[sarMathLib

Stawomir Kotodynski, Daniel de la Concepcién Saez

March 19, 2017

Abstract

This is the proof document of the IsarMathLib project version 1.9.5.
IsarMathLib is a library of formalized mathematics for Isabelle2016-1
(ZF logic).

Contents

1 Introduction to the IsarMathLib project
1.1 How to read IsarMathLib proofs - a tutorial
1.2 Overview of the project

2 First Order Logic
2.1 Notions and lemmasin FOL

3 ZF set theory basics
3.1 Lemmas in Zermelo-Fraenkel set theory

4 Natural numbers in IsarMathLib
4.1 Inductiono
4.2 Intervals

5 Order relations - introduction
5.1 Definitions
5.2 Intervalso
53 Boundedsets

6 More on order relations
6.1 Definitions and basic properties
6.2 Properties of (strict) total orders

7 Even more on order relations
7.1 Maximum and minimum of aset
7.2 Supremum and Infimum 0oL
7.3 Strict versions of order relations

14
15

16
17

20
20
23

23
24
27
28

31
31
32

8 Order on natural numbers
8.1 Order on natural numbers

9 Functions - introduction

9.1 Properties of functions, function spaces and (inverse) images.

9.2 Functions restricted toaset
9.3 Constant functions
9.4 Injections, surjections, bijections etc.
9.5 Functions of two variables

10 Binary operations
10.1 Lifting operations to a function space
10.2 Associative and commutative operations
10.3 Restricting operations
10.4 Compositions
10.5 Identity function
10.6 Lifting to subsets
10.7 Distributive operations

11 More on functions
11.1 Functions and order
11.2 Projections in cartesian products
11.3 Induced relations and order isomorphisms

12 Finite sets - introduction
12.1 Definition and basic properties of finite powerset . .

13 Finite sets
13.1 Finite powerset
13.2 Finite range functions

14 Finite sets 1
14.1 Finite vs. bounded sets

15 Finite sets and order relations
15.1 Finite vs. bounded sets
15.2 Order isomorphisms of finite sets

16 Equivalence relations
16.1 Congruent functions and projections on the quotient
16.2 Projecting commutative, associative and distributive

40
40

40
41
49
50
51
53

56
56
o7
58
60
60
61
63

64
64
66
66

69
69

73
73
7

78
78

80
80
81

17 Finite sequences
17.1 Lists as finite sequences
17.2 Lists and cartesian products

18 Inductive sequences
18.1 Sequences defined by induction
18.2 Images of inductive sequences
18.3 Subsets generated by a binary operation
18.4 Inductive sequences with changing generating function

19 Folding in ZF
19.1 Folding in ZFo

20 Partitions of sets
20.1 Bisectionso
20.2 Partitions

21 Enumerations
21.1 Enumerations: definition and notation
21.2 Properties of enumerations

22 Semigroups
22.1 Products of sequences of semigroup elements
22.2 Products over sets of indices L.,
22.3 Commutative semigroups

23 Commutative Semigroups
23.1 Sum of a function over aset

24 Monoids
24.1 Definition and basic properties

25 Groups - introduction
25.1 Definition and basic properties of groups
25.2 Subgroups

26 Groups 1
26.1 Translations
26.2 Odd functions

27 Groups - and alternative definition
27.1 An alternative definition of group

28 Abelian Group
28.1 Rearrangement formulae

101
102

104
104
106

106
107
108

109
109
111
113

116
116

118
118

120
120
126

129
129
132

133
133

134

29 Groups 2

29.1 Lifting groups to function spaces
29.2 Equivalence relations on groups L.
29.3 Normal subgroups and quotient groups
29.4 Function spaces as monoids L.

30 Groups 3

30.1 Group valued finite range functions

30.2 Almost homomorphisms .

30.3 The classes of almost homomorphisms
30.4 Compositions of almost homomorphisms
30.5 Shifting almost homomorphisms

31 Direct product
31.1 Definition

31.2 Associative and commutative operations

32 Ordered groups - introduction

32.1 Ordered groups
32.2 Inequalities

32.3 The set of positive elements

32.4 Intervals and bounded sets

33 More on ordered groups

33.1 Absolute value and the triangle inequality
33.2 Maximum absolute valueof aset

33.3 Alternative definitions . .
33.4 Odd Extensions

33.5 Functions with infinite limits

34 Rings - introduction

34.1 Definition and basic properties

34.2 Rearrangement lemmas .

35 More on rings

35.1 The ring of classes of almost homomorphisms

36 Ordered rings
36.1 Definition and notation .

36.2 Absolute value for ordered rings

36.3 Positivity in ordered rings

139
140
142
143
146

147
147
148
153
154
158

159
159
160

160
160
165
170
173

175
176
181
182
184
185

186
186
191

193
193

37 Cardinal numbers 205

37.1 Some new ideas on cardinals 205
37.2 Main result on cardinals (without the Aziom of Choice) . . . 206
37.3 Choice axioms e 207
38 Groups 4 208
38.1 Conjugation of subgroups 208
38.2 Finite groups oo 210
38.3 Subgroups generated by setso 210
38.4 Homomorphisms, 211
38.5 First isomorphism theorem 212
39 Fields - introduction 213
39.1 Definition and basic properties 214
39.2 Equations and identities 215
393 1/0=0 216
40 Ordered fields 217
40.1 Definition and basic properties 217
40.2 Inequalities L 220
40.3 Definition of real numbers 221
41 Integers - introduction 222
41.1 Addition and multiplication as ZF-functions. 222
41.2 Integers as an ordered group 226
41.3 Induction on integers. oL 234
41.4 Bounded vs. finite subsets of integers 236
42 Integers 1 237
42.1 Integers asaring Lo 237
42.2 Rearrangement lemmas 239
42.3 Integers as an ordered ring 243
42.4 Maximum and minimum of a set of integers 249
42.5 The set of nonnegative integers 251
42.6 Functions with infinite limits 255
42.7 Miscelaneous e 257
43 Division on integers 257
43.1 Quotient and reminder 258
44 Integers 2 259
44.1 Slopes e 259
44.2 Composing slopeso 268

45 Integers 3
45.1 Positive slopes
45.2 Inverting slopes
45.3 Completeness

46 Construction real numbers - the generic part
46.1 The definition of real numbers

47 Construction of real numbers
47.1 Definitions and notation . .

47.2 Multiplication of real numbers

47.3 The order on reals
474 Inverting reals.
47.5 Completeness

48 Complex numbers

48.1 From complete ordered fields to complex numbers

48.2 Axioms of complex numbers

49 Topology - introduction

49.1 Basic definitions and properties

49.2 Interior of aset

49.3 Closed sets, closure, boundary.

50 Topology 1
50.1 Separation axioms.
50.2 Bases and subbases.
50.3 Product topology

51 Topology 1b

51.1 Compact sets are closed - no need for AC

52 Topology 2
52.1 Continuous functions. . . .
52.2 Homeomorphisms

52.3 Topologies induced by mappings
52.4 Partial functions and continuity
52.5 Product topology and continuity

52.6 Pasting lemma

53 Topology 3

53.1 The base of the product topology

53.2 Finite product of topologies

270
270
273
276

277
278

283
283
286
288
293
296

303
303
307

312
312
315
316

318
319
320
322

324
325

325
325
328
329
329
331
332

54 Topology 4
54.1 Nets e e
54.2 Filters
54.3 Relation between nets and filters

55 Topology - examples
55.1 CoCardinal Topology of aset X
55.2 CoCardinal topology is a topology.
55.3 Total set, Closed sets, Interior, Closure and Boundary . . .
55.4 Special cases and subspaces
55.5 Excluded Set Topology
55.6 Excluded set topology is a topology.
55.7 Total set, Closed sets, Interior, Closure and Boundary . . .
55.8 Special cases and subspaces Lo
55.9 Included Set Topology
55.10Included set topology is a topology.
55.11Total set, Closed sets, Interior, Closure and Boundary . . .
55.12Special cases and subspaces oL oL

56 More examples in topology

56.1 New ideas using a base for a topology
56.2 The topology of abase
56.3 Dual Base for Closed Sets
56.4 Partition topology Lo L.
56.5 Partition topology is a topology.
56.6 Total set, Closed sets, Interior, Closure and Boundary . . .
56.7 Special cases and subspaces
56.8 Order topologies
56.9 Order topology is a topology
56.10Total set
56.11Right order and Left order topologies.

56.11.1 Right and Left Order topologies are topologies . . .

56.11.2Total set L
56.12Union of Topologies

57 Properties in Topology
57.1 Properties of compactness
57.2 Properties of numerability

337
337
338
341

343
344
344

. 344

345
346
346

. 346

347
347
348

. 348

349

349
350
350
351
351
352

. 352

353
354
354
355
356

. 356

357
357

357

359

57.3 Relations between numerability properties and choice principles360

57.4 Relation between numerability and compactness

361

58 Topology 5
58.1 Some results for separation axioms
58.2 Hereditability o
58.3 Spectrum and anti-properties

59 Topology 6
59.1 Image filter L
59.2 Continuous at a point vs. globally continuous
59.3 Continuous functions and filters

60 Topology 7
60.1 Connection Properties,

61 Topology 8
61.1 Definition of quotient topology
61.2 Quotient topologies from equivalence relations

62 Topology 9
62.1 Group of homeomorphisms
62.2 Examples computed L.
62.3 Properties preserved by functions

63 Topology 10
63.1 Closure and closed sets in product space
63.2 Separation properties in product space
63.3 Connection properties in product space

64 Topology 11
64.1 Order topologieso .
64.2 Separation properties.
64.3 Connectedness properties
64.4 Numerability axioms

65 Topological groups - introduction
65.1 Topological group: definition and notation
65.2 Interval arithmetic, translations and inverse of set
65.3 Neighborhoods of zero
65.4 Closure in topological groups
65.5 Sums of sequences of elements and subsets

66 Properties in topology 2
66.1 Local properties.,
66.2 First examples L o o
66.3 Local compactness
66.4 Compactification by one point

362
362
365
366

370
370
371
371

371
371

375
375
376

378
378
379
380

381
381
381
382

382
382
383
383
385

386
386
389
390
391
391

66.5 Hereditary properties and local properties 395

67 Topological groups 1 398
67.1 Separation properties of topological groups 398
67.2 Existence of nice neighbourhoods. 399
67.3 Rest of separation axioms 399
67.4 Local properties. oo 400

68 Topological groups 2 401
68.1 Quotients of topological groups 401

69 Topological groups 3 402
69.1 Subgroups topologies 402

70 Metamath introduction 403
70.1 Importing from Metamath - how is it done 404
70.2 The context for Metamath theorems 404

71 Metamath interface 407
71.1 MMisarO and complex(0 contexts. 407

72 Metamath sampler 408
72.1 Extended reals and order 408
72.2 Natural real numbers 409
72.3 Infimum and supremum in real numbers 410

1 Introduction to the IsarMathLib project

theory Introduction imports equalities
begin

This theory does not contain any formalized mathematics used in other
theories, but is an introduction to IsarMathLib project.

1.1 How to read IsarMathLib proofs - a tutorial

Isar (the Isabelle’s formal proof language) was designed to be similar to
the standard language of mathematics. Any person able to read proofs in
a typical mathematical paper should be able to read and understand Isar
proofs without having to learn a special proof language. However, Isar is
a formal proof language and as such it does contain a couple of constructs
whose meaning is hard to guess. In this tutorial we will define a notion
and prove an example theorem about that notion, explaining Isar syntax
along the way. This tutorial may also serve as a style guide for IsarMathLib

contributors. Note that this tutorial aims to help in reading the presentation
of the Isar language that is used in IsarMathLib proof document and HTML
rendering on the FormalMath.org site, but does not teach how to write proofs
that can be verified by Isabelle. This presentation is different than the
source processed by Isabelle (the concept that the source and presentation
look different should be familiar to any LaTeX user). To learn how to write
Isar proofs one needs to study the source of this tutorial as well.

The first thing that mathematicians typically do is to define notions. In Isar
this is done with the definition keyword. In our case we define a notion of
two sets being disjoint. We will use the infix notation, i.e. the string {is
disjoint with} put between two sets to denote our notion of disjointness.
The left side of the = symbol is the notion being defined, the right side
says how we define it. In Isabelle 0 is used to denote both zero (of natural
numbers) and the empty set, which is not surprising as those two things are
the same in set theory.
definition

AreDisjoint (infix "{is disjoint with}" 90) where

"A {is disjoint with} B = A N B = 0"

We are ready to prove a theorem. Here we show that the relation of be-
ing disjoint is symmetric. We start with one of the keywords ”theorem”,
”lemma” or ”corollary”. In Isar they are synonymous. Then we provide a
name for the theorem. In standard mathematics theorems are numbered. In
Isar we can do that too, but it is considered better to give theorems mean-
ingful names. After the ”shows” keyword we give the statement to show.
The «+— symbol denotes the equivalence in Isabelle/ZF. Here we want to
show that ” A is disjoint with B iff and only if B is disjoint with A”. To prove
this fact we show two implications - the first one that A {is disjoint with}
B implies B {is disjoint with} A and then the converse one. Each of these
implications is formulated as a statement to be proved and then proved in a
subproof like a mini-theorem. Each subproof uses a proof block to show the
implication. Proof blocks are delimited with curly brackets in Isar. Proof
block is one of the constructs that does not exist in informal mathematics,
so it may be confusing. When reading a proof containing a proof block I sug-
gest to focus first on what is that we are proving in it. This can be done by
looking at the first line or two of the block and then at the last statement. In
our case the block starts with "assume A {is disjoint with} B and the last
statement is "then have B {is disjoint with} A”. It is a typical pattern
when someone needs to prove an implication: one assumes the antecedent
and then shows that the consequent follows from this assumption. Impli-
cations are denoted with the — symbol in Isabelle. After we prove both
implications we collect them using the ”moreover” construct. The keyword
”ultimately” indicates that what follows is the conclusion of the statements
collected with "moreover”. The ”"show” keyword is like "have”, except that

10

it indicates that we have arrived at the claim of the theorem (or a subproof).

theorem disjointness_symmetric:
shows "A {is disjoint with} B <— B {is disjoint withl} A"

(proof)

1.2 Overview of the project

The Fol1, ZF1 and Nat_ZF_IML theory files contain some background material
that is needed for the remaining theories.

Order_ZF and Order_ZF_la reformulate material from standard Isabelle’s
Order theory in terms of non-strict (less-or-equal) order relations. Order_ZF_1
on the other hand directly continues the Order theory file using strict order
relations (less and not equal). This is useful for translating theorems from
Metamath.

In NatOrder_ZF we prove that the usual order on natural numbers is linear.

The func1 theory provides basic facts about functions. func_ZF continues
this development with more advanced topics that relate to algebraic proper-
ties of binary operations, like lifting a binary operation to a function space,
associative, commutative and distributive operations and properties of func-
tions related to order relations. func_ZF_1 is about properties of functions
related to order relations.

The standard Isabelle’s Finite theory defines the finite powerset of a set
as a certain "datatype” (7) with some recursive properties. IsarMathLib’s
Finitel and Finite_ZF_1 theories develop more facts about this notion.
These two theories are obsolete now. They will be gradually replaced by
an approach based on set theory rather than tools specific to Isabelle. This
approach is presented in Finite_ZF theory file.

In FinOrd_ZF we talk about ordered finite sets.

The EquivClass1 theory file is a reformulation of the material in the standard
Isabelle’s EquivClass theory in the spirit of ZF set theory.

FiniteSeq_ZF discusses the notion of finite sequences (a.k.a. lists).
InductiveSeq_ZF provides the definition and properties of (what is known in
basic calculus as) sequences defined by induction, i. e. by a formula of the
form ap = x, apn+1 = f(an).

Fold_ZF shows how the familiar from functional programming notion of fold
can be interpreted in set theory.

Partitions_ZF is about splitting a set into non-overlapping subsets. This is
a common trick in proofs.

Semigroup_ZF treats the expressions of the form ag-aq - .. - an, (i.e. products
of finite sequences), where ”-” is an associative binary operation.
CommutativeSemigroup_ZF is another take on a similar subject. This time
we consider the case when the operation is commutative and the result of

11

depends only on the set of elements we are summing (additively speaking),
but not the order.

The Topology_ZF series covers basics of general topology: interior, closure,
boundary, compact sets, separation axioms and continuous functions.

Group_ZF, Group_ZF_1, Group_ZF_1b and Group_ZF_2 provide basic facts of the
group theory. Group_ZF_3 considers the notion of almost homomorphisms
that is nedeed for the real numbers construction in Real_ZF.

The TopologicalGroup connects the Topology_ZF and Group_ZF series and
starts the subject of topological groups with some basic definitions and facts.

In DirectProduct_ZF we define direct product of groups and show some its
basic properties.

The OrderedGroup_ZF theory treats ordered groups. This is a suprisingly
large theory for such relatively obscure topic.

Ring_ZF defines rings. Ring_ZF_1 covers the properties of rings that are
specific to the real numbers construction in Real_ZF.

The OrderedRing_ZF theory looks at the consequences of adding a linear
order to the ring algebraic structure.

Field_ZF and OrderedField_ZF contain basic facts about (you guessed it)
fields and ordered fields.

Int_ZF_IML theory considers the integers as a monoid (multiplication) and an
abelian ordered group (addition). In Int_ZF_1 we show that integers form
a commutative ring. Int_ZF_2 contains some facts about slopes (almost
homomorphisms on integers) needed for real numbers construction, used in
Real _ZF_1.

In the IntDiv_ZF_IML theory we translate some properties of the integer
quotient and reminder functions studied in the standard Isabelle’s IntDiv_ZF
theory to the notation used in IsarMathLib.

The Real_ZF and Real_ZF_1 theories contain the construction of real numbers
based on the paper [2] by R. D. Arthan (not Cauchy sequences, not Dedekind
sections). The heavy lifting is done mostly in Group_ZF_3, Ring_ZF_1 and
Int_ZF_2. Real_ZF contains the part of the construction that can be done
starting from generic abelian groups (rather than additive group of integers).
This allows to show that real numbers form a ring. Real_ZF_1 continues the
construction using properties specific to the integers and showing that real
numbers constructed this way form a complete ordered field.

Cardinal_ZF provides a couple of theorems about cardinals that are mostly
used for studying properties of topological properties (yes, this is kind of
meta). The main result (proven without AC) is that if two sets can be
injectively mapped into an infinite cardinal, then so can be their union.
There is also a definition of the Axiom of Choice specific for a given cardinal
(so that the choice function exists for families of sets of given cardinality).

12

Some properties are proven for such predicates, like that for finite families of
sets the choice function always exists (in ZF) and that the axiom of choice
for a larger cardinal implies one for a smaller cardinal.

Group_ZF_4 considers conjugate of subgroup and defines simple groups. A
nice theorem here is that endomorphisms of an abelian group form a ring.
The first isomorphism theorem (a group homomorphism h induces an iso-
morphism between the group divided by the kernel of h and the image of h)
is proven.

Turns out given a property of a topological space one can define a local ver-
sion of a property in general. This is studied in the the Topology_ZF_properties_2
theory and applied to local versions of the property of being finite or com-
pact or Hausdorff (i.e. locally finite, locally compact, locally Hausdorff).
There are a couple of nice applications, like one-point compactification that
allows to show that every locally compact Hausdorff space is regular. Also
there are some results on the interplay between hereditability of a property
and local properties.

For a given surjection f : X — Y, where X is a topological space one can
consider the weakest topology on Y which makes f continuous, let’s call it
a quotient topology generated by f. The quotient topology generated by an
equivalence relation r on X is actually a special case of this setup, where f
is the natural projection of X on the quotient X/r. The properties of these
two ways of getting new topologies are studied in Topology_ZF_8 theory.
The main result is that any quotient topology generated by a function is
homeomorphic to a topology given by an equivalence relation, so these two
approaches to quotient topologies are kind of equivalent.

As we all know, automorphisms of a topological space form a group. This
fact is proven in Topology_ZF_9 and the automorphism groups for co-cardinal,
included-set, and excluded-set topologies are identified. For order topologies
it is shown that order isomorphisms are homeomorphisms of the topology
induced by the order. Properties preserved by continuous functions are stud-
ied and as an application it is shown for example that quotient topological
spaces of compact (or connected) spaces are compact (or connected, resp.)

The Topology_zF_10 theory is about products of two topological spaces. It
is proven that if two spaces are Ty (or 17, Ts, regular, connected) then their
product is as well.

Given a total order on a set one can define a natural topology on it gener-
ated by taking the rays and intervals as the base. The Topology_ZF_11 the-
ory studies relations between the order and various properties of generated
topology. For example one can show that if the order topology is connected,
then the order is complete (in the sense that for each set bounded from
above the set of upper bounds has a minimum). For a given cardinal sk we
can consider generalized notion of kK — separability. Turns out k-separability

13

is related to (order) density of sets of cardinality s for order topologies.

Being a topological group imposes additional structure on the topology of the
group, in particular its separation properties. In Topological_Group_ZF_1.thy
theory it is shown that if a topology is Tp, then it must be T3 , and that the
topology in a topological group is always regular.

For a given normal subgroup of a topological group we can define a topology
on the quotient group in a natural way. At the end of the Topological_Group_ZF_2.thy
theory it is shown that such topology on the quotient group makes it a topo-
logical group.

The Topological_Group_ZF_3.thy theory studies the topologies on subgroups
of a topological group. A couple of nice basic properties are shown, like
that the closure of a subgroup is a subgroup, closure of a normal subgroup
is normal and, a bit more surprising (to me) property that every locally-
compact subgroup of a Ty group is closed.

In Complex_ZF we construct complex numbers starting from a complete or-
dered field (a model of real numbers). We also define the notation for writing
about complex numbers and prove that the structure of complex numbers
constructed there satisfies the axioms of complex numbers used in Meta-
math.

MMI_prelude defines the mmisar0O context in which most theorems translated
from Metamath are proven. It also contains a chapter explaining how the
translation works.

In the Metamath_interface theory we prove a theorem that the mmisar0
context is valid (can be used) in the complex0 context. All theories us-
ing the translated results will import the Metamath_interface theory. The
Metamath_sampler theory provides some examples of using the translated
theorems in the complex0 context.

The theories MMI_logic_and_sets, MMI_Complex, MMI_Complex_1 and MMI_Complex_2
contain the theorems imported from the Metamath’s set.mm database. As
the translated proofs are rather verbose these theories are not printed in
this proof document. The full list of translated facts can be found in the
Metamath_theorenms.txt file included in the IsarMathLib distribution. The
MMI_examples provides some theorems imported from Metamath that are

printed in this proof document as examples of how translated proofs look
like.

end

2 First Order Logic

theory Foll imports Trancl

begin

14

Isabelle/ZF builds on the first order logic. Almost everything one would
like to have in this area is covered in the standard Isabelle libraries. The
material in this theory provides some lemmas that are missing or allow for
a more readable proof style.

2.1 Notions and lemmas in FOL

This section contains mostly shortcuts and workarounds that allow to use
more readable coding style.

The next lemma serves as a workaround to problems with applying the
definition of transitivity (of a relation) in our coding style (any attempt to
do something like using trans_def results up Isabelle in an infinite loop).

lemma Foll_L2: assumes
Al: "V xyz. x,y) €Er Ay, 2z) €Er — (x, z2) € "
shows "trans(r)"

(proof)

Another workaround for the problem of Isabelle simplifier looping when the
transitivity definition is used.

lemma Foll_L3: assumes Al: "trans(r)" and A2: "(a,b) € r A { b,c)
e r"
shows "(a,c) € r"

(proof)

There is a problem with application of the definition of asymetry for rela-
tions. The next lemma is a workaround.

lemma Foll_L4:

assumes Al: "antisym(r)" and A2: "(a,b) € r* "(b,a) € r"
shows "a=b"
(proof)

The definition below implements a common idiom that states that (perhaps
under some assumptions) exactly one of given three statements is true.

definition
"Exactly_1_of_3_holds(p,q,r) =
(pvgvr) A (p — q A -r) A (@ — p A —r) A (r — —p A "

The next lemma allows to prove statements of the form Exactly_1_of_3_holds(p,q,r).

lemma Foll_L5:

assumes "pVqVr"

and "p — —-q A —r"

and "9 — —p A —r"

and "r — —p A —q"

shows "Exactly_1_of_3_holds(p,q,r)"
(proof)

15

If exactly one of p, ¢, holds and p is not true, then ¢ or r.

lemma Foll_L6:
assumes Al: "—p" and A2: "Exactly_1_of_3_holds(p,q,r)"
shows "qvr"

(proof)

If exactly one of p, ¢, holds and ¢ is true, then r can not be true.

lemma Foll L7:
assumes Al: "q" and A2: "Exactly_1_of_3_holds(p,q,r)"
shows "—r"

(proof)

The next lemma demonstrates an elegant form of the Exactly_1_of_3_holds(p,q,r)
predicate. More on that at www.solcon.nl/mklooster/calc/calc-tri.html .

lemma Foll_L38:
shows "Exactly_1_of_3_holds(p,q,r) <— (p<—q+—r) A —(pAgAD)"

{(proof)

A property of the Exactly_1_of_3_holds predicate.

lemma Foll_L8A: assumes Al: "Exactly_1_of_3_holds(p,q,r)"
shows "p <— —(q V)"

(proof)

Exclusive or definition. There is one also defined in the standard Isabelle,
denoted xor, but it relates to boolean values, which are sets. Here we define
a logical functor.

definition
Xor (infixl "Xor" 66) where
"p Xor g = (pvqg) A —~(p A Q)"

The ”exclusive or” is the same as negation of equivalence.

lemma Foll_L9: shows "p Xor q «— —(p+—q)"

(proof)

Equivalence relations are symmetric.

lemma equiv_is_sym: assumes Al: "equiv(X,r)" and A2: "(x,y) € "
shows "(y,x) € r"

(proof)
end

3 ZF set theory basics

theory ZF1 imports equalities

16

begin

Standard Isabelle distribution contains lots of facts about basic set theory.
This theory file adds some more.

3.1 Lemmas in Zermelo-Fraenkel set theory

Here we put lemmas from the set theory that we could not find in the
standard Isabelle distribution.

If one collection is contained in another, then we can say the same abot their
unions.

lemma collection_contain: assumes "ACB" shows "UA - UB"

(proof)

If all sets of a nonempty collection are the same, then its union is the same.

lemma ZF1_1_L1: assumes "C#0" and "VyeC. b(y) = A"
shows "(|JyeC. b(y)) = A" (proof)

The union af all values of a constant meta-function belongs to the same set
as the constant.

lemma ZF1_1_L2: assumes A1:"C#0" and A2: "VxeC. b(x) € A"
and A3: "Vx y. x€C A ye€C — b(x) = b(y)"
shows "(|Jx€C. b(x))eA"

(proof)

If two meta-functions are the same on a cartesian product, then the subsets
defined by them are the same. I am surprised Isabelle can not handle this
automatically.

lemma ZF1_1_L4: assumes Al: "VxeX.VyeY. a(x,y) = b(x,y)"
shows "{a(x,y). (x,y) € XxY} = {b(x,y). (x,y) € XxY}"
(proof)

If two meta-functions are the same on a cartesian product, then the subsets
defined by them are the same. This is similar to ZF1_1_L4, except that the
set definition varies over peXxY rather than (x,y)eXxY.

lemma ZF1_1_L4A: assumes Al: "VxeX.VyeY. a({ x,y)) = b(x,y)"
shows "{a(p). p € XxY} = {b(x,y). (x,y) € XxY}"
(proof)

A lemma about inclusion in cartesian products. Included here to remember
that we need the U x V # () assumption.

lemma prod_subset: assumes "UxV#Q0" "UxV C XxY" shows "UCX" and "VCY"
(proof)

A technical lemma about sections in cartesian products.

