 2.7, “Synchronizing Output and pdfmark Contexts”).

2.4. Creating a Document Outline

A PDF document outline comprises a table of references, to “bookmarked” locations within the document. When the

document is viewed in an “outline aware” PDF document reader, such as Adobe® Acrobat® Reader, this table of

“bookmarks” may be displayed in a document outline pane, or “Bookmarks” pane, to the left of the main document

view. Individual references in the outline view may then be selected, by clicking with the mouse, to jump directly to the

associated marked location in the document view.

The document outline may be considered as a collection of “hypertext” references to “bookmarked” locations within the

document. The pdfmark macro package provides a single generalized macro, pdfhref, for creating and linking to

“hypertext” reference marks. This macro will be described more comprehensively in a later section, (see section 2.5,

“Adding Reference Marks and Links”); the description here is restricted to its use for defining document outline entries.

2.4.1. A Basic Document Outline

In its most basic form, the document outline comprises a structured list of headings, each associated with a marked

location, or “bookmark”, in the document text, and a specification for how that marked location should be displayed,

when this bookmark is selected.

To create a PDF bookmark, the pdfhref macro is used, at the point in the document where the bookmark is to be

placed, in the form

.pdfhref O <level> descriptive text ...

in which the reference class “O” stipulates that this is an outline reference.

Alternatively, for those users who may prefer to think of a document outline simply as a collection of bookmarks, the

pdfbookmark macro is also provided — indeed, pdfhref invokes it, when processing the “O” reference class

operator. It may be invoked directly, in the form

.pdfbookmark <level> descriptive text ...

Irrespective of which of the above macro forms is employed, the <level> argument is required. It is a numeric

argument, defining the nesting level of the “bookmark” in the outline hierarchy, with one being the topmost level. Its

function may be considered analogous to the heading level of the document’s section headings, for example, as

specified with the NH macro, if using the ms macros to format the document.

All further arguments, following the <level> argument, are collected together, to specify the heading text which will

appear in the document’s outline view. Thus, the outline entry for this section of this document, which has a level three

heading, might be specified as

.pdfhref O 3 2.4.1. A Basic Document Outline

or, in the alternative form using the pdfbookmark macro, as

.pdfbookmark 3 2.4.1. A Basic Document Outline

-8-

2.4.2. Hierarchical Structure in a Document Outline

When a document outline is created, using the pdfhref macro as described in section 2.4.1, and any entry is added at

a nesting level greater than one, then a hierarchical structure is automatically defined for the outline. However, as was

noted in the simplified example in section 2.1, the data required by the pdfmark operator to create the outline entry

may not be fully defined, when the outline reference is defined in the groff document source. Specifically, when the

outline entry is created, its /Count key must be assigned a value equal to the number of its subordinate entries, at the

next inner level of the outline hierarchy; typically however, these subordinate entries will be defined later in the

document source, and the appropriate /Count value will be unknown, when defining the parent entry.

To resolve this paradox, the pdfhref macro creates the outline entry in two distinct phases — a destination marker is

placed in the PostScript® output stream immediately, when the outline reference is defined, but the actual outline entry

is stored in an internal “outline cache”, until its subordinate hierarchy has been fully defined; it can then be inserted in

the output stream, with its /Count value correctly assigned. Effectively, to ensure integrity of the document outline

structure, this means that each top level outline entry, and all of its subordinates, are retained in the cache, until the next

top level entry is defined.

One potential problem, which arises from the use of the “outline cache”, is that, at the end of any document formatting

run, the last top level outline entry, and any subordinates defined after it, will remain in the cache, and will not be

automatically written to the output stream. To avoid this problem, the user should follow the guidelines given in

section 2.7, to synchronize the output state with the cache state, (see section 2.7, “Synchronizing Output and pdfmark
Contexts”), at the end of the groff formatting run.

2.4.3. Associating a Document View with an Outline Reference

Each “bookmark” entry, in a PDF document outline, is associated with a specific document view. When the reader

selects any outline entry, the document view changes to display the document context associated with that entry.

The document view specification, to be associated with any document outline entry, is established at the time when the

outline entry is created. However, rather than requiring that each individual use of the pdhref macro, to create an

outline entry, should include its own view specification, the actual specification assigned to each entry is derived from a

generalized specification defined in the string PDFBOOKMARK.VIEW, together with the setting of the numeric register

PDFHREF.VIEW.LEADING, which determine the effective view specification as follows:–

PDFBOOKMARK.VIEW

Establishes the magnification at which the document will be viewed, at the location of the “bookmark”; by

default, it is defined by

.ds PDFBOOKMARK.VIEW /FitH \\n[PDFPAGE.Y] u

which displays the associated document view, with the “bookmark” location positioned at the top of the

display window, and with the magnification set to fit the page width to the width of the window.

PDFHREF.VIEW.LEADING

Specifies additional spacing, to be placed between the top of the display window and the actual location of

the “bookmark” on the displayed page view. By default, it is set as

.nr PDFHREF.VIEW.LEADING 5.0p

Note that PDFHREF.VIEW.LEADING does not represent true “leading”, in the typographical sense, since

any preceding text, set in the specified display space, will be visible at the top of the document viewing

window, when the reference is selected.

Also note that the specification of PDFHREF.VIEW.LEADING is shared by all reference views defined by

the pdfhref macro; whereas PDFBOOKMARK.VIEW is applied exclusively to outline references, there is

no independent PDFBOOKMARK.VIEW.LEADING specification.

If desired, the view specification may be changed, by redefining the string PDFBOOKMARK.VIEW, and possibly also

the numeric register PDFHREF.VIEW.LEADING. Any alternative definition for PDFBOOKMARK.VIEW must be

specified in terms of valid view specification parameters, as described in the Adobe® “pdfmark Reference Manual”.

Note the use of the register PDFPAGE.Y, in the default definition of PDFBOOKMARK.VIEW above. This register is

computed by pdfhref, when creating an outline entry; it specifies the vertical position of the “bookmark”, in basic

groff units, relative to the bottom edge of the document page on which it is defined, and is followed, in the

PDFBOOKMARK.VIEW definition, by the grops “u” operator, to convert it to PostScript® units on output. It may be

used in any redefined specification for PDFBOOKMARK.VIEW, (or in the analogous definition of PDFHREF.VIEW,

https://www.adobe.com/go/acrobatsdk_pdfmark

-9-

described in section 2.5.2.2, “Associating a Document View with a Reference Mark”), but not in any other context,

since its value is undefined outside the scope of the pdfhref macro.

Since PDFPAGE.Y is computed relative to the bottom of the PDF output page, it is important to ensure that the page

length specified to troff correctly matches the size of the logical PDF page. This is most effectively ensured, by

providing identical page size specifications to groff, grops and to the PostScript® to PDF converter employed, and

avoiding any page length changes within the document source.

Also note that PDFPAGE.Y is the only automatically computed “bookmark” location parameter; if the user redefines

PDFBOOKMARK.VIEW, and the modified view specification requires any other positional parameters, then the user

must ensure that these are computed before invoking the pdfhref macro.

2.4.4. Folding the Outline to Conceal Less Significant Headings

When a document incorporates many subheadings, at deeply nested levels, it may be desirable to “fold” the outline such

that only the major heading levels are initially visible, yet making the inferior subheadings accessible, by allowing the

reader to expand the view of any heading branch on demand.

The pdfmark macros support this capability, through the setting of the PDFOUTLINE.FOLDLEVEL register. This

register should be set to the number of heading levels which it is desired to show in expanded form, in the initial

document outline display; all subheadings at deeper levels will still be added to the outline, but will not become visible

until the outline branch containing them is expanded. For example, the setting used in this document:

.\" Initialize the outline view to show only three heading levels,

.\" with additional subordinate level headings folded.

.\"

.nr PDFOUTLINE.FOLDLEVEL 3

results in only the first three levels of headings being displayed in the document outline, until the reader chooses to

expand the view, and so reveal the lower level headings in any outline branch.

The initial default setting of PDFOUTLINE.FOLDLEVEL, if the document author does not choose to change it, is

10,000. This is orders of magnitude greater than the maximum heading level which is likely to be used in any

document; thus the default behaviour will be to show document outlines fully expanded, to display all headings defined,

at all levels within each document.

The setting of PDFOUTLINE.FOLDLEVEL may be changed at any time; however, the effect of each such change may

be difficult to predict, since it is applied not only to outline entries which are defined after the setting is changed, but

also to any entries which remain in the outline cache, at this time. Therefore, it is recommended that

PDFOUTLINE.FOLDLEVEL should be set once, at the start of each document; if it is deemed necessary to change it at

any other time, the outline cache should be flushed, (see section 2.7, “Synchronizing Output and pdfmark Contexts”),

immediately before the change, which should immediately precede a level one heading.

2.4.5. Outlines for Multipart Documents

When a document outline is created, using the pdfhref macro, each reference mark is automatically assigned a name,

composed of a fixed stem followed by a serially generated numeric qualifier. This ensures that, for each single part

document, every outline reference has a uniquely named destination.

As the overall size of the PDF document increases, it may become convenient to divide it into smaller, individually

formatted PostScript® components, which are then assembled, in the appropriate order, to create a composite PDF

document. While this strategy may simplify the overall process of creating and editing larger documents, it does

introduce a problem in creating an overall document outline, since each individual PostScript® component will be

assigned duplicated sequences of “bookmark” names, with each name ultimately referring to multiple locations in the

composite document. To avoid such reference naming conflicts, the pdfhref macro allows the user to specify a “tag”,

which is appended to the automatically generated “bookmark” name; this may be used as a discriminating mark, to

distinguish otherwise similarly named destinations, in different sections of the composite document.

To create a “tagged” document outline, the syntax for invocation of the pdfhref macro is modified, by the inclusion

of an optional “tag” specification, before the nesting level argument, i.e.

.pdfhref O [-T <tag>] <level> descriptive text ...

The optional <tag> argument may be composed of any characters of the user’s choice; however, its initial character

must not be any decimal digit, and ideally it should be kept short — one or two characters at most.

-10-

By employing a different tag in each section, the user can ensure that “bookmark” names remain unique, throughout all

the sections of a composite document. For example, when using the spdf.tmac macro package, which adds

pdfmark capabilities to the standard ms package, (see section 3.1, “Using pdfmark Macros with the ms Macro

Package”), the table of contents is collected into a separate PostScript® section from the main body of the document. In

the “body” section, the document outline is “untagged”, but in the “Table of Contents” section, a modified version of the

TC macro adds an outline entry for the start of the “Table of Contents”, invoking the pdfhref macro as

.pdfhref O -T T 1 *[TOC]

to tag the associated outline destination name with the single character suffix, “T”. Alternatively, as in the case of the

basic outline, (see section 2.4.1, “A Basic Document Outline”), this may equally well be specified as

.pdfbookmark -T T 1 *[TOC]

2.4.6. Delegation of the Outline Definition

Since the most common use of a document outline is to provide a quick method of navigating through a document,

using active “hypertext” links to chapter and section headings, it may be convenient to delegate the responsibility of

creating the outline to a higher level macro, which is itself used to define and format the section headings. This

approach has been adopted in the spdf.tmac package, to be described later, (see section 3.1, “Using pdfmark
Macros with the ms Macro Package”).

When such an approach is adopted, the user will rarely, if ever, inv oke the pdfhref macro directly, to create a

document outline. For example, the structure and content of the outline for this document has been exclusively defined,

using a combination of the NH macro, from the ms package, to establish the structure, and the XN macro from

spdf.tmac, to define the content. In this case, the responsibility for invoking the pdfhref macro, to create the

document outline, is delegated to the XN macro.

2.5. Adding Reference Marks and Links

Section 2.4 has shown how the pdfhref macro may be used to create a PDF document outline. While this is

undoubtedly a powerful capability, it is by no means the only trick in the repertoire of this versatile macro.

The macro name, pdfhref, which is a contraction of “PDF HyperText Reference”, indicates that the general purpose

of this macro is to define any type of dynamic reference mark, within a PDF document. Its generalized usage syntax

takes the form

.pdfhref <class> [-options ...] [--] [descriptive text ...]

where <class> represents a required single character argument, which defines the specific reference operation to be

performed, and may be selected from:–

O Add an entry to the document outline. This operation has been described earlier, (see section 2.4, “Creating

a Document Outline”).

M Place a “named destination” reference mark at the current output position, in the current PDF document, (see

section 2.5.2, “Marking a Reference Destination”).

D Specify the content of a PDF document reference dictionary entry; typically, such entries are generated

automatically, by transformation of the intermediate output resulting from the use of pdfhref “M”, with the

“-X” modifier, (see section 4.3.1, “Creating a Document Reference Dictionary”); however, it is also possible

to specify such entries manually, (see section 2.5.5.2, “Specifying Reference Text Explicitly”).

L Insert an active link to a named destination, (see section 2.5.3, “Linking to a Marked Reference

Destination”), at the current output position in the current PDF document, such that when the reader clicks

on the link text, the document view changes to show the location of the named destination.

W Insert an active link to a “web” resource, (see section 2.5.4, “Linking to Internet Resources”), at the current

output position in the current PDF document. This is effectively the same as using the “L” operator to

establish a link to a named destination in another PDF document, (see section 2.5.3.2, “References to

Destinations in Other PDF Documents”), except that in this case, the destination is specified by a “uniform

resource identifier”, or URI; this may represent any Internet or local resource which can be specified in this

manner.

F Specify a user defined macro, to be called by pdfhref, when formatting the text in the active region of a

link, (see section 2.5.5, “Establishing a Format for References”).

-11-

K Define one or more location keywords, and associated format-string names, which should be interpreted by

the pdfhref reference text formatting routine, (see section 2.5.5.4, “Customizing Automatically Formatted

Reference Text”).

Z Define the absolute position on the physical PDF output page, where the “hot-spot” associated with an active

link is to be placed. Invoked in pairs, marking the starting and ending PDF page co-ordinates for each link

“hot-spot”, this operator is rarely, if ever, specified directly by the user; rather, appropriate pdfhref “Z”

specifications are inserted automatically into the document reference map during the PDF document

formatting process, (see section 4.3.1, “Creating a Document Reference Dictionary”).

I Initialize support for pdfhref features. The current pdfhref implementation provides only one such

feature which requires initialization — a helper macro which must be attached to a user supplied page trap

handler, in order to support mapping of reference “hot-spots” which extend through a page transition; (see

section 2.5.6.1, “Links with a Page Transition in the Active Region”).

2.5.1. Optional Features of the pdfhref Macro

The behaviour of a number of the pdfhref macro operations can be modified, by including “option specifiers” after

the operation specifying argument, but before any other arguments normally associated with the operation. In all cases,

an option is specified by an “option flag”, comprising an initial hyphen, followed by one or two option identifying

characters. Additionally, some options require exactly one option argument; for these options, the argument must be

specified, and it must be separated from the preceding option flag by one or more spaces, (tabs must not be used). It

may be noted that this paradigm for specifying options is reminiscent of most Unix™ shells; however, in the case of the

pdfhref macro, omission of the space separating an option flag from its argument is never permitted.

A list of all general purpose options supported by the pdfhref macro is given below. Note that not all options are

supported for all pdfhref operations; the operations affected by each option are noted in the list. For most operations,

if an unsupported option is specified, it will be silently ignored; however, this behaviour should not be relied upon.

The general purpose options, supported by the pdfhref macro, are:–

-N <name>
Allows the <name> associated with a PDF reference destination to be defined independently from the

following text, which describes the reference. This option affects only the “M” operation of the pdfhref
macro, (see section 2.5.2, “Marking a Reference Destination”).

-E Also used exclusively with the “M” operator, the -E option causes any specified descriptive text

arguments, (see section 2.5.2, “Marking a Reference Destination”), to be copied, or echoed, in the body text

of the document, at the point where the reference mark is defined; (without the -E option, such

descriptive text will appear only at points where links to the reference mark are placed, and where

the standard reference display format, (see section 2.5.5, “Establishing a Format for References”), is used).

-D <dest>
Specifies the URI, or the destination name associated with a PDF active link, independently of the

following text, which describes the link and demarcates the link “hot-spot”. This option affects the

behaviour of the pdfhref macro’s “L” and “W” operations.

When used with the “L” operator, the <dest> argument must specify a PDF “named destination”, as

defined using pdfhref with the “M” operator.

When used with the “W” operator, <dest> must specify a link destination in the form of a “uniform

resource identifier”, or URI, (see section 2.5.4, “Linking to Internet Resources”).

-F <file>
When used with the “L” pdfhref operator, <file> specifies an external PDF file in which the named

destination for the link reference is defined. This option must be specified with the “L” operator, to create a

link to a destination in a different PDF document; when the “L” operator is used without this option, the

link destination is assumed to be defined within the same document.

-P <"prefix-text">
Specifies <"prefix-text"> to be attached to the start of the text describing an active PDF document

link, with no intervening space, but without itself being included in the active area of the link “hot-spot”; it

is effective with the “L” and “W” pdfhref operators.

-12-

Typically, this option would be used to insert punctuation before the link “hot-spot”. Thus, there is little

reason for the inclusion of spaces in <"prefix-text">; howev er, if such space is required, then the

enclosing double quotes must be specified, as indicated.

-A <"affixed-text">
Specifies <"affixed-text"> to be attached to the end of the text describing an active PDF document

link, with no intervening space, but without itself being included in the active area of the link “hot-spot”; it

is effective with the “L” and “W” pdfhref operators.

Typically, this option would be used to insert punctuation after the link “hot-spot”. Thus, there is little

reason for the inclusion of spaces in <"affixed-text">; howev er, if such space is required, then the

enclosing double quotes must be specified, as indicated.

-T <tag>
When specified with the “O” operator, <tag> is appended to the “bookmark” name assigned to the

generated outline entry. This option is required, to distinguish between the series of “bookmark” names

generated in individual passes of the groff formatter, when the final PDF document is to be assembled

from a number of separately formatted components; (see section 2.4.5, “Outlines for Multipart

Documents”).

-X This pdfhref option is used with either the “M” operator, or with the “L” operator.

When used with the “M” operator, (see section 2.5.2, “Marking a Reference Destination”), it ensures that a

cross reference record for the marked destination will be included in the document reference map, (see

section 2.5.2.1, “Mapping a Destination for Cross Referencing”).

When used with the “L” operator, (see section 2.5.3, “Linking to a Marked Reference Destination”), it

causes the reference to be displayed in the standard cross reference format, (see section 2.5.5, “Establishing

a Format for References”), but substituting the descriptive text specified in the “pdfhref L”

argument list, for the description specified in the document reference map.

-- Marks the end of the option specifiers. This may be used with all pdfhref operations which accept

options, to prevent pdfhref from interpreting any following arguments as option specifiers, even if they

would otherwise be interpreted as such. It is also useful when the argument list to pdfhref contains

special characters — any special character, which is not valid in a groff macro name, will cause a parsing

error, if pdfhref attempts to match it as a possible option flag; using the “--” flag prevents this, so

suppressing the groff warning message, which would otherwise ensue.

Using this flag after all sequences of macro options is recommended, even when it is not strictly necessary,

if only for the entirely cosmetic benefit of visually separating the main argument list from the sequence of

preceding options.

In addition to the pdfhref options listed above, a supplementary set of two character options are defined. These

supplementary options, listed below, are intended for use with the “L” operator, in conjunction with the -F <file>
option, to specify alternate file names, in formats compatible with the file naming conventions of alternate operating

systems; they will be silently ignored, if used in any other context.

The supported alternate file name options, which are ignored if the -F <file> option is not specified, are:–

-DF <dos-file>
Specifies the name of the file in which a link destination is defined, using the file naming semantics of the

MS-DOS® operating system. When the PDF document is read on a machine where the operating system

uses the MS-DOS® file system, then <dos-file> is used as the name of the file containing the reference

destination, overriding the <file> argument specified with the -F option.

-MF <mac-file>
Specifies the name of the file in which a link destination is defined, using the file naming semantics of the

Apple® Macintosh® operating system. When the PDF document is read on a machine where the

operating system uses the Macintosh® file system, then <mac-file> is used as the name of the file

containing the reference destination, overriding the <file> argument specified with the -F option.

-UF <unix-file>
Specifies the name of the file in which a link destination is defined, using the file naming semantics of the

Unix™ operating system. When the PDF document is read on a machine where the operating system

uses POSIX file naming semantics, then <unix-file> is used as the name of the file containing the

reference destination, overriding the <file> argument specified with the -F option.

-13-

-WF <win-file>
Specifies the name of the file in which a link destination is defined, using the file naming semantics of the

MS-Windows® 32-bit operating system. When the PDF document is read on a machine where the

operating system uses any of the MS-Windows® file systems, with long file name support, then

<win-file> is used as the name of the file containing the reference destination, overriding the <file>
argument specified with the -F option.

2.5.2. Marking a Reference Destination

The pdfhref macro may be used to create active links to any Internet resource, specified by its URI, or to any “named

destination”, either within the same document, or in another PDF document. Although the PDF specification allows

link destinations to be defined in terms of a page number, and an associated view specification, this style of reference is

not currently supported by the pdfhref macro, because it is not possible to adequately bind the specification for the

destination with the intended reference context.

References to Internet resources are interpreted in accordance with the W3C standard for defining a URI; hence the only

prerequisite, for creating a link to any Internet resource, is that the URI be properly specified, when declaring the

reference; (see section 2.5.4, “Linking to Internet Resources”). In the case of references to “named destinations” in

PDF documents, however, it is necessary to provide a mechanism for creating such “named destinations”. This may be

accomplished, by invoking the pdfhref macro in the form

.pdfhref M [-N <name>] [-X] [-E] [descriptive text ...]

This creates a “named destination” reference mark, with its name specified by <name>, or, if the -N option is not

specified, by the first word of descriptive text; (note that this imposes the restriction that, if the -N option is

omitted, then at least one word of descriptive text must be specified). Additionally, a reference view will be

automatically defined, and associated with the reference mark, (see section 2.5.2.2, “Associating a Document View with

a Reference Mark”), and, if the -X option is specified, and no document cross reference map has been imported, (see

section 4.3.2, “Deploying a Document Reference Dictionary”), then a cross reference mapping record, (see section

2.5.2.1, “Mapping a Destination for Cross Referencing”), will be written to the stdout stream; this may be captured,

and subsequently used to generate a cross reference map for the document, (see section 4.3.1, “Creating a Document

Reference Dictionary”).

When a “named destination” reference mark is created, using the pdfhref macro’s “M” operator, there is normally no

visible effect in the formatted document; any descriptive text which is specified will simply be stored in the

cross reference map, for use when a link to the reference mark is created. This default behaviour may be changed, by

specifying the -E option, which causes any specified descriptive text to be “echoed” in the document text, at the

point where the reference mark is placed, in addition to its inclusion in the cross reference map.