17

lemma section_proj: assumes "A C XxY" and "UxV C A" and "x € U"
€ VII
shows "U C {teX. (t,y) € A}" and "V C {teY. (x,t) € A}"

{proof)

If two meta-functions are the same on a set, then they define the same set
by separation.
lemma ZF1_1_L4B: assumes "Vx€X. a(x) = b(x)"

shows "{a(x). x€X} = {b(x). xeX}"

(proof)

A set defined by a constant meta-function is a singleton.
lemma ZF1_1_L5: assumes "X#0" and "Vxe€X. b(x) = c"
shows "{b(x). xeX} = {c}" (proof)
Most of the time, auto does this job, but there are strange cases when the
next lemma is needed.

lemma subset_with_property: assumes "Y = {x€X. b(x)}"
shows "Y C X"

(proof)

We can choose an element from a nonempty set.

lemma nonempty_has_element: assumes "X#0" shows "Jx. xeX"

(proof)

In Isabelle/ZF the intersection of an empty family is empty. This is exactly
lemma Inter_O from Isabelle’s equalities theory. We repeat this lemma
here as it is very difficult to find. This is one reason we need comments
before every theorem: so that we can search for keywords.

lemma inter_empty_empty: shows "0 = 0" (proof)
If an intersection of a collection is not empty, then the collection is not

empty. We are (ab)using the fact the the intesection of empty collection is
defined to be empty.

lemma inter_nempty_nempty: assumes "[]A # 0" shows "A#OQ"

{proof)

For two collections S, T of sets we define the product collection as the col-
lections of cartesian products A x B, where A€ S,B e T.

definition
"ProductCollection(T,8) = |JUET.{UxV. Ves}"

The union of the product collection of collections S, T' is the cartesian prod-
uct of S and YT

lemma ZF1_1_L6: shows "|J ProductCollection(S,T) = |JS x |JT"
{proof)

18

An intersection of subsets is a subset.

lemma ZF1_1_L7: assumes Al: "I#0" and A2: "VieI. P(i) C X"
shows "((i€Il. P(i)) C X"
{proof)

Isabelle/ZF has a ?THE” construct that allows to define an element if there
is only one such that is satisfies given predicate. In pure ZF we can express
something similar using the indentity proven below.

lemma ZF1_1_18: shows "|J {x} = x" (proof)

Some properties of singletons.

lemma ZF1_1_19: assumes Al: "3J! x. x€A A ()"
shows
"Ja. {x€A. p(x)} = {a}"
"U {x€A. p(x)} € A"
"o(J {xe€A. pIH"
(proof)

A simple version of zZF1_1_L9.

corollary sigleton_extract: assumes "J! x. x€A"
shows "(|J A) € A"
(proof)

A criterion for when a set defined by comprehension is a singleton.

lemma singleton_comprehension:
assumes Al: "yeX" and A2: "VxeX. VyeX. P(x) = P(y"
shows "(|J{P(x). x€X}) = P(y)"

(proof)

Adding an element of a set to that set does not change the set.
lemma set_elem_add: assumes "x€X" shows "X U {x} = X" (proof)
Here we define a restriction of a collection of sets to a given set. In romantic

math this is typically denoted X N M and means {X N A: A € M}. Note
there is also restrict(f, A) defined for relations in ZF.thy.

definition
RestrictedTo (infixl "{restricted to}" 70) where
"M {restricted to} X = {X N A . A & M}

A lemma on a union of a restriction of a collection to a set.

lemma union_restrict:
shows "|J (M {restricted to} X) = (M) N X"

{proof)

Next we show a technical identity that is used to prove sufficiency of some
condition for a collection of sets to be a base for a topology.

19

lemma ZF1_1_L10: assumes Al: "VUeC. JA€B. U = [JA"
shows "JUJ {UJ{AeB. U = [JA}. UeC} = |JcC"

(proof)
Standard Isabelle uses a notion of cons(A,a) that can be thought of as
Au{a}.
lemma consdef: shows "cons(a,A) = A U {a}"
(proof)

If a difference between a set and a sigleton is empty, then the set is empty
or it is equal to the sigleton.
lemma singl_diff_empty: assumes "A - {x} = 0"

shows "A = 0 VvV A = {x}"

(proof)

If a difference between a set and a sigleton is the set, then the only element
of the singleton is not in the set.
lemma singl_diff_eq: assumes Al: "A - {x} = A"

shows "x ¢ A"

(proof)

A basic property of sets defined by comprehension. This is one side of
standard Isabelle’s separation that is in the simp set but somehow not
always used by simp.

lemma comprehension: assumes "a € {x€X. p(x)}"
shows "aeX" and "p(a)" (proof)

end

4 Natural numbers in IsarMathLib

theory Nat_ZF_IML imports Arith

begin

The ZF set theory constructs natural numbers from the empty set and the
notion of a one-element set. Namely, zero of natural numbers is defined
as the empty set. For each natural number n the next natural number is
defined as n U {n}. With this definition for every non-zero natural number
we get the identity n = {0, 1,2,..,n — 1}. It is good to remember that when
we see an expression like f : n — X. Also, with this definition the relation
”less or equal than” becomes ”C” and the relation ”less than” becomes ”€”.

4.1 Induction

The induction lemmas in the standard Isabelle’s Nat.thy file like for example
nat_induct require the induction step to be a higher order statement (the

20

one that uses the = sign). I found it difficult to apply from Isar, which
is perhaps more of an indication of my Isar skills than anything else. Any-
way, here we provide a first order version that is easier to reference in Isar
declarative style proofs.

The next theorem is a version of induction on natural numbers that I was
thought in school.

theorem ind_on_nat:
assumes Al: "n€nat" and A2: "P(0)" and A3: "Vkénat. P(k)—P(succ(k))"
shows "P(n)"

(proof)
A nonzero natural number has a predecessor.

lemma Nat_ZF_1_L3: assumes Al: "n € nat" and A2: "n#0"
shows "Jke€nat. n = succ(k)"

(proof)

What is succ, anyway?

lemma succ_explained: shows "succ(n) = n U {n}"

(proof)

Empty set is an element of every natural number which is not zero.

lemma empty_in_every_succ: assumes Al: "n € nat"
shows "0 € succ(n)"

(proof)

If one natural number is less than another then their successors are in the
same relation.

lemma succ_ineq: assumes Al: "n € nat"
shows "Vi € n. succ(i) € succ(@)"

(proof)

For natural numbers if k¥ C n the similar holds for their successors.

lemma succ_subset: assumes Al: "k € nat" "n € nat" and A2: "kCn"
shows "succ(k) C succ(n)"
(proof)
For any two natural numbers one of them is contained in the other.
lemma nat_incl_total: assumes Al: "i € nat" "j € nat"
shows "i C j vV j C i"
(proof)

The set of natural numbers is the union of all successors of natural numbers.

lemma nat_union_succ: shows "nat = (|Jn € nat. succ(n))"
(proof)

Successors of natural numbers are subsets of the set of natural numbers.

21

lemma succnat_subset_nat: assumes Al: "n € nat" shows "succ(n) C nat"
(proof)

Element of a natural number is a natural number.

lemma elem_nat_is_nat: assumes Al: "n € nat" and A2: "ken"
shows "k < n" "k € nat" "k < n" "(k,n) € Le"

(proof)

The set of natural numbers is the union of its elements.

lemma nat_union_nat: shows "nat = (J nat"

{proof)

A natural number is a subset of the set of natural numbers.

lemma nat_subset_nat: assumes Al: "n € nat" shows "n C nat"

(proof)

Adding a natural numbers does not decrease what we add to.

lemma add_nat_le: assumes Al: "n € nat" and A2: "k € nat"
shows
"n < n #+ k"
"n C n #+ k"
"'n C k #+ n"
(proof)

Result of adding an element of k is smaller than of adding k.

lemma add_lt_mono:
assumes "k € nat" and "jek"
shows
"(n #+ j) < (n #+ K"
"(n #+ j) € (m #+ k)"
(proof)

A technical lemma about a decomposition of a sum of two natural numbers:
if a number ¢ is from m + n then it is either from m or can be written as a
sum of m and a number from n. The proof by induction w.r.t. to m seems
to be a bit heavy-handed, but I could not figure out how to do this directly
from results from standard Isabelle/ZF.

lemma nat_sum_decomp: assumes Al: "n € nat" and A2: "m € nat"
shows "Vi € m#+ n. 1 eémV (3j € n. i =m #+ "
(proof)

A variant of induction useful for finite sequences.

lemma fin_nat_ind: assumes Al: "n € nat" and A2: "k € succ(n)"
and A3: "P(0)" and A4: "Vjen. P(j) — P(succ(j))"
shows "P(k)"

(proof)

Some properties of positive natural numbers.

22

lemma succ_plus: assumes "n € nat" "k € nat"
shows
"succ(n #+ j) € nat"
"succ(n) #+ succ(j) = succ(succ(n #+ j))"

(proof)

4.2 Intervals

In this section we consider intervals of natural numbers i.e. sets of the form
{n+j:je€0..k—1}

The interval is determined by two parameters: starting point and length.
Recall that in standard Isabelle’s Arith.thy the symbol #+ is defined as the
sum of natural numbers.

definition

"NatInterval(n,k) = {n #+ j. jek}"

Subtracting the beginning af the interval results in a number from the length
of the interval.It may sound weird, but note that the length of such interval
is a natural number, hence a set.

lemma inter_diff_in_len:

assumes Al: "k € nat" and A2: "i € NatInterval(n,k)"
shows "i #- n € k"

(proof)

Intervals don’t overlap with their starting point and the union of an interval
with its starting point is the sum of the starting point and the length of the
interval.

lemma length_start_decomp: assumes Al: "n € nat" "k € nat"
shows
"n N NatInterval(n,k) = 0"
"n U NatInterval(n,k) = n #+ k"

(proof)

Sme properties of three adjacent intervals.

lemma adjacent_intervals3: assumes "n € nat" "k € nat" "m € nat"
shows

"n #+ k #+ m
"n #+ k #+ m
"n #+ k #+ m

(proof)

(n #+ k) U NatInterval(n #+ k,m)"
n U NatInterval(n,k #+ m)"
n U NatInterval(n,k) U NatInterval(n #+ k,m)"

end

5 Order relations - introduction

theory Order_ZF imports Foll

23

begin

This theory file considers various notion related to order. We redefine the
notions of a total order, linear order and partial order to have the same
terminology as Wikipedia (I found it very consistent across different areas
of math). We also define and study the notions of intervals and bounded sets.
We show the inclusion relations between the intervals with endpoints being
in certain order. We also show that union of bounded sets are bounded.
This allows to show in Finite_ZF.thy that finite sets are bounded.

5.1 Definitions
In this section we formulate the definitions related to order relations.

A relation r is "total” on a set X if for all elements a,b of X we have a is
in relation with b or b is in relation with a. An example is the < relation on
numbers.

definition
IsTotal (infixl "{is total on}" 65) where
"r {is total on} X = (VaeX.VbeX. (a,b) € r V (b,a) € r)"

A relation 7 is a partial order on X if it is reflexive on X (i.e. (z,x) for
every x € X), antisymmetric (if (z,y) € r and (y,x) € r, then z = y) and
transitive (x,y) € r and (y, z) € r implies (x, z) € 7).

definition

"IsPartOrder(X,r) = (refl(X,r) A antisym(r) A trans(r))"

We define a linear order as a binary relation that is antisymmetric, transitive
and total. Note that this terminology is different than the one used the
standard Order.thy file.

definition

"IsLinOrder(X,r) = (antisym(r) A trans(r) A (r {is total on} X))"

A set is bounded above if there is that is an upper bound for it, i.e. there
are some u such that (z,u) € r for all z € A. In addition, the empty set is
defined as bounded.

definition
"IsBoundedAbove(A,r) = (A=0 V (Ju. Vx€A. (x,u) € r))"

We define sets bounded below analogously.

definition
"IsBoundedBelow(A,r) = (A=0 V (1. VxeA. (1,x) € r))"

A set is bounded if it is bounded below and above.

definition

24

"IsBounded(A,r) = (IsBoundedAbove(A,r) A IsBoundedBelow(A,r))"
The notation for the definition of an interval may be mysterious for some
readers, see lemma Order_ZF_2_L1 for more intuitive notation.
definition

"Interval(r,a,b) = r‘‘{a} N r-“‘{p}"

We also define the maximum (the greater of) two elemnts in the obvious
way.
definition
"GreaterOf(r,a,b) = (if (a,b> € r then b else a)"
The definition a a minimum (the smaller of) two elements.
definition

"SmallerOf(r,a,b) = (if (a,b) € r then a else b)"

We say that a set has a maximum if it has an element that is not smaller
that any other one. We show that under some conditions this element of
the set is unique (if exists).

definition
"HasAmaximum(r,A) = JIMEA.Vx€A. (x,M) € "
A similar definition what it means that a set has a minimum.
definition
"HasAminimum(r,A) = JIm€A.Vx€A. (m,x) € r"
Definition of the maximum of a set.
definition
"Maximum(r,A) = THE M. MeA A (VxeA. (x,M) €)"
Definition of a minimum of a set.
definition

"Minimum(r,A) = THE m. meA A (Vx€A. (m,x) €)"

The supremum of a set A is defined as the minimum of the set of upper
bounds, i.e. the set {u.Viea(a,u) € 7} = [\,car{a}. Recall that in Is-
abelle/ZF r-¢“(A) denotes the inverse image of the set A by relation r (i.e.
r-“()={x: (z,y) € r for some y € A}).

definition
"Supremum(r,A) = Minimum(r,(|acA. r‘‘{a})"

Infimum is defined analogously.

definition
"Infimum(r,A) = Maximum(r,[)acA. r-‘‘{a})"

We define a relation to be complete if every nonempty bounded above set
has a supremum.

25

definition
IsComplete ("_ {is complete}") where
"r {is complete} =
VA. IsBoundedAbove(A,r) A A#0 — HasAminimum(r,()a€A. r‘‘{a})"

The essential condition to show that a total relation is reflexive.

lemma Order_ZF_1_L1: assumes "r {is total on} X" and "acX"
shows "(a,a) € r" (proof)

A total relation is reflexive.

lemma total_is_refl:
assumes "r {is total on} X"
shows "refl(X,r)" (proof)

A linear order is partial order.

lemma Order_ZF_1_L2: assumes "IsLinOrder(X,r)"
shows "IsPartOrder(X,r)"

(proof)

Partial order that is total is linear.

lemma Order_ZF_1_L3:
assumes "IsPartOrder(X,r)" and "r {is total on} X"
shows "IsLinOrder(X,r)"

{proof)

Relation that is total on a set is total on any subset.

lemma Order_ZF_1_L4: assumes "r {is total on} X" and "ACX"
shows "r {is total on} A"

{proof)

A linear relation is linear on any subset.

lemma ord_linear_subset: assumes "IsLinOrder(X,r)" and "ACX"
shows "IsLinOrder(A,r)"

(proof)

If the relation is total, then every set is a union of those elements that are
nongreater than a given one and nonsmaller than a given one.

lemma Order_ZF_1_L5:
assumes "r {is total on} X" and "ACX" and "acX"
shows "A = {x€A. (x,a) € r} U {x€A. (a,x) € r}"
(proof)

A technical fact about reflexive relations.

lemma refl_add_point:
assumes "refl(X,r)" and "A C B U {x}" and "B C X" and
"x € X" and "Vy€eB. (y,x) € r"
shows "VacA. (a,x) € r"

(proof)

26

5.2 Intervals
In this section we discuss intervals.

The next lemma explains the notation of the definition of an interval.

lemma Order_ZF_2_L1:
shows "x € Interval(r,a,b) <— (a,x) € r A (x,b) € "

{proof)

Since there are some problems with applying the above lemma (seems that
simp and auto don’t handle equivalence very well), we split Order_zF_2_L1
into two lemmas.

lemma Order_ZF_2_L1A: assumes "x € Interval(r,a,b)"
shows "(a,x) € r" "(x,b) € r"

(proof)

Order_ZF_2_L1, implication from right to left.

lemma Order_ZF_2_L1B: assumes "(a,x) € r" "(x,b) € r"
shows "x € Interval(r,a,b)"
(proof)

If the relation is reflexive, the endpoints belong to the interval.

lemma Order_ZF_2_L2: assumes "refl(X,r)"
and "aceXx" "beX" and "(a,b) € r"
shows
"a € Interval(r,a,b)"
"b € Interval(r,a,b)"

(proof)

Under the assumptions of Order_zF_2_L2, the interval is nonempty.

lemma Order_ZF_2_L2A: assumes "refl(X,r)"
and "aceX" "beX" and "(a,b) € r"
shows "Interval(r,a,b) # 0"

(proof)

If a,b,c,d are in this order, then [b,] C [a,d]. We only need trasitivity for
this to be true.

lemma Order_ZF_2_L3:

assumes Al: "trans(r)" and A2:"(a,b)er" "(b,c)er" "(c,d)er"
shows "Interval(r,b,c) C Interval(r,a,d)"
(proof)

For reflexive and antisymmetric relations the interval with equal endpoints
consists only of that endpoint.

lemma Order_ZF_2_14:
assumes Al: "refl(X,r)" and A2: "antisym(r)" and A3: "aeX"
shows "Interval(r,a,a) = {a}"

27

(proof)

For transitive relations the endpoints have to be in the relation for the
interval to be nonempty.

lemma Order_ZF_2_L5: assumes Al: "trans(r)" and A2: "(a,b) ¢ r"
shows "Interval(r,a,b) = O"

(proof)

If a relation is defined on a set, then intervals are subsets of that set.

lemma Order_ZF_2_L6: assumes Al: "r C XxX"
shows "Interval(r,a,b) C X"

(proof)

5.3 Bounded sets

In this section we consider properties of bounded sets.

For reflexive relations singletons are bounded.

lemma Order_ZF_3_L1: assumes "refl(X,r)" and "aeX"
shows "IsBounded({a},r)"

(proof)

Sets that are bounded above are contained in the domain of the relation.

lemma Order_ZF_3_L1A: assumes "r C XxX"
and "IsBoundedAbove(A,r)"
shows "ACX" (proof)

Sets that are bounded below are contained in the domain of the relation.

lemma Order_ZF_3_L1B: assumes "r C XxX"
and "IsBoundedBelow(A,r)"
shows "ACX" (proof)

For a total relation, the greater of two elements, as defined above, is indeed
greater of any of the two.

lemma Order_ZF_3_L2: assumes "r {is total on} X"
and "xeX" "yeX"
shows
"(x,Greater0f (r,x,y))
"(y,Greater0f (r,x,y))
"(SmallerOf (r,x,y),x)
"(SmallerOf (r,x,y),y)
(proof)

If A is bounded above by u, B is bounded above by w, then AU B is bounded
above by the greater of u, w.

m MmMmmMm

lemma Order_ZF_3_L2B:
assumes Al: "r {is total on} X" and A2: "trans(r)"

28

and A3: "ueX" "weX"
and A4: "Vx€A. (x,u) € r" "VxeB. (x,w) € r"
shows "Vx€AUB. (x,Greater0f(r,u,w)) € r"

(proof)

For total and transitive relation the union of two sets bounded above is
bounded above.

lemma Order_ZF_3_L3:
assumes Al: "r {is total on} X" and A2: "trans(r)"
and A3: "IsBoundedAbove(A,r)" "IsBoundedAbove(B,r)"
and A4: "r C XxX"
shows "IsBoundedAbove(AUB,r)"

(proof)

For total and transitive relations if a set A is bounded above then AU {a}
is bounded above.

lemma Order_ZF_3_L4:
assumes Al: "r {is total on} X" and A2: "trans(r)"
and A3: "IsBoundedAbove(A,r)" and A4: "acX" and A5: "r C XxX"
shows "IsBoundedAbove(AU{al},r)"

{(proof)

If A is bounded below by I, B is bounded below by m, then AU B is bounded
below by the smaller of u, w.

lemma Order_ZF_3_L5B:
assumes Al: "r {is total on} X" and A2: "trans(r)"
and A3: "1e€X" "meX"
and A4: "Vx€A. (1,x) € r" "Vx€B. (m,x) € r"
shows "Vx€AUB. (Smaller0f(r,l,m),x) € r"

(proof)

For total and transitive relation the union of two sets bounded below is
bounded below.

lemma Order_ZF_3_L6:
assumes Al: "r {is total on} X" and A2: "trans(r)"
and A3: "IsBoundedBelow(A,r)" "IsBoundedBelow(B,r)"
and A4: "r C XxX"
shows "IsBoundedBelow(AUB,r)"

(proof)

For total and transitive relations if a set A is bounded below then AU {a}
is bounded below.

lemma Order_ZF_3_L7:
assumes Al: "r {is total on} X" and A2: "trans(r)"
and A3: "IsBoundedBelow(A,r)" and A4: "acX" and A5: "r C XxX"
shows "IsBoundedBelow(AU{a},r)"

(proof)

29

For total and transitive relations unions of two bounded sets are bounded.

theorem Order_ZF_3_T1:
assumes "r {is total on} X" and "trans(r)"
and "IsBounded(A,r)" "IsBounded(B,r)"
and "r C XxX"
shows "IsBounded(AUB,r)"

(proof)

For total and transitive relations if a set A is bounded then A U {a} is

bounded.

lemma Order_ZF_3_L8:
assumes "r {is total on} X" and "trans(r)"
and "IsBounded(A,r)" and "acX" and "r C XxX"
shows "IsBounded(AU{a},r)"

(proof)

A sufficient condition for a set to be bounded below.

lemma Order_ZF_3_L9: assumes Al: "VachA. (1,a) € r"
shows "IsBoundedBelow(A,r)"

(proof)

A sufficient condition for a set to be bounded above.

lemma Order_ZF_3_L10: assumes Al: "VacA. (a,u) € r"
shows "IsBoundedAbove(A,r)"

(proof)

Intervals are bounded.

lemma Order_ZF_3_L11: shows
"IsBoundedAbove (Interval(r,a,b),r)"
"IsBoundedBelow(Interval(r,a,b),r)"
"IsBounded(Interval(r,a,b),r)"

(proof)
A subset of a set that is bounded below is bounded below.

lemma Order_ZF_3_L12: assumes Al: "IsBoundedBelow(A,r)" and A2:

shows "IsBoundedBelow(B,r)"
(proof)

A subset of a set that is bounded above is bounded above.

lemma Order_ZF_3_L13: assumes Al: "IsBoundedAbove(A,r)" and A2:

shows "IsBoundedAbove(B,r)"

(proof)

IIBgAII

IIBgAII

If for every element of X we can find one in A that is greater, then the A
can not be bounded above. Works for relations that are total, transitive and

antisymmetric, (i.e. for linear order relations).

lemma Order_ZF_3_L14:

30

assumes Al: "r {is total on} X"

and A2: "trans(r)" and A3: "antisym(r)"
and A4: "r C XxX" and A5: "X#0"

and A6: "Vx€X. Ja€A. x#a A (x,a) € r"
shows "—IsBoundedAbove(A,r)"

(proof)

The set of elements in a set A that are nongreater than a given element is
bounded above.

lemma Order_ZF_3_L15: shows "IsBoundedAbove({x€A. (x,a) € r},r)"

(proof)

If A is bounded below, then the set of elements in a set A that are nongreater
than a given element is bounded.

lemma Order_ZF_3_L16: assumes Al: "IsBoundedBelow(A,r)"
shows "IsBounded({x€A. (x,a) € r},r)"

(proof)

end

6 More on order relations

theory Order_ZF_1 imports Order ZF1
begin

In Order_ZzF we define some notions related to order relations based on the
nonstrict orders (< type). Some people however prefer to talk about these
notions in terms of the strict order relation (< type). This is the case for the
standard Isabelle Order.thy and also for Metamath. In this theory file we
repeat some developments from Order_ZF using the strict order relation as
a basis. This is mostly useful for Metamath translation, but is also of some
general interest. The names of theorems are copied from Metamath.

6.1 Definitions and basic properties

In this section we introduce some definitions taken from Metamath and
relate them to the ones used by the standard Isabelle Order.thy.

The next definition is the strict version of the linear order. What we write
as R Orders A is written ROrdA in Metamath.

definition

StrictOrder (infix "Orders" 65) where
"R Orders A = Vx y z. (x€A A yeEA A z€d) —
((x,y) € R «— —(x=y V (y,%X) € R)) A
({(x,y) € R A {y,z2) € R — (x,2) € R)"

31

The definition of supremum for a (strict) linear order.

definition
"Sup(B,A,R) =
U {x € A. (VyeB. (x,y) ¢ R) A
(VyeA. (y,x) € R — (Jz€B. (y,z) € R))}"

Definition of infimum for a linear order. It is defined in terms of supremum.

definition
"Infim(B,A,R) = Sup(B,A,converse(R))"

If relation R orders a set A, (in Metamath sense) then R is irreflexive,
transitive and linear therefore is a total order on A (in Isabelle sense).

lemma orders_imp_tot_ord: assumes Al: "R Orders A"
shows
"irrefl1(A,R)"
"trans[A] (R)"
"part_ord(A,R)"
"linear(A,R)"
"tot_ord(A,R)"
(proof)

A converse of orders_imp_tot_ord. Together with that theorem this shows
that Metamath’s notion of an order relation is equivalent to Isabelles tot_ord
predicate.

lemma tot_ord_imp_orders: assumes Al: "tot_ord(A,R)"
shows "R Orders A"

(proof)

6.2 Properties of (strict) total orders

In this section we discuss the properties of strict order relations. This con-
tinues the development contained in the standard Isabelle’s Order.thy with
a view towards using the theorems translated from Metamath.

A relation orders a set iff the converse relation orders a set. Going one
way we can use the the lemma tot_od_converse from the standard Isabelle’s
Order.thy.The other way is a bit more complicated (note that in Isabelle for
converse(converse(r)) = r one needs r to consist of ordered pairs, which
does not follow from the StrictOrder definition above).

lemma cnvso: shows "R Orders A <— converse(R) Orders A"

(proof)

Supremum is unique, if it exists.

lemma supeu: assumes Al: "R Orders A" and A2: "xe€A" and
A3: "VyeB. (x,y) ¢ R" and A4: "VyeA. (y,x) € R — (JzeB. (y,z) €
R) n

32

shows

"Jix. xeAA(VyeB. (x,y) ¢ R) A (VyeA. (y,x) € R — (3z€B. (y,z) €
R))ll
(proof)

Supremum has expected properties if it exists.

lemma sup_props: assumes Al: "R Orders A" and

A2: "JIxeA. (VyeB. (x,y) ¢ R) A (Vy€A. (y,x) € R — (3z€B. (y,z)
€ RrRND"

shows

"Sup(B,A,R) € A"

"WyeB. (Sup(B,A,R),y) ¢ R"

"WyeA. (y,Sup(B,A,R)) € R — (3z€B. (y,z) € R)"
(proof)

Elements greater or equal than any element of B are greater or equal than
supremum of B.

lemma supnub: assumes Al: "R Orders A" and A2:
"JxeA. (VyeB. (x,y) ¢ R) A (Vy€A. (y,x) € R — (3z€B. (y,z) € R))"
and A3: "c € A" and A4: "Vze€B. (c,z) ¢ R"
shows "(c, Sup(B,A,R)) ¢ R"

(proof)

end

7 Even more on order relations

theory Order_ZF_la imports Order_ZF
begin

This theory is a continuation of Order_ZF and talks about maximuma and
minimum of a set, supremum and infimum and strict (not reflexive) versions
of order relations.

7.1 Maximum and minimum of a set

In this section we show that maximum and minimum are unique if they
exist. We also show that union of sets that have maxima (minima) has a
maximum (minimum). We also show that singletons have maximum and
minimum. All this allows to show (in Finite_ZF) that every finite set has
well-defined maximum and minimum.