2.5.2.1. Mapping a Destination for Cross Referencing

Effective cross referencing of any document formatted by groff requires multiple pass formatting. Details of how this

multiple pass formatting may be accomplished, when working with the pdfmark macros, will be discussed later, (see

section 4.3, “Considerations for Working with Document References”); at this stage, the discussion will be restricted to

the initial preparation, which is required at the time when the cross reference destinations are defined.

The first stage, in the process of cross referencing a document, is the generation of a cross reference map. Again, the

details of how the cross reference map is generated will be discussed in section 4.3; howev er, it is important to

recognize that what content is included in the cross reference map is established when the reference destination is

defined — it is derived from the reference data exported on the stderr stream by the pdfhref macro, when it is

invoked with the “M” operator, and is controlled by whatever definition of the string PDFHREF.INFO is in effect, when

the pdfhref macro is invoked.

The initial default setting of PDFHREF.INFO is

.ds PDFHREF.INFO page \\n% \\$*

which ensures that the cross reference map will contain at least a page number reference, supplemented by any

descriptive text which is specified for the reference mark, as defined by the pdfhref macro, with its “M”

operator; this may be redefined by the user, to export additional cross reference information, or to modify the default

format for cross reference links, (see section 2.5.5, “Establishing a Format for References”).

-14-

2.5.2.2. Associating a Document View with a Reference Mark

In the same manner as each document outline reference, defined by the pdfhref macro with the “O” operator, (see

section 2.4, “Creating a Document Outline”), has a specific document view associated with it, each reference destination

marked by pdfhref with the “M” operator, requires an associated document view specification.

The mechanism whereby a document view is associated with a reference mark is entirely analogous to that employed

for outline references, (see section 2.4.3, “Associating a Document View with an Outline Reference”), except that the

PDFHREF.VIEW string specification is used, in place of the PDFBOOKMARK.VIEW specification. Thus, the reference

view is defined in terms of:–

PDFHREF.VIEW

A string, establishing the position of the reference mark within the viewing window, and the magnification at

which the document will be viewed, at the location of the marked reference destination; by default, it is

defined by

.ds PDFHREF.VIEW /FitH \\n[PDFPAGE.Y] u

which displays the reference destination at the top of the viewing window, with the magnification set to fit

the page width to the width of the window.

PDFHREF.VIEW.LEADING

A numeric register, specifying additional spacing, to be placed between the top of the display window and

the actual position at which the location of the reference destination appears within the window. This

register is shared with the view specification for outline references, and thus has the same default initial

setting,

.nr PDFHREF.VIEW.LEADING 5.0p

as in the case of outline reference views.

Again, notice that PDFHREF.VIEW.LEADING does not represent true typographic “leading”, since any

preceding text, set in the specified display space, will be visible at the top of the viewing window, when the

reference is selected.

Just as the view associated with outline references may be changed, by redefining PDFBOOKMARK.VIEW, so the view

associated with marked reference destinations may be changed, by redefining PDFHREF.VIEW, and, if desired,

PDFHREF.VIEW.LEADING; such changes will become effective for all reference destinations marked after these

definitions are changed. (Notice that, since the specification of PDFHREF.VIEW.LEADING is shared by both outline

reference views and marked reference views, if it is changed, then the views for both reference types are changed

accordingly).

It may again be noted, that the PDFPAGE.Y register is used in the definition of PDFHREF.VIEW, just as it is in the

definition of PDFBOOKMARK.VIEW; all comments in section 2.4.3 relating to its use, and indeed to page position

computations in general, apply equally to marked reference views and to outline reference views.

2.5.3. Linking to a Marked Reference Destination

Any named destination, such as those marked by the pdfhref macro, using it’s “M” operator, may be referred to from

any point in any PDF document, using an active link; such active links are created by again using the pdfhref macro,

but in this case, with the “L” operator. This operator provides support for two distinct cases, depending on whether the

reference destination is defined in the same document as the link, (see section 2.5.3.1, “References within a Single PDF

Document”), or is defined as a named destination in a different PDF document, (see section 2.5.3.2, “References to

Destinations in Other PDF Documents”).

2.5.3.1. References within a Single PDF Document

The general syntactic form for invoking the pdfhref macro, when creating a link to a named destination within the

same PDF document is

.pdfhref L [-D <dest-name>] [-P <prefix-text>] [-A <affixed-text>] \
[-X] [--] [descriptive text ...]

where <dest-name> specifies the name of the link destination, as specified using the pdfhref “M” operation; (it

may be defined either earlier in the document, to create a backward reference, or later, to create a forward reference).

If any descriptive text arguments are specified, then they will be inserted into the groff output stream, to

define the text appearing in the “hot-spot” region of the link; this will be printed in the link colour specified by the

string, PDFHREF.TEXT.COLOUR, which is described in section 2.5.5.1, “Using Colour to Demarcate Link Regions”.

If the -X option is also specified, then the descriptive text will be augmented, by prefacing it with page and

-15-

section number indicators, in accordance with the reference formatting rules which are in effect, (see section 2.5.5,

“Establishing a Format for References”); such indicators will be included within the active link region, and will also be

printed in the link colour.

Note that either the -D <dest-name> option, or the descriptive text arguments, but not both, may be omitted.

If the -D <dest-name> option is omitted, then the first word of descriptive text, i.e. all text up to but not

including the first space, will be interpreted as the <dest-name> for the link; this text will also appear in the running

text of the document, within the active region of the link. Alternatively, if the -D <dest-name> option is specified,

and descriptive text is not, then the running text which defines the reference, and its active region, will be

derived from the reference description which is specified when the named destination is marked, (see section 2.5.2,

“Marking a Reference Destination”), and will be formatted according to the reference formatting rules which are in

effect, when the reference is placed, (see section 2.5.5, “Establishing a Format for References”); in this case, it is not

necessary to specify the -X option to activate automatic formatting of the reference — it is implied, by the omission of

all descriptive text arguments.

The -P <prefix-text> and -A <affixed-text> options may be used to specify additional text which will be

placed before and after the linked text respectively, with no intervening space. Such prefixed and affixed text will be

printed in the normal text colour, and will not be included within the active region of the link. This feature is mostly

useful for creating parenthetical references, or for placing punctuation adjacent to, but not included within, the text

which defines the active region of the link.

The operation of the pdfhref macro, when used with its “L” operator to place a link to a named PDF destination, may

best be illustrated by an example. However, since the appearance of the link will be influenced by factors established

when the named destination is marked, (see section 2.5.2, “Marking a Reference Destination”), and also by the

formatting rules in effect when the link is placed, the presentation of a suitable example will be deferred, until the

formatting mechanism has been explained, (see section 2.5.5, “Establishing a Format for References”).

2.5.3.2. References to Destinations in Other PDF Documents

The pdfhref macro’s “L” operator is not restricted to creating reference links within a single PDF document. When

the link destination is defined in a different document, then the syntactic form for invoking pdfhref is modified, by

the addition of options to specify the name and location of the PDF file in which the destination is defined. Thus, the

extended pdfhref syntactic form becomes

.pdfhref L -F <file> [-D <dest-name>] \
[-DF <dos-file>] [-MF <mac-file>] [-UF <unix-file>] \
[-WF <win-file>] [-P <prefix-text>] [-A <affixed-text>] \
[-X] [--] [descriptive text ...]

where the -F <file> option serves two purposes: it both indicates to the pdfhref macro that the specified reference

destination is defined in an external PDF file, and it also specifies the normal path name, which is to be used to locate

this file, when a user selects the reference.

In addition to the -F <file> option, which must be specified when referring to a destination in an external PDF file,

the -DF <dos-file>, -MF <mac-file>, -UF <unix-file> and -WF <win-file> options may be used to

specify the location of the file containing the reference destination, in a variety of operating system dependent formats.

These options assign their arguments to the /DosFile, /MacFile, /UnixFile and /WinFile keys of the

generated pdfmark respectively; thus when any of these options are specified, in addition to the -F <file> option,

and the document is read on the appropriate operating systems, then the path names specified by <dos-file>,

<mac-file>, <unix-file> and <win-file> will be searched, instead of the path name specified by <file>,

for each of the MS-DOS®, Apple® Macintosh®, Unix™ and MS-Windows® operating systems, respectively; see

the “pdfmark Reference Manual”, for further details.

Other than the use of these additional options, which specify that the reference destination is in an external PDF file, the

behaviour of the pdfhref “L” operator, with the -F <file> option, remains identical to its behaviour without this

option, (see section 2.5.3.1, “References within a Single PDF Document”), with respect to the interpretation of other

options, the handling of the descriptive text arguments, and the formatting of the displayed reference.

Once again, since the appearance of the reference is determined by factors specified in the document reference map, and

also by the formatting rules in effect when the reference is placed, the presentation of an example of the placing of a

reference to an external destination will be deferred, until the formatting mechanism has been explained, (see section

2.5.5, “Establishing a Format for References”).

https://www.adobe.com/go/acrobatsdk_pdfmark

-16-

2.5.4. Linking to Internet Resources

In addition to supporting the creation of cross references to named destinations in PDF documents, the pdfhref
macro also has the capability to create active links to Internet resources, or indeed to any resource which may be

specified by a Uniform Resource Identifier, (which is usually abbreviated to the acronym “URI”, and sometimes also

referred to as a Uniform Resource Locator, or “URL”).

Since the mechanism for creating a link to a URI differs somewhat from that for creating PDF references, the pdfhref
macro is invoked with the “W” (for “web-link”) operator, rather than the “L” operator; nevertheless, the invocation

syntax is similar, having the form

.pdfhref W [-D <URI>] [-P <prefix-text>] [-A <affixed-text>] \
[--] descriptive text ...

where the optional -D <URI> modifier specifies the address for the target Internet resource, in any appropriate Uniform

Resource Identifier format, while the descriptive text argument specifies the text which is to appear in the

“hot-spot” region, and the -P <prefix-text> and -A <affixed-text> options have the same effect as in the

case of local document links, (see section 2.5.3.1, “References within a Single PDF Document”).

Notice that it is not mandatory to include the -D <URI> in the link specification; if it is specified, then it is not

necessary for the URI to appear, in the running text of the document — the descriptive text argument exactly

defines the text which will appear within the “hot-spot” region, and this need not include the URI. However, if the

-D <URI> specification is omitted, then the descriptive text argument must be an exact representation of the

URI, which will, therefore, appear as the entire content of the “hot-spot”. For example, we could introduce a reference

to the groff web site, in which the actual URI is concealed, by using mark up such as:–

For example, we could introduce a reference to
.pdfhref W -D http://www.gnu.org/software/groff -A , the groff web site
in which the actual URI is concealed,

Alternatively, to refer the reader to the groff web site, making it obvious that the appropriate URI is

http://www.gnu.org/software/groff, the requisite mark up might be:–

to refer the reader to the groff web site,
making it obvious that the appropriate URI is
.pdfhref W -A , http://www.gnu.org/software/groff
the requisite mark up might be:\(en

2.5.5. Establishing a Format for References

There are two principal aspects to be addressed, when defining the format to be used when displaying references.

Firstly, it is desirable to provide a visual cue, to indicate that the text describing the reference is imbued with special

properties — it is dynamically linked to the reference destination — and secondly, the textual content should describe

where the link leads, and ideally, it should also describe the content of the reference destination.

The visual cue, that a text region defines a dynamically linked reference, is most commonly provided by printing the

text within the active region in a distinctive colour. This technique will be employed automatically by the pdfhref
macro — see section 2.5.5.1, “Using Colour to Demarcate Link Regions” — unless the user specifically chooses to

adopt, and implement, some alternative strategy.

2.5.5.1. Using Colour to Demarcate Link Regions

Typically, when a PDF document contains active references to other locations, either within the same document, or even

in other documents, or on the World Wide Web, it is usually desirable to make the regions where these active links are

placed stand out from the surrounding text.

The mechanism, which is apparently advocated by Adobe,® as the default for indicating any active link region, is to

draw a coloured border around the region. This is a most unfortunate default choice: not only does it look hideously

ugly, but it also seems very distracting to the reader! Consequently, while it does support this mechanism for link

visualization, groff’s pdfmark macros disable it, by default; it is controlled by a pair of strings:–

PDFHREF.BORDER

This string comprises a space-separated triplet of numeric values, optionally followed by a further

space-separated pdfmark array, (see the Adobe® “pdfmark Reference Manual” for details), which

together specify the link border style, in terms of its elliptical corner horizontal radius, vertical radius, line

http://www.gnu.org/software/groff
http://www.gnu.org/software/groff
https://www.adobe.com/go/acrobatsdk_pdfmark

-17-

thickness, and line style mark-to-space ratio array; by default, it is defined as

.ds PDFHREF.BORDER 0 0 0

which has the effect of specifying an invisible link border, (a solid zero-width line, with rectanuglar corners),

thus appearing to disable the use of borders for link visualization. This differs from the Adobe® default,

which represents a solid (visible) line, one pixel in width, and with rectangular corners; this Adobe® default

may be reinstated, by explicitly defining

.ds PDFHREF.BORDER 0 0 1

before specifying any link references, which it is desired to have rendered in the Adobe® style.

PDFHREF.COLOUR

This string7 comprises a triplet of space-separated decimal numeric values, each in the range 0.0.. 1.0;

together, they represent, in RGB colour space, the colour in which link borders should be rendered, in the

ev ent that the PDFHREF.BORDER property is specified to make them visible; by default, it is defined as

.ds PDFHREF.COLOUR 0.35 0.00 0.60

which represents a deep lilac colour.

While the foregoing discussion of PDFHREF.BORDER, and PDFHREF.COLOUR, may seem sufficient for those users

who are willing to adopt the Adobe® convention of drawing a border to offset links from the surrounding text, it is not

the preferred way of doing so, in groff’s pdfmark implementation. Given the perceived ugliness of the Adobe®

convention, the preferred technique for visualizing links is to disable the rendition of the link border, (by making it

invisible, as groff’s pdfmark implementation does by default), and to simply print the text, within the link

“hot-spot” region, in a colour which contrasts with that of the surrounding text.

It may noted that, whereas the preceding PDFHREF.BORDER, and PDFHREF.COLOUR properties exert their influence

within the Adobe® pdfmark infrastructure, that infrastructure provides no mechanism for control of the text colour

within a link “hot-spot” region; however, the desired effect may be readily achieved, simply by assignment of groff
colour properties. In groff’s pdfmark implementation, the text colour, for use within link “hot-spot” regions, is

established by a further string assignment, viz.:–

PDFHREF.TEXT.COLOUR

Specifies the text colour, for rendition of PDF reference links.

Unlike PDFHREF.COLOUR, this string8 must be assigned a value which represents a groff colour name,

rather than an RGB colour-space triplet; by default, it is assigned the name of a custom colour, which is

internally derived from, and is thus chromatically identical to the deep lilac colour,9 as represented by the

default RGB colour-space triplet which is specified as the default value of PDFHREF.COLOUR.

2.5.5.2. Specifying Reference Text Explicitly

Although the use of colour within, and/or borders around, pdfhref link “hot-spot” regions may be considered to be a

necessary visual indication of the location of such “hot-spots”, for users of on-screen” PDF readers, such visual

indicators alone are insufficient to convey any necessary information regarding the context to which the link refers;

neither do they offer any particular benefit to readers of documents in printed hard-copy formats. To address these

limitations, it is necessary to specify appropriate text within each “hot-spot” region, to identify the link context.

Depending on the type of contextual information, which it is desired to include within any link “hot-spot” region,

groff’s pdfmark macro suite provides a variety of mechanisms to specify it; the simplest of these is to simply

specify the desired text explicitly, at the point of insertion of the reference. For example, given that the “use of colour”

7. For authors who may prefer American English spelling, PDFHREF.COLOR will be recognized as an alias for PDFHREF.COLOUR.

However, should the alias be broken, (by deletion of either of the alternative names, prior to redefining it), it is the World English

spelling, PDFHREF.COLOUR, which will be honoured when rendering links.

8. Just as PDFHREF.COLOR is defined as an alias for PDFHREF.COLOUR, the alias PDFHREF.TEXT.COLOR may be used as an

American English spelling alternative to World English PDFHREF.TEXT.COLOUR; once again, should the alias be broken, the

World English spelling will prevail.

9. This deep lilac colour has been chosen on the basis that it will provide sufficient contrast, when the PDF document is viewed on a

colour display screen, to be discernable by readers with normal colour perception, but not so much contrast as to be distracting;

conversely, if the document is printed on a monochrome hard-copy device, since links cannot then be clicked, it is anticipated that

the contrast will be barely discernable, if at all.

-18-

reference, in the initial paragraph of this section, points to a destination named by mark up similar to:–

.pfdhref M -X -N set-colour -- ...

the reference text was specified explicitly, (ignoring recorded location information), using the mark up:–

.pdfhref L -D set-colour -- use of colour

2.5.5.3. Using Automatically Formatted Reference Text

When the text within a link “hot-spot” is specified explicitly, using a pdfhref macro call of the form

.pdfhref L -D <dest-name> -- <explicit-text>

as described in the preceding section, then <explicit-text> will appear in the formatted document, exactly as

specified. This may be the author’s intent, but it does suffer from the disadvantage that, in spite of location information

having been recorded when <dest-name> was marked, none is included in <explicit-text>, unless the author

explicitly includes it; this places the onus on the author, if inclusion of such location information is desired, to track it

manually, and to specify it within <explicit-text>, in the desired format.

To mitigate this limitation, of explicitly specified reference text, groff’s pdfmark macro suite provides a capability

for automatic formatting of reference text, based on the content of a “PDFHREF.INFO record”,10 which is generated by,

and is specific to any named link-destination marked by a pdfhref macro request of the form

.pdfhref M -X -N <dest-name> [[--] <default-text>]

When a pdfhref link destination has been marked by a macro request of this form,11 a subsequent request of the

simplified form

.pdfhref L -D <dest-name>

(excluding any <explicit-text> specification), then the reference text will be generated automatically, by passing

the content of the “PDFHREF.INFO record” associated with <dest-name>, as arguments to a designated12

pdfhref reference text formatting macro.

To illustrate this capability, if we revisit the example offered in section 2.5.5.2, “Specifying Reference Text Explicitly”,

but instead of specifying the reference as

.pdfhref L -D set-colour -- use of colour

we simply specify it, without the explict reference text arguments, as

.pdfhref L -D set-colour

and if neither PDFHREF.INFO, nor the designated pdfhref reference text formatting macro, have been changed

from their original default settings, then we should see a reference formatted as

see page 16, “Using Colour to Demarcate Link Regions”

Alternatively, location data from the “PDFHREF.INFO record” may be combined with explicitly specified text, by

adding the -X option to the explicit form of the pdfhref macro request, e.g.

.pdfhref L -X -D set-colour -- Using Colour ...

will cause the reference to be displayed as

see page 16, Using Colour ...

Notice that, when the displayed form of the reference incorporates the assigned <default-text>, as derived from

the “PDFHREF.INFO record”, this is enclosed in double quotation marks, but explicitly specified text is not; if

quotation of explicitly specified text is desired, then appropriate quotation marks should simply be included within the

<explicit-text> arguments specification.

Finally, to conclude this introduction to the automatic reference text formatting capabilities of groff’s pdfmark
macro suite, it may be noted that, while the default provisions may be adequate, in many cases, this will not always be

so. In the event of these default provisions being inadequate, customization is readily supported, as explained in the

following section.

10. The conceptual nomenclature “PDFHREF.INFO record” has been adopted here, since the content of the record is dictated by the

definition of the PDFHREF.INFO string, as described in section 2.5.2.1, “Mapping a Destination for Cross Referencing”.

11. The specification of the -X option is imperative, within this pdfhref macro request; without it, no “PDFHREF.INFO record”

will be generated.

12. A suitable pdfhref reference text formatting macro is provided, within groff’s pdfmark macro suite; it will be used by

default, unless the author has designated an alternative, as described in section 2.5.5.4, “Customizing Automatically Formatted

Reference Text”.

-19-

2.5.5.4. Customizing Automatically Formatted Reference Text

“Automatically formatted” reference text is interpolated, within the running text of a published PDF document, when

the pdfhref macro is invoked with its “L” operator, to refer to a destination named by the “-D” option, and either:–

• no explicit reference text is specified, (in which case, specification of the “-X” option is implied), or,

• the “-X” option is specified, in conjunction with explicit reference text.

In each of these cases, the reference text is derived, (in its entirety, in the first case, or partially, in the second), from a

reference dictionary record for the named destination.

The reference dictionary, itself, comprises a collection of PDFHREF.INFO records, one per destination, indexed by

destination name. While it is possible to create a reference dictionary record manually, using a macro call of the form:–

.pdfhref D -N <dest-name> [<keyword> <value>] ... <text>...

(in which the in-order aggregate of all specified <keyword> <value> pairs, and all following <text> arguments,

comprises the PDFHREF.INFO record, and <dest-name> represents the destination name on which it is indexed), it

is generally more convenient to have the dictionary compiled automatically, by specifying the “-X” option, when using

a macro call of the form:–

.pdfhref M -X -N <dest-name> -- <text>...

to mark the location of each named destination; the procedure is described, in detail, in section 4.3.1, “Creating a

Document Reference Dictionary”.

Interpolation of automatically formatted reference text is delegated to a specialized formatting macro, which assumes

responsibility for storing the formatted representation of the reference text, into the PDFHREF.TEXT string; this

formatting macro may be defined by the user, (if specialized formatting is required), or, in most cases, a standardized

default macro, provided by pdfmark.tmac, may be used. In either case, the content of the PDFHREF.INFO record,

which is associated with the named reference destination, will be passed to the formatting macro as a sequence of macro

arguments, while any explicit reference text, which has been specified in the initiating “.pdfhref L ...” call, will

be passed in the PDFHREF.DESC string; (if no reference text is explicitly specified, then any pre-existing definition of

PDFHREF.DESC is explicitly deleted, prior to calling the formatting macro).

When the pdfmark.tmac default formatting macro is used, formatting progresses as follows:–

1. PDFHREF.TEXT is initialized to the content of the PDFHREF.PREFIX string; this has a default value of

“see”, but may be redefined by the user, to any suitable alternative content, (including the empty string, if

desired).

2. The PDFHREF.INFO record, as passed in the argument list, is inspected to determine whether the first

argument (\$1) matches any of the known formatting keywords, or otherwise it, and any additional

arguments which follow it, will be interpreted as representing the text of an implicit reference description.