For antisymmetric relations maximum of a set is unique if it exists.

lemma Order_ZF_4_L1: assumes Al: "antisym(r)" and A2: "HasAmaximum(r,A)"
shows "JIM. MeA A (VxeA. (x,M) €)"
(proof)

33

For antisymmetric relations minimum of a set is unique if it exists.

lemma Order_ZF_4_L2: assumes Al: "antisym(r)" and A2: "HasAminimum(r,A)"
shows "J!m. meA A (Vx€A. (m,x) €)"

(proof)

Maximum of a set has desired properties.

lemma Order_ZF_4_L3: assumes Al: "antisym(r)" and A2: "HasAmaximum(r,A)"
shows "Maximum(r,A) € A" "Vx€A. (x,Maximum(r,A)) € r"

(proof)

Minimum of a set has desired properties.

lemma Order_ZF_4_L4: assumes Al: "antisym(r)" and A2: "HasAminimum(r,A)"
shows "Minimum(r,A) € A" "Vx€A. (Minimum(r,A),x) € r"
(proof)

For total and transitive relations a union a of two sets that have maxima
has a maximum.

lemma Order_ZF_4_L5:
assumes Al: "r {is total on} (AUB)" and A2: "trans(r)"
and A3: "HasAmaximum(r,A)" "HasAmaximum(r,B)"
shows "HasAmaximum(r,AUB)"

(proof)

For total and transitive relations A union a of two sets that have minima
has a minimum.

lemma Order_ZF_4_L6:
assumes Al: "r {is total on} (AUB)" and A2: "trans(r)"
and A3: "HasAminimum(r,A)" "HasAminimum(r,B)"
shows "HasAminimum(r,AUB)"

(proof)

Set that has a maximum is bounded above.

lemma Order_ZF_4_L7:
assumes "HasAmaximum(r,A)"
shows "IsBoundedAbove(A,r)"

(proof)

Set that has a minimum is bounded below.

lemma Order_ZF_4_L8A:
assumes "HasAminimum(r,A)"
shows "IsBoundedBelow(A,r)"

(proof)

For reflexive relations singletons have a minimum and maximum.

lemma Order_ZF_4_18: assumes "refl(X,r)" and "acX"
shows "HasAmaximum(r,{a})" "HasAminimum(r,{a})"

(proof)

34

For total and transitive relations if we add an element to a set that has a
maximum, the set still has a maximum.

lemma Order_ZF_4_L9:
assumes Al: "r {is total on} X" and A2: "trans(r)"
and A3: "ACX" and A4: "aeX" and A5: "HasAmaximum(r,A)"
shows "HasAmaximum(r,AU{a})"

(proof)

For total and transitive relations if we add an element to a set that has a
minimum, the set still has a minimum.

lemma Order_ZF_4_L10:
assumes Al: "r {is total on} X" and A2: "trans(r)"
and A3: "ACX" and A4: "a€eX" and A5: "HasAminimum(r,A)"
shows "HasAminimum(r,AU{a})"

(proof)

If the order relation has a property that every nonempty bounded set attains
a minimum (for example integers are like that), then every nonempty set
bounded below attains a minimum.

lemma Order_ZF_4_L11:
assumes Al: "r {is total on} X" and
A2: "trans(r)" and
A3: "r C XxX" and
Ad: "VA. IsBounded(A,r) A A#0 — HasAminimum(r,A)" and
A5: "B#0" and A6: "IsBoundedBelow(B,r)"
shows "HasAminimum(r,B)"

(proof)

A dual to Order_zF_4_L11: If the order relation has a property that every
nonempty bounded set attains a maximum (for example integers are like
that), then every nonempty set bounded above attains a maximum.

lemma Order_ZF_4_L11A:
assumes Al: "r {is total on} X" and
A2: "trans(r)" and
A3: "r C XxX" and
A4: "VA. IsBounded(A,r) A A#0 — HasAmaximum(r,A)" and
A5: "B#0" and A6: "IsBoundedAbove(B,r)"
shows "HasAmaximum(r,B)"

(proof)

If a set has a minimum and L is less or equal than all elements of the set,
then L is less or equal than the minimum.

lemma Order_ZF_4_L12:
assumes "antisym(r)" and "HasAminimum(r,A)" and "Va€cA. (L,a) € r"
shows "(L,Minimum(r,A)) € r"
(proof)

35

If a set has a maximum and all its elements are less or equal than M, then
the maximum of the set is less or equal than M.

lemma Order_ZF_4_L13:
assumes "antisym(r)" and "HasAmaximum(r,A)" and "VacA. (a,M) € r"
shows "(Maximum(r,A),M) € r"
{proof)

If an element belongs to a set and is greater or equal than all elements of
that set, then it is the maximum of that set.

lemma Order_ZF_4_L14:
assumes Al: "antisym(r)" and A2: "M € A" and
A3: "VacA. (a,M) € r"
shows "Maximum(r,A) = M"

(proof)

If an element belongs to a set and is less or equal than all elements of that
set, then it is the minimum of that set.

lemma Order_ZF_4_L15:
assumes Al: "antisym(r)" and A2: "m € A" and
A3: "Va€cA. (m,a) € r"
shows "Minimum(r,A) = m'
(proof)

If a set does not have a maximum, then for any its element we can find one
that is (strictly) greater.

lemma Order_ZF_4_L16:
assumes Al: "antisym(r)" and A2: "r {is total on} X" and
A3: "ACX" and
Ad: "—HasAmaximum(r,A)" and

A5: "xeA"
shows "JyeA. (x,y) € r A y#x"
(proof)

7.2 Supremum and Infimum
In this section we consider the notions of supremum and infimum a set.
Elements of the set of upper bounds are indeed upper bounds. Isabelle also

thinks it is obvious.

lemma Order_ZF_5_L1: assumes "u € ([|acA. r‘‘{a})" and "acA"
shows "(a,u) € r"

(proof)

Elements of the set of lower bounds are indeed lower bounds. Isabelle also
thinks it is obvious.

lemma Order_ZF_5_L2: assumes "1 € ([|acA. r-‘‘{a})" and "acA"
shows "(1,a) € r"

36

(proof)

If the set of upper bounds has a minimum, then the supremum is less or equal
than any upper bound. We can probably do away with the assumption that
A is not empty, (ab)using the fact that intersection over an empty family is
defined in Isabelle to be empty.

lemma Order_ZF_5_L3: assumes Al: "antisym(r)" and A2: "A#0" and
A3: "HasAminimum(r,()acA. r‘‘{a})" and
A4: "VaeA. (a,u) € r"
shows "(Supremum(r,A),u) € r"

(proof)

Infimum is greater or equal than any lower bound.

lemma Order_ZF_5_L4: assumes Al: "antisym(r)" and A2: "A#0" and
A3: "HasAmaximum(r,()a€A. r-‘‘{a})" and
A4: "VaeA. (1,a) € r"
shows "(1,Infimum(r,A)) € r"

(proof)

If z is an upper bound for A and is greater or equal than any other upper
bound, then z is the supremum of A.

lemma Order_ZF_5_L5: assumes Al: "antisym(r)" and A2: "A#0" and
A3: "VxeA. (x,z) € r" and
A4: "Vy. (Vx€A. (x,y) € ©) — (z,y) € "
shows
"HasAminimum(r,()acA. r‘‘{a})"
"z = Supremum(r,A)"
(proof)

If a set has a maximum, then the maximum is the supremum.

lemma Order_ZF_5_L6:
assumes Al: '"antisym(r)" and A2: "A#0" and
A3: "HasAmaximum(r,A)"
shows
"HasAminimum(r,()acA. r‘‘{a})"
"Maximum(r,A) = Supremum(r,A)"
(proof)

Properties of supremum of a set for complete relations.

lemma Order_ZF_5_L7:
assumes Al: "r C XxX" and A2: "antisym(r)" and
A3: "r {is complete}" and
Ad: "ACX" "AZ40" and A5: "Jxe€X. Vy€A. <y,x> er"
shows
"Supremum(r,A) € X"
"Wx€A. (x,Supremum(r,A)) € r"

(proof)

37

If the relation is a linear order then for any element y smaller than the
supremum of a set we can find one element of the set that is greater than .

lemma Order_ZF_5_L8:
assumes Al: "r C XxX" and A2: "IsLinOrder(X,r)" and
A3: "r {is completel}" and
Ad: "ACX" "A#0" and A5: "JxeX. Vye€A. <y,x> € r" and

A6: "(y,Supremum(r,A)) € r" "y # Supremum(r,A)"
shows "JzeA. (y,z) € r Ay # 2"
(proof)

7.3 Strict versions of order relations

One of the problems with translating formalized mathematics from Meta-
math to IsarMathLib is that Metamath uses strict orders (of the < type)
while in IsarMathLib we mostly use nonstrict orders (of the < type). This
doesn’t really make any difference, but is annoying as we have to prove
many theorems twice. In this section we prove some theorems to make it
easier to translate the statements about strict orders to statements about
the corresponding non-strict order and vice versa.

We define a strict version of a relation by removing the y = x line from the
relation.

definition
"StrictVersion(r) = r - {(x,x). x € domain(zr)}"

A reformulation of the definition of a strict version of an order.

lemma def_of_strict_ver: shows
"(x,y) € StrictVersion(r) +— (x,y) € r A x#y"

{proof)

The next lemma is about the strict version of an antisymmetric relation.

lemma strict_of_antisym:
assumes Al: "antisym(r)" and A2: "(a,b) € StrictVersion(r)"
shows "(b,a) ¢ StrictVersion(r)"

(proof)

The strict version of totality.

lemma strict_of_tot:
assumes "r {is total on} X" and "a€X" "beX" "a#b"
shows "(a,b) € StrictVersion(r) V (b,a) € StrictVersion(r)"

(proof)

A trichotomy law for the strict version of a total and antisymmetric relation.
It is kind of interesting that one does not need the full linear order for this.

lemma strict_ans_tot_trich:
assumes Al: "antisym(r)" and A2: "r {is total on} X"

38

and A3: "acX" "beX"

and A4: "s = StrictVersion(r)"

shows "Exactly_1_of_3_holds((a,b) € s, a=b,(b,a) € s)"
(proof)

A trichotomy law for linear order. This is a special case of strict_ans_tot_trich.

corollary strict_lin_trich: assumes Al: "IsLinOrder(X,r)" and
A2: "aeX" "beX" and
A3: "s = StrictVersion(r)"
shows "Exactly_1_of_3_holds((a,b) € s, a=b,(b,a) € s)"
(proof)

For an antisymmetric relation if a pair is in relation then the reversed pair
is not in the strict version of the relation.

lemma geq_impl_not_less:
assumes Al: "antisym(r)" and A2: "(a,b) € r"
shows "(b,a) ¢ StrictVersion(r)"

(proof)

If an antisymmetric relation is transitive, then the strict version is also
transitive, an explicit version strict_of_transB below.

lemma strict_of_transA:
assumes Al: "trans(r)" and A2: "antisym(r)" and
A3: "s= StrictVersion(r)" and A4: "(a,b) € s" "(b,c) € s"
shows "(a,c) € s"

(proof)

If an antisymmetric relation is transitive, then the strict version is also
transitive.

lemma strict_of_transB:
assumes Al: "trans(r)" and A2: "antisym(r)"
shows "trans(StrictVersion(r))"

(proof)

The next lemma provides a condition that is satisfied by the strict version
of a relation if the original relation is a complete linear order.

lemma strict_of_compl:

assumes Al: "r C XxX" and A2: "IsLinOrder(X,r)" and

A3: "r {is completel}" and

Ad: "ACX" "A#0" and A5: "s = StrictVersion(r)" and

A6: "JueX. VyehA. (y,u) € s"

shows

"IxeX. (Vyeh. (x,y) ¢ s) A (VyeX. (y,x) € s — (Jz€hA. (y,z) € s))"
(proof)

Strict version of a relation on a set is a relation on that set.

lemma strict_ver_rel: assumes Al: "r C AxA"

39

shows "StrictVersion(r) C AxA"
(proof)

end

8 Order on natural numbers

theory NatOrder_ZF imports Nat_ZF_IML Order_ZF

begin

This theory proves that < is a linear order on N. < is defined in Isabelle’s
Nat theory, and linear order is defined in Order_ZF theory. Contributed by
Seo Sanghyeon.

8.1 Order on natural numbers

This is the only section in this theory.

To prove that < is a total order, we use a result on ordinals.

lemma NatOrder_ZF_1_L1:
assumes "acnat" and "b&nat"
shows "a < b V b < a"

(proof)

< is antisymmetric, transitive, total, and linear. Proofs by rewrite using
definitions.
lemma NatOrder_ZF_1_L2:

shows

"antisym(Le)"

"trans(Le)"

"Le {is total on} nat"

"IsLinOrder (nat,Le)"

{(proof)

The order on natural numbers is linear on every natural number. Recall
that each natural number is a subset of the set of all natural numbers (as
well as a member).

lemma natord_lin_on_each_nat:
assumes Al: "n € nat" shows "IsLinOrder(n,Le)"

(proof)

end

9 Functions - introduction

theory funcl imports func Foll ZF1

40

begin

This theory covers basic properties of function spaces. A set of functions
with domain X and values in the set Y is denoted in Isabelle as X — Y. It
just happens that the colon ”:” is a synonym of the set membership symbol
€ in Isabelle/ZF so we can write f : X — Y instead of f € X — Y. This is
the only case that we use the colon instead of the regular set membership

symbol.

9.1 Properties of functions, function spaces and (inverse) im-
ages.

Functions in ZF are sets of pairs. This means that if f : X — Y then
f € X xY. This section is mostly about consequences of this understanding
of the notion of function.

We define the notion of function that preserves a collection here. Given two
collection of sets a function preserves the collections if the inverse image
of sets in one collection belongs to the second one. This notion does not
have a name in romantic math. It is used to define continuous functions
in Topology_ZF_2 theory. We define it here so that we can use it for other
purposes, like defining measurable functions. Recall that £-° ¢ (A) means the
inverse image of the set A.

definition

"PresColl(f,8,T) = V A€T. f-¢‘(A)es"
A definition that allows to get the first factor of the domain of a binary
function f: X xY — Z.
definition

"fstdom(f) = domain(domain(f))"
If a function maps A into another set, then A is the domain of the function.
lemma funcl_1_L1: assumes "f:A—C" shows "domain(f) = A"

(proof)

Standard Isabelle defines a function(f) predicate. the next lemma shows
that our function satisfy that predicate. It is a special version of Isabelle’s

fun_is_function.

lemma fun_is_fun: assumes "f:X—Y" shows "function(f)"

(proof)

A lemma explains what fstdom is for.

lemma fstdomdef: assumes Al: "f: XxY — Z" and A2: "YAO"
shows "fstdom(f) = X"

41

(proof)

A first-order version of Pi_type.

lemma funci_1_L1A: assumes Al: "f:X—Y" and A2: "VxeX. £(x) € 2"
shows "f:X—Z"

(proof)

A variant of func1l_1_L1A.

lemma func1_1_L1B: assumes Al: "f:X—Y" and A2: "YCZ"
shows "f:X—Z"

(proof)

There is a value for each argument.

lemma funci_1_L2: assumes Al: "f:X—Y" "xeX"
shows "JyeY. (x,y) € £"
(proof)

The inverse image is the image of converse. True for relations as well.

lemma vimage_converse: shows "r-¢‘(A) = converse(r)‘‘(A)"

(proof)

The image is the inverse image of converse.

lemma image_converse: shows "converse(r)-¢‘(A) = r ‘(A"
(proof)

The inverse image by a composition is the composition of inverse images.

lemma vimage_comp: shows "(r 0 s)-““(A) = s=““(r-““(A))"

{proof)

A version of vimage_comp for three functions.

lemma vimage_comp3: shows "(r 0 s 0 t)-““(A) = t=““(s=“ ‘(- ‘(A"

(proof)

Inverse image of any set is contained in the domain.

lemma funci_1_L3: assumes Al: "f:X—Y" shows "f-¢‘(D) C X"
(proof)

The inverse image of the range is the domain.

lemma funci_1_L4: assumes "f:X—Y" shows "f-¢‘(Y) = X"

{proof)

The arguments belongs to the domain and values to the range.

lemma funci_1_L5:
assumes Al: "(x,y) € £" and A2: "f:X—Y"
shows "xeX A yeY"

(proof)

42

Function is a subset of cartesian product.

lemma fun_subset_prod: assumes Al: "f:X—Y" shows "f C XxY"
(proof)

The (argument, value) pair belongs to the graph of the function.

lemma funci_1_L5A:
assumes Al: "f:X—Y" "xeX" "y = £°(x)"
shows "(x,y) € f" "y € range(f)"
(proof)
The next theorem illustrates the meaning of the concept of function in ZF.

theorem fun_is_set_of_pairs: assumes Al: "f:X—Y"
shows "f = {(x, £‘(x)). x € X}"
(proof)

The range of function thet maps X into Y is contained in Y.

lemma funci_1_L5B:
assumes Al: "f:X—Y" shows "range(f) C Y"

(proof)
The image of any set is contained in the range.

lemma funcl_1_L6: assumes Al: "f:X—Y"
shows "f¢(B) C range(f)" and "f‘‘(B) C Y"
(proof)
The inverse image of any set is contained in the domain.
lemma func1_1_L6A: assumes Al: "f:X—Y" shows "f-°‘(A)CX"
(proof)
Image of a greater set is greater.
lemma funci_1_L8: assumes Al: "ACB" shows "f‘‘(A)C f£<¢(B)"

(proof)

A set is contained in the the inverse image of its image. There is similar
theorem in equalities.thy (function_image_vimage) which shows that the
image of inverse image of a set is contained in the set.

lemma funci_1_L9: assumes Al: "f:X—Y" and A2: "ACX"
shows "A C f-““(£°“(A))"
(proof)

The inverse image of the image of the domain is the domain.

lemma inv_im_dom: assumes Al: "f:X—Y" shows "f-“‘(f‘‘(X)) = X"
(proof)

A technical lemma needed to make the func1_1_L11 proof more clear.

lemma funci_1_L10:

43

assumes Al: "f C XxY" and A2: "Jly. (yeY A (x,y) € £)"
shows "Jly. (x,y) € £"
(proof)

If f C X xY and for every z € X there is exactly one y € Y such that
(z,y) € f then f maps X to Y.

lemma func1_1_L11:
assumes "f C XxY" and "VxeX. Jly. yeY A (x,y) € £"
shows "f: X—Y" (proof)

A set defined by a lambda-type expression is a fuction. There is a similar
lemma in func.thy, but I had problems with lambda expressions syntax so I
could not apply it. This lemma is a workaround for this. Besides, lambda
expressions are not readable.

lemma func1_1_L11A: assumes Al: "VxeX. b(x) € Y"
shows "{(x,y) € XxY. b(x) = y} : X—>Y"
(proof)

The next lemma will replace func1_1_L11A one day.

lemma ZF_fun_from_total: assumes Al: "VxcX. b(x) € Y"
shows "{(x,b(x)). x€X} : X—Y"
(proof)

The value of a function defined by a meta-function is this meta-function.

lemma funci_1_L11B:
assumes Al: "f:X—Y" "xeX"

and A2: "f = {{ x,y) € XxY. b(x) = y}"
shows "f‘(x) = b(x)"
(proof)

The next lemma will replace func1_1_L11B one day.

lemma ZF_fun_from_tot_val:
assumes Al: "f:X—Y" "xeX"

and A2: "f = {(x,b(x)). xeX}"
shows "f‘(x) = b(x)"
{proof)

Identical meaning as ZF_fun_from_tot_val, but phrased a bit differently.

lemma ZF_fun_from_tot_valO:
assumes "f:X—Y" and "f = {(x,b(x)). x€X}"
shows "VxeX. £f(x) = b(x)"
(proof)

Another way of expressing that lambda expression is a function.

lemma lam_is_fun_range: assumes "f={(x,g(x)). xeX}"
shows "f:X—range(f)"
(proof)

44

Yet another way of expressing value of a function.

lemma ZF_fun_from_tot_vall:
assumes "x€X" shows "{(x,b(x)). x€X} (x)=b(x)"

{(proof)

We can extend a function by specifying its values on a set disjoint with the
domain.

lemma funci_1_L11C: assumes Al: "f:X—Y" and A2: "VxcA. b(x)€B"
and A3: "XNA = 0" and Dg: "g = f U {<X,b(X)>. XEAF"
shows
"g : XUA — YUB"
"WxeX. g(x) = £x"
"Wxeh. g (x) = b(x)"
(proof)

We can extend a function by specifying its value at a point that does not
belong to the domain.

lemma funci_1_L11D: assumes Al: "f:X—Y" and A2: "a¢X"
and Dg: "g = £ U {(a,b)}"
shows
"g : XU{a} — YU{b}"
"WxeX. gi(x) = £(x)"
"g‘(a) = b"
(proof)

A technical lemma about extending a function both by defining on a set
disjoint with the domain and on a point that does not belong to any of
those sets.

lemma funci_1_L11E:
assumes Al: "f:X—Y" and
A2: "VxeA. b(x)eB" and
A3: "XNA = 0" and A4: "a¢ XUA"
and Dg: "g = £ U {(x,b(x)). x€A} U {(a,c)}"
shows
"g : XUAU{a} — YUBU{c}"
"WxeX. g(x) = £ ()"
"WxeA. g (x) = b(x)"
ngl(a) = c"

(proof)

A way of defining a function on a union of two possibly overlapping sets. We
decompose the union into two differences and the intersection and define a
function separately on each part.

lemma fun_union_overlap: assumes "Vx€ANB. h(x) € Y" "VxeA-B. f(x)
€ Y" "VxeB-A. g(x) € Y"

shows "{(x,if x€A-B then f(x) else if x€B-A then g(x) else h(x)). x
€ AUB}: AUB — Y"

45

(proof)

Inverse image of intersection is the intersection of inverse images.

lemma invim_inter_inter_invim: assumes "f:X—Y"
shows "f-““(ANB) = f-““(A) N f=°“(B"
(proof)

The inverse image of an intersection of a nonempty collection of sets is the
intersection of the inverse images. This generalizes invim_inter_inter_invim
which is proven for the case of two sets.

lemma func1_1_L12:
assumes Al: "B C Pow(Y)" and A2: "B##0" and A3: "f:X—Y"
shows "f-“((\B) = ((U€B. £-<<(U))"

(proof)

The inverse image of a set does not change when we intersect the set with
the image of the domain.
lemma inv_im_inter_im: assumes "f:X—Y"

shows "f-“‘(A N £°9(X)) = £-“(A)"

(proof)

If the inverse image of a set is not empty, then the set is not empty. Proof
by contradiction.
lemma funci_1_L13: assumes A1:"f-‘‘(A) # 0" shows "A#0"
(proof)
If the image of a set is not empty, then the set is not empty. Proof by
contradiction.
lemma funcl_1_L13A: assumes Al: "f‘‘(A)#0" shows "A#0"
(proof)
What is the inverse image of a singleton?

lemma funci_1_L14: assumes "fcX—Y"
shows "f-¢‘({y}) = {xeX. £°(x) = y}"
(proof)

A lemma that can be used instead fun_extension_iff to show that two
functions are equal

lemma func_eq: assumes "f: X—=Y" "g: X—Z"
and "VxeX. £f(x) = g‘(x)"
shows "f = g" (proof)

Function defined on a singleton is a single pair.

lemma func_singleton_pair: assumes Al: "f : {a}—X"
shows "f = {(a, £‘(a))}"
(proof)

46

A single pair is a function on a singleton. This is similar to singleton_fun
from standard Isabelle/ZF.

lemma pair_func_singleton: assumes Al: "y € Y"
shows "{(x,y)} : {x} — Y"
(proof)

The value of a pair on the first element is the second one.
lemma pair_val: shows "{(x,y)}‘(x) = y"

(proof)
A more familiar definition of inverse image.

lemma funci_1_L15: assumes Al: "f:X—Y"
shows "f-¢“(A) = {xeX. £(x) € A}"
(proof)

A more familiar definition of image.

lemma func_imagedef: assumes Al: "f:X—Y" and A2: "ACX"
shows "f<“(A) = {£°(x). x € A}"
(proof)

The image of a set contained in domain under identity is the same set.

lemma image_id_same: assumes "ACX" shows "id(X)‘‘(4) = A"

(proof)

The inverse image of a set contained in domain under identity is the same
set.

lemma vimage_id_same: assumes "ACX" shows "id(X)-¢‘(4) = A"

(proof)

What is the image of a singleton?

lemma singleton_image:
assumes "feXx—Y" and "xeX"
shows "f‘‘{x} = {f‘(x)}"
(proof)

If an element of the domain of a function belongs to a set, then its value
belongs to the imgage of that set.

lemma funci_1_L15D: assumes "f:X—Y" "x€A" "ACX"
shows "f‘(x) € £“(A)"
(proof)

Range is the image of the domain. Isabelle/ZF defines range (f) as domain(converse(£)),
and that’s why we have something to prove here.

lemma range_image_domain:
assumes Al: "f:X—Y" shows "f‘‘(X) = range(f)"
(proof)

47

The difference of images is contained in the image of difference.

lemma diff_image_diff: assumes Al: "f: X—Y" and A2: "ACX"
shows "f‘‘(X) - £°°(A) C £“(X-M)"
(proof)

The image of an intersection is contained in the intersection of the images.

lemma image_of_Inter: assumes Al: "f:X—Y" and
A2: "I#0" and A3: "VieI. P(i) C X"
shows "f¢‘(((i€l. P(i)) C ((iel. £<(P()))"
(proof)

The image of union is the union of images.

lemma image_of_Union: assumes Al: "f:X—Y" and A2: "VAeM. ACX"
shows "f (M) = J{£“(A). AeM}"
(proof)

The image of a nonempty subset of domain is nonempty.

lemma func1_1_L15A:
assumes Al: "f: X—Y" and A2: "ACX" and A3: "A#£0"
shows "f‘‘(A) # 0"

(proof)

The next lemma allows to prove statements about the values in the domain
of a function given a statement about values in the range.

lemma funci_1_L15B:
assumes "f:X—Y" and "ACX" and "Vyef‘‘(A). P(y)"
shows "VxeA. P(f(x))"
(proof)

An image of an image is the image of a composition.

lemma funcl_1_L15C: assumes Al: "f:X—Y" and A2: "g:Y—Z"
and A3: "ACX"

shows

"g (£ (M) = g (f(x)). xeA}"

g (£C°(A)) = (g O £)C(A)"
(proof)

What is the image of a set defined by a meta-fuction?

lemma funci_1_L17:
assumes Al: "f € X—Y" and A2: "Vx€A. b(x) € X"
shows "f‘‘({b(x). x€A}) = {f°(b(x)). xe€A}"
(proof)

What are the values of composition of three functions?

lemma funci_1_L18: assumes Al: "f:A—B" "g:B—C" "h:C—D"
and A2: "xcA"
shows

48

"(h 0 g0 £ €D
"(h 0 g0 £)x) = h(g (E)N
(proof)

A composition of functions is a function. This is a slight generalization of
standard Isabelle’s comp_fun

lemma comp_fun_subset:
assumes Al: "g:A—B" and A2: "f:C—D" and A3: "B C C"
shows "f 0 g : A — D"

(proof)

This lemma supersedes the lemma comp_eq_id_iff in Isabelle/ZF. Con-

tributed by Victor Porton.

lemma comp_eq_id_iffl: assumes Al: "g: B—A" and A2: "f: A—C"
shows "(VyeB. £(g‘(y)) =y) < £ 0 g = id(B)"

(proof)

A lemma about a value of a function that is a union of some collection of
functions.
lemma fun_Union_apply: assumes Al: "[JF : X—Y" and
A2: "fcF" and A3: "f:A—B" and A4: "x€A"
shows "(JF)‘(x) = £°(x)"
(proof)

9.2 Functions restricted to a set

Standard Isabelle/ZF defines the notion restrict (f,A) of to mean a function
(or relation) f restricted to a set. This means that if f is a function defined
on X and A is a subset of X then restrict(f,A) is a function whith the
same values as f, but whose domain is A.

What is the inverse image of a set under a restricted fuction?

lemma funcl_2_L1: assumes Al: "f:X—Y" and A2: "BCX"
shows "restrict(f,B)-‘‘(A) = f-“‘(A) N B"

(proof)

A criterion for when one function is a restriction of another. The lemma

below provides a result useful in the actual proof of the criterion and appli-
cations.

lemma funcl_2_L2:
assumes Al: "f:X—=Y" and A2: "g € A—Z"
and A3: "ACX" and A4: "f N AXZ = g"
shows "Vx€A. g'(x) = £(x)"

(proof)

Here is the actual criterion.

lemma funci_2_L3:

49

assumes Al: "f:X—Y" and A2: "g:A—Z"
and A3: "ACX" and A4: "f N AXZ = g"
shows "g = restrict(f,A)"

(proof)

Which function space a restricted function belongs to?

lemma funcl_2_L4:
assumes Al: "f:X—Y" and A2: "ACX" and A3: "VxcA. £f(x) € 2"
shows "restrict(f,A) : A—Z"

(proof)

A simpler case of func1_2_L4, where the range of the original and restricted
function are the same.

corollary restrict_fun: assumes Al: "f:X—Y" and A2: "ACX"
shows "restrict(f,A) : A — Y"

(proof)

A composition of two functions is the same as composition with a restriction.

lemma comp_restrict:
assumes Al: "f : A—B" and A2: "g : X — C" and A3: "BCX"
shows "g 0 f = restrict(g,B) 0 f"

(proof)

A way to look at restriction. Contributed by Victor Porton.

lemma right_comp_id_any: shows "r 0 id(C) = restrict(r,C)"
{proof)

9.3 Constant functions

Constant functions are trivial, but still we need to prove some properties to
shorten proofs.
We define constant(= ¢) functions on a set X in a natural way as ConstantFunction(X, ¢).

definition
"ConstantFunction(X,c) = Xx{c}"

Constant function belongs to the function space.

lemma funci_3_L1:
assumes Al: "ceY" shows "ConstantFunction(X,c) : X—Y"

(proof)

Constant function is equal to the constant on its domain.

lemma funci_3_L2: assumes Al: "xeX"
shows "ConstantFunction(X,c)‘(x) = c"

(proof)

50

9.4 Injections, surjections, bijections etc.

In this section we prove the properties of the spaces of injections, surjections
and bijections that we can’t find in the standard Isabelle’s Perm.thy.

For injections the image a difference of two sets is the difference of images

lemma inj_image_dif:
assumes Al: "f € inj(A,B)" and A2: "C C A"
shows "f¢‘(A-C) = £“(A) - £°°(C)"

(proof)

For injections the image of intersection is the intersection of images.

lemma inj_image_inter: assumes Al: "f € inj(X,Y)" and A2: "ACX" "BCX"
shows "f¢‘(ANB) = £¢“(A) N £°“(B)"

(proof)

For surjection from A to B the image of the domain is B.

lemma surj_range_image_domain: assumes Al: "f € surj(A,B)"
shows "f¢‘(A) = B"

(proof)

For injections the inverse image of an image is the same set.

lemma inj_vimage_image: assumes "f € inj(X,Y)" and "ACX"
shows "f-““(£<“(A)) = A"

(proof)

For surjections the image of an inverse image is the same set.

lemma surj_image_vimage: assumes Al: "f € surj(X,Y)" and A2: "ACY"
shows "f¢‘(£-¢¢(4)) = A"
(proof)

A lemma about how a surjection maps collections of subsets in domain and
rangge.

lemma surj_subsets: assumes Al: "f € surj(X,Y)" and A2: "B C Pow(Y)"
shows "{ £“(U). U € {f-““(V). VeB} } = B"
(proof)

Restriction of an bijection to a set without a point is a a bijection.

lemma bij_restrict_rem:

assumes Al: "f € bij(A,B)" and A2: "acA"

shows "restrict(f, A-{a}) € bij(A-{a}, B-{f‘(@dP)"
(proof)

The domain of a bijection between X and Y is X.

lemma domain_of_bij:
assumes Al: "f € bij(X,Y)" shows "domain(f) = X"

(proof)

o1

The value of the inverse of an injection on a point of the image of a set
belongs to that set.

lemma inj_inv_back_in_set:
assumes Al: "f € inj(A,B)" and A2: "CCA" and A3: "y € £°<(C)"
shows
"converse(f) ‘(y) € C"
"f‘(converse(f) ‘(y)) = y"
(proof)

For injections if a value at a point belongs to the image of a set, then the
point belongs to the set.
lemma inj_point_of_image:
assumes Al: "f € inj(A,B)" and A2: "CCA" and
A3: "xeA" and A4: "f(x) € £C(CO"
shows "x € C"
(proof)

For injections the image of intersection is the intersection of images.

lemma inj_image_of_Inter: assumes Al: "f € inj(4,B)" and
A2: "I#0" and A3: "VieI. P(i) C A"
shows "f“([i€Il. P(1)) = ((i€Il. £ (P()))"

(proof)

An injection is injective onto its range. Suggested by Victor Porton.

lemma inj_inj_range: assumes "f € inj(A,B)"
shows "f € inj(A,range(£))"

{proof)

An injection is a bijection on its range. Suggested by Victor Porton.

lemma inj_bij_range: assumes "f € inj(A,B)"
shows "f € bij(A,range(f))"

(proof)

A lemma about extending a surjection by one point.

lemma surj_extend_point:
assumes Al: "f € surj(X,Y)" and A2: "a¢X" and
A3: "g = £ U {(a,b)}"
shows "g € surj(Xu{a},YU{pb})"

(proof)

A lemma about extending an injection by one point. Essentially the same
as standard Isabelle’s inj_extend.

lemma inj_extend_point: assumes "f € inj(X,Y)" "a¢X" "bgy"
shows "(f U {(a,b)}) € inj(Xu{al},YU{b})"
(proof)

A lemma about extending a bijection by one point.

52

lemma bij_extend_point: assumes "f € bij(X,Y)" "a¢X" "bgy"
shows "(f U {(a,b)}) € bijXu{a},YU{b})"
(proof)

A quite general form of the a~'b = 1 implies a = b law.

lemma comp_inv_id_eq:
assumes Al: "converse(b) 0 a = id(A)" and
A2: "a C AXB" "b € surj(A,B)"
shows "a = b"

(proof)

A special case of comp_inv_id_eq - the a™'b = 1 implies ¢ = b law for
bijections.
lemma comp_inv_id_eq_bij:

assumes Al: "a € bij(A,B)" "b € bij(A,B)" and

A2: "converse(b) 0 a = id(A)"
shows "a = b"

(proof)

Converse of a converse of a bijection the same bijection. This is a special
case of converse_converse from standard Isabelle’s equalities theory where
it is proved for relations.

lemma bij_converse_converse: assumes "a € bij(A,B)"
shows "converse(converse(a)) = a"

(proof)

If a composition of bijections is identity, then one is the inverse of the other.

lemma comp_id_conv: assumes Al: "a € bij(A,B)" "b € bij(B,A)" and
A2: "b 0 a = id(A)"
shows "a = converse(b)" and "b = converse(a)"

(proof)

A version of comp_id_conv with weaker assumptions.

lemma comp_conv_id: assumes Al: "a € bij(A,B)" and A2: "b:B—A" and
A3: "VxeA. b‘(a‘(x)) = x"
shows "b € bij(B,A)" and "a = converse(b)" and "b = converse(a)"

(proof)

For a surjection the union if images of singletons is the whole range.

lemma surj_singleton_image: assumes Al: "f € surj(X,Y)"
shows "(|JxeXx. {£‘x)}) = y"
(proof)

9.5 Functions of two variables

In this section we consider functions whose domain is a cartesian product
of two sets. Such functions are called functions of two variables (although

93

really in ZF all functions admit only one argument). For every function of
two variables we can define families of functions of one variable by fixing the
other variable. This section establishes basic definitions and results for this
concept.

We can create functions of two variables by combining functions of one
variable.

lemma cart_prod_fun: assumes "f;:X;—Y;" "f5:X3—Y2" and
"g = {(p,(f1 (st (P)),f2¢(snd(p)))). p € Xy xXa}"
shows "g: X;xXo — Yy xYy" (proof)

A reformulation of cart_prod_fun above in a sligtly different notation.

lemma prod_fun:
assumes "f:X;—Xp" "g:X3—Xy"
shows "{{(x,y),{(f‘x,g‘y)). (x,y)€X1xX3}:X3 xX3—XaxXq"

(proof)

Product of two surjections is a surjection.

theorem prod_functions_surj:
assumes "fesurj(A,B)" "ge&surj(C,D)"
shows "{((al,a2),(f‘al,g‘a2)).(al,a2)cAXC} € surj(AxC,BxD)"

(proof)

For a function of two variables created from functions of one variable as in
cart_prod_fun above, the inverse image of a cartesian product of sets is the
cartesian product of inverse images.

lemma cart_prod_fun_vimage: assumes "f;:X;—=Y;" "f5:X—Yo" and
"g = {(p,(f1‘(fst(p)),f2 (snd(p)))). p € Xy xXp}"
shows "g—”(A1XA2) = fl—”(Al) X f2“‘(A2)"

(proof)

For a function of two variables defined on X x Y, if we fix an x € X we
obtain a function on Y. Note that if domain(f) is X X Y, range(domain(£f))
extracts Y from X x Y.

definition
"FixlstVar(f,x) = {(y,f(x,y)). y € range(domain(f))}"

For every y € Y we can fix the second variable in a binary function f :
X XY — Z to get a function on X.

definition
"Fix2ndVar(f,y) = {(x,f‘(x,y)). x € domain(domain(f))}"

We defined FixlstVar and Fix2ndVar so that the domain of the function is
not listed in the arguments, but is recovered from the function. The next
lemma is a technical fact that makes it easier to use this definition.

lemma fix_var_fun_domain: assumes Al: "f : XxY — Z"

54

shows

"xeX — FixlstVar(f,x) = {(y,f(x,y)). y € Y}"

"yeY — Fix2ndVar(f,y) = {(x,f‘(x,y)). x € X}"
(proof)

If we fix the first variable, we get a function of the second variable.

lemma fix_1st_var_fun: assumes Al: "f : XxY — Z" and A2: "x&X"
shows "FixlstVar(f,x) : Y — Z"

(proof)

If we fix the second variable, we get a function of the first variable.

lemma fix_2nd_var_fun: assumes Al: "f : XXY — Z" and A2: "yeY"
shows "Fix2ndVar(f,y) : X — 2"

(proof)

What is the value of Fix1stVar (f,x) at y € Y and the value of Fix2ndVar (f,y)
at x € X77

lemma fix_var_val:
assumes Al: "f : XxY — Z" and A2: "xeX" ‘'"yey"
shows
"FixlstVar(f,x) ‘ (y)
"Fix2ndVar (f,y) ‘(x) =
(proof)

|
H Hh

Fixing the second variable commutes with restrictig the domain.

lemma fix_2nd_var_restr_comm:
assumes Al: "f : XxXY — Z" and A2: "yeY" and A3: "X; C X"
shows "Fix2ndVar(restrict(f,X;xY),y) = restrict(Fix2ndVar(f,y),X;)"

(proof)

The next lemma expresses the inverse image of a set by function with fixed
first variable in terms of the original function.

lemma fix_1st_var_vimage:

assumes Al: "f : XXY — Z" and A2: "xeX"

shows "FixlstVar(f,x)-‘‘(4) = {yeY. (x,y) € £-<“(A)}"
(proof)

The next lemma expresses the inverse image of a set by function with fixed
second variable in terms of the original function.

lemma fix_2nd_var_vimage:

assumes Al: "f : XXY — Z" and A2: "yeY"

shows "Fix2ndVar(f,y)-¢‘(A) = {x€X. (x,y) € £-<“(A)}"
(proof)

end

95

10 Binary operations

theory func_ZF imports funcil
begin

In this theory we consider properties of functions that are binary operations,
that is they map X x X into X.

10.1 Lifting operations to a function space

It happens quite often that we have a binary operation on some set and
we need a similar operation that is defined for functions on that set. For
example once we know how to add real numbers we also know how to add
real-valued functions: for f,g: X — R we define (f + g)(z) = f(z) + g(z).
Note that formally the + means something different on the left hand side of
this equality than on the right hand side. This section aims at formalizing
this process. We will call it "lifting to a function space”, if you have a
suggestion for a better name, please let me know.

Since we are writing in generic set notation, the definition below is a bit
complicated. Here it what it says: Given a set X and another set f (that
represents a binary function on X') we are defining f lifted to function space
over X as the binary function (a set of pairs) on the space F' = X — range(f)
such that the value of this function on pair (a, b) of functions on X is another
function ¢ on X with values defined by ¢(x) = f(a(z),b(x)).

definition
Lift2FcnSpce (infix "{lifted to function space over}" 65) where
"f {lifted to function space over} X =

{{ p,{(x, £ (fst(p) ‘(%) ,snd(p) ‘(x))). x € X}).

p € (X—range(f)) x (X—range(£))}"

The result of the lift belongs to the function space.

lemma func_ZF_1_L1:
assumes Al: "f : YXY—Y"
and A2: "p €(X—range(f))x (X—range(f))"
shows
"{{x,f(fst(p) (x),snd(p) ‘ (x))). x € X} : X—range(f)"
{proof)

The values of the lift are defined by the value of the liftee in a natural way.

lemma func_ZF_1_L2:
assumes Al: "f : YXY—=Y"
and A2: "p € (X—range(f))x(X—range(f))" and A3: "xeX"
and A4: "P = {(x,f‘(fst(p) ‘(x),snd(p) ‘(x))). x € X}"
shows "P‘(x) = £“(fst(p) ‘(x),snd(p) ‘ (x))"

(proof)

o6

Function lifted to a function space results in function space operator.

theorem func_ZF_1_L3:
assumes "f : YxXY—Y"
and "F = f {lifted to function space over} X"
shows "F : (X—range(f))x (X—range(f))— (X—range(£))"
{proof)

The values of the lift are defined by the values of the liftee in the natural
way.
theorem func_ZF_1_L4:
assumes Al: "f : YXY—-Y"
and A2: "F = f {lifted to function space over} X"
and A3: "s:X—range(f)" "r:X—range(£f)"
and A4: "xeX"
shows "(F'(s,r))‘(x) = £(s‘(x),r‘(x))"
(proof)

10.2 Associative and commutative operations

In this section we define associative and commutative operations and prove
that they remain such when we lift them to a function space.

” "

Typically we say that a binary operation on a set (G is "associative” if
(x-y)-z=ua-(y-2) for all z,y,z € G. Our actual definition below does
not use the multiplicative notation so that we can apply it equally to the
additive notation + or whatever infix symbol we may want to use. Instead,
we use the generic set theory notation and write P(x,y) to denote the value
of the operation P on a pair (z,y) € G x G.

definition
IsAssociative (infix "{is associative on}" 65) where
"P {is associative on} G = P : GXG—G A
V xe€eG VyegG Vzeaqa.
CP (P Ux,y)),z)) = P C (x,P°(y,z))))"

A binary function f: X x X — Y is commutative if f(z,y) = f(y,x). Note
that in the definition of associativity above we talk about binary ”operation”
and here we say use the term binary ”function”. This is not set in stone,
but usually the word ”operation” is used when the range is a factor of
the domain, while the word ”function” allows the range to be a completely
unrelated set.

definition
IsCommutative (infix "{is commutative on}" 65) where
"f {is commutative on} G = Vxe€G. VyeG. f(x,y) = £(y,x)"

The lift of a commutative function is commutative.

lemma func_ZF_2_L1:

o7

assumes Al: "f : GXG—G"

and A2: "F = f {lifted to function space over} X"
and A3: "s : X—range(f)" "r : X—range(£f)"

and A4: "f {is commutative on} G"

shows "F‘(s,r) = F'(r,s)"

(proof)

The lift of a commutative function is commutative on the function space.

lemma func_ZF_2_L2:
assumes "f : GXG—G"
and "f {is commutative on} G"
and "F = f {lifted to function space over} X"
shows "F {is commutative on} (X—range(f))"

(proof)

The lift of an associative function is associative.

lemma func_ZF_2_L3:
assumes A2: "F = f {lifted to function space over} X"
and A3: "s : X—range(f)" "r : X—range(f)" "q : X—range(f)"
and A4: "f {is associative on} G"
shows "F‘(F‘(s,r),q) = F(s,F(r,q))"
(proof)

The lift of an associative function is associative on the function space.

lemma func_ZF_2_L4:
assumes Al: "f {is associative on} G"
and A2: "F = f {lifted to function space over} X"
shows "F {is associative on} (X—range(f))"

(proof)

10.3 Restricting operations

In this section we consider conditions under which restriction of the opera-
tion to a set inherits properties like commutativity and associativity.

The commutativity is inherited when restricting a function to a set.

lemma func_ZF_4_L1:
assumes Al: "f:XxX—Y" and A2: "ACX"
and A3: "f {is commutative on} X"
shows "restrict(f,AxA) {is commutative on} A"

(proof)

Next we define what it means that a set is closed with respect to an opera-
tion.

definition
IsOpClosed (infix "{is closed under}" 65) where
"A {is closed under} f = Vx€A. VyecA. £(x,y) € A"

o8

Associative operation restricted to a set that is closed with resp. to this
operation is associative.

lemma func_ZF_4_L2:assumes Al: "f {is associative on} X"
and A2: "ACX" and A3: "A {is closed under} f"
and A4: "x€A" "yeA" "zeA"
and A5: "g = restrict(f,AxA)"
shows "g*(g*(x,y),2) = g*(x,g°(y,2))"
(proof)

An associative operation restricted to a set that is closed with resp. to this
operation is associative on the set.

lemma func_ZF_4_L3: assumes Al: "f {is associative on} X"
and A2: "ACX" and A3: "A {is closed under} f"
shows "restrict(f,AxA) {is associative on} A"

(proof)

The essential condition to show that if a set A is closed with respect to an
operation, then it is closed under this operation restricted to any superset
of A.

lemma func_ZF_4_L4: assumes "A {is closed under} f"
and "ACB" and "x€A" "ye€A" and "g = restrict(f,BxB)"
shows "g‘(x,y) € A"

(proof)

If a set A is closed under an operation, then it is closed under this operation
restricted to any superset of A.

lemma func_ZF_4_L5:
assumes Al: "A {is closed under} f"
and A2: "ACB"
shows "A {is closed under} restrict(f,BxB)"

(proof)

The essential condition to show that intersection of sets that are closed with
respect to an operation is closed with respect to the operation.

lemma func_ZF_4_16:
assumes "A {is closed under} f"
and "B {is closed under} f"
and "x € ANB" "y& ANB"
shows "f‘(x,y) € ANB" (proof)

Intersection of sets that are closed with respect to an operation is closed
under the operation.
lemma func_ZF_4_L7:

assumes "A {is closed under} f"

"B {is closed under} f"
shows "ANB {is closed under} f"

(proof)

99

10.4 Compositions

For any set X we can consider a binary operation on the set of functions f :
X — X defined by C(f,g) = f o g. Composition of functions (or relations)
is defined in the standard Isabelle distribution as a higher order function
and denoted with the letter 0. In this section we consider the corresponding
two-argument ZF-function (binary operation), that is a subset of (X —
X)X (X = X)) x (X — X).

We define the notion of composition on the set X as the binary operation
on the function space X — X that takes two functions and creates the their
composition.

definition
"Composition(X) =
{{p,fst(p) 0 snd(p)). p € X=X x(X—=X)}"

Composition operation is a function that maps (X — X) x (X — X) into
X = X.

lemma func_ZF_5_L1: shows "Composition(X) : (X—X)x(X—=X)—E-=X)"
(proof)
The value of the composition operation is the composition of arguments.

lemma func_ZF_5_L2: assumes "f:X—X" and "g:X—X"
shows "Composition(X)‘(f,g) = £ 0 g"
(proof)

What is the value of a composition on an argument?

lemma func_ZF_5_L3: assumes "f:X—X" and "g:X—X" and "xeX"
shows "(Composition(X)‘(f,g))‘(x) = £°(g‘(x))"
(proof)

The essential condition to show that composition is associative.

lemma func_ZF_5_L4: assumes Al: "f:X—X" "g:X—X" "h:X—X"
and A2: "C = Composition(X)"
shows "C(C‘(f,g),h) = C°(£,C{(g,h))"

(proof)

Composition is an associative operation on X — X (the space of functions
that map X into itself).

lemma func_ZF_5_L5: shows "Composition(X) {is associative on} (X—X)"

(proof)

10.5 Identity function

In this section we show some additional facts about the identity function
defined in the standard Isabelle’s Perm theory.

60

A function that maps every point to itself is the identity on its domain.

lemma indentity_fun: assumes Al: "f:X—Y" and A2:"VxeX. f°(x)=x"
shows "f = id(X)"
(proof)

Composing a function with identity does not change the function.

lemma func_ZF_6_L1A: assumes Al: "f : X—X"
shows "Composition(X)‘(f,id(X)) = £"
"Composition(X) ‘(id(X),f) = £"

(proof)

An intuitively clear, but surprsingly nontrivial fact:identity is the only func-
tion from a singleton to itself.

lemma singleton_fun_id: shows "({x} — {x}) = {id({x})}"
(proof)

Another trivial fact: identity is the only bijection of a singleton with itself.

lemma single_bij_id: shows "bij({x},{x}) = {id({z}H)}"
(proof)

A kind of induction for the identity: if a function f is the identity on a set
with a fixpoint of f removed, then it is the indentity on the whole set.

lemma id_fixpoint_rem: assumes Al: "f:X—X" and
A2: "peX" and A3: "f‘(p) = p" and
Ad: "restrict(f, X-{p}) = id&X-{pPH)"
shows "f = id(X)"

(proof)

10.6 Lifting to subsets

Suppose we have a binary operation f : X x X — X written additively as
f{x,y) = x +y. Such operation naturally defines another binary operation
on the subsets of X that satisfies A+ B ={x+y:xz € A,y € B}. This new
operation which we will call ” f lifted to subsets” inherits many properties of
f, such as associativity, commutativity and existence of the neutral element.
This notion is useful for considering interval arithmetics.

The next definition describes the notion of a binary operation lifted to sub-
sets. It is written in a way that might be a bit unexpected, but really it is the
same as the intuitive definition, but shorter. In the definition we take a pair
p € Pow(X) x Pow(X), say p = (A, B), where A, B C X. Then we assign
this pair of sets the set {f(z,y) :x € A,y € B} ={f(2) : 2/ € A x B} The
set on the right hand side is the same as the image of A x B under f. In the
definition we don’t use A and B symbols, but write fst(p) and snd(p), resp.
Recall that in Isabelle/ZF fst(p) and snd(p) denote the first and second

61

components of an ordered pair p. See the lemma 1ift_subsets_explained
for a more intuitive notation.

definition
Lift2Subsets (infix "{lifted to subsets of}" 65) where
"f {lifted to subsets of} X =
{{p, £°“(fst(p)xsnd(p))). p € Pow(X) xPow(X)}"

The lift to subsets defines a binary operation on the subsets.

lemma 1ift_subsets_binop: assumes Al: "f : X X X — Y"
shows "(f {lifted to subsets of} X) : Pow(X) X Pow(X) — Pow(Y)"

(proof)

The definition of the lift to subsets rewritten in a more intuitive notation.
We would like to write the last assertion as F*(A,B) = {£(x,y). x € A, y
€ B}, but Isabelle/ZF does not allow such syntax.

lemma 1ift_subsets_explained: assumes Al: "f : XxX — Y"
and A2: "A C X" "B C X" and A3: "F = f {lifted to subsets ofl} X"
shows

"F¢(A,B) C Y" and

"F<(A,B) = £¢(AXB)"

"F‘(A,B) = {f‘(p). p € AXB}"

"F(A,B) = {£°(x,y) . (x,y) € AXB}"
(proof)

A sufficient condition for a point to belong to a result of lifting to subsets.

lemma lift_subset_suff: assumes Al: "f : X x X — Y" and
A2: "A C X" "B C X" and A3: "x€A" "yeB" and
Ad: "F = f {lifted to subsets of} X"
shows "f‘(x,y) € F(A,B)"

(proof)

A kind of converse of 1ift_subset_apply, providing a necessary condition
for a point to be in the result of lifting to subsets.

lemma 1lift_subset_nec: assumes Al: "f : X X X — Y" and
A2: "A C X" "B C X" and
A3: "F = f {lifted to subsets of} X" and
A4: "z € F(A,B)"
shows "Jdx y. x€A A y€B A z = £(x,y)"
(proof)

Lifting to subsets inherits commutativity.

lemma 1lift_subset_comm: assumes Al: "f : X x X — Y" and
A2: "f {is commutative on} X" and
A3: "F = f {lifted to subsets of} X"
shows "F {is commutative on} Pow(X)"

(proof)

62

Lifting to subsets inherits associativity. To show that F'((A, B)C) = F(A, F(B,C))
we prove two inclusions and the proof of the second inclusion is very similar
to the proof of the first one.

lemma lift_subset_assoc: assumes Al: "f : X x X — X" and
A2: "f {is associative on} X" and
A3: "F = f {lifted to subsets of} X"
shows "F {is associative on} Pow(X)"

(proof)

10.7 Distributive operations

In this section we deal with pairs of operations such that one is distributive
with respect to the other, that is a-(b+c¢) = a-b+a-c and (b+c)-a = b-a+c-a.
We show that this property is preserved under restriction to a set closed
with respect to both operations. In EquivClassl theory we show that this
property is preserved by projections to the quotient space if both operations
are congruent with respect to the equivalence relation.

We define distributivity as a statement about three sets. The first set is the
set on which the operations act. The second set is the additive operation (a
ZF function) and the third is the multiplicative operation.

definition
"IsDistributive(X AM) = (X.VbeX.VceX.
M‘(a,A‘(b,c)) = A‘(M‘(a, >M< >>
M (A“(b,c),a) = A“(M(b,a),M (c,a) D"

The essential condition to show that distributivity is preserved by restric-
tions to sets that are closed with respect to both operations.

lemma func_ZF_7_L1:
assumes Al: "IsDistributive(X,A,M)"
and A2: "YCX"
and A3: "Y {is closed under} A" "Y {is closed under} M"
and A4: "A, = restrict(A,YXY)" "M, = restrict(M,YxY)"
and A5: "a€Y" "bey" ‘'cey"
shows "M, ‘(a,A.“(b,c)) = A.°(M.“(a,b),M,“(a,c)) A
M- ‘{ A.“(b,c),a) = A ¢

(proof)

Distributivity is preserved by restrictions to sets that are closed with respect
to both operations.

lemma func_ZF_7_L2:
assumes "IsDistributive(X,A,M)"
and "YCX"
and "Y {is closed under} A"
"Y {is closed under} M"
and "A, = restrict(A,YxY)" "M, = restrict(M,YxY)"
shows "IsDistributive(Y,A,,M.)"

63

(proof)

end

11 More on functions

theory func_ZF_1 imports Order Order_ZF_la func_ZF
begin

In this theory we consider some properties of functions related to order
relations

11.1 Functions and order
This section deals with functions between ordered sets.

If every value of a function on a set is bounded below by a constant, then
the image of the set is bounded below.

lemma func_ZF_8_L1:
assumes "f:X—Y" and "ACX" and "VzeA. (L,f‘(x)) € "
shows "IsBoundedBelow(f‘‘(A),r)"

(proof)

If every value of a function on a set is bounded above by a constant, then
the image of the set is bounded above.

lemma func_ZF_8_L2:
assumes "f:X—Y" and "ACX" and "VxeA. (f‘(x),U) € r"
shows "IsBoundedAbove(f‘‘(A),r)"

(proof)

Identity is an order isomorphism.

lemma id_ord_iso: shows "id(X) € ord_iso(X,r,X,r)"

(proof)

Identity is the only order automorphism of a singleton.

lemma id_ord_auto_singleton:
shows "ord_iso({x},r,{x},r) = {id({zH}"
(proof)

The image of a maximum by an order isomorphism is a maximum. Note
that from the fact the r is antisymmetric and f is an order isomorphism
between (A, r) and (B, R) we can not conclude that R is antisymmetric (we
can only show that RN (B x B) is).

lemma max_image_ord_iso:

64

assumes Al: "antisym(r)" and A2: "antisym(R)" and

A3: "f € ord_iso(A,r,B,R)" and

A4: "HasAmaximum(r,A)"

shows "HasAmaximum(R,B)" and "Maximum(R,B) = f‘(Maximum(r,A))"

(proof)

Maximum is a fixpoint of order automorphism.

lemma max_auto_fixpoint:
assumes "antisym(r)" and "f € ord_iso(A,r,A,r)"
and "HasAmaximum(r,A)"
shows "Maximum(r,A) = f¢(Maximum(r,A))"

(proof)

If two sets are order isomorphic and we remove x and f(z), respectively,
from the sets, then they are still order isomorphic.

lemma ord_iso_rem_point:
assumes Al: "f € ord_iso(A,r,B,R)" and A2: "a € A"
shows "restrict(f,A-{a}) € ord_iso(A-{a},r,B-{f‘(a)},R)"

(proof)

If two sets are order isomorphic and we remove maxima from the sets, then
they are still order isomorphic.

corollary ord_iso_rem_max:
assumes Al: "antisym(r)" and "f € ord_iso(A,r,B,R)" and
A4: "HasAmaximum(r,A)" and A5: "M = Maximum(r,A)"
shows "restrict(f,A-{M}) € ord_iso(A-{M}, r, B-{f‘(M)},R)"
(proof)

Lemma about extending order isomorphisms by adding one point to the
domain.

lemma ord_iso_extend: assumes Al: "f € ord_iso(A,r,B,R)" and
A2: "My ¢ A" "Mp ¢ B" and
A3: "Va€cA. (a, My) € r" "VbeB. (b, M) € R" and
A4: "antisym(r)" "antisym(R)" and
A5: "(Mg,M4) € T «— (Mp,Mp) € R"
shows "f U {(Ma,Mp)} € ord_iso(AU{M4} ,r,BU{Mp} ,R)"
(proof)

A kind of converse to ord_iso_rem_max: if two linearly ordered sets sets are
order isomorphic after removing the maxima, then they are order isomor-
phic.
lemma rem_max_ord_iso:

assumes Al: "IsLinOrder(X,r)" "IsLinOrder(Y,R)" and

A2: "HasAmaximum(r,X)" "HasAmaximum(R,Y)"

"ord_iso(X - {Maximum(r,X)},r,Y - {Maximum(R,Y)},R) # O"

shows "ord_iso(X,r,Y,R) # 0"
(proof)

65

11.2 Projections in cartesian products
In this section we consider maps arising naturally in cartesian products.

There is a natural bijection etween X =Y x {y} (a "slice”) and Y. We will
call this the SliceProjection(Yx{y}). This is really the ZF equivalent of
the meta-function fst(x).

definition
"SliceProjection(X) = {(p,fst(p)). p € X }"

A slice projection is a bijection between X x {y} and X.

lemma slice_proj_bij: shows
"SliceProjection(Xx{y}): Xx{y} — X"
"domain(SliceProjection(Xx{y})) = Xx{y}"
"VpeXx{y}. SliceProjection(Xx{y}) ‘(p) = fst(p)"
"SliceProjection(Xx{y}) € bij(Xx{y},X)"

(proof)

11.3 Induced relations and order isomorphisms

When we have two sets X,Y, function f : X — Y and a relation R on
Y we can define a relation » on X by saying that = r y if and only if
f(x) R f(y). This is especially interesting when f is a bijection as all
reasonable properties of R are inherited by r. This section treats mostly
the case when R is an order relation and f is a bijection. The standard
Isabelle’s Order theory defines the notion of a space of order isomorphisms
between two sets relative to a relation. We expand that material proving
that order isomrphisms preserve interesting properties of the relation.