3. If \$1 does match any of the known formatting keywords, the argument which follows (\$2) is interpreted

as the <value>, (which completes a <keyword> <value> pair); \$2 is interpolated into the format

string which is associated with keyword \$1, and the result is appended to PDFHREF.TEXT. The matched

\$1, and accompanying \$2, are then shifted out of the argument list, promoting \$3, (if any further

arguments are present), to the \$1 position, and the keyword matching process is repeated, from step 2.

4. If, during any execution cycle of step 2, \$1 is found not to match any known formatting keyword, and

PDFHREF.DESC has not been assigned any explicit content, then any remaining arguments are assigned to

PDFHREF.DESC; thus, PDFHREF.DESC becomes the descriptive component of the reference text, either

as explicitly specified by the originating “.pdfhref L ...” call, or implicitly deduced from the

reference dictionary PDFHREF.INFO record for the named link destination.

5. Finally, an interpolating reference to PDFHREF.DESC is appended to PDFHREF.TEXT, from which any

accumulated initial spaces are then removed, and the resultant PDFHREF.TEXT string is handed back to the

originating “.pdfhref L ...” call, for interpolation as the formatted content within, and which defines

the extent of, the link “hot-spot” region.

From the foregoing, it may be deduced that reference text, formatted by the default formatting macro, will commence

with the content of the PDFHREF.PREFIX string, followed by the result of interpolation of any keyword/value
pairs found in the PDFHREF.INFO record component of the relevant reference dictionary entry, and ends with a

PDFHREF.DESC component, either as implicitly defined within that same PDFHREF.INFO record, or as explicitly

specified as final arguments to “.pdfhref L ...”. Within the formatted text, the keyword/value pair interpolations

-20-

appear in the order in which “known” keywords are found, while parsing the PDFHREF.INFO record; the default set of

known formatting keywords comprises:–

Ke yword Format Name Default Format

page PDFHREF.PAGEREF page \\$1,
section PDFHREF.SECTREF section \\$1,
file PDFHREF.FILEREF \\$1

The format of any of these known keyword interpolations may be customized, by redefinition of their corresponding

“Format Name” strings; each may incorporate any text of the user’s choice — inclusion of the keyword itself is not

necessary, howev er, inclusion of the \\$1 placeholder, while not mandatory, is a necessary prerequisite for

interpolation of the value component of the keyword/value pair, from the PDFHREF.INFO record.

In the case of any PDFHREF.INFO record which originates from a “.pdfhref M -X ...” call, the precise gamut

of keyword interpolations which do, and the order in which they will, appear within automatically formatted reference

text, may be manipulated by redefinition of the PDFHREF.INFO string itself. For example, with the default

PDFHREF.PREFIX, PDFHREF.PAGEREF, PDFHREF.SECTREF, and PDFHREF.INFO definitions:–

.ds PDFHREF.PREFIX see

.ds PDFHREF.PAGEREF page \\$1,

.ds PDFHREF.SECTREF section \\$1,

.ds PDFHREF.INFO page \\n% \\$*

a request such as

.pdfhref L -D set-colour

may, (as indicated in section 2.5.5.3, “Using Automatically Formatted Reference Text”), result in formatted reference

text similar to:–

see page 16, “Using Colour to Demarcate Link Regions”

whereas, a simple redefinition of PDFHREF.INFO, before the “set-colour” destination is marked:–

.ds PDFHREF.INFO section *[SN-NO-DOT] \\$*

may13 result in alternative formatting similar to:–

see section 2.5.5.1, “Using Colour to Demarcate Link Regions”

(as is used in this document itself).

In addition to these default formatting capabilities, pdfmark.tmac also offers support14 for interpolation of

user-defined keyword/value pairs; these may be defined, using a macro call of the form:–

.pdfhref K <keyword> <format-name> [<keyword> <format-name>] ...

accompanied by string definitions, similar to that for PDFHREF.PAGEREF, for each format-name argument

specified; keyword/value pairs, corresponding to such user-defined keywords, may be incorporated into the

PDFHREF.INFO record definition, and they will be interpreted by the default formatting macro, in the same manner as

the default set of keywords. For example, we might wish to add add a chapter reference capability. We could

accomplish this by subverting the effect of one the default keywords;15 however, as a (possibly undesirable) side effect

of such a customization, we would lose the normal behaviour of the selected default keyword, while also introducing an

element of obfuscation around the use of that keyword; we may prefer not to do this.

13. Assuming that the SN-NO-DOT string represents the effective section number, at the point where the link destination is marked, as

it does when formatting with the ms macros provided with groff-1.19.2 and later.

14. Av ailable only in versions of pdfmark.tmac as distributed with groff-pdfmark from groff-pdfmark-20230317.1
onwards.

15. We might choose to implement the effect of a chapter keyword by subverting the default behaviour of, e.g. the section
keyword; we could achieve this by redefining the associated PDFHREF.SECTREF format string, in conjunction with a modified

PDFHREF.INFO template:–

.ds PDFHREF.SECTREF chapter \\$1,

.ds PDFHREF.INFO section \\n[chapter] page \\n% \\$*

and, (assuming for the purpose of this example, that the chapter number matches the current top-level section heading number),

.pdfhref L -D set-colour

would be expected to yield a reference similar to:–

see chapter 2, page 16, “Using Colour to Demarcate Link Regions”

-21-

If we wish to avoid subversion of any default keyword, with the attendant obfuscation of intent for the chosen keyword,

(and we have a sufficiently recent version of pdfmark.tmac), then the preferred method for implementing a custom

keyword feature, such as automatic interpretation of a chapter reference keyword, would be to make use of the

“.pdfhref K ...” capability; e.g.:–

.pdfhref K chapter PDFHREF.CHAPTER

.ds PDFHREF.CHAPTER chapter \\$1,

With these definitions in place, and assuming that, at the point where the named destination is marked, the effective

chapter number is made available in the \n[CH] numeric register, and also that the effective PDFHREF.INFO
definition has been preset to:–

.ds PDFHREF.INFO chapter \\n[CH] page \\n% section *[SN-NO-DOT] \\$*

(assuming that SN-NO-DOT represents a section number, as it does when the -ms macros are used for document

formatting), the example from the preceding section, viz.:–

.pdfhref L -D set-colour

will now produce a reference similar to

see chapter 2, page 16, section 2.5.5.1, “Using Colour to Demarcate Link Regions”

Finally, in the event that the default reference text formatting macro, combined with any user-defined PDFHREF.INFO
specification, user-defined keyword-specific format strings, and combination of default or user-defined keywords, is

insufficient to achieve a required formatting effect, the “.pdfhref F [<macro-name>]” facility allows the user

to define an alternative formatting macro, and substitute it in place of the default. For example, within this document

itself, some internal references are displayed as a section number reference alone; such references are derived from the

associated PDFHREF.INFO record, but are formatted by the document-local SECREF macro:–

.de SECREF

. while \\n(.$ \{\

. ie '\\$1'section' \{\

. if !dSECREF.BEGIN .ds SECREF.BEGIN \\$1

. ds PDFHREF.TEXT *[SECREF.BEGIN]\~\\$2

. rm SECREF.BEGIN

. shift \\n(.$

. \}

. el \{\

. shift

. if \\n(.$ shift

. \}

. \}

..

to filter all but the “section” reference out of the PDFHREF.INFO record, which is then displayed as the reference text;

used thus:–

.pdfhref F SECREF

.pdfhref L -D <reference-name>

.pdfhref F

it will emit reference text similar to:–

section 2.5.5.4

while, when used with the additional qualifying definition of SECREF.BEGIN:–

.pdfhref F SECREF

.ds SECREF.BEGIN Section

.pdfhref L -D <reference-name>

.pdfhref F

it will capitalize the emitted reference text, such that it becomes suitable for use at the beginning of a sentence:–

Section 2.5.5.4

-22-

Notice that the preceding SECREF macro exhibits identical semantics to those of the default reference formatting

macro, as described above, (and as any user-defined reference formatting macro must), insofar as it expects to be passed

the content of a PDFHREF.INFO record as its arguments, and it returns the formatted reference text as the definition of

the PDFHREF.TEXT string; however, while the PDFHREF.DESC, PDFHREF.PREFIX, PDFHREF.PAGEREF,

PDFHREF.SECTREF, and PDFHREF.FILEREF strings (and any other custom format strings which the user may

have defined) remain available, the SECREF macro simply ignores them.

Further note that the effect of invoking “.pdfhref F <macro-name>” is persistent; if it is desired to revert to use

of the default reference formatting macro, after temporary use of a user-defined alternative, this may be accomplished

by invoking “.pdfhref F” without specifying any “<macro-name>” argument, as shown in each of the two

preceding usage examples.

2.5.6. Problematic Links

Irrespective of whether a pdfhref reference is placed using the “L” operator, or the “W” operator, there may be

occasions when the resulting link does not function as expected. A number of scenarios, which are known to be

troublesome, are described below.

2.5.6.1. Links with a Page Transition in the Active Region

When a link is placed near the bottom of a page, it is possible that its active region, or “hot-spot”, may extend on to the

next page. In this situation, a page trap macro is required to intercept the page transition, and to restart the mapping of

the “hot-spot” boundary on the new page.

The pdfmark macro package includes a suitable page trap macro, to satisfy this requirement. However, to avoid

pre-empting any other requirement the user may have for a page transition trap, this is not installed as an active page

trap, unless explicitly requested by the user.

To enable proper handling of page transitions, which occur within the active regions of reference links, the user

should:–

1. Define a page transition macro, to provide whatever features may be required, when a page transition

occurs — e.g. printing footnotes, adding page footers and headers, etc. This macro should end by setting the

output position at the correct vertical page offset, where the printing of running text is to restart, following

the page transition.

2. Plant a trap to invoke this macro, at the appropriate vertical position marking the end of normal running text

on each page.

3. Initialize the pdfhref hook into this page transition trap, by invoking

.pdfhref I -PT <macro-name>

where <macro-name> is the name of the user supplied page trap macro, to ensure that pdfhref will

correctly restart mapping of active link regions, at the start of each new page.

It may be observed that this initialization of the pdfhref page transition hook is, typically, required only once before

document formatting begins. Users of document formatting macro packages may reasonably expect that this

initialization should be performed by the macro package itself. Thus, writers of such macro packages which include

pdfmark bindings, should provide appropriate initialization, so relieving the end user of this responsibility. The

following example, abstracted from the sample ms binding package, spdf.tmac, illustrates how this may be

accomplished:–

.\" groff "ms" provides the "pg@bottom" macro, which has already

.\" been installed as a page transition trap. To ensure proper

.\" mapping of "pdfhref" links which overflow the bottom of any

.\" page, we need to install the "pdfhref" page transition hook,

.\" as an addendum to this macro.

.

.pdfhref I -PT pg@bottom

-23-

2.6. Annotating a PDF Document using Pop-Up Notes

The Adobe® PDF specification defines several types of annotation, which may be associated with a PDF document; of

these defined annotation types, two are explicitly supported by groff’s pdfmark macros. Of these, although it is not

explicitly identified as such, in the preceding discussion, it is the “Link” annotation type which underpins the operation

of the pdfhref macro, as it is extensively described in section 2.5, “Adding Reference Marks and Links”.

In addition to supporting the “Link” annotation type, through the use of the pdfhref macro, (see section 2.5,

“Adding Reference Marks and Links”), the pdfmark macros offer support for the “Text” annotation type; primarily

useful as a means of adding editorial comments, this creates an annotation similar to a “sticky note”, attached to the

document page, and represented by an icon, at the attachment point, which, when clicked, opens the annotation itself, in

a pop-up window.

It may be noted that some — but not all16 — PDF viewer applications may provide support for adding, and editing

“Text” annotations. While such support, within a viewer application, may be convenient for 3rd-party editorial

annotation, it may not be the most convenient method for the document author, should he, or she, wish to insert such

annotations at the point of document origin. Thus, the pdfmark macros provide the pdfnote macro, for direct

insertion of “Text” annotations, such as this, created as in the following example:17

Thus, the
.CW pdfmark
macros provide the
.CW pdfnote
macro, for direct insertion of
.CW Text \(rq \(lq
annotations,
such as this,
.pdfnote -T "An Example Text Annotation" -PD 1 \# continued/...
Please do not move, modify, or remove this note; doing \#
so may invalidate the example to which it refers.\#
*[PDFNOTE.PILCROW]\#
This is an illustration of an editorial comment, \#
placed directly by the document author, \#
using the exact markup as specified in \#
the example of the usage of the pdfnote macro, \# .../continuation ends
which immediately follows the note's icon.\" here.
\h'5n'created as in the following example:

In addition to illustrating the technique for spreading the pdfnote text content over sev eral input lines, this example of

pdfnote usage gratuituously introduces some of the available options for setting pdfnote attributes, and the

*[PDFNOTE.PILCROW] control, for manipulation of text layout within the pdfnote pop-up window; further

discussion of these may be found below, in section 2.6.2, “Options for Manipulating pdfnote Annotation Attributes”,

and section 2.6.3, “Controlling pdfnote Te xt Layout”, respectively.

2.6.1. Controlling pdfnote Icon Placement

The placement of each pdfnote annotation, on its respective document page, is determined from its Rect attribute;

(this is a required attribute, comprising an array of four numeric values, representing, in order, the lower left x, lower

left y, upper right x, and upper right y co-ordinates of the page region in which the pdfnote annotation is to be

placed). The pdfnote macro computes these four co-ordinate values, relative to the current text output position on the

16. Indeed, Adobe’s own Acrobat Reader™ application may be found wanting, in this respect.

17. It may be noted that the entire content of any pdfnote must be entered as a single logical input line; this may be achieved, most

effectively, and without necessitating an excessively long, and unwieldy, physical input line, by folding the .pdfnote call over

multiple input lines, with each, excluding the last, terminated by a line continuation escape, (either a single “\” escape at the bitter

end of each line, or a escape, followed by an optional comment).

Furthermore, note that the continuation of the running text, following interpolation of the .pdfnote in this example, commences

with an “\h'5n'” escape; this to leave sufficient space for the placement of the icon, associated with the pdfnote, without

occlusion of the initial few glyphs of this continued running text.

An Example Text Annotation
Please do not move, modify, or remove this note; doing so may invalidate the example to which it refers.

This is an illustration of an editorial comment, placed directly by the document author, using the exact markup, as specified in the example of the usage of the pdfnote macro, which immediately follows the note's icon.

-24-

page, and specifies the required Rect attribute accordingly, in terms of the following numeric register, and string

assignments:

PDFNOTE.OFFSET

A string, defined such that it may be evaluated as a numeric expression; its evaluation is interpreted as the

lower left x ordinate, (and hence, implicitly, the upper left x ordinate), of the pdfnote placement region.

By default, it is defined as

.ds PDFNOTE.OFFSET "\\n[.k]+\\n[.o]+\\n[.in]\"

which, when evaluated, will result in placement of the left edge of the pdfnote region immediately to the

right of the last running text glyph written to the output stream.

Users may redefine PDFNOTE.OFFSET, to achieve a different left edge placement for any pdfnote
annotations which follow; for example, the definition

.ds PDFNOTE.OFFSET "\\n[.o]-\\n[PDFNOTE.WIDTH]-1m

will place pdfnote annotations into the left hand page margin, with 1em separation from the running text,

as in this example:

.pdfnote -T "Marginal Placement Example" \
This note illustrates placement of pdfnote annotations \
in the left hand page margin, following redefinition of \
the PDFNOTE.OFFSET string.\
*[PDFNOTE.PILCROW]\
As in the case of the previous pdfnote example, \
moving, modifying, or removing this annotation may \
invalidate the example to which it refers; please \
do not do this!

PDFNOTE.LEADING

The value of this numeric register is added to the value retrieved by inv ocation of the .mk request, to

establish the vertical distance, from the top of the current document page, at which the top edge of each

pdfnote icon is to be placed. By default, it is defined with a value of 0.3v, which will result in

placement of pdfnote icons at 30% of the line spacing, below the top of the output line which is currently

being composed, at the insertion point of each pdfnote annotation. This may be redefined by the user;

positive values will push the icons further down the page, while negative values will pull them upwards,

towards the top of the page.

PDFNOTE.HEIGHT

Combination of the effects of PDFNOTE.OFFSET and PDFNOTE.LEADING serves to specify the (x, y)
page co-ordinates of the upper left vertex of the placement region for a pdfnote annotation; the value of

the PDFNOTE.HEIGHT numeric register is added to the y ordinate of this upper left co-ordinate pair, to

determine the corresponding lower left (x, y) co-ordinate pair, which is required for the specification of the

Rect attribute of the pdfnote annotation pdfmark.

The default value specified for PDFNOTE.HEIGHT is 9 millimetres; this corresponds, approximately,

to the height of “Text” annotation icons in many PDF viewer applications. The user may choose to define

an alternative value; however, the usefulness of doing so may be questionable.

PDFNOTE.WIDTH

As in the case of addition of the value of PDFNOTE.HEIGHT to the y ordinate of the upper left pdfnote
placement co-ordinate pair, to compute the lower left co-ordinate pair, the value of the PDFNOTE.WIDTH
numeric register is added to the upper left x ordinate, to compute the corresponding upper right (x, y)
co-ordinate pair; this is required to complete the Rect attribute specification for the annotation pdfmark.

The default value specified for PDFNOTE.WIDTH is 8 millimetres; this corresponds, approximately, to

the width of “Text” annotation icons in many PDF viewer applications. The user may choose to define an

alternative value; however, as in the case of PDFNOTE.HEIGHT, the usefulness of such an alternative

definition may be questionable.

It may be worthy of note that the Adobe® PDF Specification is rather vague, with respect to how the Rect attribute of

“Text” annotations should be interpreted, (simply stating that this attribute specifies the placement of such annotations

on their respective pages), and there is substantial inconsistency among PDF viewer applications, in their respective

interpretations. Whereas the Adobe® “pdfmark Reference Manual” states that the Rect attribute specifies the vertex

Marginal Placement Example
This note illustrates placement of pdfnote annotations in the left hand page margin, following redefinition of the PDFNOTE.OFFSET string.

As in the case of the previous pdfnote example, moving, modifying, or removing this annotation may invalidate the example to which it refers; please do not do this!

https://www.adobe.com/go/acrobatsdk_pdfmark

-25-

co-ordinates “of the rectangle defining the open note window”, (which might be construed as referring to the pop-up

window in its open state), it appears that few — if indeed any — of of the currently available PDF viewer applications

have adopted this interpretation. All do appear to agree that the upper left corner of the annotation icon should be

placed at the page co-ordinates which are derived by combination of the lower left x ordinate, and the upper right y

ordinate, as specified for the Rect attribute; there is significantly less agreement on what effect, if any, the width, and

height of the rectangle, which may be deduced from the Rect attribute specification, should have. All viewers appear

to use a fixed size icon, and an arbitrarily chosen size, and placement, for the associated pop-up window; at least one

viewer does appear to interpret the derived annotation width, and height, as a specification of the extent to which the

effective clickable region covers, or extends beyond, the region occupied by the icon itself, but most appear to ignore

them altogether,

2.6.2. Options for Manipulating pdfnote Annotation Attributes

To the extent to which various PDF viewing applications may support them, the pdfnote macro will interpret the

following optional argments, (which must be placed before any text specifying the content of the annotation), to affect

the style of pdfnote annotations:

-O Select “open” as the preferred initial state for the associated pdfnote pop-up window; no additional

arguments are parsed, beyond -O itself, when interpreting this option.

This option sets the Open attribute for the associated pdfnote annotation to true; some PDF viewer

applications may not reliably interpret this attribute. The example to the left is specified thus:

.pdfnote -O -T "A Pop-Up Note in Initially Open State" \
This note should be displayed in the open state, when the \
document itself is opened, if the PDF viewer supports \
this capability.

it should be displayed in the initially open state, when this document is opened in a PDF viewer application

which does correctly interpret the attribute.

-T "Title Bar Text ..."
Define text to be displayed within the title bar of the pop-up window which is associated with a pdfnote
annotation; requires exactly one following argument, in addition to the -T itself; this argument should be a

text string, and should be enclosed in programming quotes (ASCII 34), if spaces are to be included. Any of

the preceding pdfnote annotation examples illustrate how this option is used.

This option causes its text string argument to be passed as the value of the Title attribute, when invoking

the pdfmark macro to create the associated pdfnote annotation; this appears to enjoy better support

than the Open attribute, among PDF viewer applications, but support is by no means universal.

-C <red-value> <green-value> <blue-value>
Specifies the background colour, which is to be used for the pdfnote annotation’s icon, and also, if

supported by the PDF viewer application, for the frame, and title bar, of the associated pdfnote pop-up

window. This option requires exactly three additional arguments, following the -C itself; each of these

must be a decimal number, in the range 0.0 ... 1.0, representing the intensity, in RGB colour space, for

each of the red, green, and blue components of the desired colour, respectively.

If this option is not specified, the PDF viewer application will assign a default colour, for both the

pdfnote icon background, and, if supported, for the pop-up window’s frame.

Specification of this option causes a Color attribute assignment to be included within the pdfmark
invocation, which is used to place the associated pdfnote annotation. Differing PDF viewer applications

vary in the extent to which they support this attribute. The example to the left has been specified thus:

.pdfnote -C 0.7 1.0 0.7 \
-T "Icon Background Colour Example" \
This example specifies a pale green colour, for the icon \
background and pop-up window frame, and serves to illustrate \
the extent to which text annotation colours are supported by \
the current PDF viewer application.

which may serve as an illustration of the current PDF viewer application’s lev el of support for colour

attributes, when applied to “Text” annotations defined using the pdfnote macro.

A Pop-Up Note in Initially Open State
This note should be displayed in the open state, when the document itself is opened, if the PDF viewer supports this capability.

Icon Background Colour Example
This example specifies a pale green colour, for the icon background and pop-up window frame, and serves to illustrate the extent to which text annotation colours are supported by the current PDF viewer application.

-26-

-I <icon-name>
Assigns an alternative icon, to indicate placement of a pdfnote annotation; requires one additional

argument following the -I, indicating the style of icon which is to be assigned; the selected style is

assigned, via the pdfmark macro, to the Name attribute of the annotation.

Icon styles are identified by name. The particular set of named icons, which are available, depends on the

PDF viewer application which is in use; however, reg ardless of any non-standard choices, which a

particular viewer might support, the Adobe® PDF Specification requires, as minimum, that icons named

Note, Comment, Help, Insert, Key, NewParagraph, and Paragraph should be available. If no

explicit icon style is selected, the Note style is used, by default.

As an example of how an alternative icon style might be used,18 a keynote annotation may be placed thus:

.als "" PDFNOTE.QUOTED

...

.pdfnote -I Key -T "An Example Keynote Annotation" \
This is an example of a *["" keynote annotation], which has been \
defined using the pdfnote macro, using its optional *["" Key] \
icon selection.

-PD <line-count>
Set the number of blank lines which should be inserted, to serve as paragraph separators within pdfnote
content, following an end-of-paragraph PDFNOTE.PILCROW mark, (see section 2.6.3, “Controlling

pdfnote Te xt Layout”), within the content of pdfnote annotations. Requires exactly one additional

argument, following -PD itself; this should be an integer numeric value, indicating the number of

additional newlines which should be inserted, following the one which is normally placed at the

end-of-paragraph mark.

Unlike each of the preceding pdfnote options, (each of which assigns annotation attributes, and applies

only to the individual pdfnote instance for which it is specified), the -PD option — so named by analogy

with the similarly named ms macro, which has a similar effect — does not assign annotation attributes;

rather, it sets a count initializer, which is internal to the pdfnote macro itself. Its effect is “sticky”: that

is, it applies not only to the pdfnote instance which specifies it, but also to any pdfnote instances

which follow it, unless it is specified again, with a different — or ev en (albeit redundantly) with the

same — line-count value, for any such following instance.

-- Suppresses interpretation of any further pdfnote macro arguments as options. This is not, strictly, an

option per se, but may be required in any case where the following argument is intended to begin the

annotation content, when it could be mistaken for an optional feature specification.

2.6.3. Controlling pdfnote Text Layout

The Adobe® PDF and pdfmark specifications make very little provision for control of the layout of the content of

pop-up windows which are associated with “Text” annotations, stipulating only that the size and font should be chosen

by the PDF viewer application, which usually offers little, or no opportunity for user participation in these choices.

Generally, PDF viewer applications will open annotation pop-up windows when required, each with default width and

height as specified by the viewer application itself. The annotation content is displayed in a font which is also specified

by the viewer application; this is usually a proportionally spaced font, and there is no mechanism for choosing an

alternative. The content is nominally interpreted as a single-line of text, which flows to fit the width of the window; text

flow is facilitated by insertion of “soft” line breaks, coincident with white space, resulting is a flush left, ragged right

layout. The extent to which the author of the annotation may influence this layout is limited to insertion of “hard” line

breaks; these will always be rendered as such, when the text is displayed in the pop-up window, producing the effect of

a paragraph break.

When placing an annotation, using the pdfnote macro, if the author wishes to affect the text layout by inserting a hard

line break, this must be represented by the literal “\n” character sequence. Unfortunately, simply specifying this

character sequence within any argument to the pdfnote macro, (as is necessary to include it within the annotation

content), presents a non-trivial challenge to the author: the “\” character introduces a troff escape, and when it is

followed by the “n” character, the escape is interpreted as a reference to a numeric register, which is resolved according

to whatever follows. Simply escaping the “\” character itself, at the point of the pdfnote macro call, does not present

18. While this example serves, primarily, to illustrate the the selection of the “Key” icon style, for the associated pdfnote annotation,

it also illustrates the use of PDFNOTE.QUOTED interpolation, (with aliasing to *["" ...text...] as document-local shorthand), to

introduce double quoted text within the content of the annotation.

An Example Keynote Annotation
This is an example of a "keynote annotation", which has been defined using the pdfnote macro, using its optional "Key" icon selection.

-27-

a satisfactory solution to this challenge, since multiple levels of escaping are required, to survive interpretation through

an indeterminate number of internal macro call levels. Thus, to circumvent this challenge, and to robustly facilitate

inclusion of the literal “\n” character sequence within the pdfmark output stream, the pdfmark macros define the

following named strings:

PDFNOTE.NEWLINE

A string representation of the “\n” character sequence, which is encoded in a manner which, when

interpreted within the immediate arguments to the pdfnote macro, re-encodes the sequence such that its

ultimate interpretation is deferred, until it is eventually written, as a literal representation of a single “\n”

character sequence, to the pdfmark output stream. Use of PDFNOTE.NEWLINE is analogous to that of

PDFNOTE.PILCROW, which is described below, and is illustrated in previous examples within section 2.6,

“Annotating a PDF Document using Pop-Up Notes”.

PDFNOTE.PILCROW

So named for its association with the typographer’s pilcrow mark, when interpreted within the immediate

arguments to the pdfnote macro, this marks the end of a logical paragraph, and is re-encoded as a

(possibly recurring) sequence of *[PDFNOTE.NEWLINE] re-encodings. At least one such re-encoding is

always inserted; this is then repeated as many times as specified by the <line-count> argument to the

last-specified, if any, -PD option — see section 2.6.2, “Options for Manipulating pdfnote Annotation

Attributes” — to the immediate, or any preceding, instance of pdfnote macro use. The effect is to

introduce a new logical paragraph, within the content of the pdfnote annotation, separated from the

preceding paragraph, of which the end is indicated by the *[PDFNOTE.PILCROW] mark, by

<line-count> blank lines.

In the absence of any preceding -PD option specification, the effect of *[PDFNOTE.PILCROW] becomes

identical to that of a single instance of *[PDFNOTE.NEWLINE].19

2.7. Synchronizing Output and pdfmark Contexts

It has been noted previously, that the pdfview macro, (see section 2.2, “Selecting an Initial Document View”), the

pdfinfo macro, (see section 2.3, “Adding Document Identification Meta-Data”), and the pdfhref macro, when used

to create a document outline, (see section 2.4, “Creating a Document Outline”), do not immediately write their

pdfmark output to the PostScript® data stream; instead, they cache their output, in a groff diversion, in the case of

the pdfview and pdfinfo macros, or in an ordered collection of strings and numeric registers, in the case of the

document outline, until a more appropriate time for copying it out. In the case of pdfview and pdfinfo
“meta-data”, this “more appropriate time” is explicitly chosen by the user; in the case of document outline data, some

cached data may be implicitly written out as the document outline is compiled, but there will always be some remaining

data, which must be explicitly flushed out, before the groff formatting process is allowed to complete.

To allow the user to choose when cached pdfmark data is to be flushed to the output stream, the pdfmark macro

package provides the pdfsync macro, (to synchronize the cache and output states). In its simplest form, it is invoked

without arguments, i.e.

.pdfsync

This form of invocation ensures that both the “meta-data cache”, containing pdfview and pdfinfo data, and the

“outline cache”, containing any previously uncommitted document outline data, are flushed; ideally, this should be

included in a groff “end macro”, to ensure that both caches are flushed, before groff terminates.

19. Neither PDFNOTE.NEWLINE, nor PDFNOTE.PILCROW were provided in any version of the pdfmark macros, which was

published before Feb-2023. Earlier versions provided PDFLB, (for PDF line-break), as an alternative; it offered a similar capability

to PDFNOTE.NEWLINE, but its implementation was flawed, and was not robust. The flawed implementation of PDFLB is still

supported, but it is now considered to be deprecated, and using it is not recommended; either PDFNOTE.NEWLINE, or

PDFNOTE.PILCROW should be used instead.

-28-

Occasionally, it may be desirable to flush either the “meta-data cache”, without affecting the “outline cache”, or

vice-versa, at a user specified time, prior to reaching the end of the document. This may be accomplished, by invoking

the pdfsync macro with an argument, i.e.

.pdfsync M

to flush only the “meta-data cache”, or

.pdfsync O

to flush only the “outline cache”.

The “meta-data cache” can normally be safely flushed in this manner, at any time after output of the first page has

started; (it may cause formatting problems, most notably the appearance of unwanted white space, if flushed earlier, or

indeed, if flushed immediately after a page transition, but before the output of the content on the new page has

commenced). Caution is required, however, when explicitly flushing the “outline cache”, since if the outline is to be

subsequently extended, then the first outline entry after flushing must be specified at level 1. Nev ertheless, such explicit

flushing may occasionally be necessary; for example, the TC macro in the spdf.tmac package, (see section 3.1,

“Using pdfmark Macros with the ms Macro Package”), invokes “.pdfsync O” to ensure that the outline for the

“body” section of the document is terminated, before it commences the formatting of the table of contents section.

-29-

3. PDF Document Layout
The pdfmark macros described in the preceding section, (see section 2, “Exploiting PDF Document Features”),

provide no inherent document formatting capability of their own. However, they may be used in conjunction with any

other groff macro package of the user’s choice,20 to add such capability.

In preparing this document, the standard ms macro package, supplied as a component of the GNU Troff distribution,

has been employed. To facilitate the use of the pdfmark macros with the ms macros, a binding macro package,

spdf.tmac, has been created. The use of this binding macro package is described in the following section, (see

section 3.1, “Using pdfmark Macros with the ms Macro Package”); it may also serve as an example to users of other

standard groff macro packages, as to how the pdfmark macros may be employed with their chosen primary macro

package.

3.1. Using pdfmark Macros with the ms Macro Package

The use of the binding macro package, spdf.tmac, allows for the use of the pdfmark macros in conjunction with

the ms macros, simply by issuing a groff command of the form21

groff [-Tps | -Tpdf] -mspdf [-options ...] file ...

When using the spdf.tmac package, the groff input files may be marked up using any of the standard ms macros

to specify document formatting, while PDF features may be added, using any of the pdfmark macros described

previously, (see section 2, “Exploiting PDF Document Features”). Additionally, spdf.tmac defines a number of

convenient extensions to the ms macro set, to better accommodate the use of PDF features within the ms formatting

framework, and to address a number of ms document layout issues, which require special handling when producing

PDF documents. These additional macros, and the issues they are intended to address, are described below.

3.1.1. Document Structuring Considerations when using ms Macros

Every published document must incorporate, as a minimum, a document body; additionally, many documents may

include front-matter, which precedes the body, and end-matter, which follows the body. Additionally, when publishing

as a PDF document, it may be desired to incorporate a document outline, referring to chapter, or section headings,

within the document body.

Conventionally, when a document is to include a table of contents, this should be placed at the end of the front-matter.

Traditional AT&T implementations of ms provide a number of macros to control front-matter style, (of which only the

“released paper” style, selected by use of the RP macro, is supported by groff ms), accompanied by several macros to

specify front-matter content, (also supported by groff ms). Both traditional, and groff ms implementations also

provide a small set of macros to facilitate compilation of a table of contents; they do not, however, offer any standard

facilities for creation of a corresponding document outline.

Unfortunately, the traditional ms method of compiling the table of contents results in it being printed at the end of the

document, rather than in its normal position, at the end of the front-matter. Traditionally, this unusual placement of the

table of contents would be corrected, by manual collation, after printing; emulation of this mechanical collation

technique presents a challenge, when the document is to be published in PDF format.

Taking up the challenge of collating the various document sections into the correct order, when producing any PDF

document, will necessitate special consideration during the PDF publication process; this will be discussed in greater

depth, in section 4, “The PDF Publishing Process”. To accommodate any specialized processing which may be

required, spdf.tmac provides:–

• Macros to isolate the front-matter, (excluding the table of contents), from the body of the document.

• Further macros to compile a table of contents, and a corresponding PDF document outline, deriving both from

section headings, (see section 3.1.2.1, “The XH and XN Macros”).

• A redefined implementation of the TC macro, (to be invoked at the end of the document, as in traditional ms
usage); this isolates the table of contents from its preceding front-matter (if any), and from the document

body, to facilitate the collation process.

20. Any of the standard groff “full-service” macro packages, me, mm, mom, or ms, or indeed, any “home-brew” macro package

provided by the user, should be suitable for the purpose; regardless of the chosen “full-service” macro package, it is likely that a

binding package, specific to this choice, will be required.

21. Once again, as noted in footnote6 to section 2, “Exploiting PDF Document Features”, do not specify any -Tdev option, other than

-T ps, or -T pdf; specify -T pdf, if you wish to avoid the conversion of PostScript® output to PDF, which will be required if you

specify -T ps, or if you omit the -Tdev option entirely.

-30-

3.1.2. Using ms Section Headings in PDF Documents

Traditionally, ms provides the NH and SH macros to introduce section headings. However, in traditional ms
implementations, there is no standard mechanism for generating a table of contents entry based on the text of the section

heading; neither is there any recognized standard method for establishing a cross reference link, or a document outline

reference, to the section.

To address this limitation of traditional ms implementations, the spdf.tmac binding macro package provides the XH
and XN macros,22 (see section 3.1.2.1, “The XH and XN Macros”), to be used in conjunction with the SH and NH macros

respectively; each of these identifies, by specification of appropriate arguments, text which is to be incorporated into the

section heading, duplicated within the PDF document outline, and in the table of contents.

3.1.2.1. The XH and XN Macros

Formalized from the release of groff-1.23 onwards,23 and nominally intended to be used following SH and NH
respectively, the calling syntax for this pair of spdf.tmac macros is specified as:–

.SH

.XH [-N <name>] [-S] [-X] <outline-level> <heading-text> ...

.NH <outline-level>

.XN [-N <name>] [-S] [-X] <heading-text> ...

In either case, the <heading-text>... arguments are incorporated into the document body, formatted as section

heading text. Additionally, these same <heading-text>... arguments, (prefixed by the content of the SN string, in

the XN case), are incorporated into the PDF document outline, at the level specified by the <outline-level>
argument, and they are made available to the user-definable XH-UPDATE-TOC call-back macro, (see section 3.1.2.3,

“The XH−UPDATE−TOC Macro”), to support creation of a corresponding entry in the document’s table of contents.

In both cases, the supported macro options24 are:–

-N <name>
Create a pdfhref destination, with the specified <name>, and associate it with the corresponding section

heading, as designated by <heading-text>.

-S Strip any font-family selection escape sequences, which may have been specified, from a copy of

<heading-text>, before incorporating this into the document outline; (this is necessary when such

escape sequences are present, to avoid verbatim rendition of the escape sequences themselves, within the

text of the document outline).

-X Ensure that any pdfhref destination name, specified by the -N <name> option, is included within the

document’s cross-reference dictionary.

3.1.2.2. The XH−INIT and XN−INIT Macros

This pair of macros serve as context initialization hooks; called by the default implementations of the XH and XN
macros respectively, without arguments, before XH−UPDATE−TOC is called. By default, both return immediately,

without performing any action. However, users may override either, or both, to perform any desired activity ... e.g. to

save context for subsequent use by any user-defined macro, which may have been provided to override the default

implementation of XH−UPDATE−TOC.

3.1.2.3. The XH−UPDATE−TOC Macro

This macro is called by both XH and XN, (there is no corresponding XN−UPDATE−TOC equivalent, since none is

required to support the default XH and XN implementations), to propagate content from the specified section heading

arguments to the document’s table of contents. From groff−1.23 onwards, a rudimentary default implementation of

22. On a technical note, since groff-1.23, the groff implementation of ms itself has incorporated basic infrastructure providing

XH and XN macros, to facilitate duplication of section heading text into the table of contents; spdf.tmac builds on top of this

infrastructure, indirectly redefining XH and XN, by provision of macros XH-REPLACEMENT and XN-REPLACEMENT respectively,

to accommodate the duplication of section heading text into the PDF document outline, in addition to the table of contents. Use of

this indirect technique is recommended, whenever redefinition of XH, or XN, is desired.

23. Prior to the release of groff-1.23, a prototypical implementation of spdf.tmac was introduced with groff-1.19.2; this

prototype included an implementation of the XN macro, but it did not provide XH, nor did it support the XH-INIT, XN-INIT, and

XH-UPDATE-TOC call-back features, nor the XH-REPLACEMENT, and XN-REPLACEMENT capabilities.

24. None of these options are supported by the underlying ms implementations of XH or XN, as implemented from groff-1.23
onwards. Prior to groff-1.23, only the -N <name> and -X options are supported by the prototypical spdf.tmac
implementation of XN, as provided from groff-1.19.2 onwards.

-31-

XH−UPDATE−TOC is provided within the standard ms macro suite; however, it is anticipated that the user will override

this default implementation, in order to achieve more effective control of table of contents formatting.

When writing a replacement for the XH−UPDATE−TOC macro, it should be implemented such that it will interpret

arguments as specified in the prototype

.XH−UPDATE−TOC <outline−level> [<section−number>] <heading−text> ...

in which the <outline−level> and <heading−text> arguments are the same as those specified for the XH, or

the NH/XN call sequence, from which XH−UPDATE−TOC itself is called; the <section−number> argument is

always specified, when XH−UPDATE−TOC is called by XN, (and never when called by XH); when present, it represents

the value of the SN string, which prevails at the time of the invoking XN call, and is simply processed as a prefix to the

<heading−text> argument.

The default implementation of XH−UPDATE−TOC offers only rudimentary formatting of the resultant table of contents

entry; the <outline−level> argument is simply ignored, and the remaining arguments are passed to the standard

ms table of contents generating capability, in a form which is equivalent to

.XS
\&[<section−number>]<heading−text> ...
.XE

As an example (with abridged comments) of how XH−UPDATE−TOC may be redefined, to achieve more creative

formatting of a table of contents, this publication substitutes the following document-local implementation:

.ds XNVS1 0.50v \" leading for top level

.ds XNVS2 0.15v \" leading at nesting level increment

.ds XNVS3 0.30v \" leading following nested group

.

.de XH-UPDATE-TOC

. XS

. if r tc*hl \{\

. \" Compute additional leading at <outline-level> change

. \"

. ie \\$1>1 \{\

. ie \\$1>\\n[tc*hl] .sp *[XNVS2]

. el .if \\n[tc*hl]>\\$1 .sp *[XNVS3]

. \}

. el .sp *[XNVS1]

. \}

.

. \" Record <outline-level> of this entry, to compare with next

. \"

. ie \\$1 .nr tc*hl \\$1

. el .nr tc*hl 1

.

. \" Set indentation, and insert <section-number> for this entry

. \"

. nop \h'\\n[tc*hl]-1m'\\$2\c

.

. \" Append <heading-text> for this entry

. \"

. shift 2

. nop \h'1.5n'\\$*\h'0.5n'

. XE

..

Used in conjunction with NH and XN, this uses document-local register tc*hl to track, group, and indent the table of

contents entries for this document, on the basis of their specified <outline−level> specifications, separating

<outline−level> groups by additional line spacing, (having an effect similar to that of increased leading), as

controlled by the XNVS1, XNVS2, and XNVS3 document-local strings, at each change in <outline−level>.

-32-

3.1.2.4. The XH−REPLACEMENT and XN−REPLACEMENT Macros

The default XH and XN macro implementations reserve this pair of macro names, to facilitate redefinition of XH and XN
behaviour respectively, while retaining the ability to take advantage of first-time-of-use infrastructure initialization

logic, which is incorporated within the respective default implementations.

It is important to understand that, in conventional usage, neither of these macros should ever be called directly. Rather,

either one, or both, should be defined, after loading s.tmac, and before calling either XH, or XN for the first time; the

defined implementations are then invoked when XH, or XN are called, respectively.

User-written XH−REPLACEMENT and XN−REPLACEMENT macros may implement any desired functionality. They are

not constrained to emulation of the default XH and XN capabilities; however, it is strongly recommended that they do so,

while adding any required extended features. For example, spdf.tmac defines both replacement macros thus:25

.de XH−REPLACEMENT als

.als XN−REPLACEMENT XH-REPLACEMENT

.am XH-REPLACEMENT

. \\$0−INIT

. rm spdf:refname

. als spdf:bm.define spdf:bm.basic

. while d spdf:XH\\$1 \{\

. spdf:XH\\$1 \\$*

. shift \\n[spdf:argc]

. \}

. rr spdf:argc

. if '\\$1'−−' .shift

. spdf:\\$0.format \\$@

..

with macros XH−N, XH−S, and XH−X defined locally, extending the default behaviour, such that the non-default −N, −S,

and −X option flags are interpreted, (and register spdf:argc is set, to control the while loop which does so); it

further extends the default behaviour, by using locally defined macros, spdf:XH.format, and spdf:XN.format,

(dynamically modified by spdf:bm.basic, spdf:bm.define, and spdf:refname), to propagate the specified

section heading text to the PDF document outline, in addition to reproducing the default propagation to the document’s

table of contents, by calling XH−UPDATE−TOC.

3.1.3. Layout Adjustment to Support Duplex Printing

When formatting a PDF document for on-screen viewing, there is no particular need to distinguish between the layouts

for even-numbered and odd-numbered pages; thus, it is common to set the page offset and line length to establish equal

width pargins margins to left and right of the displayed text; for example, in ms:

.nr PO 2.0c

.nr LL 17.0c

will create two centimetre wide margins on both sides of the page, when formatting for display on the equivalent of A4

paper, in portrait orienation.

Conversely, if preparing output for a hard-copy device, which supports duplex printing, it may be desireable to reduce

the effective page width by a “binding allowance”, which should then be added to the left-hand page margin width,

when formatting odd-numbered pages, and to the right-hand page margin width, when formatting even-numbered pages.

Although ms does not provide any standard settings, for specification of alternating page offsets for odd-numbered and

ev en-numbered pages, it does implement a bottom-of-page trap-invoked macro, BT, which may be exploited to achieve

the desired effect. To illustrate this, the preceding example, which set equal width left-hand and right-hand page

margins, of two centimetres each, when formatting for the twenty one centimetre width of A4 paper, may be extended to

accommodate the addition of an optional specification on the formatter command line:

groff [-Tps | -Tpdf] -mspdf [-options ...] -duplex=<width> file ...

This additional option might then be interpreted, within the document source, such that, if unspecified, it leaves the

original layout unchanged, but when specified, it changes the initial page offset setting to the value of its <width>
argument, while leaving the line length unchanged; this modified page offset is then propagated, through the augmented

BT macro, to become effective on odd-numbered pages, while an alternative page offset is calculated, (as the effective

25. An important consideration, in the design of such replacement macros, is that they will ultimately be invoked as XH, and XN
respectively; thus, they must interpret their arguments exactly as they would be passed to XH and XN, and within the macro bodies,

\\$0 will be interpreted as XH or XN, as appropriate.

-33-

value of the residual right-hand page margin, as it will become on odd-numbered pages, deduced by subtraction of the

modified initial page offset, and the specified line length, from the inferred page width), for use on even-numbered

pages; a possible implementation, for ms, might look like this:

.if duplex \{\

.\" Prepare to format for duplex printing; first reset the initial

.\" value of the page offset, to specify the effective value which

.\" is to be used on odd-numbered pages.

.\"

. if \B'*[uplex]' .nr PO *[uplex]

.\"

.\" Next, augment the bottom-of-page trap macro, to swap widths of

.\" left-hand and right-hand page margins, on each transition from

.\" odd-numbered to even-numbered page, and vice versa.