We call the relation created by a relation on Y and a mapping f: X = Y
the InducedRelation(f,R).

definition
"InducedRelation(f,R) =
{p € domain(f)xdomain(f). (f‘(fst(p)),f‘(snd(p))) € R}"

A reformulation of the definition of the relation induced by a function.

lemma def_of_ind_relA:
assumes "(x,y) € InducedRelation(f,R)"
shows "(£f‘(x),f‘(y)) € R"
(proof)

A reformulation of the definition of the relation induced by a function, kind
of converse of def_of_ind_relA.

lemma def_of_ind_relB: assumes "f:A—B" and
"XEA" "yGA" and u<f((x)’f<(y)> E R"
shows "(x,y) € InducedRelation(f,R)"

{proof)

66

A property of order isomorphisms that is missing from standard Isabelle’s
Order.thy.

lemma ord_iso_apply_conv:
assumes "f € ord_iso(A,r,B,R)" and
"<f‘(X),f‘(y)> c R." and "XGA" "yGA"
shows "(x,y) € "
(proof)

The next lemma tells us where the induced relation is defined

lemma ind_rel_domain:
assumes "R C BxB" and "f:A—B"
shows "InducedRelation(f,R) C AxA"

(proof)

A bijection is an order homomorphisms between a relation and the induced
one.

lemma bij_is_ord_iso: assumes Al: "f € bij(A,B)"
shows "f € ord_iso(A,InducedRelation(f,R),B,R)"
(proof)

An order isomoprhism preserves antisymmetry.

lemma ord_iso_pres_antsym: assumes Al: "f € ord_iso(A,r,B,R)" and
A2: "r C AXA" and A3: "antisym(R)"
shows "antisym(r)"

(proof)

Order isomoprhisms preserve transitivity.

lemma ord_iso_pres_trans: assumes Al: "f € ord_iso(A,r,B,R)" and
A2: "r C AXA" and A3: "trans(R)"
shows "trans(r)"

(proof)

Order isomorphisms preserve totality.

lemma ord_iso_pres_tot: assumes Al: "f € ord_iso(A,r,B,R)" and
A2: "r C AxA" and A3: "R {is total on} B"
shows "r {is total on} A"

(proof)

Order isomorphisms preserve linearity.

lemma ord_iso_pres_lin: assumes "f € ord_iso(A,r,B,R)" and
"r C AxA" and "IsLinOrder(B,R)"
shows "IsLinOrder(A,r)"

(proof)

If a relation is a linear order, then the relation induced on another set by a
bijection is also a linear order.

lemma ind_rel_pres_lin:

67

assumes Al: "f € bij(A,B)" and A2: "IsLinOrder(B,R)"
shows "IsLinOrder(A,InducedRelation(f,R))"

(proof)

The image by an order isomorphism of a bounded above and nonempty set
is bounded above.

lemma ord_iso_pres_bound_above:
assumes Al: "f € ord_iso(A,r,B,R)" and A2: "r C AxA" and

A3: "IsBoundedAbove(C,r)" "C#£O"
shows "IsBoundedAbove(f‘‘(C),R)" "f“(C) # O"
(proof)

Order isomorphisms preserve the property of having a minimum.

lemma ord_iso_pres_has_min:
assumes Al: "f € ord_iso(A,r,B,R)" and A2: "r C AxXA" and
A3: "CCA" and A4: "HasAminimum(R,f‘‘(C))"
shows "HasAminimum(r,C)"

(proof)

Order isomorhisms preserve the images of relations. In other words taking
the image of a point by a relation commutes with the function.

lemma ord_iso_pres_rel_image:
assumes Al: "f € ord_iso(A,r,B,R)" and
A2: "r C AxXA" "R C BxB" and

A3: "acA"
shows "f‘‘(r¢‘{a}) = R ‘{f(a)}"
(proof)

Order isomorphisms preserve collections of upper bounds.

lemma ord_iso_pres_up_bounds:
assumes Al: "f € ord_iso(A,r,B,R)" and
A2: "r C AxXA" "R C BxB" and

A3: "CCA"
shows "{f‘‘(r¢‘{a}). acC} = {R*‘{b}. b € £°°(CO}"
(proof)

The image of the set of upper bounds is the set of upper bounds of the
image.
lemma ord_iso_pres_min_up_bounds:

assumes Al: "f € ord_iso(A,r,B,R)" and A2: "r C AxA" "R C BxB"
and

A3: "CCA" and A4: "C#0"

shows "f‘‘(NacC. r*‘{a}) = (Nbef “(C). R ‘{b}H)"
(proof)

Order isomorphisms preserve completeness.

lemma ord_iso_pres_compl:

68

assumes Al: "f € ord_iso(A,r,B,R)" and
A2: "r C AxA" "R C BxB" and A3: "R {is completel}"
shows "r {is completel}"

(proof)

If the original relation is complete, then the induced one is complete.

lemma ind_rel_pres_compl: assumes Al: "f € bij(A,B)"
and A2: "R C BxB" and A3: "R {is complete}"
shows "InducedRelation(f,R) {is completel}"

(proof)

end

12 Finite sets - introduction

theory Finite_ZF imports ZF1 Nat_ZF_IML Cardinal
begin

Standard Isabelle Finite.thy contains a very useful notion of finite powerset:
the set of finite subsets of a given set. The definition, however, is specific
to Isabelle and based on the notion of ”datatype”, obviously not something
that belongs to ZF set theory. This theory file devolopes the notion of
finite powerset similarly as in Finite.thy, but based on standard library’s
Cardinal.thy. This theory file is intended to replace IsarMathLib’s Finitel
and Finite_ZF_1 theories that are currently derived from the ”datatype”
approach.

12.1 Definition and basic properties of finite powerset

The goal of this section is to prove an induction theorem about finite pow-
ersets: if the empty set has some property and this property is preserved
by adding a single element of a set, then this property is true for all finite
subsets of this set.

We defined the finite powerset FinPow(X) as those elements of the powerset
that are finite.

definition
"FinPow(X) = {A € Pow(X). Finite(A)}"

The cardinality of an element of finite powerset is a natural number.

lemma card_fin_is_nat: assumes "A € FinPow(X)"
shows "|A| € nat" and "A = |A|"

{proof)

69

A reformulation of card_fin_is_nat: for a finit set A there is a bijection
between |A| and A.

lemma fin_bij_card: assumes Al: "A € FinPow(X)"
shows "db. b € bij(|Al, A"
(proof)

If a set has the same number of elements as n € N, then its cardinality is n.
Recall that in set theory a natural number n is a set that has n elements.

lemma card_card: assumes "A =~ n" and "n € nat"

shows "|A| = n"

(proof)

If we add a point to a finite set, the cardinality increases by one. To under-
stand the second assertion |[AU{a}| = |A|U{|A|} recall that the cardinality
|A| of A is a natural number and for natural numbers we have n+1 = nU{n}.

lemma card_fin_add_one: assumes Al: "A € FinPow(X)" and A2: "a € X-A"
shows

"|A U {a}| = succ(|A])"
"IA U {a}X| = Al U {IAl}"
(proof)

We can decompose the finite powerset into collection of sets of the same
natural cardinalities.

lemma finpow_decomp:
shows "FinPow(X) = (|Jn € nat. {A € Pow(X). A = n})"
{proof)

Finite powerset is the union of sets of cardinality bounded by natural num-
bers.

lemma finpow_union_card_nat:
shows "FinPow(X) = (Un € nat. {A € Pow(X). A < n})"
(proof)

A different form of finpow_union_card_nat (see above) - a subset that has
not more elements than a given natural number is in the finite powerset.

lemma lepoll_nat_in_finpow:

assumes "n € nat" "A C X" "A SJ n"
shows "A € FinPow(X)"
(proof)

Natural numbers are finite subsets of the set of natural numbers.

lemma nat_finpow_nat: assumes "n € nat" shows "n € FinPow(nat)"

(proof)

A finite subset is a finite subset of itself.

lemma fin_finpow_self: assumes "A € FinPow(X)" shows "A € FinPow(A)"

70

(proof)

If we remove an element and put it back we get the set back.

lemma rem_add_eq: assumes "acA" shows "(A-{a}) U {a} = A"

(proof)

Induction for finite powerset. This is smilar to the standard Isabelle’s

Fin_induct.

theorem FinPow_induct: assumes Al1: "P(0)" and
A2: "VA € FinPow(X). P(A) — (VaeX. P(A U {a}))" and
A3: "B € FinPow(X)"
shows "P(B)"

(proof)

A subset of a finites subset is a finite subset.

lemma subset_finpow: assumes "A € FinPow(X)" and "B C A"
shows "B € FinPow(X)"

(proof)

If we subtract anything from a finite set, the resulting set is finite.

lemma diff_finpow:
assumes "A € FinPow(X)" shows "A-B € FinPow(X)"

(proof)

If we remove a point from a finites subset, we get a finite subset.

corollary fin_rem_point_fin: assumes "A € FinPow(X)"
shows "A - {a} € FinPow(X)"
{proof)

Cardinality of a nonempty finite set is a successsor of some natural number.

lemma card_non_empty_succ:
assumes Al: "A € FinPow(X)" and A2: "A # O"
shows "dn € nat. |A| = succ(n)"

(proof)

Nonempty set has non-zero cardinality. This is probably true without the
assumption that the set is finite, but I couldn’t derive it from standard
Isabelle theorems.

lemma card_non_empty_non_zero:
assumes "A € FinPow(X)" and "A # 0"
shows "|A| # O"

(proof)

Another variation on the induction theme: If we can show something holds
for the empty set and if it holds for all finite sets with at most k£ elements
then it holds for all finite sets with at most k£ + 1 elements, the it holds for
all finite sets.

71

theorem FinPow_card_ind: assumes Al: "P(0)" and
A2: "VkéEnat.
(VA € FinPow(X). A < k — P(A)) —
(VA € FinPow(X). A < succ(k) — P(A))"
and A3: "A € FinPow(X)" shows "P(A)"
(proof)

Another type of induction (or, maybe recursion). The induction step we try
to find a point in the set that if we remove it, the fact that the property
holds for the smaller set implies that the property holds for the whole set.

lemma FinPow_ind_rem_one: assumes Al: "P(0)" and
A2: "V A € FinPow(X). A # 0 — (dacA. P(A-{a}) — PA))"
and A3: "B € FinPow(X)"
shows "P(B)"

(proof)

Yet another induction theorem. This is similar, but slightly more compli-
cated than FinPow_ind_rem_one. The difference is in the treatment of the
empty set to allow to show properties that are not true for empty set.

lemma FinPow_rem_ind: assumes Al: "VA € FinPow(X).
A =0V (JacA. A = {a} v P(A-{a}) — P(A)"
and A2: "A € FinPow(X)" and A3: "AZ£0"
shows "P(A)"

(proof)

If a family of sets is closed with respect to taking intersections of two sets
then it is closed with respect to taking intersections of any nonempty finite
collection.
lemma inter_two_inter_fin:

assumes Al: "VVeT. VWeT. VN W € T" and

A2: "N # 0" and A3: "N € FinPow(T)"

shows "((N €)"
(proof)

If a family of sets contains the empty set and is closed with respect to taking
unions of two sets then it is closed with respect to taking unions of any finite
collection.
lemma union_two_union_fin:

assumes Al: "0 € C" and A2: "VAeC. VBeC. AUB € C" and

A3: "N € FinPow(C)"
shows "|JN € C"

(proof)

Empty set is in finite power set.

lemma empty_in_finpow: shows "0 € FinPow(X)"

(proof)

Singleton is in the finite powerset.

72

lemma singleton_in_finpow: assumes "x € X"
shows "{x} € FinPow(X)" (proof)

Union of two finite subsets is a finite subset.

lemma union_finpow: assumes "A € FinPow(X)" and "B &€ FinPow(X)"
shows "A U B € FinPow(X)"

(proof)

Union of finite number of finite sets is finite.

lemma fin_union_finpow: assumes "M € FinPow(FinPow(X))"
shows "|JM € FinPow(X)"
(proof)

If a set is finite after removing one element, then it is finite.

lemma rem_point_fin_fin:
assumes Al: "x € X" and A2: "A - {x} € FinPow(X)"
shows "A € FinPow(X)"

(proof)

An image of a finite set is finite.

lemma fin_image_fin: assumes "VVeB. K(V)eC" and "N € FinPow(B)"
shows "{K(V). VeN} € FinPow(C)"
(proof)

Union of a finite indexed family of finite sets is finite.

lemma union_fin_list_fin:
assumes Al: "n € nat" and A2: "Vk € n. N(k) € FinPow(X)"
shows
"{N(k). k € n} € FinPow(FinPow(X))" and "(|Jk € n. N(k)) € FinPow(X)"

(proof)

end

13 Finite sets

theory Finitel imports Finite funcl ZF1

begin

This theory extends Isabelle standard Finite theory. It is obsolete and
should not be used for new development. Use the Finite_ZF instead.

13.1 Finite powerset

In this section we consider various properties of Fin datatype (even though
there are no datatypes in ZF set theory).

73

In Topology_ZF theory we consider induced topology that is obtained by
taking a subset of a topological space. To show that a topology restricted
to a subset is also a topology on that subset we may need a fact that if T is
a collection of sets and A is a set then every finite collection {V;} is of the
form V; = U; N A, where {U;} is a finite subcollection of 7. This is one of
those trivial facts that require suprisingly long formal proof. Actually, the
need for this fact is avoided by requiring intersection two open sets to be
open (rather than intersection of a finite number of open sets). Still, the fact
is left here as an example of a proof by induction. We will use Fin_induct
lemma from Finite.thy. First we define a property of finite sets that we want
to show.

definition
"Prfin(T,A,M) = ((M = 0) | (INe Fin(T). VVe M. 3 Ue N. (V = UnA)))"

Now we show the main induction step in a separate lemma. This will make
the proof of the theorem FinRestr below look short and nice. The premises
of the ind_step lemma are those needed by the main induction step in lemma
Fin_induct (see standard Isabelle’s Finite.thy).

lemma ind_step: assumes A: "V Ve TA. 3 UET. V=UNA"
and Al: "WeTA" and A2: "M Fin(TA)"
and A3: "W¢M" and A4: "Prfin(T,A,M)"
shows "Prfin(T,A,cons(W,M))"

(proof)

Now we are ready to prove the statement we need.

theorem FinRestr0O: assumes A: "V V € TA. 4 Ue T. V=UNA"
shows "V Me& Fin(TA). Prfin(T,A,M)"

(proof)

This is a different form of the above theorem:

theorem ZF1FinRestr:
assumes Al:"Me Fin(TA)" and A2: "M#0"
and A3: "V Ve TA. 3 Ue T. V=UNA"
shows "JNe Fin(T). (VVe M. 3 Ue N. (V = UNA)) A N#O"

(proof)

Purely technical lemma used in Topology_ZF_1 to show that if a topology is
TQ, then it is Tl.
lemma Finitel L2:
assumes A:"3U V. (UET A VET A x€U A yeV A UNV=0)"
shows "JUET. (x€U A y¢U)"
(proof)

A collection closed with respect to taking a union of two sets is closed under
taking finite unions. Proof by induction with the induction step formulated
in a separate lemma.

74

lemma Finitel L3_IndStep:
assumes Al:"VA B. ((AeC A BeC) — AUBeC)"
and A2: "AeC" and A3: "Ne€Fin(C)" and A4:"A¢N" and A5:"UN e c"
shows " Jcons(A,N) € C"

(proof)

The lemma: a collection closed with respect to taking a union of two sets is
closed under taking finite unions.

lemma Finitel_L3:
assumes Al: "0 € C" and A2: "VA B. ((AeC A BeC) — AUBEC)" and

A3: "Ne Fin(C)"
shows "[JNeC"

(proof)

A collection closed with respect to taking a intersection of two sets is closed
under taking finite intersections. Proof by induction with the induction
step formulated in a separate lemma. This is sligltly more involved than
the union case in Finitel_L3, because the intersection of empty collection
is undefined (or should be treated as such). To simplify notation we define
the property to be proven for finite sets as a separate notion.

definition
"IntPr(T,N) = (N = 0 | ﬂN e "

The induction step.

lemma Finitel_L4_IndStep:
assumes Al: "VA B. ((A€ET A BET) — ANBET)"
and A2: "AcT" and A3:"NeFin(T)" and A4:"A¢N" and A5:"IntPr(T,N)"
shows "IntPr(T,cons(A,N))"

(proof)

The lemma.

lemma Finitel_L4:
assumes Al: "VA B. A€T A BET — ANB € T"
and A2: "NeFin(T)"
shows "IntPr(T,N)"

(proof)

Next is a restatement of the above lemma that does not depend on the IntPr
meta-function.
lemma Finitel_L5:
assumes Al: "VA B. ((A€T A BET) — ANBET)"
and A2: "N##0" and A3: "NeFin(T)"
shows "N € T"
(proof)

The images of finite subsets by a meta-function are finite. For example in
topology if we have a finite collection of sets, then closing each of them

75

results in a finite collection of closed sets. This is a very useful lemma with
many unexpected applications. The proof is by induction. The next lemma
is the induction step.
lemma fin_image_fin_IndStep:
assumes "VVeB. K(V)eC"
and "UeB" and "N€Fin(B)" and "U¢N" and "{K(V). VEN}E€Fin(C)"
shows "{K(V). Vecons(U,N)} € Fin(C)"
(proof)

The lemma:

lemma fin_image_fin:
assumes Al: "VVeB. K(V)eC" and A2: "NeFin(B)"
shows "{K(V). VeN} € Fin(C)"

(proof)

The image of a finite set is finite.

lemma Finitel_L6A: assumes Al: "f:X—Y" and A2: "N € Fin(X)"
shows "f¢¢(N) € Fin(Y)"

(proof)

If the set defined by a meta-function is finite, then every set defined by a
composition of this meta function with another one is finite.

lemma Finitel_L6B:
assumes Al: "VxeX. a(x) € Y" and A2: "{b(y).ye€Y} € Fin(Z)"
shows "{b(a(x)).x€X} € Fin(Z)"

(proof)

If the set defined by a meta-function is finite, then every set defined by a
composition of this meta function with another one is finite.
lemma Finitel _L6C:
assumes Al: "VyeY. b(y) € Z" and A2: "{a(x). x€X} € Fin(Y)"
shows "{b(a(x)).x€X} € Fin(Z)"
(proof)

If an intersection of a collection is not empty, then the collection is not
empty. We are (ab)using the fact the the intesection of empty collection is
defined to be empty and prove by contradiction. Should be in ZF1.thy

lemma Finitel_L9: assumes Al:"[]A # 0" shows "A#Q"
(proof)
Cartesian product of finite sets is finite.

lemma Finitel_L12: assumes Al: "A € Fin(A)" and A2: "B € Fin(B)"
shows "AxB € Fin(AxB)"

(proof)

We define the characterisic meta-function that is the identity on a set and
assigns a default value everywhere else.

76

definition
"Characteristic(A,default,x) = (if x€A then x else default)"

A finite subset is a finite subset of itself.

lemma Finitel_L13:
assumes Al1:"A € Fin(X)" shows "A € Fin(A)"

(proof)

Cartesian product of finite subsets is a finite subset of cartesian product.

lemma Finitel_L14: assumes Al: "A € Fin(X)" "B € Fin(Y)"
shows "AxB € Fin(XxY)"
(proof)

The next lemma is needed in the Group_ZF_3 theory in a couple of places.

lemma Finitel_L15:
assumes Al: "{b(x). x€A} € Fin(B)" "{c(x). x€A} € Fin(C)"
and A2: "f : BXxC—E"
shows "{f‘(b(x),c(x)). x€A} € Fin(E)"

(proof)

Singletons are in the finite powerset.
lemma Finitel L16: assumes "x€X" shows "{x} € Fin(X)"
(proof)
A special case of Finitel_L15 where the second set is a singleton. Group_zF_3
theory this corresponds to the situation where we multiply by a constant.

lemma Finitel_L16AA: assumes "{b(x). x€A} € Fin(B)"
and "ceC" and "f : BXC—E"
shows "{f‘(b(x),c). x€A} € Fin(E)"

(proof)

First order version of the induction for the finite powerset.

lemma Finitel_L16B: assumes Al: "P(0)" and A2: "BeFin(X)"
and A3: "VAEFin(X).VxeX. x¢A A P(A)—PAU{x})"
shows "P(B)"

(proof)

13.2 Finite range functions

In this section we define functions f : X — Y, with the property that
f(X) is a finite subset of Y. Such functions play a important role in the
construction of real numbers in the Real _ZF series.

Definition of finite range functions.

definition
"FinRangeFunctions(X,Y) = {f:X—Y. £ “(X) € Fin(Y)}"

77

Constant functions have finite range.

lemma Finitel_L17: assumes "c€Y" and "X#0"
shows "ConstantFunction(X,c) € FinRangeFunctions(X,Y)"

(proof)

Finite range functions have finite range.

lemma Finitel L18: assumes "f € FinRangeFunctions(X,Y)"
shows "{f‘(x). x€X} € Fin(Y)"
(proof)

An alternative form of the definition of finite range functions.

lemma Finitel_L19: assumes "f:X—Y"
and "{f‘(x). x€X} € Fin(Y)"
shows "f € FinRangeFunctions(X,Y)"

(proof)

A composition of a finite range function with another function is a finite
range function.

lemma Finitel_L20: assumes Al:"f € FinRangeFunctions(X,Y)"
and A2: "g : Y—Z"
shows "g 0 f € FinRangeFunctions(X,Z)"

(proof)

Image of any subset of the domain of a finite range function is finite.

lemma Finitel_L21:
assumes "f € FinRangeFunctions(X,Y)" and "ACX"
shows "f‘‘(A) € Fin(Y)"

(proof)

end

14 Finite sets 1

theory Finite_ZF_1 imports Finitel Order_ZF_la
begin

This theory is based on Finitel theory and is obsolete. It contains properties
of finite sets related to order relations. See the FinOrd theory for a better
approach.

14.1 Finite vs. bounded sets

The goal of this section is to show that finite sets are bounded and have
maxima and minima.

Finite set has a maximum - induction step.

78

lemma Finite_ZF_1_1_L1:
assumes Al: "r {is total on} X" and A2: "trans(r)"
and A3: "A€eFin(X)" and A4: "xeX" and A5: "A=0 V HasAmaximum(r,A)"
shows "AU{x} = 0 V HasAmaximum(r,AU{x})"

(proof)

For total and transitive relations finite set has a maximum.

theorem Finite_ZF_1_1_T1A:
assumes Al: "r {is total on} X" and A2: "trans(r)"
and A3: "BeFin(X)"
shows "B=0 V HasAmaximum(r,B)"

(proof)

Finite set has a minimum - induction step.

lemma Finite_ZF_1_1_L2:
assumes Al: "r {is total on} X" and A2: "trans(r)"
and A3: "AcFin(X)" and A4: "xeX" and A5: "A=0 V HasAminimum(r,A)"
shows "AU{x} = 0 V HasAminimum(r,AU{x})"

(proof)

For total and transitive relations finite set has a minimum.

theorem Finite_ZF_1_1_T1B:
assumes Al: "r {is total on} X" and A2: "trans(r)"
and A3: "B € Fin(X)"
shows "B=0 V HasAminimum(r,B)"

(proof)

For transitive and total relations finite sets are bounded.

theorem Finite_ZF_1_T1:
assumes Al: "r {is total on} X" and A2: "trans(r)"
and A3: "BEFin(X)"
shows "IsBounded(B,r)"

(proof)

For linearly ordered finite sets maximum and minimum have desired prop-
erties. The reason we need linear order is that we need the order to be total
and transitive for the finite sets to have a maximum and minimum and then
we also need antisymmetry for the maximum and minimum to be unique.

theorem Finite_ZF_1_T2:
assumes Al: "IsLinOrder(X,r)" and A2: "A € Fin(X)" and A3: "A#O0"
shows
"Maximum(r,A) € A"
"Minimum(r,A) € A"
"WxeA. (x,Maximum(r,A)) €
"WxeA. (Minimum(r,A),x) €

(proof)

A special case of Finite_ZF_1_T2 when the set has three elements.

r
"

79

corollary Finite_ZF_1_L2A:

assumes Al: "IsLinOrder(X,r)" and A2: "acX" "beX" "ceX"
shows

"Maximum(r,{a,b,c}) € {a,b,c}"

"Minimum(r,{a,b,c}) € {a,b,c}"

"Maximum(r,{a,b,c}) € X"
"Minimum(r,{a,b,c}) € X"
"(a,Maximum(r,{a,b,c})) € r
"(b,Maximum(r,{a,b,c})) € r"
"(c,Maximum(r,{a,b,c})) € r"

(proof)

If for every element of X we can find one in A that is greater, then the A
can not be finite. Works for relations that are total, transitive and antisym-
metric.

lemma Finite_ZF_1_1_L3:
assumes Al: "r {is total on} X"
and A2: "trans(r)" and A3: "antisym(r)"
and A4: "r C XxX" and A5: "X#0"
and A6: "Vxe€X. JacA. x#a A (x,a) € r"
shows "A ¢ Fin(X)"

(proof)

end

15 Finite sets and order relations

theory FinOrd_ZF imports Finite_ZF func_ZF_1
begin

This theory file contains properties of finite sets related to order relations.
Part of this is similar to what is done in Finite_ZF_1 except that the devel-
opment is based on the notion of finite powerset defined in Finite_ZF rather
the one defined in standard Isabelle Finite theory.

15.1 Finite vs. bounded sets

The goal of this section is to show that finite sets are bounded and have
maxima and minima.

For total and transitive relations nonempty finite set has a maximum.

theorem fin_has_max:
assumes Al: "r {is total on} X" and A2: "trans(r)"
and A3: "B € FinPow(X)" and A4: "B # 0"
shows "HasAmaximum(r,B)"

(proof)

80

For linearly ordered nonempty finite sets the maximum is in the set and
indeed it is the greatest element of the set.

lemma linord_max_props: assumes Al: "IsLinOrder(X,r)" and
A2: "A € FinPow(X)" "A # O"
shows
"Maximum(r,A) € A"
"Maximum(r,A) € X"
"VachA. (a,Maximum(r,A)) € r"

(proof)

15.2 Order isomorphisms of finite sets

In this section we eastablish that if two linearly ordered finite sets have the
same number of elements, then they are order-isomorphic and the isomor-
phism is unique. This allows us to talk about ”enumeration” of a linearly
ordered finite set. We define the enumeration as the order isomorphism
between the number of elements of the set (which is a natural number
n={0,1,..,n —1}) and the set.

A really weird corner case - empty set is order isomorphic with itself.

lemma empty_ord_iso: shows "ord_iso(0,r,0,R) # 0"

(proof)

Even weirder than empty_ord_iso The order automorphism of the empty set
is unique.

lemma empty_ord_iso_uniq:
assumes "f € ord_iso(0,r,0,R)" "g € ord_iso(0,r,0,R)"
shows "f = g"

(proof)

The empty set is the only order automorphism of itself.

lemma empty_ord_iso_empty: shows "ord_iso(0,r,0,R) = {0}"
(proof)

An induction (or maybe recursion?) scheme for linearly ordered sets. The
induction step is that we show that if the property holds when the set is
a singleton or for a set with the maximum removed, then it holds for the
set. The idea is that since we can build any finite set by adding elements on
the right, then if the property holds for the empty set and is invariant with
respect to this operation, then it must hold for all finite sets.

lemma fin_ord_induction:
assumes Al: "IsLinOrder(X,r)" and A2: "P(0)" and
A3: "VA € FinPow(X). A # 0 — (P(A - {Maximum(r,A)}) — P(A))"
and A4: "B € FinPow(X)" shows "P(B)"

(proof)

81

A sligltly more complicated version of fin_ord_induction that allows to
prove properties that are not true for the empty set.

lemma fin_ord_ind:
assumes Al: "IsLinOrder(X,r)" and A2: "VA € FinPow(X).
A=0V (A= {Maximum(r,A)} V P(A - {Maximum(r,A)}) — P(A))"
and A3: "B € FinPow(X)" and A4: "B#0"
shows "P(B)"

(proof)

Yet another induction scheme. We build a linearly ordered set by adding
elements that are greater than all elements in the set.

lemma fin_ind_add_max:
assumes Al: "IsLinOrder(X,r)" and A2: "P(0)" and A3: "V A € FinPow(X).

(V x € X-A. P(A) A (Va€A. (a,x) € r) — P(A U {x))"
and A4: "B € FinPow(X)"
shows "P(B)"

(proof)

The only order automorphism of a linearly ordered finite set is the identity.

theorem fin_ord_auto_id: assumes Al: "IsLinOrder(X,r)"
and A2: "B € FinPow(X)" and A3: "B#0"
shows "ord_iso(B,r,B,r) = {id(B)}"

(proof)

Every two finite linearly ordered sets are order isomorphic. The statement
is formulated to make the proof by induction on the size of the set easier,
see fin_ord_iso_ex for an alternative formulation.

lemma fin_order_iso:
assumes Al: "IsLinOrder(X,r)" "IsLinOrder(Y,R)" and
A2: "n € nat"
shows "VA € FinPow(X). VB € FinPow(Y).
A~nAB~n— ord_iso(A,r,B,R) # 0"

(proof)

Every two finite linearly ordered sets are order isomorphic.

lemma fin_ord_iso_ex:
assumes Al: "IsLinOrder(X,r)" "IsLinOrder(Y,R)" and
A2: "A € FinPow(X)" "B € FinPow(Y)" and A3: "B =~ A"
shows "ord_iso(A,r,B,R) # 0"

(proof)

Existence and uniqueness of order isomorphism for two linearly ordered sets
with the same number of elements.

theorem fin_ord_iso_ex_uniq:
assumes Al: "IsLinOrder(X,r)" "IsLinOrder(Y,R)" and
A2: "A € FinPow(X)" "B € FinPow(Y)" and A3: "B ~ A"

82

shows "d!'f. f € ord_iso(A,r,B,R)"
(proof)

end

16 Equivalence relations

theory EquivClassl imports EquivClass func_ZF ZF1
begin

In this theory file we extend the work on equivalence relations done in the
standard Isabelle’s EquivClass theory. That development is very good and
all, but we really would prefer an approach contained within the a standard
ZF set theory, without extensions specific to Isabelle. That is why this
theory is written.

16.1 Congruent functions and projections on the quotient

Suppose we have a set X with a relation r C X x X and a function f : X —
X. The function f can be compatible (congruent) with r in the sense that if
two elements x, y are related then the values f(x), f(x) are also related. This
is especially useful if r is an equivalence relation as it allows to ”project”
the function to the quotient space X/r (the set of equivalence classes of
r) and create a new function F' that satifies the formula F([z],) = [f(z)],-
When f is congruent with respect to r such definition of the value of F' on the
equivalence class [z], does not depend on which z we choose to represent the
class. In this section we also consider binary operations that are congruent
with respect to a relation. These are important in algebra - the congruency
condition allows to project the operation to obtain the operation on the
quotient space.

First we define the notion of function that maps equivalent elements to equiv-
alent values. We use similar names as in the Isabelle’s standard EquivClass
theory to indicate the conceptual correspondence of the notions.

definition
"Congruent (r,f) =
Wxy. (x,y) Er — (@, f(y)) €)"

Now we will define the projection of a function onto the quotient space. In
standard math the equivalence class of © with respect to relation r is usually
denoted [z],. Here we reuse notation r{z} instead. This means the image
of the set {z} with respect to the relation, which, for equivalence relations
is exactly its equivalence class if you think about it.

83

definition
"ProjFun(A,r,f) =
{{c,Ux€c. r{f°(x)}). c € (A//r)}"

Elements of equivalence classes belong to the set.

lemma EquivClass_1_L1:
assumes Al: "equiv(A,r)" and A2: "C € A//r" and A3: "xeC"
shows "xecA"

(proof)

The image of a subset of X under projection is a subset of A/r.

lemma EquivClass_1_L1A:
assumes "ACX" shows "{r‘‘{x}. x€A} C X//r"

(proof)

If an element belongs to an equivalence class, then its image under relation
is this equivalence class.

lemma EquivClass_1_L2:
assumes Al: "equiv(A,r)" "C € A//r" and A2: "xeC"
shows "r‘‘{x} = C"

(proof)

Elements that belong to the same equivalence class are equivalent.

lemma EquivClass_1_L2A:
assumes "equiv(A,r)" "C € A//r" "xeC" ‘'yeC"
shows "(x,y) € r"

{proof)

Every z is in the class of y, then they are equivalent.

lemma EquivClass_1_L2B:
assumes Al: "equiv(A,r)" and A2: "yeA" and A3: "x € r‘‘{y}"
shows "(x,y) € "

(proof)

If a function is congruent then the equivalence classes of the values that
come from the arguments from the same class are the same.

lemma EquivClass_1_L3:
assumes Al: "equiv(A,r)" and A2: "Congruent(r,f)"
and A3: "C € A//r" "xeC" "yeC"
shows "r‘‘{f‘(x)} = r*“{£°(y}"

(proof)

The values of congruent functions are in the space.

lemma EquivClass_1_L4:
assumes Al: "equiv(A,r)" and A2: "C € A//r" ‘"xeC"
and A3: "Congruent(r,f)"
shows "f‘(x) € A"

84

(proof)

Equivalence classes are not empty.

lemma EquivClass_1_L5:
assumes Al: "refl(A,r)" and A2: "C € A//r"
shows "C#0"

(proof)

To avoid using an axiom of choice, we define the projection using the ex-
pression | J o 7({f(2)}). The next lemma shows that for congruent function
this is in the quotient space A/r.

lemma EquivClass_1_L6:
assumes Al: "equiv(A,r)" and A2: "Congruent(r,f)"
and A3: "C € A//r"
shows "(|JxeC. r*‘{f‘(x)}) € A//x"

(proof)

Congruent functions can be projected.

lemma EquivClass_1_TO:

assumes "equiv(A,r)" "Congruent(r,f)"
shows "ProjFun(A,r,f) : A//r — A//x"
(proof)

We now define congruent functions of two variables (binary funtions). The
predicate Congruent?2 corresponds to congruent?2 in Isabelle’s standard EquivClass
theory, but uses ZF-functions rather than meta-functions.

definition
"Congruent2(r,f) =
(Vx1 X2 y1 y2. (X1,%X2) € T A (y1,y2) €T —
(£(x1,y1)s £9(x2,y2)) € D"

Next we define the notion of projecting a binary operation to the quotient
space. This is a very important concept that allows to define quotient
groups, among other things.
definition

"ProjFun2(A,r,f) =

{{p,U z € fst(p)xsnd(p). r ‘{£(=2)}). p € (A//r)x(A//x) }"

The following lemma is a two-variables equivalent of EquivClass_1_L3.

lemma EquivClass_1_L7:
assumes Al: "equiv(A,r)" and A2: "Congruent2(r,f)"
and A3: "C; € A//r" "Co € A//"
and A4: "z; € C;xCy" "zo € CypxCy"
shows "r‘{f‘(z;)} = r*‘{f(z2)}"

(proof)

The values of congruent functions of two variables are in the space.

85

lemma EquivClass_1_L8:
assumes Al: "equiv(A,r)" and A2: "C; € A//r" and A3: "Cy, € A//r"
and A4: "z € C;xCy" and A5: "Congruent2(r,f)"
shows "f‘(z) € A"

(proof)

The values of congruent functions are in the space. Note that although this
lemma is intended to be used with functions, we don’t need to assume that
f is a function.

lemma EquivClass_1_L8A:
assumes Al: "equiv(A,r)" and A2: "x€A" ‘yeA"
and A3: "Congruent2(r,f)"
shows "f‘(x,y) € A"

(proof)

The following lemma is a two-variables equivalent of EquivClass_1_L6.

lemma EquivClass_1_L9:
assumes Al: "equiv(A,r)" and A2: "Congruent2(r,f)"
and A3: "p € (A//r)x(A//T)"
shows "(|J z € fst(p)xsnd(p). r*‘{£(2)}) € A//xr"
(proof)

Congruent functions of two variables can be projected.

theorem EquivClass_1_T1:

assumes "equiv(A,r)" "Congruent2(r,f)"
shows "ProjFun2(A,r,f) : (A//r)x(A//r) — A//r"
(proof)

The projection diagram commutes. I wish I knew how to draw this diagram
in LaTeX.

lemma EquivClass_1_L10:
assumes Al: "equiv(A,r)" and A2: "Congruent2(r,f)"
and A3: "xe€A" ‘yeA"
shows "ProjFun2(A,r,f) ‘(r‘‘{x},r‘‘{y}) = r {fx,y)}"
(proof)

16.2 Projecting commutative, associative and distributive
operations.

In this section we show that if the operations are congruent with respect to
an equivalence relation then the projection to the quotient space preserves
commutativity, associativity and distributivity.

The projection of commutative operation is commutative.

lemma EquivClass_2_L1: assumes
Al: "equiv(A,r)" and A2: "Congruent2(r,f)"
and A3: "f {is commutative on} A"

86

and A4: "cl1 € A//r" "c2 € A//r"
shows "ProjFun2(A,r,f) ‘(c1,c2) = ProjFun2(A,r,f) ‘(c2,c1)"
(proof)

The projection of commutative operation is commutative.

theorem EquivClass_2_T1:
assumes "equiv(A,r)" and "Congruent2(r,f)"
and "f {is commutative on} A"
shows "ProjFun2(A,r,f) {is commutative on} A//r"

(proof)

The projection of an associative operation is associative.

lemma EquivClass_2_L2:
assumes Al: "equiv(A,r)" and A2: "Congruent2(r,f)"
and A3: "f {is associative on} A"
and A4: "cl € A//r" "c2 € A//r" "c3 € A//T"

and A5: "g = ProjFun2(A,r,f)"
shows "g‘(g‘(c1,c2),c3) = g(cl,g‘(c2,c3))"
(proof)

The projection of an associative operation is associative on the quotient.

theorem EquivClass_2_T2:
assumes Al: "equiv(A,r)" and A2: "Congruent2(r,f)"
and A3: "f {is associative on} A"
shows "ProjFun2(A,r,f) {is associative on} A//r"

(proof)

The essential condition to show that distributivity is preserved by projec-
tions to quotient spaces, provided both operations are congruent with respect
to the equivalence relation.

lemma EquivClass_2_L3:
assumes Al: "IsDistributive(X,A,M)"
and A2: "equiv(X,r)"
and A3: "Congruent2(r,A)" "Congruent2(r,M)"
and A4: "a € X//r" "b € X//r" "c € X//xr"
and A5: "A, = ProjFun2(X,r,A)" "M, ProjFun2(X,r,M)"
shows "M, ‘(a,A, (b,c)) = A,(M,*(M,“(a,c)) A
Mp(Ap‘(b,c),a) = A, (My (b,a), ,a))"
(proof)

Distributivity is preserved by projections to quotient spaces, provided both
operations are congruent with respect to the equivalence relation.

a,b),
M, “(c

lemma EquivClass_2_L4: assumes Al: "IsDistributive(X,A,M)"
and A2: "equiv(X,r)"
and A3: "Congruent2(r,A)" "Congruent2(r,M)"
shows "IsDistributive(X//r,ProjFun2(X,r,A),ProjFun2(X,r,M))"

(proof)

87

16.3 Saturated sets

In this section we consider sets that are saturated with respect to an equiv-
alence relation. A set A is saturated with respect to a relation r if A =
r~1(r(A)). For equivalence relations saturated sets are unions of equiva-
lence classes. This makes them useful as a tool to define subsets of the
quoutient space using properties of representants. Namely, we often define
a set B C X/r by saying that [z], € B iff x € A. If A is a saturated set, this
definition is consistent in the sense that it does not depend on the choice of
x to represent [z],.

The following defines the notion of a saturated set. Recall that in Isabelle
- “(4) is the inverse image of A with respect to relation r. This definition
is not specific to equivalence relations.

definition
"IsSaturated(r,A) = A = r-““(r‘“(a))"

For equivalence relations a set is saturated iff it is an image of itself.
lemma EquivClass_3_L1: assumes Al: "equiv(X,r)"

shows "IsSaturated(r,A) <— A = ‘(A"
(proof)

For equivalence relations sets are contained in their images.
lemma EquivClass_3_L2: assumes Al: "equiv(X,r)" and A2: "ACX"
shows "A C r¢“(a)"

(proof)

The next lemma shows that if ”~” is an equivalence relation and a set A is
such that a € A and a ~ b implies b € A, then A is saturated with respect
to the relation.

2

lemma EquivClass_3_L3: assumes Al: "equiv(X,r)"
and A2: "r C XxX" and A3: "ACX"
and A4: "Vx€A. VyeX. (x,y) € T —> yEA"
shows "IsSaturated(r,A)"

(proof)

If AC X and A is saturated and z ~ y, then x € A iff y € A. Here we show
only one direction.
lemma EquivClass_3_L4: assumes Al: "equiv(X,r)"

and A2: "IsSaturated(r,A)" and A3: "ACX"

and A4: "(x,y) € "

and A5: "xeX" ‘yeA"

shows "xeA"

(proof)
If AC X and A is saturated and x ~ y, then x € A iff y € A.

lemma EquivClass_3_L5: assumes Al: "equiv(X,r)"

88

and A2: "IsSaturated(r,A)" and A3: "ACX"
and A4: "xeX" ‘yeX"

and A5: "(x,y) € r"

shows "x€A +— yeA"

(proof)

If A is saturated then x € A iff its class is in the projection of A.

lemma EquivClass_3_L6: assumes Al: "equiv(X,r)"
and A2: "IsSaturated(r,A)" and A3: "ACX" and A4: "xeX"
and A5: "B = {r‘‘{x}. x€A}"
shows "x€A +— r‘‘{x} € B"

(proof)

A technical lemma involving a projection of a saturated set and a logical
epression with exclusive or. Note that we don’t really care what Xor is here,
this is true for any predicate.

lemma EquivClass_3_L7: assumes "equiv(X,r)"
and "IsSaturated(r,A)" and "ACX"
and "xeX" ‘"yeX"
and "B = {r‘‘{x}. xcA}"
and "(x€A) Xor (yepA)"
shows "(r‘‘{x} € B) Xor (r‘‘{y} € B)"

(proof)

end

17 Finite sequences
theory FiniteSeq_ZF imports Nat_ZF_IML funcl
begin

This theory treats finite sequences (i.e. maps n — X, where n = {0,1,..,n—
1} is a natural number) as lists. It defines and proves the properties of basic
operations on lists: concatenation, appending and element etc.

17.1 Lists as finite sequences

A natural way of representing (finite) lists in set theory is through (finite)
sequences. In such view a list of elements of a set X is a function that maps
the set {0,1,..n—1} into X. Since natural numbers in set theory are defined
so that n = {0, 1,..n—1}, a list of length n can be understood as an element
of the function space n — X.

We define the set of lists with values in set X as Lists(X).

definition

89

"Lists(X) = ([Jn€nat.(@—X)"

The set of nonempty X-value listst will be called NELists (X).

definition
"NELists(X) = [Uné€nat. (succ(n)—X)"

We first define the shift that moves the second sequence to the domain
{n,..,n + k — 1}, where n,k are the lengths of the first and the second
sequence, resp. To understand the notation in the definitions below recall
that in Isabelle/ZF pred(n) is the previous natural number and denotes the
difference between natural numbers n and k.

definition
"ShiftedSeq(b,n) = {(j, b‘(j #- n)). j € NatInterval(n,domain(b))}"

We define concatenation of two sequences as the union of the first sequence
with the shifted second sequence. The result of concatenating lists a and b
is called Concat(a,b).

definition

"Concat(a,b) = a U ShiftedSeq(b,domain(a))"

For a finite sequence we define the sequence of all elements except the first
one. This corresponds to the ”tail” function in Haskell. We call it Tail here
as well.

definition
"Tail(a) = {(k, a‘(succ(k))). k € pred(domain(a))}"
A dual notion to Tail is the list of all elements of a list except the last one.

Borrowing the terminology from Haskell again, we will call this Init.

definition
"Init(a) = restrict(a,pred(domain(a)))"

Another obvious operation we can talk about is appending an element at
the end of a sequence. This is called Append.
definition

"Append(a,x) = a U {(domain(a),x)}"

If lists are modeled as finite sequences (i.e. functions on natural intervals
{0,1,..,n — 1} = n) it is easy to get the first element of a list as the value
of the sequence at 0. The last element is the value at n — 1. To hide this
behind a familiar name we define the Last element of a list.

definition
"Last(a) = a‘(pred(domain(a)))"

Shifted sequence is a function on a the interval of natural numbers.

lemma shifted_seq_props:

90

assumes Al: "n € nat" "k € nat" and A2: "b:k—X"
shows
"ShiftedSeq(b,n): NatInterval(n,k) — X"
"Vi € NatInterval(n,k). ShiftedSeq(b,n) ‘(i) = b‘(i #- n)"
"V jek. ShiftedSeq(b,n)‘(n #+ j) = b ("
(proof)

Basis properties of the contatenation of two finite sequences.

theorem concat_props:
assumes Al: "n € nat" "k € nat" and A2: "a:n—X" "b:k—X"
shows
"Concat(a,b): n #+ k — X"
"Wien. Concat(a,b) ‘(i) = a‘(i)"
"Wi € NatInterval(n,k). Concat(a,b) ‘(i) = Db‘(i #- n)"
"Vj € k. Concat(a,b)‘(n #+ j) = b ()"
(proof)

Properties of concatenating three lists.

lemma concat_concat_list:

assumes Al: "n € nat" "k € nat" "m € nat" and
A2: "a:n—X" "b:k—X" "c:m—X" and

A3: "d = Concat(Concat(a,b),c)"

shows

"d : n #+k #+ m — X"

"Wj €mn. d() =a‘GH)"

Wi € k. d(n #+ j) = b ("

"j €m. d(n #+ k #+ j) = c ("
(proof)

Properties of concatenating a list with a concatenation of two other lists.

lemma concat_list_concat:

assumes Al: "n € nat" "k € nat" "m € nat" and
A2: "a:n—X" "b:k—X" "c:m—X" and

A3: "e = Concat(a, Concat(b,c))"

shows

e : n #+k #+ m — X"

"Wj €n. e‘(j) =a‘@G"

"WVj € k. e‘(n #+ j) =Db(G)"

"Wj €m. e‘(n #+ k #+ j) = c(H"
(proof)

Concatenation is associative.

theorem concat_assoc:

assumes Al: "n € nat" "k € nat" "m € nat" and

A2: "a:n—X" "b:k—X" "c:m—X"

shows "Concat(Concat(a,b),c) = Concat(a, Concat(b,c))"
(proof)

Properties of Tail.

91

theorem tail_props:
assumes Al: "n € nat" and A2: "a: succ(n) — X"
shows
"Tail(a) : n — X"
"Wk € n. Tail(a) ‘(k) = a‘(succ(k))"

(proof)

Properties of Append. It is a bit surprising that the we don’t need to assume
that n is a natural number.

theorem append_props:
assumes Al: "a: n — X" and A2: "xeX" and A3: "b = Append(a,x)"
shows
"b : succ(n) — X"
"Wken. b (k) = a‘ (k)"
llbl (n) = X"
(proof)

A special case of append_props: appending to a nonempty list does not
change the head (first element) of the list.

corollary head_of_append:
assumes "n€ nat" and "a: succ(n) — X" and "xeX"
shows "Append(a,x) ‘(0) = a‘(0)"
(proof)

Tail commutes with Append.

theorem tail_append_commute:
assumes Al: "n € nat" and A2: "a: succ(n) — X" and A3: "xeX"
shows "Append(Tail(a),x) = Tail(Append(a,x))"

(proof)

Properties of Init.

theorem init_props:
assumes Al: "n € nat" and A2: "a: succ(n) — X"
shows
"Init(a) : n — X"
"Wken. Init(a) ‘(k) = a‘ k)"
"a = Append(Init(a), a‘(n))"

(proof)

If we take init of the result of append, we get back the same list.

lemma init_append: assumes Al: "n € nat" and A2: "a:n—X" and A3: "x
6 XII
shows "Init(Append(a,x)) = a"

(proof)

A reformulation of definition of Init.

lemma init_def: assumes "n € nat" and "x:succ(n)—X"

92

shows "Init(x) = restrict(x,n)"
(proof)

A lemma about extending a finite sequence by one more value. This is just
a more explicit version of append_props.

lemma finseq_extend:
assumes "a:n—X" "yeX" "b =a U {(n,y)}"
shows
"b: succ(n) — X"
"Vkeén. b (k) = a‘ (k)"
llbl (n) = yll
(proof)

The next lemma is a bit displaced as it is mainly about finite sets. It is
proven here because it uses the notion of Append. Suppose we have a list of
element of A is a bijection. Then for every element that does not belong to
A we can we can construct a bijection for the set AU {z} by appending z.
This is just a specialised version of lemma bij_extend_point from funci.thy.

lemma bij_append_point:
assumes Al: "n € nat" and A2: "b € bij(n,X)" and A3: "x ¢ X"
shows "Append(b,x) € bij(succ(n), X U {x}H)"

(proof)

The next lemma rephrases the definition of Last. Recall that in ZF we have
{0,1,2,..,n} =n+ 1 =succ(n).

lemma last_seq_elem: assumes "a: succ(n) — X" shows "Last(a) = a‘(n)"

(proof)

If two finite sequences are the same when restricted to domain one shorter
than the original and have the same value on the last element, then they are
equal.

lemma finseq_restr_eq: assumes Al: "n € nat" and
A2: "a: succ(n) — X" '"b: succ(n) — X" and
A3: "restrict(a,n) = restrict(b,n)" and
Ad: "a‘(n) = b‘(n)"
shows "a = b"

(proof)

Concatenating a list of length 1 is the same as appending its first (and only)
element. Recall that in ZF set theory 1 = {0}.

lemma append_lelem: assumes Al: "n € nat" and
A2: "a: n — X" and A3: "b : 1 — X"
shows "Concat(a,b) = Append(a,b‘(0))"

(proof)

A simple lemma about lists of length 1.

lemma list_lenl_singleton: assumes Al: "xeX"

93

shows "{(0,x)} : 1 — X"
(proof)

A singleton list is in fact a singleton set with a pair as the only element.

lemma list_singleton_pair: assumes Al: "x:1—X" shows "x = {(0,x°(0))}"
(proof)

When we append an element to the empty list we get a list with length 1.

lemma empty_appendl: assumes Al: "xeX"
shows "Append(0,x): 1 — X" and "Append(0,x) (0) = x"
(proof)

Appending an element is the same as concatenating with certain pair.

lemma append_concat_pair:
assumes "n € nat" and "a: n — X" and "xeX"
shows "Append(a,x) = Concat(a,{(0,x)})"
(proof)

An associativity property involving concatenation and appending. For proof
we just convert appending to concatenation and use concat_assoc.

lemma concat_append_assoc: assumes Al: "n € nat" "k € nat" and
A2: "a:n—X" "b:k—X" and A3: "x € X"
shows "Append(Concat(a,b),x) = Concat(a, Append(b,x))"

(proof)

An identity involving concatenating with init and appending the last ele-
ment.

lemma concat_init_last_elem:
assumes "n € nat" "k € nat" and
"a: n — X" and "b : succ(k) — X"
shows "Append(Concat(a,Init(b)),b‘(k)) = Concat(a,b)"
(proof)

A lemma about creating lists by composition and how Append behaves in
such case.

lemma list_compose_append:
assumes Al: "n € nat" and A2: "a : n — X" and
A3: "x € X" and A4: "c : X — Y"
shows
"c 0 Append(a,x) : succ(n) — Y"
"c 0 Append(a,x) = Append(c 0 a, c‘(x))"
(proof)

A lemma about appending an element to a list defined by set comprehension.

lemma set_list_append: assumes
Al: "Vi € succ(k). b(i) € X" and
A2: "a = {(i,b(i)). i € succ(k)}"

94

shows

"a: succ(k) — X"

"{(i,b(i)). i € K}: k — X"

"a = Append({(i,b(i)). i € k},b(k))"
(proof)

An induction theorem for lists.

lemma list_induct: assumes Al: "Vbel—X. P(b)" and
A2: "VDbeNELists(X). P(b) — (VxeX. P(Append(b,x)))" and
A3: "d € NELists(X)"
shows "P(d)"

(proof)

17.2 Lists and cartesian products

Lists of length n of elements of some set X can be thought of as a model of
the cartesian product X™ which is more convenient in many applications.

There is a natural bijection between the space (n+1) — X of lists of length
n + 1 of elements of X and the cartesian product (n — X) x X.
lemma lists_cart_prod: assumes "n € nat"
shows "{(x,(Init(x),x‘(n))). x € succ(n)—=X} € bij(succ(n)—=X, (@—=X)xX)"

(proof)

We can identify a set X with lists of length one of elements of X.
lemma singleton_list_bij: shows "{(x,x¢(0)). x€1—=X} € bij(1—=X,X)"

(proof)

We can identify a set of X-valued lists of length with X.
lemma list_singleton_bij: shows

"{(x,{(0,%)}).x€X} € bij(X,1—=X)" and

"{(y,y¢(0)). ye1—X} = converse({(x,{(0,x)}).x€X})" and

"{(x,{(0,%)}).x€X} = converse({(y,y“(0)). ye1—=X})"
(proof)

What is the inverse image of a set by the natural bijection between X-valued
singleton lists and X7

lemma singleton_vimage: assumes "UCX" shows "{xc1—X. x‘(0) € U}
{ {(0,y)}. yeur"
(proof)

A technical lemma about extending a list by values from a set.

lemma list_append_from: assumes Al: "n € nat" and A2: "U C n—X" and
A3: "V C X"

shows

"{x € succ(m)—X. Init(x) € U A x‘(m) € V} = (|JyeV.{Append(x,y) .x€U})"
(proof)

end

95

18 Inductive sequences

theory InductiveSeq_ZF imports Nat_ZF_IML FiniteSeq_ZF
begin

In this theory we discuss sequences defined by conditions of the form ag =
x, ap+1 = f(ay) and similar.

18.1 Sequences defined by induction

One way of defining a sequence (that is a function a : N — X)) is to provide
the first element of the sequence and a function to find the next value when
we have the current one. This is usually called ”defining a sequence by
induction”. In this section we set up the notion of a sequence defined by
induction and prove the theorems needed to use it.