.\"

. am BT

. \" When advancing from an odd-numbered page, compute the value

. \" of the original right-hand page margin width, which will be

. \" used as the PO value on the following even-numbered page.

. \"

. ie o .nr PO 2i+\n[.l]u-\n[PO]u-\n[LL]u

.

. \" Conversely, when advancing from an even-numbered page to an

. \" odd-numbered page, we simply revert PO to its initial value.

. \"

. el .nr PO \n[PO]u

. .

.\}

With code, such as the foregoing, in place before ms output begins, a groff invocation similar to:

groff [-Tps | -Tpdf] -mspdf [-options ...] -dpaper=a4 -duplex=2.5c file ...

will set the initial PO value to 2.5 cm, which, in conjunction with the initial LL setting of 17.0 cm, accounts for

19.5 cm of the 21.0 cm page width, leaving an effective right-hand page margin of 1.5 cm, implying that 1.0 cm of

the initial 2.5 cm left-hand page margin represents the “binding allowance”; this will then alternate between left-hand

and right-hand page margins, on odd-numbered and even-numbered pages, respectively.

To assist in understanding the foregoing duplex printing initialization code, some further explanation may be useful:

• This code is intended to be interpreted at groff’s outer processing level; it must be defined, within the input

stream, to ensure that is interpreted before any output is generated.

• Although it may appear to be a specially defined option, -duplex is nothing more than an exploitation of

groff’s standard “-d” option, used to define a string named “uplex”. Similarly, “.if duplex” is

groff’s “d” logical operator, used to determine whether, or not, this “uplex” register has been defined; if it

has, it’s content is expected to represent a numeric expression, which is evaluated either as a new absolute

value for assignment as, or an increment to be added to, or subtracted from the initial PO register value.

• Within this code, all string and numeric references, as they are used in PO register assignments, are evaluated

immediately; this is particularly important within the augmentation of the BT macro, where evaluation of

initial values is required, and thus this evaluation is deliberately not deferred until this bottom-of-page trap

macro is executed, (as may be more commonly expected within macro definitions).

• The derivation of the expression, used to set the new value of the PO register, when the trap is sprung at the

bottom of an odd-numbered page, (so that it takes effect on the following even-numbered page), may not be

obvious. The total page width is not represented directly, in any groff register; however, at start up, groff
initializes the line length, as represented by the “.l” register, to a value which is two inches less than the page

width, as defined in groff’s papersize.tmac file; thus, “2i+\n[.l]u” yields the value of the actual

page width, and subsequent subtraction of both the user specified initial PO and LL values yields the effective

initial width of the right-hand page margin; when this is subsequently assigned as a new PO value, it has the

effect of interchanging the left-hand and right-hand margin widths, and thus, moves the binding allowance

alternately to the left-hand side of odd-numbered pages, and to the right-hand side of even-numbered pages.

-34-

4. The PDF Publishing Process
GNU troff, in common with other troff implementations, is a single pass document formatter; while this may

support a high level of operational performance, it does impose certain restrictions on formatting capability. In

particular, when any computed content is to be interpolated into the formatted output stream, that content must have

been computed before the point at which interpolation is to occur. Some examples of such computed content, which

cannot be interpolated with only a single formatting pass, include:–

• Interpolation of “Page n of nn” annotations within page headers, or footers; the value of the last page number,

nn, is unknown until the final page has been formatted, yet it is required before the first such annotation is to

be interpolated, (typically, when formatting the first page). At least two formatting passes are required, to

interpolate such annotations.

• Placement of a “Table of Contents” in its traditional location, without the need for manual collation, (or other

post-processing operation), after completion of troff formatting. In-place formatting of a table of contents

requires knowledge of the page numbers, to which the table of contents entries refer, at the point of

interpolation; this requires an initial formatting pass, to collect the references into an auxiliary file, which can

then be included at the appopriate location, during a further formatting pass.

• Interpolation of intra-document cross references, (especially in the case of forward references), in which the

references include page numbers, or a section numbers; as in the case of in-place table of contents

interpolation, this requires one (or more) initial formatting passes, in which reference data is collected into an

auxiliary file, for inclusion in subsequent passes. Furthermore, when publishing a PDF document, in which

cross references are to be represented as dynamic pdfhref links, the bounding box co-ordinates for such

links must be computed before the link text is interpolated; this computation is most conveniently performed

during preliminary formatting passes, captured in an auxiliary file, and subsequently reinterpreted during a

final publication formatting pass.

These single pass formatting limitations can be mitigated, by adoption of a multiple pass formatting stratagem. To

facilitate this, for publication of PDF documents, the groff program suite includes the pdfroff program26 (see

section 4.1, “The pdfroff Program”). This provides a wrapper around groff itself; it performs multiple preliminary

formatting passes, capturing reference data by filtering it from the stderr output stream, and storing it to a temporary

intermediate file. This intermediate file is then reinterpreted; along with the original document source, during each

successive pass, either until its content stabilizes, or it becomes apparent that stability is unlikely to be achieved, before

ultimate reinterpretation to produce the finished PDF document.

It may be noted that, in the absence of a mechanism for passing collected reference data from one formatting pass to the

next, multiple pass processing would serve no useful purpose. Fortunately, this is not a problem, because groff
supports two possible mechanisms for collection, and passing of reference data between passes:–

• The data may be recorded, using groff’s write request, in an intermediate file which has been explicitly

initialized by the open, (or opena), request. This technique requires groff to be run in its “unsafe” mode,

(enabled by the “-U” option), and is not supported by traditional troff implementations. Neither groff’s

pdfmark macros, nor the pdfroff command, depend on the use of this mechanism; however, users may

choose to adopt it for their own purposes, (e.g. in-line interpolation of a table of contents).

• The data may be written — either by use of the tm request, or a construct such as groff’s \O escape — to,

and filtered from, the stderr data stream. This technique is used by groff’s pdfmark macros, to report

pdfhref data, and by pdfroff, to make this available in subsequent formatting passes.

4.1. The pdfroff Program

Implemented as a Bourne shell script, and thus suitable for deployment on POSIX platforms such as GNU/Linux and

contemporary Unix systems,27 pdfroff serves as a multi-pass front-end driver for groff itself; as such, it offers

mitigation of those limitations of single-pass processing which have been identified in the preceding introduction.

26. The pdfroff program was developed in tandem with the pdfmark macros themselves, and is the tool which has been used to

format this document itself. Unavailable at the publication time of early releases of this document, later releases of groff include

support for the -T pdf post-processor, which provides similar mitigating features. Unlike pdfroff, which requires only a

Bourne shell operating environment, the -T pdf back-end is written in Perl, and thus requires an operating environment with a

functional Perl interpreter; this may limit its suitability for use on some host platforms.

27. As a Bourne shell script, pdfroff is not natively supported on MS-Windows; on this platform, it may be supported by use of a

third party application suite, such as Cygwin or MSYS, (or other alternative), which provides a Bourne shell command line

interpreter.

-35-

Besides external dependencies on some standard POSIX utilities, including cat, grep, sed, awk, and diff, together

with groff, and the GhostScript interpreter, for final production of PDF output, the implementation of pdfroff
assumes only standard Bourne shell interpreter syntax, (subject to a requirement that the shell itself must support shell

functions, expressed in terms of the original standard Bourne shell function syntax — i.e. support for interpretation of

the function keyword, as introduced by the Korn shell, and subsequently adopted by the GNU Bourne Again Shell,

is not required).

Formal documentation for pdfroff is provided in its accompanying pdfroff(1) Unix manual page.28 In common

with the majority of Unix manual pages, this documentation may be found to be rather terse; thus, a more informal

discussion, supported by examples relating to the publication of this document itself, may be found below.

4.1.1. Principles of pdfroff Operation

The operation of pdfroff may be characterized as a sequence of six distinct processing phases:–

1. Initialization: on commencement of pdfroff processing, the script sets up its shell environment, checks

for availability of each of the required cat, grep, sed, awk, groff, diff, and GhostScript helper

programs, and then parses the command line with which it was invoked. Options which are documented,

within the pdfroff(1) manual page, as being specific to pdfroff, are interpreted in place, recording

their effects within the shell environment; other options, and non-option arguments are collected into a

deferred options list, and an input files list, respectively, to be passed on for repeated processing by groff.

In the event that standard input is explicitly enumerated within the list of input files, or the input files list is

empty, (in which case standard input is considered to have been implicitly enumerated), then standard input

is read by cat, and redirected to a temporary file, whence it my be replayed, as required, into the input

stream for each subsequent groff processing pass.

2. Reference analysis: following initialization, and provided the −−no−reference−dictionary option

has not been specified, pdfroff enters a loop in which groff is executed at least twice, and at most three

times, (a fourth cycle of the loop may be initiated, but groff will not be executed within it), to compile a

reference map for the PDF document, which is to become the ultimate pdfroff output. During each of

these reference analysis passes, the ultimate groff output is discarded, while the standard error stream is

captured in a temporary file, whence reference data is filtered, to produce a reference map which is specific

to the discarded groff output; this will eventually become a reference map which reflects the final state of

the ultimate pdfroff output document.

A further, more comprehensive, description of this phase of pdfroff operation may be found in the later

section 4.1.2, “How pdfroff Resolves Cross References”.

3. Front-matter layout: executed only when the −−stylesheet=<filename> option has been specified,

and the −−no−pdf−output option has not been specified, within the list of arguments passed to the

pdfroff command, in this processing phase the specified stylesheet file, optionally augmented by

additional information which is embedded within the document input file stream, is processed by groff, to

produce a PostScript® rendition of an optional cover sheet, and additional (optional) front-matter, which is to

be placed at the beginning of the eventual PDF output document.

Once again, this phase of operation will be explored further, in the later section 4.1.4, “Using a pdfroff
Style-Sheet to Specify Document Front-Matter”.

4. Table of contents generation: this phase is always executed, unless either the −−no−pdf−output option,

or the −−no−toc−relocation option is specified, on the pdfroff command line, or as a result of

evaluation of hints within the document input file stream, this phase of operation implements a rudimentary

mechanism for collation of the final PDF output document, emulating the traditional groff technique,

whereby table of contents entries are collected into a diversion, printed at the end of the document, and

subsequently relocated manually, to their normal position between the front-matter, (if any), and the body of

the document. Methods for controlling this phase of operation are further developed, and explained in

section 4.1.5, “How pdfroff Collates Tables of Contents”.

5. Document body formatting: this phase is also always executed, unless the −−no−pdf−output option is

specified; it is responsible for formatting the body of the document, compiling it to PostScript® code, in

preparation for combination with the front-matter, and table of contents components from the preceding two

phases, to produce the final output document. Further details of this phase of pdfroff operation may be

found in section 4.1.6, “How pdfroff Formats a Document Body”.

28. See https://osdn.net/users/keith/pf/groff-pdfmark/wiki/pdfroff%281%29manpage for a PDF rendition of this manual page.

https://osdn.net/users/keith/pf/groff-pdfmark/wiki/pdfroff%281%29manpage
https://osdn.net/users/keith/pf/groff-pdfmark/wiki/pdfroff%281%29manpage

-36-

6. Final PDF document production: unless suppressed, by specification of the −−no−pdf−output option,

completion of phases 3, 4, and 5 results in the production of between one and three intermediate output files,

each of which in in PostScript® format. Regardless of whether the final output is desired in PostScript®

format, or is to be converted to PDF, this final processing phase uses the GhostScript post-processor to

combine29 the intermediate files, creating a single output document file, as described in section 4.1.7, “How

pdfroff Assembles a Finished Document”.

On completion of this processing phase, unless the −−keep−temporary−files option is in effect, all

intermediate files,30 created during the earlier phases of operation, are deleted, and pdfroff terminates.

4.1.2. How pdfroff Resolves Cross References

As has already been noted, in section 4.1.1, “Principles of pdfroff Operation”, (with the proviso that this entire phase

of operation will be suppressed, if the −−no−reference−dictionary option has been specified), pdfroff
performs iterative resolution of cross references during the second phase of its operation; a maximum of four iterations

are performed, in accordance with the following procedure:

• Before entering the first cycle of the iterative loop, the three internal shell variables, WRKFILE, REFCOPY,

and REFFILE, are defined to represent the names of three working files; the first two of these represent

temporary files, which will be named, and created using the best practicable mechanism afforded by the

operating system, to support secure read/write access for files created, and used, by shell script processes.

The third may also represent a similarly created temporary file; however, it may equally well become a

permanent output file, if the −−reference−dictionary=<filename> option is specified, in which

case it will be named accordingly.

• Having specified appropriate working file names, the file identified by the REFFILE variable is created with

no content, and that identified by REFCOPY is created with arbitrary (non-empty) content; the pdfroff
process then enters the iterative reference resolving loop.

• At the start of each cycle of the reference resolving loop, the content of the two files identified by REFCOPY,

and REFFILE is compared; if the two compare as identical, all references are deemed to have been resolved,

and the loop is terminated. (Note that this loop termination condition cannot be satisfied at commencement of

the first cycle of the loop, because the two files were initialized with non-identical content; thus, the first cycle

must always be completed, and loop termination cannot occur before the file comparison is performed at the

start of the second cycle).

• On commencement of a new loop cycle, when the preceding loop termination condition has not been satisfied,

if loop execution has entered its fourth cycle, a warning message is written to the stderr stream, and the

loop is terminated without complete resolution of references; (this is a safety measure, to prevent pdfroff
becoming stuck in an interminable loop).

• When loop execution is allowed to continue into a new cycle, the content of the file represented by the

REFCOPY variable, whether defined by initialization, or as carried forward from the immediately preceding

cycle, is discarded, and the content of the corresponding file represented by the REFFILE variable is moved

into its place; thus, at commencement of each new reference resolution cycle, the REFCOPY file represents

the content of the REFFILE file, as it stood at the end of the immediately preceding cycle, (or as initialized, if

executing the first cycle).

• Following the update of the REFCOPY file content, loop execution continues by running groff, processing

all specified input files, in their specified order, to collect analytical data relating to the eventual structure of

the finished document. The required analytical data is written to groff’s stderr output stream, as directed

by the pdfhref macro, either via tm requests, or by exploitation of groff’s extended ‘\O’ capability, as

originally developed for use by the grohtml processors, to map the page co-ordinates for pdfhref link

bounding boxes; stderr output is captured in the file designated by the WRKFILE variable, simply

overwriting any content which was collected during preceding loop execution cycles; groff’s intermediate

stdout stream data is discarded, without further processing by the grops post-processor.

• Still within the loop execution cycle, the file designated as WRKFILE is reprocessed, using a simple awk filter

to extract pertinent reference dictionary content, redirecting it into the file named by the REFFILE variable.

29. Strictly, if there is only one intermediate output file, and the −−emit−ps option is in effect, no combination is actually required;

however, the single intermediate output file is reprocessed through GhostScript, regardless.

30. If the −−reference−dictionary=<filename> option has been specified, the reference dictionary ceases to be classified as

an intermediate file, and is not deleted when pdfroff terminates.

-37-

• Although not strictly necessary for reference resolution,31 if executing the first cycle — and not repeated in

any subsequent cycle — of the reference resolving loop, the working file designated by WRKFILE is further

reprocessed, to facilitate extraction, and evaluation, of optional pdfroff processing hints, as described in

section 4.1.3, “Using In-Document Hints to Control pdfroff Processing Options”.

• As the final step, within each execution cycle of the reference resolving loop, the content of the WRKFILE is

reprocessed one final time,32 extracting dynamically propagated document content, and redirecting it into

designated files, as identified by hints from the preceding step. On completion of this final step, execution of

the reference resolving loop continues with the commencement of a new cycle.

On normal termination of the preceding loop, one further processing step is required to complete the resolution of

internal cross references, and to compile the final reference dictionary:

• The WRKFILE is processed one final time, using a further awk filter to extract any grohtml records, which

have been generated due to the placement of zero-width markers, inserted by the pdfhref macro, to mark

the position of link “hot-spots”, within the document; the awk filter extracts the page number, and page

co-ordinate references from these records, and reformats them as ‘pdfhref Z’ records, which are then

appended to the REFCOPY file, for subsequent use during the later phases of final document production.

Of the three working files, created during this phase of pdfroff processing, the WRKFILE is not required in any later

processing phase; the REFFILE may be exported as a permanent external reference dictionary, otherwise it too is of no

further use; only the REFCOPY file, which incorporates both the external, and the internal constituents of the reference

dictionary, is reused in later phases of the publishing process. Nonetheless, all three remain in place until the pdfroff
process itself terminates, when all temporary files, which the process has created, are normally33 deleted.

4.1.3. Using In-Document Hints to Control pdfroff Processing Options

Although it has been informally supported since the release of groff-1.22.3, when the spdf.tmac binding

macros for ms added the request:

.tm pdfroff-option:set toc_relocation=enabled

within the implementation of their TC macro, and pdfroff added code to retrieve the resultant output from the

reference resolving WRKFILE, to interpret the implied hint, such that the effect of the −−no−toc−relocation
option is assumed, unless the associated hint is actually present in the WRKFILE data stream, this feature was not

formally implemented until the groff-pdfmark-20230317.1 release of pdfroff.

The formal implementation, of this feature now depends on the use of the new pdfroff macro,34 with the hint in

spdf.tmac now being specified as:

.if d pdfroff .pdfroff option toc_relocation=enabled

More generally, usage of the pdfroff macro, to specify optional processing hints, takes the form:

.pdfroff option <variable-name>=<value>

with <variable-name> (currently) being restricted35 to either of toc_file, or toc_relocation, the effects of

which will be considered further, in section 4.1.5, “How pdfroff Collates Tables of Contents”, or alternatively, the

variable preserve_blank_pages, which accepts a value of toc, body, or all, to control how entirely blank

pages are processed during collation of tables of contents, within the body of the document, or in both of these contexts,

respectively, thus providing an in-document alternative to the use of the −−no−kill−null−pages option; (see

section 4.1.7, “How pdfroff Assembles a Finished Document”).

31. Releases of pdfroff, pre-dating groff-pdfmark-20230317.1, performed this hint evaluation after completion of the

reference resolution loop; however, to the extent that such hints may result in propagation of dynamically generated document

content through the WRKFILE, which may impact the reference resolution process, (e,g. due to references embedded in a

dynamically generated table of contents), the effect of this early evaluation may become significant.

32. This final step, within the reference resolution loop, was not performed in any release of pdfroff pre-dating

groff-pdfmark-20230317.1; in earlier releases, a new cycle of the loop was initiated immediately following the update of

REFFILE content.

33. Temporary files, created by pdfroff, are normally deleted on process termination, unless the −−keep−temporary−files
option has been specified.

34. The pdfroff macro is defined in the new macro file, pdfroff.tmac; this is loaded each time pdfroff invokes groff, and

is not intended to be used in any other context; doing so may produce unpredictable results.

35. The pdfroff implementations, released with groff-1.22.3 (and later), and in groff-pdfmark up to, and including,

groff-pdfmark-20230317.1, did not impose this restriction; consequently, these earlier pdfroff releases may be

vulnerable to an arbitrary code execution attack, when processing untrusted document mark-up.

-38-

4.1.4. Using a pdfroff Style-Sheet to Specify Document Front-Matter

Of the six pdfroff processing phases, identified in section 4.1.1, “Principles of pdfroff Operation”, three perform

document formatting, producing three separate output document components in PostScript® format, in preparation for

collation, and final assembly of the finished document, either as a finished PostScript® document, or, more commonly,

as a finished PDF document. In the first of these, which section 4.1.1 identifies as phase no. 3 in the enumeration of

processing phases, pdfroff applies a specified style-sheet, in conjunction with meta-data abstracted from the primary

document source file, or files,36 to format the document front-matter; this is saved, in its own individual (temporary)

PostScript® component file, to be collated, and subsequently assembled into the finished document, becoming the first

component of the finished document output file.

As already noted, in section 4.1.1, style-sheet processing is performed only if pdfroff is invoked with a command,

such as that which may have been used to format this document itself, which includes an explicit formal specification

for the “−−stylesheet=<filename>” option, in the form:

pdfroff -mspdf --stylesheet=cover.ms pdfmark.ms > pdfmark.pdf

This causes pdfroff to perform a single groff formatting pass, in which the input file “cover.ms” is read, in its

entirety, followed by front-matter specific meta-data extracted from “pdfmark.ms”, to produce an intermediate

PostScript® front-matter component file, which is saved only until it has been collated into the finished document, as

described in section 4.1.7, “How pdfroff Assembles a Finished Document”.

The input file, which is nominated as the “<filename>” argument of the “−−stylesheet=<filename>” option,

(“cover.ms” in the example above), must be provided by the document author. In the simplest practicable scenario,

this could be a basic groff input file specifying the content for the front-matter section of the single document, which

is the designated output of a single particular invocation of pdfroff; such a “style-sheet” file is simple, and requires

no additional meta-data input from the primary document source files, (“pdfmark.ms” in the preceding example), but

it does suffer from the disadvantage that it is specific to just one document, (and thus, barely merits description as a

front-matter “style-sheet”).

Although the simple front-matter formatting technique, alluded to in the previous paragraph, is compatible with the

operation of pdfroff, a more sophisticated, generic style-sheet handling capability is also supported, and may be

preferred; its principal advantage is that a single, generic front-matter style-sheet, may be suitable for use with more

than one document, with document-specific content being specified within, and conveyed from, a meta-data section

within the primary document source files. This generic style-sheet technique has been adopted for formatting of the

front-matter of this document, and usage examples may be drawn from its accompanying cover.ms style-sheet file,

and the meta-data specification within its primary pdfmark.ms source files.

When designing a generic front-matter style-sheet, careful consideration should be given to the interaction between the

style-sheet itself, and the meta-data section, or sections, which are extracted from the primary input files; in particular, it

should be noted that the style-sheet will have been read, in its entirety, before any meta-data is encountered. Thus,

while it is reasonable that the style-sheet should specify any “boiler-plate” text, which is to be reproduced within the

front-matter of any dependent document, within the style-sheet itself, such “boiler-plate” text should normally be

encapsulated within macro, or string definitions, so that its eventual output may be deferred until called out, on request

from within the document meta-data.

The meta-data, which specifies the document-specific variant content of the front-matter, and directs the formatting

activity of the style-sheet, is always read from the primary document source files; it is identified by its placement

between a pair of macro calls, to the nominally named37 macros, CS at the start of each meta-data section,38 and CE at

the end, thus:

.CS

.\" ... document-specific meta-data appears here ...

.CE

36. In this context, “primary document source files” refers to the aggregate of all input files, which are explicitly specified on the

pdfroff command line, read in the order in which they are so specified.

37. The macro names, CS and CE, are the defaults assumed by pdfroff, to mark the start, and the end of a meta-data section,

respectively. These defaults may be overridden, by assignment of alternative macro names to the CS_MACRO and CE_MACRO
environment variables respectively; however, unless there is some particularly compelling reason for it, such reassignment of the

macro names is strongly discouraged.

38. It is permissable for the primary document source files to specify more than one meta-data section, and pdfroff will interpret

them all; however, the processing of multiple meta-data sections, and in particular the execution of more than one instance of the

CE macro, introduces additional complexity to the design of the style-sheet, so it is recommended that no more than one such

section should be specified.

-39-

It may be observed that CS and CE are not defined as standard groff macros; thus the onus is placed on the document

author, and the front-matter style-sheet designer, to ensure that appropriate definitions are provided;39 furthermore,

different definitions of each macro will normally be required, when processing a style-sheet for formatting front-matter,

and when formatting normal document content.

From the foregoing, it may be inferred that the style-sheet should be implemented as a collection of macro, string, and

possibly numeric register definitions, including, as a bare minimum, implementations of the CS and CE macros, which

will drive the formatting of the document front-matter, while the document source should arrange for provision of

alternative definitions for this pair of macros, to handle embedded meta-data sections appropriately, while formatting

the remainder of the document.

In the case of normal document formatting, other than within the front-matter context, appropriate handling of

meta-data may be as simple as ignoring it. For users of groff’s “ms” macros, when these are used in conjunction with

groff-pdfmark’s spdf.tmac binding macros, as previously noted in footnote,39 suitable definitions for CS and

CE, to achieve this behaviour, are provided, without the need for any specific provision by the document author; for

those who do not wish to, or simply cannot, use spdf.tmac, equivalent behaviour — without error handling — may

be achieved by providing macro definitions similar to:

.de CS

. ig CE

..

.de CE

..

Conversely, the front-matter style-sheet must implement alternative definitions for both CS and CE, together with

definitions for any other macros which are intended to be called out from the document’s meta-data section, (or

sections); the aggregate effect of calling such style-sheet macros, from the document’s meta-data sections, beginning

with the first CS call, and ending with the last40 CE call, and ignoring all other content of the document source files,

should result in formatting, and output of the front-matter component of the finished document. Typically, the

style-sheet should define the CS macro, initially, to set up the page layout controls for formatting the cover sheet, (if

any), and any such controls which may also apply throughout the document’s front-matter; for example, a style-sheet

for use in conjunction with groff’s ms macros — based on the implementation of the style-sheet for this document

itself — might define the CS macro to be something like:

.de CS

. nr HM 0

. nr PO 2.1c

. nr LL 17.1c

. nr HY 0

. nr PS 24

. nr VS 30

. nop

. sp |5.9c

. CD

. fam T

..

anticipating that the first meta-data section encountered will commence with a specification of text, which is to be set as

a centred 24pt title block, in Times-Roman font, and which is to be placed 5.9cm below the top edge of the first page of

the front-matter, (which will take the form of a cover sheet).

To complement the CS macro definition, a definition for the CE macro is also required. Continuing the preceding

example, and again with reference to the usage within this document itself, (which uses only one embedded meta-data

39. The spdf.tmac macro package does provide definitions of CS and CE, with CS having an effect equivalent to that of “.ig CE”,

and CE serving as a do-nothing macro, (albeit with the addition of diagnostic checks in both, to ensure that CS and CE are correctly

paired at point of use), for marking the end of the ignored block. The effect of these definitions is that meta-data sections will not

be interpreted, in any way, during normal document processing, which may be suitable for many documents; however, alternative

definitions will surely be required, within any front-matter style-sheet.

40. While the first CS call is trivially easy to identify, it is the difficulty of recognizing the last CE call which complicates the handling

multiple meta-data sections, and hence, why use of multiple such sections is not recommended.

-40-

section), the CE macro picks up the front-matter formatting towards the bottom of the cover sheet, adding an image, the

stipulated front-cover text, and ultimately, proceeding to incorporate a copyright assignment page:

.de CE

. DE

. sp |17.5c

. PSPIC gnu.eps

. nr PS 19

. CD

. fam H

. tkf HR 10z 2p 20z 4p

. nop \H’-4z’A GNU MANUAL\H’0’

. DE

. \" ... additional macro code follows here ...

. \" ... this may, for example, add a copyright assignment page ...

. \" ... or any other appropriate front-matter content ...

..

Notice that, in this particular example, the CS macro ends, leaving an open CD display block, (i.e. a standard ms centred

display); the complementary CE macro assumes that this will have remained open, and immediately closes it, before

proceeding with the image output. Any meta-data content, which has been specified between the opening CS call, and

its corresponding CE, will be processed after completion of the CS call, and before commencement of the CE. This

may include directly specified text, to be formatted within the open display block, or other macro calls, which will be

executed as encountered; if any of this meta-data content causes the initial centred display block to be closed, then it is

assumed that a new display block — not necessarily centred — will have been opened, before control passes to CE; any

meta-data content, which is to be formatted after control has been passed to CE, must be saved — in string space, for

example — so that it may be reinterpreted during execution of CE.

An examination of the source mark-up for this document, which is provided in the accompanying pdfmark.ms
(primary source), and cover.ms (style-sheet) example files, will reveal that the embedded meta-data does, indeed,

depend on additional macros, beyond the required CS and CE implementations. All of these additional macros,

(including some which replace standard ms implementations), are defined within cover.ms; it may be observed that

all, both in implementation and in usage, comply with the requirements laid out in the preceding paragraphs.

4.1.5. How pdfroff Collates Tables of Contents

When formatting documents with troff, and directing output to a hard-copy typesetting device, a traditional method

of generating tables of contents is to collect copies of the section headings, and their corresponding page numbers, in a

diversion, which is printed at the end of the document, whence it is then physically separated, and manually moved to

its natural position, immediately following the front-matter. This technique can be readily supported by groff, and

remains useful for generation of tables of contents; although awkward to automate, and alternative techniques, such as

those which will be described in section 4.4, “Alternative Techniques for Generating Tables of Contents”, may offer

better performance, it does serve as the default basis for table of contents collation, used by pdfroff.

To facilitate separation of the formatted table of contents from the formatted document body, pdfroff invokes groff
twice more, after completion of the reference resolution phase, (see section 4.1.2, “How pdfroff Resolves Cross

References”), to format, and temporarily save, two intermediate PostScript® copies of the complete document; the first

of these will ultimately become the table of contents component, to be assembled together with, and preceding the

second, which will become the main document body, with both preceded by the front-matter (if any), to create the

finished document, (see section 4.1.7, “How pdfroff Assembles a Finished Document”).

As previously noted, in section 4.1.1, “Principles of pdfroff Operation”, where it is enumerated as phase no. 4 in the

sequence of operations, pdfroff’s default table of contents generation procedure is automatically executed, unless

steps are taken to disable it. It may be disabled:

• Explicitly, by specifying the −−no−toc−relocation option, when the pdfroff command is invoked.

• Implicitly,41 if no toc_relocation=enabled hint is detected, when resolving references; (however, it is

implicitly assumed that this hint is present, if the −−no−reference−dictionary option is specified, in

which case, no reference resolution is performed).

41. Implicit control of toc_relocation was first introduced for the groff-1.22.3 release; it is unsupported in earlier releases.

-41-

When pdfroff runs groff, to generate a separate table of contents component, which will eventually be combined

with the front-matter component (if any), and the document body component, to assemble the document in its finished

form, it indicates the intent of this phase of operation by passing a “−rPHASE=1” register assignment option. The

effect of running groff, in the absence of any special consideration of this PHASE assignment, might be expected to

be the production of a formatted copy of the complete document, with the table of contents placed at the end, whereas,

what is required for final document assembly, is to discard the entire document body, which precedes the table of

contents in this formatted component, leaving only the formatted table of contents, as its effective residual substance.

To facilitate the eventual removal of document body content, from the table of contents component, pdfroff expects

the document author to make arrangements to place groff in its “pen-up” output state, (selected by placing a \O[0]
escape in the input stream), before the body content, and to restore the “pen-down” state, (by complementary placement

of a \O[1] escape), at the start of the table of contents, when the PHASE register is defined, with a value of one. Such

arrangements may be made, conveniently, within a macro package which controls the overall document format, (for

example, spdf.tmac handles the arrangements automatically, without any requirement for further intervention by the

document author, when the table of contents entries are specified using the XS, XA, and XE macros, and the table of

contents, itself, is eventually output using the TC macro).

Of course, pdfroff does not impose a requirement for the exclusive selection of spdf.tmac as the primary macro

package for document formatting. It may be practicable to adapt any primary macro package, of the document author’s

choice, to emulate spdf.tmac’s behaviour; alternatively, if the document author deems it impractical to adapt the

chosen macro package, the required emulation may be achieved directly within any document’s input data stream. In

either case, some basic ground rules must be respected:

• Neither any macro package, nor any document’s input data stream, is permitted to interfere with pdfroff’s

assignment of the PHASE register; it should never be set, or modified in any way, other than as a result of

direct assignment by pdfroff itself.

• Initialization of groff’s output state controls must be completed, before commencement of the output of the

first page of the formatted document; this initialization may be achieved, most conveniently, by inclusion of

mark-up42 similar to:

.mso opmode.tmac

.

.nr PDF-TOC-ONLY 1

.nr PDF-BODY-TEXT 2

.

.OP \n[PDF-BODY-TEXT]

early in the document input data stream, or better still, within a macro package, such that it will be executed

soon after the start of groff processing, and in particular, before any output is generated; this ensures that

groff starts in the correct output state, with respect to pdfroff’s PHASE register, for collection of table of

contents data, within its own diversion, based on mark-up within the body of the input data stream.

• When the input data stream has been fully processed, the table of contents diversion should be closed, and, in

preparation for flushing it to the output, a new page should be started, and the output state should be adjusted,

by execution of:

.OP \n[PDF-TOC-ONLY]

after which, the substance of the table of contents diversion should be written, together with any desired page

headings, and footers, to the document output stream. For convenience, consideration should be given to

encapsulation of this entire sequence of steps, which is required to prepare for, and to complete the output of

the table of contents, in a macro which is analogous to spdf.tmac’s TC; this may then simply be invoked at

the end of the input data stream. Such consideration is particularly recommended when writing a primary

macro package, or a binding macro package, which is intended to be used in conjunction with pdfroff.

The effect of the OP macro, as used in the foregoing, is to insert a \O[1] escape into the input stream, when the value

of its single argument is equal to the value of pdfroff’s PHASE register,43 and a \O[0] escape otherwise, while

recording the effective output state in a register called OPMODE. Thus, within pdfroff’s table of contents collation

phase, the initial OP invocation, with an argument value which is equivalent to 2, generates the required \O[0]
escape — which does not actually eliminate the document body, but causes groff to emit one entirely blank page for

each page of body content — while the second invocation, with an argument value equivalent to 1, inserts a \O[1]

42. This example mark-up depends on the opmode.tmac helper macro package, which is distributed as an integral component of

groff-pdfmark-20230317.1, and later releases; it is backwardly compatible with earlier groff releases of pdfroff.

43. If the PHASE register is not defined, the OP macro simply records an effective output state of 1, in OPMODE, but does not insert any

\O escape sequence, into the input data stream, and thus, does not change groff’s actual output state.

-42-

escape, resulting in output of the formatted table of contents; the initial blank pages are subsequently removed during

final document assembly, (see section 4.1.7, “How pdfroff Assembles a Finished Document”).

4.1.6. How pdfroff Formats a Document Body

To format the body of any document, pdfroff repeats the default groff process that it uses for collation of a table of

contents, (as described in section 4.1.5, “How pdfroff Collates Tables of Contents”), except that the PHASE register

is set to a value of two, (rather than the value of one, which is used when generating a table of contents), by the

assignment “-rPHASE=2”, which is passed as a command line argument when pdfroff invokes groff, and the

ensuing groff output is written to a differently named intermediate output file. The effect of changing the PHASE
register assignment, assuming that the OPMODE controls are implemented, and managed as previously described in

section 4.1.5, is to place groff in its “pen-down” output state when formatting the document body, and then to switch

to the “pen-up” state, only if processing ultimately progresses to the output of an appended table of contents.

An important consideration, for authors writing documents to be formatted by pdfroff, or for those implementing

macro packages to facilitate this, is that the default formatting process expects a single input data stream, in which the

document body will be processed first, and a table of contents will be appended, at the end. This input data stream will

be read twice, to produce two separate intermediate output files, which will eventually be conjoined, (see section 4.1.7,

“How pdfroff Assembles a Finished Document”), to produce a single final output document file.

If the document author, or the macro package implementor, neglects the interpretation of pdfroff’s PHASE register

assignment, or the implementation of the associated OPMODE handling described in section 4.1.5, the two intermediate

output files will exhibit identical content, and their conjunction will result in a finished document which contains two

copies of the formatted document body, each of which will be followed by a copy of the formatted table of contents.

Conversely, when pdfroff’s PHASE register interpretation, and OPMODE handling have been appropriately addressed,

the intermediate output with PHASE=1, as already noted in section 4.1.5, will comprise a sequence of entirely blank

pages, followed by the formatted table contents, while that for PHASE=2 will contain the desired formatted document

body, which will then be followed by a further sequence of blank pages, with one corresponding to each and every

non-blank page of the table of contents. Conjunction of this pair of intermediate files will result in the desired content,

in the final document file, but it will be padded by a (possibly very large) number of blank pages; these blank pages are

normally unwanted; they will be removed in the final document assembly process, (see section 4.1.7, “How pdfroff
Assembles a Finished Document”).

An interesting possibility, when formatting a document body, is that, even when the input stream has been configured to

generate the document body output, with appended table of contents, and a sequence of blank pages, corresponding to

the pages of the document body, is required at the beginning of the table of contents intermediate file, it is not actually

necessary to emit the sequence of appended blank pages which would correspond to the pages of the table of contents,

when generating the document body intermediate file. In fact, it is fairly straightforward to test the effective value of

the PHASE register, and to omit the formatting of the appended table of contents, when the register value is two, or

greater. This optimization44 may be performed, either within, and at the end of, the document source:

.ie d pdfroff \{\

. ie \n[PHASE]>1 .nr DO-TOC 1

. el .nr DO-TOC 0

.\}

.el .nr DO-TOC 1

.if \n[DO-TOC] \{\

.\" ... code to emit formatted table of contents goes here ...

.\}

or, perhaps more conveniently, within a table of contents formatting macro, such as, for example, in spdf.tmac’s

implementation of its TC macro:

.de TC

.if d pdfroff .if \\n[PHASE]>1 .return

.\" ... code to emit formatted table of contents goes here ...

..

which then requires only that the document source ends by calling this TC macro.

44. These examples assume that the table of contents should always be output, except within the scope of pdfroff’s document body

formatting procedure, when they may be optimized out. Notice that there is no check for existence of the PHASE register, before

testing its value, (as might be considered desireable to avoid groff warnings); no such check is necessary, because pdfroff
guarantees that the register will have been defined, in any context in which a user-visible warning could be raised, so checking for

pdfroff alone is sufficient.

-43-

4.1.7. How pdfroff Assembles a Finished Document

After pdfroff has completed each of the processing phases, enumerated as phase no. 1 to phase no. 5 in section 4.1.1,

“Principles of pdfroff Operation”, at least one, and at most three intermediate PostScript® output files will have been

created, (in addition to the temporary files designated by the WRKFILE, REFFILE, and REFCOPY shell variables). If

only one intermediate output file is created, it must be the document body component; if more than one such file is

created, one must be the document body component, while any others may be either one of, or both of a front-matter

component, and a table of contents component. In this final phase of pdfroff processing, the entire complement of

created intermediate output files is conjoined, in the order:

• Front-matter component (if present);

• Table of contents component (if present);

• Document body component

to assemble the finished output document, either merging all component content into a single PostScript® document, (if

the −−emit−ps option has been specified), or normally, merging all content, and simultaneously converting to PDF.

Depending on the particular complement of intermediate output files which have been created, document assembly

proceeds as follows:

• If a front-matter intermediate output file has been created, its content is simply copied, without change, to the

beginning of the final output file.

• As has been noted previously, in section 4.1.5, “How pdfroff Collates Tables of Contents”, if a table of

contents intermediate output file has been created, it will contain the formatted table of contents, but this will

be preceded by a sequence of blank pages, with one blank page for each page in the document body; these

blank pages will (usually) not be wanted in the finished document, so, before merging this intermediate file

content, it is passed through a sed filter, to remove them; the residual comtent is then copied into the final

output file, either following the front-matter, if present, or otherwise, at its beginning.

• Finally, the content of the document body is read from its respective intermediate output file, and merged into

the final output file, following any content which had previously been merged from front-matter and table of

contents intermediate output files; as in the case of table of contents intermediate output, this document body

output is also passed, by default, through the same blank page removal sed filter.

It may be observed that, by default, pdfroff will filter both the table of contents intermediate output, if any, and the

document body intermediate output, to remove blank pages. While the intent of this is to discard phantom blank pages,

which precede the actual table of contents, and which follow the document body, it must be understood that it will

actually remove all blank pages — both those which promote this intent, and any others which may appear within the

table of contents, and the document body. This may, or may not, be desireable behaviour — it probably is, within the

table of contents, but is less so within the document body, especially if the trailing blank pages, resulting from “pen-up”

formatting of an appended table of contents, have been optimized out, as suggested in section 4.1.6, “How pdfroff
Formats a Document Body”.

Some control of blank page removal may be achieved by specification of the −−no−kill−null−pages option — or

−−no−kill−null−pages[=<whence>], from the groff-pdfmark-20230406.1 release onwards — on the

pdfroff command line, or alternatively, and once again, only from the release of groff-pdfmark-20230406.1
onwards, by use of the preserve_blank_pages=<whence> in-document hint. When supported, the <whence>
argument may take a value of “toc”, “body”, or “all”, with “all” being the default, and equivalent to the original

behaviour; its effect is to suppress removal of all blank pages originating from the table of contents intermediate output

file, and from the document body intermediate output, which is probably not the desired effect. More useful behaviour

may be to retain the default removal of blank pages originating from the table of contents intermediate output, while

suppressing it for those originating within the document body; this may be achieved by inv oking pdfroff with a

command such as:

pdfroff --no-kill-blank-pages=body ...

or by including the equivalent in-document hint:

.pdfroff option preserve_blank_pages=body

within the document source file, (perhaps making it conditional on some appropriate condition, such as selection of a

duplex printing configuration, for example).

-44-

4.2. Preparing Documents for On-Screen Reading versus Hard-Copy Printing

When preparing a PDF document, which is to be optimized for reading on a video display screen, it is reasonable to

make formatting choices such as:

• Set up of the page layout, such that the left-hand and right-hand margins are of equal width, and remain

unchanged between formatting of recto (odd-numbered) pages, and verso (even-numbered) pages; such a

layout may be conveniently, and simply, achieved by assignment of suitable, and invariant, values for

groff’s page offset, and line length settings.

• Elimination of entirely blank pages. These, (especially in the case of blank verso pages), may be inserted

when formatting for printing on a duplex-capable hard-copy output device, to ensure that new chapters, or

major sections, commence on a new recto page; however, they serve little purpose, and can be distracting,

when reading a document on-screen. The elimination of such blank pages is performed automatically, by

pdfroff, unless this capability is disabled explicitly, by the user.

Conversely, when preparing a PDF document which is suitable for subsequent printing on a hard-copy typesetting

device, different formatting choices may be more appropriate; for example:

• A wider page margin may be desired, on whichever side of each page will lie adjacent to the spine, to provide

a “binding allowance”, when the document is to be bound; any such “binding allowance” should be added to

the nominal page offset, on recto pages, and deducted from it, on verso pages.

• When the typesetting device supports duplex printing, (i.e. printing on both recto and verso pages), and this

mode of printing is to be used, then any blank (normally verso) pages which have been inserted, to force the

following content to appear on a particular side of the printed page, must be preserved within the PDF

document structure. When using pdfroff, to format the PDF document, such blank pages will normally be

eliminated; the --no-kill-null-pages option, or its corresponding preserve_blank_pages
in-document hint must be specified, to override pdfroff’s default behaviour.

4.2.1. Establishing a Page Layout for On-Screen Reading

When preparing a PDF document, which is ultimately intended for reading on a video display screen, the page layout

will normally be characterized by arrangement of text between equal width margins, on both left-hand and right-hand

sides of the page; these margins will, typically, be defined at the start of document processing, and, aside from local

internal variations in indentation, will remain unchanged throughout the document, without regard to whether any

individual page would be printed as a recto (odd-numbered) page, or a verso (even-numbered) page.

The mechanics of setting the left-hand and right-hand page margins depend on the user’s choice, if any, of document

formatting macro package. Fundamentally, the left-hand margin is equivalent to whatever page offset may have been

set, by invocation of troff’s “.po” request, the text width is set by invocation of troff’s “.ll” request, (with an

alternative width for three-part titles, set by the “.lt” request), and the right-hand margin is simply the remnant of the

physical page width,45 after deduction of the page offset and text width. Typically, users do not invoke these

fundamental troff requests directly, but rely on the features of a higher level macro package to invoke them when

appropriate, to apply user-defined settings, which are established in numeric registers; for example, the ms macro

package will invoke the “.po” request, to achieve the effect of

.po \n(POu

at the start of every new page, thus setting the effective left-hand margin for the page, to whatever value the user has

assigned to the PO register; similarly, it will invoke the “.ll” request, with the effect of

.ll \n(LLu

on each paragraph transition, (in conjunction with other local adjustments, based on the settings of other layout control

registers),46 to maintain the fundamental text width at whatever value the user has assigned to the LL register.

It may be observed, from the foregoing, that setting up an overall page layout, which is suitable for on-screen reading, is

normally a one-time process; once established, at the start of the document formatting process, other than when making

localized temporary indentation adjustments, there is usually no need to change it.

45. Traditional troff provides no user-visible indication of the physical page width. GNU troff does define a page width, at

start-up, based on standard paper size specifications, but it does not make this directly visible to the user; it may be indirectly

inferred, immediately after start-up, before any subsequent “.ll” request has been invoked, by adding two inches to the initial

value stored in the “.l” register.

46. Details of all page layout control registers, as used by the ms macros, may be found in the groff_ms(7) manual page. Similar

details, relating to other macro packages, should be available in their respective documentation.

https://manned.org/groff_ms.7

-45-

4.2.2. Establishing a Page Layout for Hard-Copy Typesetting

For the most part, when it is ultimately intended that a PDF document will be printed, on some hard-copy typesetting

device, the mechanics of establishing the overall page layout are identical to those which have been described already,

in section 4.2.1, “Establishing a Page Layout for On-Screen Reading”; a fundamental difference arises, only in the case

where it is desired to add a “binding allowance” to either the left-hand, or the right-hand page margin.