First we define a helper notion of the sequence defined inductively up to a
given natural number n.

definition
"InductiveSequenceN(x,f,n) =
THE a. a: succ(n) — domain(f) A a‘(0) = x A (Vkén. a‘(succ(k)) = £f(a‘(k)))"

From that we define the inductive sequence on the whole set of natural
numbers. Recall that in Isabelle/ZF the set of natural numbers is denoted
nat.

definition
"InductiveSequence(x,f) = |Jn€nat. InductiveSequenceN(x,f,n)"

First we will consider the question of existence and uniqueness of finite
inductive sequences. The proof is by induction and the next lemma is the
P(0) step. To understand the notation recall that for natural numbers in
set theory we have n = {0,1,..,n — 1} and succ(n)= {0,1,..,n}.
lemma indseq_exunO: assumes Al: "f: X—X" and A2: "xeX"

shows

"J1 a. a: succ(0) - X A a‘(0) = x A (Yke0. a‘(succ(k)) = £(a‘(k))
) n
(proof)

A lemma about restricting finite sequences needed for the proof of the in-
ductive step of the existence and uniqueness of finite inductive seqgences.

lemma indseq_restrict:

assumes Al: "f: X—X" and A2: "x€X" and A3: "n € nat" and

Ad: "a: succ(succ(n))— X A a‘(0) = x A (Vkesucc(n). a‘(succ(k)) =
fea‘)"

and A5: "a, = restrict(a,succ(n))"

96

shows
"a,: succ(n) - X A a,‘(0) = x A (Vkén. a,“(succ(k)) = f(a, (k))"
(proof)

Existence and uniqueness of finite inductive sequences. The proof is by
induction and the next lemma is the inductive step.

lemma indseq_exun_ind:
assumes Al: "f: X—X" and A2: "xeX" and A3: "n € nat" and
A4: "3! a. a: succ(n) — X A a‘(0) = x A (Vken. a‘(succ(k)) = £(a‘(k)))"
shows
"J1 a. a: succ(succ(n)) — X A a‘(0) = x A
(Vk€succ(n). a‘(succ(k)) = £(a‘(k)))"
(proof)

The next lemma combines indseq_exun0 and indseq_exun_ind to show the
existence and uniqueness of finite sequences defined by induction.

lemma indseq_exun:

assumes Al: "f: X—X" and A2: "xeX" and A3: "n € nat"

shows

"J1 a. a: succ(n) - X A a‘(0) = x A (Vkén. a‘(succ(k)) = f(a‘ &))"
(proof)

We are now ready to prove the main theorem about finite inductive se-
quences.

theorem fin_indseq_props:
assumes Al: "f: X—X" and A2: "x€X" and A3: "n € nat" and
A4: "a = InductiveSequenceN(x,f,n)"

shows

"a: succ(n) — X"

"a‘(0) = x"

"Wken. a‘(succ(k)) = £(a‘ k)"
(proof)

A corollary about the domain of a finite inductive sequence.

corollary fin_indseq_domain:
assumes Al: "f: X—X" and A2: "xeX" and A3: "n € nat"
shows "domain(InductiveSequenceN(x,f,n)) = succ(n)"

(proof)

The collection of finite sequences defined by induction is consistent in the
sense that the restriction of the sequence defined on a larger set to the
smaller set is the same as the sequence defined on the smaller set.

lemma indseq_consistent: assumes Al: "f: X—X" and A2: "x€X" and
A3: "i € nat" "j € nat" and A4: "i C j"
shows
"restrict(InductiveSequenceN(x,f,j),succ(i)) = InductiveSequenceN(x,f,i)"

(proof)

97

For any two natural numbers one of the corresponding inductive sequences
is contained in the other.
lemma indseq_subsets: assumes Al: "f: X—X" and A2: "xe€X" and
A3: "i € nat" "j € nat" and
A4: "a = InductiveSequenceN(x,f,i)" "b = InductiveSequenceN(x,f,j)"
shows "a C bV b C a"

(proof)

The first theorem about properties of infinite inductive sequences: inductive
sequence is a indeed a sequence (i.e. a function on the set of natural numbers.

theorem indseq_seq: assumes Al: "f: X—X" and A2: "xeX"
shows "InductiveSequence(x,f) : nat — X"

(proof)

Restriction of an inductive sequence to a finite domain is the corresponding
finite inductive sequence.
lemma indseq_restr_eq:

assumes Al: "f: X—X" and A2: "xeX" and A3: "n € nat"

shows
"restrict(InductiveSequence(x,f),succ(n)) = InductiveSequenceN(x,f,n)"

(proof)

The first element of the inductive sequence starting at x and generated by
f is indeed =.
theorem indseq_valatO: assumes Al: "f: X—X" and A2: "xeX"
shows "InductiveSequence(x,f)‘(0) = x"
(proof)

An infinite inductive sequence satisfies the inductive relation that defines it.

theorem indseq_vals:
assumes Al: "f: X—X" and A2: "xeX" and A3: "n € nat"
shows
"InductiveSequence(x,f) ‘ (succ(n)) = f‘(InductiveSequence(x,f)‘(n))"

(proof)

18.2 Images of inductive sequences

In this section we consider the properties of sets that are images of inductive
sequences, that is are of the form { () () : n € N} for some z in the domain
of f, where f(") denotes the n’th iteration of the function f. For a function
f:X — X and a point z € X such set is set is sometimes called the orbit
of x generated by f.

The basic properties of orbits.

theorem ind_seq_image: assumes Al: "f: X—X" and A2: "xeX" and
A3: "A = InductiveSequence(x,f)‘‘(nat)"
shows "xe€A" and "VyeA. £(y) € A"

(proof)

98

18.3 Subsets generated by a binary operation

In algebra we often talk about sets ”generated” by an element, that is sets
of the form (in multiplicative notation) {a™|n € Z}. This is a related to a
general notion of "power” (as in a” = a-a-..-a) or multiplicity n-a =
a~+a+ ..+ a. The intuitive meaning of such notions is obvious, but we need
to do some work to be able to use it in the formalized setting. This sections
is devoted to sequences that are created by repeatedly applying a binary
operation with the second argument fixed to some constant.

Basic propertes of sets generated by binary operations.

theorem binop_gen_set:

assumes Al: "f: XxY — X" and A2: "xe€X" ‘"yeY" and

A3: "a = InductiveSequence(x,Fix2ndVar(f,y))"

shows

"a : nat — X"

"a‘‘(nat) € Pow(X)"

"x € a‘‘“(nat)"

"Wz € a‘‘(nat). Fix2ndVar(f,y) ‘(z) € a‘‘(nat)"
(proof)

A simple corollary to the theorem binop_gen_set: a set that contains all
iterations of the application of a binary operation exists.

lemma binop_gen_set_ex: assumes Al: "f: XxY — X" and A2: "xe€X" ‘'yeY"
shows "{A € Pow(X). x€A A (Vz € A. £(z,y) € A) } # O"
(proof)

A more general version of binop_gen_set where the generating binary oper-
ation acts on a larger set.

theorem binop_gen_setl: assumes Al: "f: XxY — X" and
A2: "X; C X" and A3: "xe€Xy" ‘"yeY" and
Ad: "WteXy. £(t,y) € X" and
A5: "a = InductiveSequence(x,Fix2ndVar(restrict(f,X;xY),y))"
shows
"a : nat — X"
"a‘‘(nat) € Pow(X{)"
"x € a‘“(nat)"
"Wz € a‘‘(nat). Fix2ndVar(f,y)‘(z) € a‘‘(nat)"
"Wz € a‘‘(nat). £°(z,y) € a‘‘(nat)"
(proof)

A generalization of binop_gen_set_ex that applies when the binary operation
acts on a larger set. This is used in our Metamath translation to prove
the existence of the set of real natural numbers. Metamath defines the real
natural numbers as the smallest set that cantains 1 and is closed with respect
to operation of adding 1.

lemma binop_gen_set_exl: assumes Al: "f: XxY — X" and

99

A2: "Xy C X" and A3: "xe€X;" "yeY" and

Ad: "WteXy. £(t,y) € X"

shows "{A € Pow(X1). x€A A (Vz € A. £(z,y) € A) } # 0"
(proof)

18.4 Inductive sequences with changing generating function

A seemingly more general form of a sequence defined by induction is a
sequence generated by the difference equation z,,+1 = f,(x,) where n — f,
is a given sequence of functions such that each maps X into inself. For
example when f,(z) := x 4+ z,, then the equation S, 11 = f,(S,) describes
the sequence n — S, = sop+ Y i Zn, i.e. the sequence of partial sums of
the sequence {sg, o, z1,x3,..}.

The situation where the function that we iterate changes with n can be
derived from the simpler case if we define the generating function appro-
priately. Namely, we replace the generating function in the definitions
of InductiveSequenceN by the function f : X xn — X xn, f(z,k) =
(fe(z),k+ 1) if & < n, (fr(x),k) otherwise. The first notion defines the
expression we will use to define the generating function. To understand the
notation recall that in standard Isabelle/ZF for a pair s = (z,n) we have
fst(s) = x and snd(s) = n.

definition

"StateTransfFunNMeta(F,n,s) =
if (snd(s) € n) then (F‘(snd(s))‘(fst(s)), succ(snd(s))) else s"

Then we define the actual generating function on sets of pairs from X x
{0,1,..,n}.

definition
"StateTransfFunN(X,F,n) = {(s, StateTransfFunNMeta(F,n,s)). s € Xxsucc(n)}"

Having the generating function we can define the expression that we cen use
to define the inductive sequence generates.

definition
"StatesSeq(x,X,F,n) =
InductiveSequenceN((x,0), StateTransfFunN(X,F,n),n)"

Finally we can define the sequence given by a initial point =, and a sequence
F of n functions.

definition
"InductiveSeqVarFN(x,X,F,n) = {(k,fst(StatesSeq(x,X,F,n)‘(k))). k €
succ(n)}"

The state transformation function (StateTransfFunN is a function that trans-
forms X x n into itself.

lemma state_trans_fun: assumes Al: "n € nat" and A2: "F: n — (X—=X)"

100

shows "StateTransfFunN(X,F,n): Xxsucc(n) — Xxsucc(n)"
(proof)

We can apply fin_indseq_props to the sequence used in the definition of
InductiveSeqVarFN to get the properties of the sequence of states generated
by the StateTransfFunN.

lemma states_seq_props:
assumes Al: "n € nat" and A2: "F: n — (X—X)" and A3: "x€X" and
A4: "b = StatesSeq(x,X,F,n)"

shows
"b : succ(n) — Xxsucc(n)"
nbl(o) = <X,O>"

"Wk € succ(n). snd(b‘(k)) = k"
"Wken. b‘(succ(k)) = (F (k) (£st(b‘(k))), succ(k))"
(proof)

Basic properties of sequences defined by equation z,4+1 = fn(xy).

theorem fin_indseq_var_f_props:
assumes Al: "n € nat" and A2: "xeX" and A3: "F: n — (X—X)" and
A4: "a = InductiveSeqVarFN(x,X,F,n)"

shows

"a: succ(n) — X"

"af(0) = x"

"Wken. a‘(succ(k)) = F (k) ‘(a‘k))"
(proof)

A consistency condition: if we make the sequence of generating functions
shorter, then we get a shorter inductive sequence with the same values as in
the original sequence.

lemma fin_indseq_var_f_restrict: assumes
Al: "n € nat" "i € nat" "x€X" "F: n — E->X)" "G: i - X=X
and A2: "i C n" and A3: "Vje€i. G‘(j) = F°(j)" and A4: "k € succ(i)"
shows "InductiveSeqVarFN(x,X,G,i)‘(k) = InductiveSeqVarFN(x,X,F,n)‘(k)"

(proof)

end

19 Folding in ZF

theory Fold_ZF imports InductiveSeq_ZF
begin

Suppose we have a binary operation P : X x X — X written multiplicatively
as P{x,y) = z-y. In informal mathematics we can take a sequence {x }reo..n

101

of elements of X and consider the product xg-z1-..-x,. To do the same thing
in formalized mathematics we have to define precisely what is meant by that
7....7. The definitition we want to use is based on the notion of sequence
defined by induction discussed in InductiveSeq_zF. We don’t really want to
derive the terminology for this from the word ”product” as that would tie it
conceptually to the multiplicative notation. This would be awkward when
we want to reuse the same notions to talk about sums like zg + 21 + .. + 2,,.

In functional programming there is something called ”fold”. Namely for a
function f, initial point a and list [b, ¢, d] the expression fold(f, a, [b,c,dl)
is defined to be f(£(£(a,b),c),d) (in Haskell something like this is called
foldl). If we write f in multiplicative notation we get a - b - ¢ - d, so this
is exactly what we need. The notion of folds in functional programming
is actually much more general that what we need here (not that I know
anything about that). In this theory file we just make a slight generalization
and talk about folding a list with a binary operation f : X x Y — X with
X not necessarily the same as Y.

19.1 Folding in ZF

Suppose we have a binary operation f : X x Y — X. Then every y € Y
defines a transformation of X defined by T, (z) = f(z,y). In IsarMathLib
such transformation is called as Fix2ndVar(f,y). Using this notion, given a
function f: X x Y — X and a sequence y = {y tren of elements of X we
can get a sequence of transformations of X. This is defined in Seq2TransSeq
below. Then we use that sequence of tranformations to define the sequence
of partial folds (called FoldSeq) by means of InductiveSeqVarFN (defined in
InductiveSeq_ZF theory) which implements the inductive sequence deter-
mined by a starting point and a sequence of transformations. Finally, we
define the fold of a sequence as the last element of the sequence of the partial
folds.

Definition that specifies how to convert a sequence a of elements of Y into a
sequence of transformations of X, given a binary operation f: X xY — X.
definition

"Seq2TrSeq(f,a) = {(k,Fix2ndVar(f,a‘(k))). k € domain(a)}"
Definition of a sequence of partial folds.

definition
"FoldSeq(f,x,a) =
InductiveSeqVarFN(x,fstdom(f),Seq2TrSeq(f,a) ,domain(a))"

Definition of a fold.

definition
"Fold(f,x,a) = Last(FoldSeq(f,x,a))"

102

If X is a set with a binary operation f : X xY — X then Seq2TransSeqN(f,a)
converts a sequence a of elements of Y into the sequence of corresponding
transformations of X.

lemma seq2trans_seq_props:
assumes Al: "n € nat" and A2: "f : XXY — X" and A3: "a:n—Y" and
Ad: "T = Seq2TrSeq(f,a)"
shows
"T : n — (X=X)" and
"Wken. VxeX. (T (k) ‘(x) = £(x,a‘(k))"
(proof)

Basic properties of the sequence of partial folds of a sequence a = {yk}ke{o,..,n}-

theorem fold_seq_props:
assumes Al: "n € nat" and A2: "f : XxXY — X" and
A3: "y:n—Y" and A4: "xeX" and A5: "Y#0" and
A6: "F = FoldSeq(f,x,y)"
shows
"F: succ(n) — X"
"F(0) = x" and
"Wken. F'(succ(k)) = £(F(k), y &))"
(proof)

A consistency condition: if we make the list shorter, then we get a shorter
sequence of partial folds with the same values as in the original sequence.
This can be proven as a special case of fin_indseq_var_f_restrict but a
proof using fold_seq_props and induction turns out to be shorter.

lemma foldseq_restrict: assumes

"n € nat" "k € succ(n)" and
"i € nat" "f : XXxY - X" "a :n — Y" "b:i — Y" and
'mC i W3 €n. b =a‘(dI" "x € X" "Y # 0"
shows "FoldSeq(f,x,b) ‘(k) = FoldSeq(f,x,a)‘ (k)"

{proof)

A special case of foldseq_restrict when the longer sequence is created from
the shorter one by appending one element.

corollary fold_seq_append:
assumes "n € nat" "f : XxY — X" "a:n — Y" and
"xcX" "k € S'llCC(Il) n ueru
shows "FoldSeq(f,x,Append(a,y)) ‘(k) = FoldSeq(f,x,a) (k)"
(proof)

What we really will be using is the notion of the fold of a sequence, which we
define as the last element of (inductively defined) sequence of partial folds.
The next theorem lists some properties of the product of the fold operation.

theorem fold_props:
assumes Al: "n € nat" and
A2: "f : XXY — X" "arn — Y" "x€X" "Y#£0"

103

shows
"Fold(f,x,a) = FoldSeq(f,x,a)‘(n)" and
"Fold(f,x,a) € X"

(proof)

A corner case: what happens when we fold an empty list?

theorem fold_empty: assumes Al: "f : XxY — X" and
A2: "a:0—Y" "xeX" "Y#0O"
shows "Fold(f,x,a) = x"

(proof)

The next theorem tells us what happens to the fold of a sequence when we
add one more element to it.

theorem fold_append:
assumes Al: "n € nat" and A2: "f : XxY — X" and
A3: "a:n—Y" and A4: "xeX" and A5: "yey"
shows
"FoldSeq(f,x,Append(a,y)) ‘(n) = Fold(f,x,a)" and
"Fold(f,x,Append(a,y)) = f‘(Fold(f,x,a), y)"

(proof)

end

20 Partitions of sets

theory Partitions_ZF imports Finite_ZF FiniteSeq_ZF
begin

It is a common trick in proofs that we divide a set into non-overlapping
subsets. The first case is when we split the set into two nonempty disjoint
sets. Here this is modeled as an ordered pair of sets and the set of such
divisions of set X is called Bisections(X). The second variation on this
theme is a set-valued function (aren’t they all in ZF?) whose values are
nonempty and mutually disjoint.

20.1 Bisections
This section is about dividing sets into two non-overlapping subsets.

The set of bisections of a given set A is a set of pairs of nonempty subsets
of A that do not overlap and their union is equal to A.

definition
"Bisections(X) = {p € Pow(X) xPow(X).
fst(p)#0 A snd(p)#0 A fst(p)Nsnd(p) = 0 A fst(p)Usnd(p) = X}"

104

Properties of bisections.

lemma bisec_props: assumes "(A,B) € Bisections(X)" shows
||A#O|I ||B#o|| ||A g Xll "B g Xll IIA ﬁ B = O|| ||A U B = Xll "X # Oll
(proof)

Kind of inverse of bisec_props: a pair of nonempty disjoint sets form a
bisection of their union.

lemma is_bisec:
assumes "A#0" "B#0" "A N B = 0"
shows "(A,B) € Bisections(AUB)" (proof)

Bisection of X is a pair of subsets of X.

lemma bisec_is_pair: assumes "Q € Bisections(X)"
shows "Q = (£fst(Q), snd(Q))"
{proof)

The set of bisections of the empty set is empty.

lemma bisec_empty: shows "Bisections(0) = 0"

{proof)

The next lemma shows what can we say about bisections of a set with
another element added.

lemma bisec_add_point:
assumes Al: "x ¢ X" and A2: "(A,B) € Bisections(X U {x})"
shows "(A = {x} V B = {x}) V ((A - {x}, B - {x}) € Bisections(X))"
{proof)

A continuation of the lemma bisec_add_point that refines the case when the
pair with removed point bisects the original set.

lemma bisec_add_point_case3:
assumes Al: "(A,B) € Bisections(X U {x})"
and A2: "(A - {x}, B - {x}) € Bisections(X)"
shows
"((A, B - {x}) € Bisections(X) A x € B) V
((A - {x}, B) € Bisections(X) A x € A)"
(proof)

Another lemma about bisecting a set with an added point.

lemma point_set_bisec:
assumes Al: "x ¢ X" and A2: "({x}, A) € Bisections(X U {x})"
shows "A = X" and "X # 0"

(proof)

Yet another lemma about bisecting a set with an added point, very similar
to point_set_bisec with almost the same proof.

lemma set_point_bisec:

105

assumes Al: "x ¢ X" and A2: "(A, {x}) € Bisections(X U {x})"
shows "A = X" and "X # 0"
(proof)

If a pair of sets bisects a finite set, then both elements of the pair are finite.

lemma bisect_fin:
assumes Al: "A € FinPow(X)" and A2: "Q € Bisections(A)"
shows "fst(Q) € FinPow(X)" and "snd(Q) € FinPow(X)"

(proof)

20.2 Partitions

This sections covers the situation when we have an arbitrary number of sets
we want to partition into.

We define a notion of a partition as a set valued function such that the values
for different arguments are disjoint. The name is derived from the fact that
such function ”partitions” the union of its arguments. Please let me know
if you have a better idea for a name for such notion. We would prefer to
say "is a partition”, but that reserves the letter "a” as a keyword(?) which
causes problems.

definition
Partition ("_ {is partition}" [90] 91) where
"P {is partition} = Vx € domain(P).

P‘(x) # 0 A (Vy € domain(P). x#y — P‘(x) N P‘(y) = 0)"

A fact about lists of mutually disjoint sets.

lemma list_partition: assumes Al: "n € nat" and

A2: "a : succ(n) — X" "a {is partition}"
shows "(|Jien. a‘(i)) N a‘(m) = 0"
{proof)

We can turn every injection into a partition.

lemma inj_partition:
assumes Al: "b € inj(X,V)"
shows
"Wx € X. {(x, {b®}). x € X} = {b‘X)}" and
"{(x, {b(x)}). x € X} {is partition}"
(proof)

end

21 Enumerations

theory Enumeration_ZF imports NatOrder_ZF FiniteSeq_ZF FinOrd_ZF

106

begin

Suppose r is a linear order on a set A that has n elements, where n € N .
In the FinOrd_ZF theory we prove a theorem stating that there is a unique
order isomorphism between n = {0, 1,..,n — 1} (with natural order) and A.
Another way of stating that is that there is a unique way of counting the
elements of A in the order increasing according to relation r. Yet another
way of stating the same thing is that there is a unique sorted list of elements
of A. We will call this list the Enumeration of A.

21.1 Enumerations: definition and notation

In this section we introduce the notion of enumeration and define a proof
context (a "locale” in Isabelle terms) that sets up the notation for writing
about enumarations.

We define enumeration as the only order isomorphism beween a set A and
the number of its elements. We are using the formula | J{z} = = to extract
the only element from a singleton. Le is the (natural) order on natural
numbers, defined is Nat_ZF theory in the standard Isabelle library.

definition
"Enumeration(A,r) = |J ord_iso(|Al,Le,A,r)"

To set up the notation we define a locale enums. In this locale we will assume
that r is a linear order on some set X. In most applications this set will
be just the set of natural numbers. Standard Isabelle uses < to denote
the ”less or equal” relation on natural numbers. We will use the < symbol
to denote the relation r. Those two symbols usually look the same in the
presentation, but they are different in the source.To shorten the notation the
enumeration Enumeration(A,r) will be denoted as o(A). Similarly as in the
Semigroup theory we will write a <= x for the result of appending an element
x to the finite sequence (list) a. Finally, a Ub will denote the concatenation
of the lists a and b.

locale enums =

fixes X r
assumes linord: "IsLinOrder(X,r)"

fixes ler (infix "<" 70)

defines ler_def[simpl: "x < y = (x,y) € "

«
I

fixes o

defines o_def [simp]: "o (A) Enumeration(A,r)"

fixes append (infix "<" 72)

107

defines append_def [simp]: "a <= x = Append(a,x)"

fixes concat (infixl "U" 69)
defines concat_def[simp]: "a U b = Concat(a,b)"

21.2 Properties of enumerations
In this section we prove basic facts about enumerations.

A special case of the existence and uniqueess of the order isomorphism for
finite sets when the first set is a natural number.

lemma (in enums) ord_iso_nat_fin:
assumes "A € FinPow(X)" and "n € nat" and "A =~ n"
shows "d!f. f € ord_iso(n,Le,A,r)"

(proof)

An enumeration is an order isomorhism, a bijection, and a list.

lemma (in enums) enum_props: assumes "A € FinPow(X)"
shows
"o(A) € ord_iso(|A|,Le, A,r)"
"o (A) € bij(|Al,A)"
"o(A) : |Al — A"
(proof)

A corollary from enum_props. Could have been attached as another assertion,
but this slows down verification of some other proofs.

lemma (in enums) enum_fun: assumes "A € FinPow(X)"
shows "o(A) : |A] — X"
(proof)

If a list is an order isomorphism then it must be the enumeration.

lemma (in enums) ord_iso_enum: assumes Al: "A € FinPow(X)" and
A2: "n € nat" and A3: "f € ord_iso(n,Le,A,r)"
shows "f = g(A)"

(proof)

What is the enumeration of the empty set?

lemma (in enums) empty_enum: shows "¢ (0) = O"

(proof)

Adding a new maximum to a set appends it to the enumeration.

lemma (in enums) enum_append:
assumes Al: "A € FinPow(X)" and A2: "b € X-A" and
A3: "VaeA. a<b"
shows " o(A U {b}) = c(A)+> D"

(proof)

What is the enumeration of a singleton?

108

lemma (in enums) enum_singleton:
assumes Al: "x€X" shows "o({x}): 1 — X" and "o({x})(0) = x"

(proof)
end

22 Semigroups

theory Semigroup_ZF imports Partitions_ZF Fold_ZF Enumeration_ZF
begin

It seems that the minimal setup needed to talk about a product of a sequence
is a set with a binary operation. Such object is called "magma”. However,
interesting properties show up when the binary operation is associative and
such alebraic structure is called a semigroup. In this theory file we define and
study sequences of partial products of sequences of magma and semigroup
elements.

22.1 Products of sequences of semigroup elements

Semigroup is a a magma in which the binary operation is associative. In this
section we mostly study the products of sequences of elements of semigroup.
The goal is to establish the fact that taking the product of a sequence is
distributive with respect to concatenation of sequences, i.e for two sequences
a, b of the semigroup elements we have [[(aUb) = ([]a)-(]]b), where "allb”
is concatenation of a and b (a++b in Haskell notation). Less formally, we
want to show that we can discard parantheses in expressions of the form

(ap-ay-..-ap)- (b - .. by).

First we define a notion similar to Fold, except that that the initial element
of the fold is given by the first element of sequence. By analogy with Haskell
fold we call that Fold1i

definition
"Fold1l(f,a) = Fold(f,a‘(0),Tail(a))"

The definition of the semigr0 context below introduces notation for writing
about finite sequences and semigroup products. In the context we fix the
carrier and denote it G. The binary operation on G is called f. All theorems
proven in the context semigr0 will implicitly assume that f is an associative
operation on G. We will use multiplicative notation for the semigroup oper-
ation. The product of a sequence a is denoted [[a. We will write a <= x for
the result of appending an element x to the finite sequence (list) a. This is a
bit nonstandard, but I don’t have a better idea for the "append” notation.
Finally, a U b will denote the concatenation of the lists a and b.

109

locale semigr0 =
fixes G f
assumes assoc_assum: "f {is associative on} G"

fixes prod (infixl "-" 72)
defines prod_def [simpl: "x -y = f£(x,y)"

fixes segprod ("[] _" 71)
defines seqgprod_def [simpl: "[][a = Foldi(f,a)"

fixes append (infix "<>" 72)
defines append_def [simp]l: "a < x = Append(a,x)"

fixes concat (infixl "U" 69)
defines concat_def [simp]l: "a U b = Concat(a,b)"

The next lemma shows our assumption on the associativity of the semigroup
operation in the notation defined in in the semigr0 context.

lemma (in semigrO) semigr_assoc: assumes "x € G" "y € G" "z € G"
shows "x-y-z = x-(y-z)"
{proof)

In the way we define associativity the assumption that f is associative on
G also implies that it is a binary operation on X.

lemma (in semigrO) semigr_binop: shows "f : GxG — G"

(proof)

Semigroup operation is closed.

lemma (in semigrO) semigr_closed:
assumes "acG" "beG" shows "ab € G"

{proof)

Lemma append_1lelem written in the notation used in the semigr0 context.

lemma (in semigrO) append_lelem_nice:
assumes "n € nat" and "a: n — X" and "b : 1 — X"
shows "a LU b = a < b‘(0)"

(proof)

Lemma concat_init_last_elem rewritten in the notation used in the semigro
context.

lemma (in semigrO) concat_init_last:
assumes "n € nat" "k € nat" and
"a: n — X" and "b : succ(k) — X"
shows "(a U Init(b)) < b‘(k) = a U b"
(proof)

110

The product of semigroup (actually, magma — we don’t need associativity
for this) elements is in the semigroup.
lemma (in semigrO) prod_type:

assumes "n € nat" and "a : succ(n) — G"
shows "([] a) € G"

(proof)

What is the product of one element list?

lemma (in semigrO) prod_of_lelem: assumes Al: "a: 1 — G"
shows "([] a) = a“(O)"

(proof)

What happens to the product of a list when we append an element to the
list?
lemma (in semigrO) prod_append: assumes Al: "n € nat" and
A2: "a : succ(n) — G" and A3: "xeG"
shows "([] a+x) = ([a) - x"
{proof)

The main theorem of the section: taking the product of a sequence is dis-
tributive with respect to concatenation of sequences. The proof is by induc-
tion on the length of the second list.

theorem (in semigr0) prod_conc_distr:

assumes Al: "n € nat" "k € nat" and

A2: "a : succ(n) — G" "b: succ(k) — G"

shows "([] a) - (J] ®) =[] (@ U D"
(proof)

22.2 Products over sets of indices

In this section we study the properties of expressions of the form [[;c, a; =
@i, - @i, - .. - ai—1, i.e. what we denote as [[(A,a). A here is a finite subset of
some set X and a is a function defined on X with values in the semigroup

G.