When such a “binding allowance” is desired, the adjustment to the set-up of the page layout may be trivial, or relatively

more complex, depending on whether:

• The ultimate output is to be printed one-sided, (typically as recto-only pages, each with blank verso): in this

case, the “binding allowance” will be added to the left-hand page margin only, requiring no more than a trivial

increment, equivalent to the width of the “binding allowance”, in the initial assignment of the page offset,

(which automatically results in a corresponding reduction in the width of the right-hand page margin); as in

the case of the on-screen layout, this one-sided printing layout requires no subsequent adjustment.

• The ultimate output is destined for two-sided printing, (on both recto and verso pages): in this case, the set-up

of the page layout becomes relatively more complex, because the “binding allowance” must be added to the

underlying page offset, to set a wider left-hand margin on recto pages, but must be deducted from it, to set a

correspondingly narrower left-hand margin on verso pages; consequently, the page offset must be adjusted, at

the start of every page, to achieve the desired alternation of left-hand and right-hand margin widths.

Neither traditional troff, nor groff, provide a standard method for configuration of the required margin

width alternation; it is achievable, however, through page traps, which must be appropriately specified by the

user. Section 3.1.3 “Layout Adjustment to Support Duplex Printing” provides an illustration of how this may

be implemented, when using the ms macros, by exploiting the existing bottom-of-page trap to adjust the PO
register setting at the bottom of every page, such that it will take effect, to adjust the page offset as required, at

the start of the following new page; this technique should be adaptable for use with other macro packages, or

ev en within a user-defined trap, should the user choose to rely on basic groff requests alone.

4.2.3. Ensuring that Content is Printed on a Particular Side of the Page

When printing a document, in a duplex format, style conventions may dictate that certain sections, such as tables of

contents, body content, and also any appendices, any collected bibliographic references, and any index entries, which

may be present, should always begin on a particular side of the page, (usually the recto); such conventions may, or may

not, be extended to require that indiviual chapter headings, or major section headings, should also be placed on a

particular side (again, usually the recto) of a new page. When such conventions are applied, the usual practice is to

insert a page break immediately before the content which is to be so placed; however, if the content which immediately

precedes this page break is already being printed on the side of the page, on which it is desired to place the following

content, then one page break will not suffice; it will be necessary to add a second, so as to insert a blank page, and thus

ensure that printing resumes on the appropriate side of the next available new page.

As we’ve already seen, in section 3.1.3, “Layout Adjustment to Support Duplex Printing”, groff’s “.if o” request

may be used to detect when document output is currently being directed to a recto page, (and conversely, the “.if e”

request may be used to detect output to a verso page); thus, we may define specialized page break macros similar to:

.de NEW-RECTO-PAGE

.\" Insert a page break, resuming output at the top of the

.\" next available new recto (i.e. odd numbered) page.

.\"

. ADVANCE-TO-NEW-PAGE o

..

and:

.de NEW-VERSO-PAGE

.\" Insert a page break, resuming output at the top of the

.\" next available new verso (i.e. even numbered) page.

.\"

. ADVANCE-TO-NEW-PAGE e

..

Each of these page break macros simply delegates its operation to the generalized “ADVANCE-TO-NEW-PAGE” helper

macro, passing either groff’s “o”, or “e” page number property comparison operator, as argument, to specify whether

output should resume on a new recto page, (odd numbered page), or a new verso page, (even numbered page),

-46-

respectively. A tentative, and perhaps a naïvely simplistic, implementation for such a generalized helper macro might

be defined as simply as:

.de ADVANCE-TO-NEW-PAGE

.\" Insert page breaks, as required, to resume output at the

.\" top of the next available new recto page, or new verso page,

.\" as determined by the passed argument, (which MUST be either

.\" of groff’s conditional operators, "o" or "e").

.\"

.\" Usage: .ADVANCE-TO-NEW-PAGE o \" NEW-RECTO-PAGE

.\" .ADVANCE-TO-NEW-PAGE e \" NEW-VERSO-PAGE

.\"

. if \\$1 .bp \" need to skip an entire page

. bp \" advance to desired new page

..

Depending of the behaviour of any suite of macros, (whether standard, or user-defined), which has been chosen to

control the document layout, this simplistic “ADVANCE-TO-NEW-PAGE” macro implementation may require some

refinement. For example, when the ms macros are being used, this naïvely simplistic implementation will not result in

the intervening verso page being skipped over, when the “NEW-RECTO-PAGE” macro is invoked while groff is

already processing output which is to be printed, or otherwise displayed, on a recto page.

It may seem surprising that the preceding trivial implementation of the “ADVANCE-TO-NEW-PAGE” macro should

fail, in the manner described, when used in conjunction with the ms macros, under the circumstances as described;

however, giv en a basic understanding of the operation of page transition traps, in ms, the failure may be anticipated, and

moreover, it is readily explained:

• When the “NEW-RECTO-PAGE” macro is invoked, during processing of a recto page, interpretation is

redirected to the “ADVANCE-TO-NEW-PAGE” macro, with the “o” argument specified.

• On entering the “ADVANCE-TO-NEW-PAGE” macro, the expression “.if \\$1 .bp” is interpreted as

“.if o .bp”; since this is being evaluated within the processing context of a recto page, (which has an odd

page number), the “.if o” condition evaluates as “true”, so the conditional “.bp” request is invoked.

• Inv ocation of the conditional “.bp” request causes the output position to advance to the bottom of the current

recto page, (thus invoking any intervening traps, from the initial output position down to, and including, the

bottom-of-page trap), and thence onwards to the top of the following verso page, whence ms arranges for

activation of groff’s “no-space” mode.

• Following invocation of the conditional “.bp” request, the “ADVANCE-TO-NEW-PAGE” macro then issues a

further unconditional “.bp” request, with the intent of advancing the output position further towards the

bottom of the new verso page, and beyond, ultimately placing it at the top of the immediately following recto

page. Unfortunately, by the time this unconditional “.bp” request is issued, “no-space” mode has already

been activated, and consequently, since this “.bp” request is issued without any explicitly specified new page

number argument, it is ignored,47 and the output position remains at the top of the verso page, whence normal

output will eventually resume.

Having established that the preceding, naïvely simplistic implementation of an “ADVANCE-TO-NEW-PAGE” macro

may be vulnerable to failure, when “no-space” mode may become active during its execution, (and furthermore, having

established that this vulnerability is not specific to use in conjunction with the ms macros, or indeed with any particular

macro suite), it behooves us to refine the “ADVANCE-TO-NEW-PAGE” macro implementation, in order to eliminate the

vulnerability. To achieve this, we might consider refinements such as:

• Following invocation of the conditional “.bp” request, which implements the first of two page advances, in

any case when two are required, insert an explicit “.rs” request, to explicitly deactivate “no-space” mode

before the second “.bp” request is invoked, thus ensuring that this is not ignored.

• As an alternative to the preceding option, implicitly deactivate “no-space” mode, following the first of the two

“.bp” request invocations, and prior to the second, by writing some arbitrary, but invisible output to the

intermediate output page; implicitly, this has the same effect as insertion of the “.rs” request, but it is less

47. This is not a defect in the ms macros; rather, it is a natural consequence of the design decision to activate “no-space” mode at the

top of each new page — a perfectly legitimate design choice, which is intended to eliminate the output of any block of redundant

vertical space, immediately following a transition to a new page. Furthermore, although this issue has been identified in the context

of interoperation of the “ADVANCE-TO-NEW-PAGE” macro, as defined, and the ms macros, similar behaviour will be observed in

any context in which “no-space” mode is activated, following page transitions.

-47-

elegant, more cumbersome to implement, and its intent is less obvious, so it may be a less favourable method

of achieving the desired effect.

• Rather than attempting to manipulate “no-space” mode, as both of the preceding options do, modify the form

of the second, (i.e. the unconditional, or maybe even both), of the internal “.bp” requests, such that the form

becomes “.bp <page-number>”; unlike the form of the “.bp” request without arguments, this form, with

the “<page-number>” argument, is not ignored, whether “no-space” mode is active, or not.

Any one of these modifications will offer an effective solution to the identified “no-space” mode failure of our original

“ADVANCE-TO-NEW-PAGE” macro implementation; of the three, the first is the most convenient, and perhaps also the

most obvious to adopt; the second would require a more cumbersome, yet a less obvious implementation, but it offers

no particular advantage over the first, so it probably merits no further consideration. Conversely, although it will

necessitate a significantly more complex implementation — keeping track of suitable page numbers, for use as

arguments to the “.bp <page-number>” requests, may present something of a challenge — the third option for

refinement of the “ADVANCE-TO-NEW-PAGE” macro implementation may offer some behavioural advantages, over

the features accorded by the simpler first option; we will explore some of these potential advantages, with particular

reference to document formatting using the ms macros, in section 4.2.3.1, “Recto-Verso Page Break Handling when

Using the ms Macros”.

Notwithstanding that adoption of the third of the preceding “ADVANCE-TO-NEW-PAGE” macro refinement options

may be advantageous, the simplicity and elegance of the first option may still offer a compelling reason for considering

it. The refined implementation is straightforward:

.de ADVANCE-TO-NEW-PAGE

.\" Insert page breaks, as required, to resume output at the

.\" top of the next available new recto page, or new verso page,

.\" as determined by the passed argument, (which MUST be either

.\" of groff’s conditional operators, "o" or "e").

.\"

.\" Usage: .ADVANCE-TO-NEW-PAGE o \" NEW-RECTO-PAGE

.\" .ADVANCE-TO-NEW-PAGE e \" NEW-VERSO-PAGE

.\"

. if \\$1 \{\

. \" Current page faces as does the desired output target,

. \" so we need to skip an entire opposing page.

. \"

. bp \" advance to new opposing page

. rs \" get out of "no-space" mode

. \}

. bp \" advance to desired new page

..

and, with this modified implementation in place, the original “NEW-RECTO-PAGE” and “NEW-VERSO-PAGE” macros

will each introduce either one or two page breaks, as required, to resume output on the respectively appropriate side of

the next available, and suitably facing, new page.

4.2.3.1. Recto-Verso Page Break Handling when Using the ms Macros

Provided that the “ADVANCE-TO-NEW-PAGE” macro refinement, to correctly handle “no-space” mode effects, has

been incorporated, the simple “NEW-RECTO-PAGE” and “NEW-VERSO-PAGE” macros, as developed in the preceding

section, will correctly introduce the appropriate number of page breaks, such that output resumes on the next available

new recto page, or new verso page, respectively; why then, might we wish to consider adoption of a more complex

technique for introduction of such page breaks?

One reason why we may wish to adopt the more complex technique is that, when two page breaks are required to

advance to the appropiately facing page, any traps which are specified on the intervening page will be processed, as the

output position advances down that page; when such traps result in the output of page headers, or footers, or both, as

will be the norm when formatting with a macro suite such as ms, these headers, or footers, or both will be printed on the

otherwise blank page. Thus, this intervening page will not be completely blank, so will not be considered as a candidate

for pdfroff’s blank page removal procedure; it may become a distraction when formatting for on-screen viewing.

By default, ms does not specify page footers; it does specify a single-line page header, displaying the page number at

the centre-top of each page, except that this header is omitted, in its entirety, on any page having a page number of one,

(unless such header omission is explicitly overridden). This suggests a possible technique, suitable for use with ms

-48-

when its default page header and footer policy is in effect,48 by manipulating the effective page numbers around the page

break, to ensure that any intervening blank page remains entirely blank; this might be achieved, within a modified

variant of the “ADVANCE-TO-NEW-PAGE” macro, by initially saving the actual page number prior to the page break,

followed by a temporary change of effective page number, to one, when issuing the first (conditional) page break

request, and ultimately, restoring the original actual page numbering sequence, when issuing the second (unconditional)

page break request:

.de ADVANCE-TO-NEW-PAGE

.\" Insert page breaks, as required, to resume output at the

.\" top of the next available new recto page, or new verso page,

.\" as determined by the passed argument, (which MUST be either

.\" of groff’s conditional operators, "o" or "e").

.\"

.\" Usage: .ADVANCE-TO-NEW-PAGE o \" NEW-RECTO-PAGE

.\" .ADVANCE-TO-NEW-PAGE e \" NEW-VERSO-PAGE

.\"

. nr \\$0.% \\n% \" save current page number

. if \\$1 \{\

. \" Current page faces as does the desired output target,

. \" so we need to skip an entire opposing page.

. \"

. nr \\$0.% +1 \" update to skipped page number

. bp 1 \" skip, numbering as page one

. \}

. bp \\n[\\$0.%]+1 \" advance, restoring page number

. rr \\$0.% \" clear saved page number

..

Notice that, with this modification, it is unnecessary to explicitly cancel “no-space” mode after the conditional page

break, because the following unconditional “.bp \\n+[\\$0.%]” request will cause a further page break, even when

“no-space” mode is in effect. However, there is a potential pitfall with this modification: it will not work if the effective

format for the page number register has been assigned as anything other than decimal numerals! To avoid this pitfall, it

is necessary to temporarily force the page number register to a exhibit decimal numeric format, within the scope of

execution of the “ADVANCE-TO-NEW-PAGE” macro, for example, by encapsulating the simple request:

. nr \\$0.% \\n% \" save current page number

(which itself requires the page number to be expressed in decimal numeric format), within an extended sequence of

requests, such as:

. af \\$0.% \\g% \" save page number format

. af % 0 \" interpret as decimal numeric...

. nr \\$0.% \\n% \" to save its current value

. af % \\g[\\$0.%] \" restore its original format

Furthermore, when the subsequent request:

. bp \\n[\\$0.%]+1 \" advance, restoring page number

is eventually interpreted, the saved page number must be expressed in decimal numeric format; thus, it is convenient to

further extend the request sequence, for saving the original page number format and value, completing it by appending

the additional request:

. af \\$0.% 0 \" keep saved value as decimal

48. The default page header and footer policy ceases to be in effect, if the (effectively irreversible) “.P1” macro has been called, thus

overriding the omission of page one headers, and so causing the page header to be printed on any subsequent page numbered one,

(which would include those introduced by the conditional page break, within the “ADVANCE-TO-NEW-PAGE” macro), or if any

of the page header or page footer trap macros have been redefined, or if any page footer text has been defined. If any such policy

changes are in effect, the modified “ADVANCE-TO-NEW-PAGE” macro would need to take steps to nullify them; such steps could

significantly add to the required complexity of the macro. Details of the additional complexity, which would be necessary, depend

on the precise nature of the departure from the default policy, within each individual document, and thus are left to the ingenuity of

the publisher of the document to devise.

-49-

Thus, the modified form of the “ADVANCE-TO-NEW-PAGE” macro becomes:

.de ADVANCE-TO-NEW-PAGE

.\" Insert page breaks, as required, to resume output at the

.\" top of the next available new recto page, or new verso page,

.\" as determined by the passed argument, (which MUST be either

.\" of groff’s conditional operators, "o" or "e").

.\"

.\" Usage: .ADVANCE-TO-NEW-PAGE o \" NEW-RECTO-PAGE

.\" .ADVANCE-TO-NEW-PAGE e \" NEW-VERSO-PAGE

.\"

. af \\$0.% \\g% \" save page number format

. af % 0 \" interpret as decimal numeric...

. nr \\$0.% \\n% \" to save its current value

. af % \\g[\\$0.%] \" restore its original format

. af \\$0.% 0 \" keep saved value as decimal

. if \\$1 \{\

. \" Current page faces as does the desired output target,

. \" so we need to skip an entire opposing page.

. \"

. nr \\$0.% +1 \" update to skipped page number

. bp 1 \" skip, numbering as page one

. \}

. bp \\n[\\$0.%]+1 \" advance, restoring page number

. rr \\$0.% \" clear saved page number

..

As it now stands, when used with the ms macros, with their default page header and footer policies in effect, this

implementatation of the “ADVANCE-TO-NEW-PAGE” macro will advance the output position to the top of the next

available, appropriately facing new page; if an additional intervening page is inserted, it will remain completely blank,

and page numbering will resume on the new output page.

A further option, which is not supported by the “ADVANCE-TO-NEW-PAGE” macro, as it now stands, may be worthy

of consideration: instead of inserting a page header, and thus resuming page numbering immediately, on the page where

output itself resumes following “ADVANCE-TO-NEW-PAGE”, also omit the header of this page, then reinstate it to

resume numbering only on the next following page. Once again, assuming that ms is being used, with its default page

header and footer policies in effect, this additional feature may be readily supported, in a similar manner to the

suppression of all output on intervening pages, by replacing the unconditional statement:

. bp \\n[\\$0.%]+1 \" advance, restoring page number

within the current “ADVANCE-TO-NEW-PAGE” implementation, with the alternative unconditional statements:

. bp 1 \" advance, without numbering the page

. pn \\n[\\$0.%]+1 \" restore numbering on following page

or make it conditional, for example on having passed49 a second argument of “no” (say), to suppress immediate

resumption of page numbering, otherwise, resume it immediately:

. ie '\\$2'no' \{\

. \" Page numbering is to be suppressed, on the first page

. \" on which output is resumed.

. \"

. bp 1 \" advance, without numbering the page

. pn \\n[\\$0.%]+1 \" restore numbering on following page

. \}

. \" Otherwise, page numbering is to be resumed immediately.

. \"

. el .bp \\n[\\$0.%]+1 \" advance, restoring page number

49. To achieve this, the “NEW-RECTO-PAGE” and “NEW-VERSO-PAGE” macros would also require modification, to pass their own

arguments on to “ADVANCE-TO-NEW-PAGE”, following the “o” and “e” arguments, which they already pass, respectively.

-50-

Thus, the refined set of page break macros, for advancing the output position to a new recto page, or to a new verso

page, becomes the complementary pair:

.de NEW-RECTO-PAGE

.\" Insert a page break, resuming output at the top of the

.\" next available new recto (i.e. odd numbered) page.

.\"

. ADVANCE-TO-NEW-PAGE o \\$@

..

and its complement:

.de NEW-VERSO-PAGE

.\" Insert a page break, resuming output at the top of the

.\" next available new verso (i.e. even numbered) page.

.\"

. ADVANCE-TO-NEW-PAGE e \\$@

..

together with their common helper macro:

.de ADVANCE-TO-NEW-PAGE

.\" Insert page breaks, as required, to resume output at the

.\" top of the next available new recto page, or new verso page,

.\" as determined by the first passed argument, (which MUST be

.\" either of groff’s conditional operators, "o" or "e").

.\"

.\" Usage: .ADVANCE-TO-NEW-PAGE o [no] \" NEW-RECTO-PAGE

.\" .ADVANCE-TO-NEW-PAGE e [no] \" NEW-VERSO-PAGE

.\"

.\" The second argument is optional; if specified as "no", the

.\" ms page header, (incorporating the page number), will not

.\" be printed on the first page, on which output is resumed.

.\"

. af \\$0.% \\g% \" save page number format

. af % 0 \" interpret as decimal numeric...

. nr \\$0.% \\n% \" to save its current value

. af % \\g[\\$0.%] \" restore its original format

. af \\$0.% 0 \" keep saved value as decimal

. if \\$1 \{\

. \" Current page faces as does the desired output target,

. \" so we need to skip an entire opposing page.

. \"

. nr \\$0.% +1 \" update to skipped page number

. bp 1 \" skip, numbering as page one

. \}

. ie '\\$2'no' \{\

. \" Page numbering is also to be suppressed, on the first page

. \" on which output is resumed.

. \"

. bp 1 \" advance, without numbering the page

. pn \\n[\\$0.%]+1 \" restore numbering on following page

. \}

. \" Otherwise, page numbering is to be resumed immediately.

. \"

. el .bp \\n[\\$0.%]+1 \" advance, restoring page number

. rr \\$0.% \" clear saved page number

..

Another optional refinement, which may be considered, could be to assign the page number format, for use on pages

following any page break which is introduced by either “NEW-RECTO-PAGE”, or “NEW-VERSO-PAGE”, by passing

the desired formatting code as a macro argument, rather than preserving the prevailing format internally, within the

-51-

“ADVANCE-TO-NEW-PAGE” macro. A possible implementation of such a refinement may be achieved by defining a

new internal-use macro:

.de ADVANCE-TO-NEW-PAGE.af

.\" Helper macro, to be called ONLY by ADVANCE-TO-NEW-PAGE;

.\" assign page number format for use on subsequent pages, as

.\" specified by passed argument, or default to decimal.

.\"

. if '\\$2'no' .shift \" ignore "no" argument

. af % \\$2 0 \" assign as specified, or default

..

This new internal-use macro would then be called, normally exclusively in practice, by a further modified variant of the

“ADVANCE-TO-NEW-PAGE” macro:

.de ADVANCE-TO-NEW-PAGE

.\" Insert page breaks, as required, to resume output at the

.\" top of the next available new recto page, or new verso page,

.\" as determined by the first passed argument, (which MUST be

.\" either of groff’s conditional operators, "o" or "e").

.\"

.\" Usage: .ADVANCE-TO-NEW-PAGE o [<arg> ...] \" NEW-RECTO-PAGE

.\" .ADVANCE-TO-NEW-PAGE e [<arg> ...] \" NEW-VERSO-PAGE

.\"

.\" The second, and subsequent arguments are optional; if the

.\" second is specified as "no", the ms page header, (in which

.\" the page number is normally included), will not be printed

.\" on the first page, on which output is resumed, and a third

.\" argument, if present, will be interpreted as specifying a

.\" page number format for use on subsequent pages.

.\"

.\" Otherwise, if a second argument is specified, and it is

.\" not "no", it will be interpreted as the specification of

.\" the page number format for use on subsequent pages.

.\"

. af % 0 \" make page number decimal...

. nr \\$0.% \\n% \" to save its current value

. \\$0.af \\$@ \" select, and apply new format...

. af \\$0.% 0 \" keeping saved value as decimal

. if \\$1 \{\

. \" Current page faces as does the desired output target,

. \" so we need to skip an entire opposing page.

. \"

. nr \\$0.% +1 \" update to skipped page number

. bp 1 \" skip, numbering as page one

. \}

. ie '\\$2'no' \{\

. \" Page numbering is also to be suppressed, on the first page

. \" on which output is resumed.

. \"

. bp 1 \" advance, without numbering the page

. pn \\n[\\$0.%]+1 \" restore numbering on following page

. \}

. \" Otherwise, page numbering is to be resumed immediately.

. \"

. el .bp \\n[\\$0.%]+1 \" advance, restoring page number

. rr \\$0.% \" clear saved page number

..

It is worth noting that each of the page break macros, developed above, is implemented exclusively using fundamental

groff requests; none of them is explicitly dependent on ms. Howev er, they do exhibit an implicit dependency on

-52-

default ms behavioural traits — specifically that no page headers are printed on any page with a page number of one,

and page footers are normally entirely blank. Thus, they should work equally effectively with any macro suite which

mimics, or can be made to mimic, these ms behavioural traits.

There is at least one potentially detrimental consequence of depending on these ms behavioural traits, which will

become apparent in any reference to the “\n%” page number register on any page on which an effective page number of

one has been substituted for the real page number, to suppress printing of the page header on the page where output is

resumed, following a page break. The detrimental effect of page number substitution will be particularly noticeable

when collecting of references for inclusion in a table of contents; such references would be expected to reflect the real

page number, but the “\n%” register will reflect only the effective page number of one. This effect, and a mechanism

for neutralizing it, will be explored in section 4.4, “Alternative Techniques for Generating Tables of Contents”.

As a final observation, on the handling of recto-verso page breaks: the “NEW-RECTO-PAGE”, “NEW-VERSO-PAGE”,

and their supporting “ADVANCE-TO-NEW-PAGE” and “ADVANCE-TO-NEW-PAGE.af” macro variants, as they hav e

been developed above, are intended only as examples; depending on their individual requirements, users are invited to

adapt, and consolidate the techniques which they illustrate, as may be deemed appropriate. A practical illustration may

be found in the pdfmark.ms source file, for this document; this never uses the “NEW-VERSO-PAGE” macro, and it

always suppresses the printing of page headers on the first output page following any use of its “NEW-RECTO-PAGE”

macro; thus, rather than implementing them separately, as illustrated above, it consolidates the implementations of both

the “ADVANCE-TO-NEW-PAGE”, and the “ADVANCE-TO-NEW-PAGE.af” macros, with unconditional page header

suppression, into a free-standing “NEW-RECTO-PAGE” macro implementation, within which it also incorporates a

mechanism for propagation of real page numbers, when constructing table of contents references,

4.3. Considerations for Working with Document References

The provisions made by the pdfmark macros, for creation of, and linking to, in-document reference marks is described

in section 2.5, “Adding Reference Marks and Links”.

In general, when producing any PDF document using the pdfroff program, adoption of the techniques described in

section 2.5 is sufficient for creation of, and linking to, document reference marks, without the need for any further user

intervention, provided that all of the reference marks, and all references to them, are encapsulated within the one

document which is being produced. However, if it is desired that any created reference mark should be accessible for

referencing from other documents, or any reference is made to a reference mark within another document, then it may

be helpful to specify such reference marks in association with one or more pdfmark reference dictionaries.

4.3.1. Creating a Document Reference Dictionary

When any PDF document is produced by pdfroff, a reference dictionary is created automatically; howev er, this is

normally created within a temporary file, which is deleted when pdfroff completes processing of each particular

document, so it will not be readily available for exposure of any reference marks which it specifies, for subsequent use

within other documents. This limitation may be overcome, by specifying the “−−reference−dictionary” option

when invoking pdfroff, in conformance with the synoptic model:

pdfroff −−reference−dictionary=filename.ref [option ...] \
input−file ... > filename.pdf

which instructs pdfroff to save, to the user nominated file, “filename.ref”, any reference dictionary content

which it generates, rather than deleting it on completion of processing, as it normally would.

In addition to adoption of the foregoing recommendation, to ensure that a reference dictionary is saved, consideration

should also be given to the creation of individual reference dictionary records, and the scope of the reference context

information which is stored in each.

Each individual reference dictionary record takes the form of a pdfhref macro call:

.pdfhref D −N <name> [[<keyword> <value>] ...] [<text> ...]

and is associated with exactly one named reference mark; each such record may be added to the dictionary, at the time

when the reference mark itself is created, by use of a defining macro call in the form:50

.pdfhref M −X [−N <name] [[−E] [−−] <text> ...]

50. The equivalent form, “.pdfhref M −X [−D <name>] [[−E] <text>]”, may be used, if preferred; the “−D <name>”

option is provided for consistency with its use in the “.pdfhref L ...” macro form, while the “−N <name>” option is

defined for consistency with “.pdfhref D ...” syntax, and exhibits identical behaviour in “.pdfhref M ...” usage.

-53-

When the “.pdfhref M ...” macro is invoked thus, with the “−X” option in effect, if the “−N <name>” option is

explicitly specified, either in this, or in its equivalent “−D <name>” form,51 then a corresponding reference dictionary

record is instantiated, with a verbatim copy of the specified “−N <name>” option incorporated, immediately following

the “.pdfmark D” preamble. Conversely, if neither the “−N <name>” option, nor the equivalent “−D <name>”

option is specified, then at least one space-delimited word of the otherwise optional “<text> ...” sequence of

arguments must be specified; from this, a “−N <name>” option is implicitly derived, for incorporation into the

instantiated reference dictionary entry. In either case, the remaining “[<keyword> <value>] ...” and

“<text> ...” components of this dictionary entry are determined in accordance with the currently active

specification of the “PDFHREF.INFO” template string, as defined by the user.

In general, it is better to specify “PDFHREF.INFO” such that the reference dictionary will record more context than is

deemed to be strictly necessary; unwanted context can simply be ignored, at the ultimate point of use, but anything

which has not been recorded cannot be inferred on subsequent demand. Typical context information, which may be

recorded, includes:

• The reference mark name; (this is always recorded, due to the incorporation of the “−N <name>” option,

whether explicitly assigned, or implicitly inferred from the “<text> ...” reference mark description).

• A file name reference; this is processed according to the “PDFHREF.FILEREF” formatting specification,

when a “file <filename>” tuple is included within the “[[<keyword> <value>] ...]” region

of the “PDFHREF.INFO” template specification, and any link to the associated reference mark is

subsequently interpolated.

• A page number reference; ultimately processed in accordance with the “PDFHREF.PAGEREF” formatting

specification, when subsequently interpolating any link to the associated reference mark, this will be

recorded when a “page \\n%” tuple is included within the “[[<keyword> <value>] ...]” region

of the “PDFHREF.INFO” template specification.

• A section number reference, (if applicable); when recorded, by inclusion of a “section *(SN ” tuple

within the “[[<keyword> <value>] ...]” region of the “PDFHREF.INFO” template specification,

this will be processed in accordance with the “PDFHREF.SECTREF” formatting specification, when any

link to the associated reference mark is subsequently interpolated.

• Any reference data which may be associated with user-specified keywords; such keywords must be defined

in each individual document (file) processing context in which they may be referenced, wherein they will be

processed in accordance with the formatting specification which the user has associated with each particular

keyword. Considerations for the use of such formatting specifications will be discussed further, in section

4.3.3, “Using Custom Reference Formatting Keywords”.

All such data, which has been recorded within a saved reference dictionary, will be available for interpolation into

inter-document references, formatted as described in section 2.5.5, “Establishing a Format for References”, within any

document in which this reference dictionary is deployed, as described in the following section.

4.3.2. Deploying a Document Reference Dictionary

When pdfroff is used to drive the groff PDF formatting process, for any giv en document, then the reference

dictionary for that document, itself, will be automatically incorporated into the document input stream; this is required

to accommodate the resolution of intra-documentreferences, and occurs irrespective of whether the reference dictionary

is designated to be committed to persistent file storage, as described in the preceding section, or is to persist only

temporarily, and will be deleted on completion of the pdfroff processing run.

Conversely, if any inter-document references, to locations within any other, external PDF files are specified, the

corresponding reference dictionaries will not be automatically incorporated into the pdfroff input stream. The onus

for incorporation of such reference dictionaries rests entirely with the document author; this may be accomplished, most

readily, by inclusion of a “.so filename.ref” request, within the referring document source.

Additionally, when such reference dictionaries are included, the document author should be aware of the possibility that

these may introduce conflicting reference names, and should assume responsibility for resolving any such conflicts

which may arise; techniques for doing so will be introduced in section 4.3.4, “Av oiding Reference Name Conflicts”.

51. If the equivalent “−D <name>” form of this option is specified, it is internally convert to the “−N <name>” form, and explicitly

interpreted as such.

-54-

4.3.3. Using Custom Reference Formatting Keywords

When a reference dictionary comprises records which incorporate exclusively default pdfmark.tmac formatting

keywords, then it may be safely assumed that these keywords will have been defined, by the simple expedient of

including pdfmark.tmac within the pdfroff input data stream. However, no such assumption may be made, in the

case of any reference dictionary in which user-defined custom formatting keywords may be present, and thus, the

document author must accept the responsibility of ensuring that any such custom keywords have been defined, before

referring to any named location for which the reference dictionary entry includes them.

For use within intra-document references, any custom formatting keywords which are to be incorporated should be

defined in the document source stream, using the “.pdfhref K ...” capability, (see section 2.5.5.4, “Customizing

Automatically Formatted Reference Text”), before placement of any reference which may require them.52 Additional

custom keyword definitions, as may be required to support inter-document references, may also be defined within the

document source, alongside intra-document keywords; however, it may be more convenient to emulate the behaviour of

pdfmark.tmac release 25.04 and later, manually editing any reference dictionaries which may have been generated

using an earlier pdfmark.tmac release, to include any custom keyword definitions which they may require.

It may be noted that provision of a “.pdfhref K ...” definition alone is insufficient to ensure appropriate handling

of custom formatting keywords; the onus remains on the document author, to ensure that each such definition is

accompanied by a suitable template string definition for the designated, named format string itself.53

4.3.4. Avoiding Reference Name Conflicts

Within any single PDF document, each pdfhref reference destination must be uniquely named. The onus for

ensuring this lies with the document author; to facilitate honouring the obligation, it is recommended that:

• Every reference destination is explicitly named, by specifying the “−N <name>” option, (as described in

section 2.5.2, “Marking a Reference Destination”), when each destination reference mark is placed, by use

of the “.pdfhref M ...” macro call.

• Additionally, to help keep track of reference names which have already been allocated, and the destinations

to which they refer, it is suggested that the “−X” option should be applied, for each invocation of the

“.pdfhref M ...” macro, and the “−−reference−dictionary=<filename>” option should be

specified when running the “pdfroff” command; this allows for consultation of the nominated reference

dictionary file, both as a reminder of allocated reference destination names, and the document locations to

which they refer, (which may be helpful when constructing subsequent reference links).

Unfortunately, while the foregoing advice may help the author to avoid reference name conflicts within any single PDF

document, it cannot guard against the possibility of such conflicts arising when referring to locations within external

documents, (especially when such external documents originate from a different author, and the chosen reference names

are beyond the control of the referring document author).

A technique which could be considered, to mitigate potential reference name conflicts across document boundaries,

might be to assign a distinct local “namespace” for each individual document. Such a technique is not, currently,54

supported by pdfmark.tmac, so document authors are free to implement a suitable mechanism, at their own

discretion; a suitable strategy may be to:

• Edit the reference dictionary files, which are associated with each external file to be referenced, (using a

stream editor such as sed, for example), to prefix a suitably chosen distinct “namespace” identifier to each

reference name which is defined.

• Within the local document source, register each chosen “namespace”, associating each with the appropriate

set of pdfhref external filename reference options, which should be included in any “pdfhref L ...”;

macro call, to resolve references within the designated “namespace”.

52. When using an implementation of pdfmark.tmac from the 25.04, or any later release of groff-pdfmark, the

“.pdfhref K ...” definitions will be duplicated in the generated reference dictionary, thus ensuring early definition in each

pdfroff processing pass, with the exception of the first pre-processing pass.

53. Prior to pdfmark.tmac release 25.04, this onus rests entirely on the document author; in the absence of any pre-existing format

string definition, the “.pdfhref K ...” implementation within pdfmark.tmac release 25.04, and later, will supply a default

definition, in the form “.ds <format−name> "<keyword> \\$*\"”, which the document author may choose to adopt, or to

override, as preferred.

54. Although the current pdfmark.tmac implementation does not, directly, support any technique, such as that described here, for

avoiding reference name collisions, it is anticipated that built-in support may be incorporated in a near-future release of

groff-pdfmark.

-55-

• Also within the local document input data stream, implement a wrapper macro, which is to be used in place

of “pdfhref L ...”; this wrapper macro should examine each specified destination name, remove any

registered “namespace” prefix, then redirect the call to “pdfhref L ...” itself, while adding the

appropriate external file name reference options, within the scope of the redirected call.

Until such time as capabilities, similar to those described above, are formally integrated into groff-pdfmark, details

of a suitable substitute implementation are left to the discretion, and ingenuity, of the document author.

4.4. Alternative Techniques for Generating Tables of Contents

Appendix A

GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
<http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

A.0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document “free” in the sense

of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either

commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit

for their work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must themselves be free in the

same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We hav e designed this License in order to use it for manuals for free software, because free software needs free

documentation: a free program should come with manuals providing the same freedoms that the software does. But this

License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it

is published as a printed book. We recommend this License principally for works whose purpose is instruction or

reference.

A.1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder

saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license,

unlimited in duration, to use that work under the conditions stated herein. The “Document”, below, refers to any such

manual or work. Any member of the public is a licensee, and is addressed as “you”. You accept the license if you copy,

modify or distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion of it, either copied

verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively with the

relationship of the publishers or authors of the Document to the Document’s overall subject (or to related matters) and

contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of

mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical

connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position

regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of Invariant

Sections, in the notice that says that the Document is released under this License. If a section does not fit the above

definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant

Sections. If the Document does not identify any Inv ariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the

notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a

Back-Cover Text may be at most 25 words.

-lviii-

A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose specification is

available to the general public, that is suitable for revising the document straightforwardly with generic text editors or

(for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and

that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text

formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been

arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not

Transparent if used for any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX

input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or

PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque

formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for

which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or

PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly,

the material this License requires to appear in the title page. For works in formats which do not have any title page as

such, “Title Page” means the text near the most prominent appearance of the work’s title, preceding the beginning of the

body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ or contains XYZ

in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name

mentioned below, such as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the Title”

of such a section when you modify the Document means that it remains a section “Entitled XYZ” according to this

definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the

Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards

disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the

meaning of this License.

A.2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this

License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all

copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures

to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept

compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the

conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

A.3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more

than 100, and the Document’s license notice requires Cover Texts, you must enclose the copies in covers that carry,

clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back

cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must

present the full title with all words of the title equally prominent and visible. You may add other material on the covers

in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy

these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit

reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a

machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a

computer-network location from which the general network-using public has access to download using public-standard

network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option,

you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this

Transparent copy will remain thus accessible at the stated location until at least one year after the last time you

distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

-lix-

It is requested, but not required, that you contact the authors of the Document well before redistributing any large

number of copies, to give them a chance to provide you with an updated version of the Document.

A.4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above,

provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of

the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it.

In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of

previous versions (which should, if there were any, be listed in the History section of the Document). You

may use the same title as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the

modifications in the Modified Version, together with at least five of the principal authors of the Document

(all of its principal authors, if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the

Modified Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the

Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the title, year,

new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled

“History” in the Document, create one stating the title, year, authors, and publisher of the Document as

given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, giv en in the Document for public access to a Transparent copy of the

Document, and likewise the network locations given in the Document for previous versions it was based on.

These may be placed in the “History” section. You may omit a network location for a work that was

published at least four years before the Document itself, or if the original publisher of the version it refers to

gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and

preserve in the section all the substance and tone of each of the contributor acknowledgements and/or

dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section

numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any Inv ariant

Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain

no material copied from the Document, you may at your option designate some or all of these sections as invariant. To

do this, add their titles to the list of Invariant Sections in the Modified Version’s license notice. These titles must be

distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your Modified

Version by various parties—for example, statements of peer review or that the text has been approved by an

organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover

Te xt, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of

Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes

a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on

behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher

-lx-

that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity

for or to assert or imply endorsement of any Modified Version.

A.5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4

above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the

original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and

that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be

replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the

title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher

of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant

Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original documents, forming one

section Entitled “History”; likewise combine any sections Entitled “Acknowledgements”, and any sections Entitled

“Dedications”. You must delete all sections Entitled “Endorsements”.

A.6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace

the individual copies of this License in the various documents with a single copy that is included in the collection,

provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided

you insert a copy of this License into the extracted document, and follow this License in all other respects regarding

verbatim copying of that document.

A.7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a

volume of a storage or distribution medium, is called an “aggregate” if the copyright resulting from the compilation is

not used to limit the legal rights of the compilation’s users beyond what the individual works permit. When the

Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not

themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less

than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers that bracket the Document

within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must

appear on printed covers that bracket the whole aggregate.

A.8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of

section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but

you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant

Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty

Disclaimers, provided that you also include the original English version of this License and the original versions of

those notices and disclaimers. In case of a disagreement between the translation and the original version of this License

or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the requirement (section 4)

to Preserve its Title (section 1) will typically require changing the actual title.

A.9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License.

Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically terminate your rights

under this License.

-lxi-

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a)

provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if

the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you

of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for

any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or

rights from you under this License. If your rights have been terminated and not permanently reinstated, receipt of a

copy of some or all of the same material does not give you any rights to use it.

A.10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to

time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems

or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular

numbered version of this License “or any later version” applies to it, you have the option of following the terms and

conditions either of that specified version or of any later version that has been published (not as a draft) by the Free

Software Foundation. If the Document does not specify a version number of this License, you may choose any version

ev er published (not as a draft) by the Free Software Foundation. If the Document specifies that a proxy can decide

which future versions of this License can be used, that proxy’s public statement of acceptance of a version permanently

authorizes you to choose that version for the Document.

A.11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web server that publishes

copyrightable works and also provides prominent facilities for anybody to edit those works. A public wiki that anybody

can edit is an example of such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the site

means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons

Corporation, a not-for-profit corporation with a principal place of business in San Francisco, California, as well as

future copyleft versions of that license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that were first published under

this License somewhere other than this MMC, and subsequently incorporated in whole or in part into the MMC, (1) had

no cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site at any

time before August 1, 2009, provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the

following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free

Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of

the license is included in the section entitled GNU Free Documentation License".

If you have Inv ariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with...Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the

Back-Cover Texts being LIST.

If you have Inv ariant Sections without Cover Texts, or some other combination of the three, merge those two

alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel

under your choice of free software license, such as the GNU General Public License, to permit their use in free

software.

	Table of Contents
	1. Introduction
	2. Exploiting PDF Document Features
	2.1. The pdfmark Operator
	2.2. Selecting an Initial Document View
	2.3. Adding Document Identification Meta-Data
	2.4. Creating a Document Outline
	2.4.1. A Basic Document Outline
	2.4.2. Hierarchical Structure in a Document Outline
	2.4.3. Associating a Document View with an Outline Reference
	2.4.4. Folding the Outline to Conceal Less Significant Headings
	2.4.5. Outlines for Multipart Documents
	2.4.6. Delegation of the Outline Definition

	2.5. Adding Reference Marks and Links
	2.5.1. Optional Features of the pdfhref Macro
	2.5.2. Marking a Reference Destination
	2.5.2.1. Mapping a Destination for Cross Referencing
	2.5.2.2. Associating a Document View with a Reference Mark

	2.5.3. Linking to a Marked Reference Destination
	2.5.3.1. References within a Single PDF Document
	2.5.3.2. References to Destinations in Other PDF Documents

	2.5.4. Linking to Internet Resources
	2.5.5. Establishing a Format for References
	2.5.5.1. Using Colour to Demarcate Link Regions
	2.5.5.2. Specifying Reference Text Explicitly
	2.5.5.3. Using Automatically Formatted Reference Text
	2.5.5.4. Customizing Automatically Formatted Reference Text

	2.5.6. Problematic Links
	2.5.6.1. Links with a Page Transition in the Active Region

	2.6. Annotating a PDF Document using Pop-Up Notes
	2.6.1. Controlling pdfnote Icon Placement
	2.6.2. Options for Manipulating pdfnote Annotation Attributes
	2.6.3. Controlling pdfnote Text Layout

	2.7. Synchronizing Output and pdfmark Contexts

	3. PDF Document Layout
	3.1. Using pdfmark Macros with the ms Macro Package
	3.1.1. Document Structuring Considerations when using ms Macros
	3.1.2. Using ms Section Headings in PDF Documents
	3.1.2.1. The XH and XN Macros
	3.1.2.2. The XH-INIT and XN-INIT Macros
	3.1.2.3. The XH-UPDATE-TOC Macro
	3.1.2.4. The XH-REPLACEMENT and XN-REPLACEMENT Macros

	3.1.3. Layout Adjustment to Support Duplex Printing

	4. The PDF Publishing Process
	4.1. The pdfroff Program
	4.1.1. Principles of pdfroff Operation
	4.1.2. How pdfroff Resolves Cross References
	4.1.3. Using In-Document Hints to Control pdfroff Processing Options
	4.1.4. Using a pdfroff Style-Sheet to Specify Document Front-Matter
	4.1.5. How pdfroff Collates Tables of Contents
	4.1.6. How pdfroff Formats a Document Body
	4.1.7. How pdfroff Assembles a Finished Document

	4.2. Preparing Documents for On-Screen Reading versus Hard-Copy Printing
	4.2.1. Establishing a Page Layout for On-Screen Reading
	4.2.2. Establishing a Page Layout for Hard-Copy Typesetting
	4.2.3. Ensuring that Content is Printed on a Particular Side of the Page
	4.2.3.1. Recto-Verso Page Break Handling when Using the ms Macros

	4.3. Considerations for Working with Document References
	4.3.1. Creating a Document Reference Dictionary
	4.3.2. Deploying a Document Reference Dictionary
	4.3.3. Using Custom Reference Formatting Keywords
	4.3.4. Avoiding Reference Name Conflicts

	4.4. Alternative Techniques for Generating Tables of Contents

	Appendix A. The GNU Free Documentation License
	A.0. PREAMBLE
	A.1. APPLICABILITY AND DEFINITIONS
	A.2. VERBATIM COPYING
	A.3. COPYING IN QUANTITY
	A.4. MODIFICATIONS
	A.5. COMBINING DOCUMENTS
	A.6. COLLECTIONS OF DOCUMENTS
	A.7. AGGREGATION WITH INDEPENDENT WORKS
	A.8. TRANSLATION
	A.9. TERMINATION
	A.10. FUTURE REVISIONS OF THIS LICENSE
	A.11. RELICENSING
	ADDENDUM: How to use this License for your documents