Suppose a : X — G is an indexed family of elements of a semigroup G
and A = {ip,41,..,in—1} C N is a finite set of indices. We want to define
[Lica @ = @iy - @iy, - .. - a;—1. To do that we use the notion of Enumeration
defined in the Enumeration_ZF theory file that takes a set of indices and lists
them in increasing order, thus converting it to list. Then we use the Fold1l
to multiply the resulting list. Recall that in Isabelle/ZF the capital letter
70" denotes the composition of two functions (or relations).

definition
"SetFold(f,a,A,r) = Foldl(f,a 0 Enumeration(A,r))"

For a finite subset A of a linearly ordered set X we will write o(A) to denote
the enumeration of the elements of A, i.e. the only order isomorphism |A| —

111

A, where |[A| € N is the number of elements of A. We also define notation
for taking a product over a set of indices of some sequence of semigroup
elements. The product of semigroup elements over some set A C X of
indices of a sequence a : X — G (i.e. [[;c @) is denoted [J(A,a). In the
semigrl context we assume that a is a function defined on some linearly
ordered set X with values in the semigroup G.

locale semigrl = semigrO +

fixes X r
assumes linord: "IsLinOrder(X,r)"

fixes a
assumes a_is_fun: "a : X — G"

fixes o
defines o_def [simp]: "o (A) = Enumeration(A,r)"

fixes setpr ("[[™)
defines setpr_def [simp]l: "[[(A,b) = SetFold(f,b,A,r)"

We can use the enums locale in the semigr0O context.

lemma (in semigrl) enums_valid_in_semigrl: shows "enums(X,r)"

(proof)

Definition of product over a set expressed in notation of the semigr0 locale.

lemma (in semigrl) setproddef:
shows "[[(A,a) =[] (a 0 a(A))"
(proof)

A composition of enumeration of a nonempty finite subset of N with a se-
quence of elements of G is a nonempty list of elements of G. This implies
that a product over set of a finite set of indices belongs to the (carrier of)
semigroup.

lemma (in semigrl) setprod_type: assumes
Al: "A € FinPow(X)" and A2: "A#O"
shows
"dn € nat . |A|l = succ(n) A a 0 oc(A) : succ(n) — G"
and "[](A,a) € G"
(proof)

The enum_append lemma from the Enemeration theory specialized for natural
numbers.

lemma (in semigrl) semigrl_enum_append:
assumes "A € FinPow(X)" and
"n € X - A" and "VkeA. (k,n) € r"
shows "o(A U {n}) = c(A)+ n"
(proof)

112

What is product over a singleton?

lemma (in semigrl) gen_prod_singleton:
assumes Al: "x € X"
shows "[[({x},a) = a‘(x)"

(proof)

A generalization of prod_append to the products over sets of indices.

lemma (in semigrl) gen_prod_append:
assumes
Al: "A € FinPow(X)" and A2: "A # 0" and
A3: "'n € X - A" and
A4: "VkeA. (k,n) € r"
shows "[[(A U {n}, a) = (J](A,2)) - a‘()"
(proof)

Very similar to gen_prod_append: a relation between a product over a set of
indices and the product over the set with the maximum removed.

lemma (in semigrl) gen_product_rem_point:
assumes Al: "A € FinPow(X)" and
A2: "n € A" and A4: "A - {n} # 0" and
A3: "VkeA. (k, n) € r"
shows
"(ITCA = {n},a)) - a‘(@) = [](A, a)"
(proof)

22.3 Commutative semigroups

Commutative semigroups are those whose operation is commutative, i.e.
a-b =0b-a. This implies that for any permutation s : n — n we have
H;'L:o a; = H?:o as(;), or, closer to the notation we are using in the semigro
context, [[a = [[(a o s). Maybe one day we will be able to prove this,
but for now the goal is to prove something simpler: that if the semigroup
operation is commutative taking the product of a sequence is distributive

with respect to the operation: [[7_y(a;-b;) = (H?:o aj)) (H?:o bj)>. Many
of the rearrangements (namely those that don’t use the inverse) proven in
the AbelianGroup_ZF theory hold in fact in semigroups. Some of them will
be reproven in this section.

A rearrangement with 3 elements.

lemma (in semigrO) rearr3elems:

assumes "f {is commutative on} G" and "a€G" "beG" "ceG"
shows "a‘b-c = a-c-b"
(proof)

A rearrangement of four elements.

lemma (in semigrO) rearr4elems:

113

assumes Al: "f {is commutative on} G" and
A2: "a€G" "bEG" "ceG" "deG"
shows "a'b-(c-d) = a-c-(b-d)"

(proof)

We start with a version of prod_append that will shorten a bit the proof of
the main theorem.

lemma (in semigrO) shorter_seq: assumes Al: "k € nat" and
A2: "a € succ(succ(k)) — G"
shows "([] a) = (] Init(a)) - a‘(succ(k))"

(proof)

A lemma useful in the induction step of the main theorem.

lemma (in semigrO) prod_distr_ind_step:
assumes Al: "k € nat" and
A2: "a : succ(succ(k)) — G" and
A3: "b : succ(succ(k)) — G" and
Ad: "c : succ(succ(k)) — G" and
A5: "Vjesucc(succ(k)). c(j) = a‘(j) - b ("
shows
"Init(a) : succ(k) — G"
"Init(b) : succ(k) — G"
"Init(c) : succ(k) — G"
"Wjesucc(k). Init(c)“(j) = Init(a)‘(j) - Init(d) ()"
(proof)

For commutative operations taking the product of a sequence is distributive
with respect to the operation. This version will probably not be used in
applications, it is formulated in a way that is easier to prove by induction.
For a more convenient formulation see prod_comm_distrib. The proof by
induction on the length of the sequence.

theorem (in semigr0) prod_comm_distr:
assumes Al: "f {is commutative on} G" and A2: "ncnat"
shows "V a b c.
(a : succ(m)—G A b : succ(m)—G A c : succ(n)—G A
(Vjesucc(n). c(j) = a“(j) - p(j)) —
(II o = [a - (] »"

(proof)

A reformulation of prod_comm_distr that is more convenient in applications.

theorem (in semigr0) prod_comm_distrib:
assumes "f {is commutative on} G" and "né€nat" and
"a : succ(n)—G" "b : succ(n)—G" "¢ : succ(n)—G" and
"Wjesucc(n). c(j) = a‘(j) - b(G"
shows "([] ¢ = ([a - (J] »)"
(proof)

A product of two products over disjoint sets of indices is the product over
the union.

114

lemma (in semigrl) prod_bisect:
assumes Al: "f {is commutative on} G" and A2: "A € FinPow(X)"
shows
"WP € Bisections(A). [[(A,a) = (J[(£fst(P),a))-(J][(snd(P),a))"
(proof)

A better looking reformulation of prod_bisect.

theorem (in semigrl) prod_disjoint: assumes
Al: "f {is commutative on} G" and
A2: "A € FinPow(X)" "A # 0" and
A3: "B € FinPow(X)" "B # 0" and
A4: "A N B=0"
shows "[[J(AUB,a) = ([](4,a))-(J[(B,a))"
(proof)

A generalization of prod_disjoint.

lemma (in semigrl) prod_list_of_lists: assumes
Al: "f {is commutative on} G" and A2: "n € nat"
shows "VM € succ(n) — FinPow(X).
M {is partition} —
(IT @, [TM @) ,a)). i € succ(@)}) =
(IIWUUi € succn). M (@i),a))"

(proof)

A more convenient reformulation of prod_list_of_lists.

theorem (in semigrl) prod_list_of_sets:

assumes Al: "f {is commutative on} G" and

A2: "n € nat" "n # 0" and

A3: "M : n — FinPow(X)" "M {is partition}"

shows

“(IT @, [T ,a)). i € np) = (Ui € n. M(@),a))"
(proof)

The definition of the product [[(A,a) = SetFold(f,a,A,r) of a some (finite)
set of semigroup elements requires that r is a linear order on the set of indices
A. This is necessary so that we know in which order we are multiplying the
elements. The product over A is defined so that we have [[,a =[[aco(A)
where o : |A| — A is the enumeration of A (the only order isomorphism
between the number of elements in A and A), see lemma setproddef. How-
ever, if the operation is commutative, the order is irrelevant. The next
theorem formalizes that fact stating that we can replace the enumeration
o(A) by any bijection between |A| and A. In a way this is a generalization
of setproddef. The proof is based on application of prod_list_of_sets to
the finite collection of singletons that comprise A.

theorem (in semigrl) prod_order_irr:
assumes Al: "f {is commutative on} G" and
A2: "A € FinPow(X)" "A # 0" and

115

A3: "b € bij(|Al,A)"
shows "([] (a 0 b)) = J](A,a)"
(proof)

Another way of expressing the fact that the product dos not depend on the
order.
corollary (in semigrl) prod_bij_same:

assumes "f {is commutative on} G" and

"A € FinPow(X)" "A # 0" and

"b € bij(IAl,A)" "c € bij(lAl,A)"

shows "([] (@ 0 b)) = (J] (@ 0)"

(proof)

end

23 Commutative Semigroups

theory CommutativeSemigroup_ZF imports Semigroup_ZF
begin

In the Semigroup theory we introduced a notion of SetFold(f,a,A,r) that
represents the sum of values of some function a valued in a semigroup where
the arguments of that function vary over some set A. Using the additive
notation something like this would be expressed as) ., f(z) in informal
mathematics. This theory considers an alternative to that notion that is
more specific to commutative semigroups.

23.1 Sum of a function over a set

The r parameter in the definition of SetFold(f,a,A,r) (from Semigroup_ZF)
represents a linear order relation on A that is needed to indicate in what
order we are summing the values f(z). If the semigroup operation is com-
mutative the order does not matter and the relation r is not needed. In this
section we define a notion of summing up values of some function a : X — G
over a finite set of indices I' C X, without using any order relation on X.

We define the sum of values of a function a : X — G over a set A as the only
element of the set of sums of lists that are bijections between the number of
values in A (which is a natural number n = {0, 1,..,n — 1} if A is finite) and
A. The notion of Fold1(f,c) is defined in Semigroup_ZF as the fold (sum) of
the list ¢ starting from the first element of that list. The intention is to use
the fact that since the result of summing up a list does not depend on the
order, the set {Foldi(f,a 0 b). b € bij([Al, A)} is a singleton and we
can extract its only value by taking its union.

definition

116

"CommSetFold(f,a,A) = (J{Fold1(f,a 0 b). b € bij(IAl, A)}"

the next locale sets up notation for writing about summation in commutative
semigroups. We define two kinds of sums. One is the sum of elements of a list
(which are just functions defined on a natural number) and the second one
represents a more general notion the sum of values of a semigroup valued
function over some set of arguments. Since those two types of sums are
different notions they are represented by different symbols. However in the
presentations they are both intended to be printed as).

locale commsemigr =
fixes G £
assumes csgassoc: "f {is associative on} G"
assumes csgcomm: "f {is commutative on} G"

fixes csgsum (infixl "+" 69)
defines csgsum_def [simp]:

x +y = £94x,y)"

fixes X a
assumes csgaisfun: "a : X — G"

fixes csglistsum (") _" 70)
defines csglistsum_def [simp]l: "> k

Fold1(f,k)"

fixes csgsetsum ("> ")
defines csgsetsum_def [simp]: "> (A,h) = CommSetFold(f,h,A)"

Definition of a sum of function over a set in notation defined in the commsemigr
locale.

lemma (in commsemigr) CommSetFolddef:
shows "(3-(A,a)) = (U{> (@0 Db). b € bij(lAl, AP"
(proof)

The next lemma states that the result of a sum does not depend on the order
we calculate it. This is similar to lemma prod_order_irr in the Semigroup
theory, except that the semigri locale assumes that the domain of the func-
tion we sum up is linearly ordered, while in commsemigr we don’t have this
assumption.

lemma (in commsemigr) sum_over_set_bij:
assumes Al: "A € FinPow(X)" "A # 0" and A2: "b € bij(|Al,A)"
shows "(3-(A,a)) = (3 (a0 b))"

(proof)

The result of a sum is in the semigroup. Also, as the second assertion
we show that every semigroup valued function generates a homomorphism

117

between the finite subsets of a semigroup and the semigroup. Adding an
element to a set coresponds to adding a value.

lemma (in commsemigr) sum_over_set_add_point:
assumes Al: "A € FinPow(X)" "A # O"
shows "} (A,a) € G" and
"Wx € X-A. Y (A U {x},a) = C(4,2)) + a‘(x)"
(proof)

end

24 Monoids

theory Monoid_ZF imports func_ZF
begin

This theory provides basic facts about monoids.

24.1 Definition and basic properties

In this section we talk about monoids. The notion of a monoid is similar to
the notion of a semigroup except that we require the existence of a neutral
element. It is also similar to the notion of group except that we don’t require
existence of the inverse.

Monoid is a set G with an associative operation and a neutral element. The
operation is a function on G x G with values in G. In the context of ZF set
theory this means that it is a set of pairs (z,y), where z € Gx G and y € G.
In other words the operation is a certain subset of (G x G) x G. We express
all this by defing a predicate IsAmonoid(G,f). Here G is the ”carrier” of the
group and f is the binary operation on it.

definition
"IsAmonoid(G,f) =
f {is associative on} G A
(JecG. (V geG. ((£°((e,g)) =g A (£°Ug,e)) = g))"

The next locale called "monoid0” defines a context for theorems that concern
monoids. In this contex we assume that the pair (G, f) is a monoid. We will
use the & symbol to denote the monoid operation (for no particular reason).

locale monoid0 =
fixes G
fixes f
assumes monoidAsssum: "IsAmonoid(G,f)"

fixes monoper (infixl "@&" 70)
defines monoper_def [simpl: "a & b = f‘(a,b)"

118

The result of the monoid operation is in the monoid (carrier).

lemma (in monoid0) groupO_1_L1:
assumes "acG" "beG" shows "adb € G"

(proof)

There is only one neutral element in a monoid.

lemma (in monoid0) groupO_1_L2: shows
"Jle. ecG A (V geG. ((ebg = g) A ghe = g))"
(proof)

We could put the definition of neutral element anywhere, but it is only usable
in conjuction with the above lemma.

definition
"TheNeutralElement (G,f) =
(THE e. ecG A (V geG. £(e,g) =g A £°(g,e) = g))"

The neutral element is neutral.

lemma (in monoid0) unit_is_neutral:

assumes Al: "e = TheNeutralElement(G,f)"

shows "e € G A (VgeG. e D g=g AN gD e=g"
(proof)

The monoid carrier is not empty.

lemma (in monoid0) groupO_1_L3A: shows "G#0"
(proof)

The range of the monoid operation is the whole monoid carrier.

lemma (in monoid0) groupO_1_L3B: shows "range(f) = G"
(proof)

Another way to state that the range of the monoid operation is the whole
monoid carrier.

lemma (in monoidO) range_carr: shows "f¢‘(GxG) = G"

{proof)

In a monoid any neutral element is the neutral element.

lemma (in monoid0) groupO_1_L4:
assumes Al: "e € G A (VgeG. e P g=gAgde=g"
shows "e = TheNeutralElement (G,f)"

(proof)

The next lemma shows that if the if we restrict the monoid operation to a
subset of G that contains the neutral element, then the neutral element of
the monoid operation is also neutral with the restricted operation.

lemma (in monoid0) groupO_1_L5:
assumes Al: "VxeH.VyeH. x®y € H"

119

and A2: "HCG"

and A3: "e = TheNeutralElement(G,f)"

and A4: "g = restrict(f,HxH)"

and A5: "ecH"

and A6: "hecH"

shows "g‘(e,h) = h A g‘(h,e) = h"
(proof)

The next theorem shows that if the monoid operation is closed on a subset
of G then this set is a (sub)monoid (although we do not define this notion).
This fact will be useful when we study subgroups.
theorem (in monoid0) groupO_1_T1:

assumes Al: "H {is closed under} f"

and A2: "HCG"

and A3: "TheNeutralElement(G,f) € H"

shows "IsAmonoid(H,restrict(f,HxH))"

(proof)
Under the assumptions of group0_1_T1 the neutral element of a submonoid
is the same as that of the monoid.

lemma group0O_1_L6:
assumes Al: "IsAmonoid(G,f)"
and A2: "H {is closed under} f"
and A3: "HCG"
and A4: "TheNeutralElement(G,f) € H"
shows "TheNeutralElement (H,restrict(f,HxH)) = TheNeutralElement(G,f)"

(proof)

If a sum of two elements is not zero, then at least one has to be nonzero.

lemma (in monoid0) sum_nonzero_elmnt_nonzero:
assumes "a @ b # TheNeutralElement(G,f)"
shows "a # TheNeutralElement(G,f) V b # TheNeutralElement(G,f)"

(proof)

end

25 Groups - introduction

theory Group_ZF imports Monoid_ZF
begin

This theory file covers basics of group theory.

25.1 Definition and basic properties of groups

In this section we define the notion of a group and set up the notation for
discussing groups. We prove some basic theorems about groups.

120

To define a group we take a monoid and add a requirement that the right
inverse needs to exist for every element of the group.

definition
"IsAgroup(G,f) =
(IsAmonoid(G,f) A (VgeG. IbeG. £¢(g,b) = TheNeutralElement(G,£)))"

We define the group inverse as the set {(z,y) € G x G : x -y = e}, where
e is the neutral element of the group. This set (which can be written as
(-)~Ye}) is a certain relation on the group (carrier). Since, as we show
later, for every x € G there is exactly one y € G such that = -y = e this
relation is in fact a function from G to G.

definition
"GroupInv(G,f) = {(x,y) € GXG. £‘(x,y) = TheNeutralElement (G,f)2}"

We will use the miltiplicative notation for groups. The neutral element is
denoted 1.

locale group0 =
fixes G
fixes P
assumes groupAssum: "IsAgroup(G,P)"

fixes neut ("1")
defines neut_def [simp]: "1 = TheNeutralElement (G,P)"

fixes groper (infixl "-" 70)
defines groper_def[simp]: "a - b = P‘(a,b)"

fixes inv ("_~! " [90] 91)
defines inv_def[simp]l: "x ! = GroupInv(G,P)‘(x)"

First we show a lemma that says that we can use theorems proven in the
monoid0 context (locale).

lemma (in group0) groupO0_2_L1: shows "monoidO(G,P)"
{proof)

In some strange cases Isabelle has difficulties with applying the definition of
a group. The next lemma defines a rule to be applied in such cases.

lemma definition_of_group: assumes "IsAmonoid(G,f)"
and "VgeG. IbeG. £¢(g,b) = TheNeutralElement(G,f)"
shows "IsAgroup(G,f)"

(proof)

A technical lemma that allows to use 1 as the neutral element of the group
without referencing a list of lemmas and definitions.

lemma (in group0) groupO_2_L2:
shows "1€G A (VgeG.(l.g =g A gl =g)"

121

(proof)

The group is closed under the group operation. Used all the time, useful to
have handy.

lemma (in group0) group_op_closed: assumes "acG" "beG"
shows "ab € G" (proof)

The group operation is associative. This is another technical lemma that
allows to shorten the list of referenced lemmas in some proofs.

lemma (in group0) group_oper_assoc:
assumes "acG" "beG" "ceG" shows "a-(b-c) = ab-c"

(proof)

The group operation maps G x G into G. It is conveniet to have this fact
easily accessible in the group0 context.

lemma (in group0) group_oper_assocA: shows "P : GXG—G"

(proof)

The definition of a group requires the existence of the right inverse. We
show that this is also the left inverse.

theorem (in group0) groupO_2_T1:
assumes Al: "geG" and A2: "beG" and A3: "gb = 1"
shows "b-g = 1"

(proof)

For every element of a group there is only one inverse.

lemma (in group0) groupO_2_L4:
assumes Al: "x&€G" shows "Jly. yeG A xy = 1"
(proof)

The group inverse is a function that maps G into G.

theorem group0_2_T2:
assumes Al: "IsAgroup(G,f)" shows "GroupInv(G,f) : G—G"

(proof)

We can think about the group inverse (the function) as the inverse image
of the neutral element. Recall that in Isabelle £-¢¢(A) denotes the inverse
image of the set A.

theorem (in group0) groupO0_2_T3: shows "P-‘‘{1} = GroupInv(G,P)"
(proof)

The inverse is in the group.

lemma (in group0) inverse_in_group: assumes Al: "x€G" shows "x 1eG"

(proof)

The notation for the inverse means what it is supposed to mean.

122

lemma (in group0) groupO_2_L6:

assumes Al: "xeG" shows "xx ! =1 A x71x = 1"

(proof)

The next two lemmas state that unless we multiply by the neutral element,
the result is always different than any of the operands.

lemma (in group0) groupO_2_L7:

assumes Al: "acG" and A2: "beG" and A3: "ab = a"
shows "b=1"

(proof)

See the comment to group0_2_L7.

lemma (in group0) groupO_2_L8:
assumes Al: "acG" and A2: "beG" and A3: "ab = b"

shows "a=1"

(proof)

The inverse of the neutral element is the neutral element.

lemma (in group0) group_inv_of_one: shows "17! = 1"
{proof)

if a1 =1, then a = 1.

lemma (in group0) groupO_2_L8A:
assumes Al: "aeG" and A2: "a ! = 1"
shows "a = 1"

(proof)

If a is not a unit, then its inverse is not a unit either.

lemma (in group0) groupO_2_L8B:
assumes "acG" and "a # 1"
shows "a=! # 1" (proof)

If a~! is not a unit, then a is not a unit either.

lemma (in group0) groupO_2_L8C:
assumes "acG" and "a"! # 1"
shows "az#1"
{proof)

If a product of two elements of a group is equal to the neutral element then
they are inverses of each other.
lemma (in group0) groupO_2_L9:

assumes Al: "acG" and A2: "beG" and A3: "ab = 1"

shows "a = b~!" and "b = a—!"

(proof)

It happens quite often that we know what is (have a meta-function for) the
right inverse in a group. The next lemma shows that the value of the group
inverse (function) is equal to the right inverse (meta-function).

123

lemma (in group0) groupO_2_L9A:
assumes Al: "VgeG. b(g) € G A gb(g) = 1"
shows "VgeG. b(g) = g~ !"

(proof)

What is the inverse of a product?

lemma (in group0) group_inv_of_two:
assumes Al: "aeG" and A2: "beG"
shows " b~l.a™l = (ab)~1"

(proof)

What is the inverse of a product of three elements?

lemma (in group0) group_inv_of_three:
assumes Al: "aeG" "beG" "ceG"
shows
"(ab-c) ! c L (ab)~tn
"(a~b~c)71 = C71~(b71~a71)"
"(abc) ! = ¢ lplg—ln

(proof)

The inverse of the inverse is the element.

lemma (in group0) group_inv_of_inv:
assumes "acG" shows "a = (a~!)~!»

(proof)

Group inverse is nilpotent, therefore a bijection and involution.

lemma (in group0) group_inv_bij:

shows "GroupInv(G,P) 0 GroupInv(G,P) = id(G)" and "GroupInv(G,P) €
bij(G,G)" and

"GroupInv(G,P) = converse(GroupInv(G,P))"

(proof)

For the group inverse the image is the same as inverse image.

lemma (in group0) inv_image_vimage: shows "GroupInv(G,P)‘‘(V) = GroupInv(G,P)-‘‘(W)"
{proof)

If the unit is in a set then it is in the inverse of that set.

lemma (in group0) neut_inv_neut: assumes "ACG" and "leA"
shows "1 € GroupInv(G,P)‘‘(A)"
(proof)

The group inverse is onto.

lemma (in group0) group_inv_surj: shows "GroupInv(G,P)‘‘(G) = G"

{proof)
Ifa='-b=1, then a =b.
lemma (in group0) group0_2_L11:

124

assumes Al: "a€G" "beG" and A2: "a~lb = 1"
shows "a=b"

(proof)
Ifa-b~! =1, then a = b.

lemma (in group0) groupO_2_L11A:
assumes Al: "a€G" "beG" and A2: "ab ! = 1"
shows "a=b"

(proof)

If if the inverse of b is different than a, then the inverse of a is different than
b.

lemma (in group0) groupO_2_L11B:
assumes Al: "acG" and A2: "b~! £ a"
shows "a=! # b"

(proof)

What is the inverse of ab—1 ?

lemma (in group0) group0_2_L12:
assumes Al: "aceG" "beg"
shows
n(a.bfl)fl = b~a’1"
n(afl.b)fl = pl.a"

(proof)

A couple useful rearrangements with three elements: we can insert a b-b~!
between two group elements (another version) and one about a product of
an element and inverse of a product, and two others.

lemma (in group0) group0_2_L14A:
assumes Al: "aeG" "beG" "ceG"
shows
"a-c”t= (ab 1) (b7
na—l_c = (a_1~b)~(b_1-c)"
"a-(b-c)”! = a.cLp v
"a-(b.c™!) = abc™"
"(ab te)l = cpale
"ab-c i (cb7l) = an
"a.-(b-c)-c”! = ab"

(proof)

Another lemma about rearranging a product of four group elements.

lemma (in group0) groupO_2_L15:
assumes Al: "a€G" "beG" "ceG" "deG"
shows "(a-b)-(c:d)~! = a-(b-d™1)-a"t-(ac™H)"
(proof)

We can cancel an element with its inverse that is written next to it.

lemma (in group0) inv_cancel_two:

125

assumes Al: "aeG" "beG"

shows

"ab"lb = a

"abb~l = a"

"a_1~(a~b) =

"a-(a~tb) =
(proof)

Another lemma about cancelling with two group elements.

lemma (in group0) groupO_2_L16A:
assumes Al: "aeG" "beG"
shows "a-(b-a)~! = p~1v

(proof)

Adding a neutral element to a set that is closed under the group operation
results in a set that is closed under the group operation.

lemma (in group0) group0_2_L17:
assumes "HCG"
and "H {is closed under} P"
shows "(H U {1}) {is closed under} P"

(proof)

We can put an element on the other side of an equation.

lemma (in group0) group0_2_L18:
assumes Al: "acG" "beG" "ceG"
and A2: "c = ab"
shows "cb~! = a" "a“lc = b"
(proof)

Multiplying different group elements by the same factor results in different
group elements.
lemma (in group0) groupO_2_L19:
assumes Al: "a€G" "beG" "ceG" and A2: "a#b"
shows "a.c # b-c" and "c-a # c-b"
(proof)

25.2 Subgroups

There are two common ways to define subgroups. One requires that the
group operation is closed in the subgroup. The second one defines subgroup
as a subset of a group which is itself a group under the group operations.
We use the second approach because it results in shorter definition.

The rest of this section is devoted to proving the equivalence of these two
definitions of the notion of a subgroup.

A pair (H, P) is a subgroup if H forms a group with the operation P re-
stricted to H x H. It may be surprising that we don’t require H to be a

126

subset of G. This however can be inferred from the definition if the pair
(G, P) is a group, see lemma group0_3_L2.

definition
"IsAsubgroup(H,P) = IsAgroup(H, restrict(P,HxH))"

Formally the group operation in a subgroup is different than in the group as
they have different domains. Of course we want to use the original operation
with the associated notation in the subgroup. The next couple of lemmas
will allow for that.

The next lemma states that the neutral element of a subgroup is in the
subgroup and it is both right and left neutral there. The notation is very
ugly because we don’t want to introduce a separate notation for the subgroup
operation.

lemma group0_3_L1:
assumes Al: "IsAsubgroup(H,f)"
and A2: "n = TheNeutralElement (H,restrict(f,HxH))"
shows "n € H"
"VheH. restrict(f,HxH)‘(n,h) = h"
"WheH. restrict(f,HxH) ‘(h,n) = h"
(proof)

A subgroup is contained in the group.

lemma (in group0) groupO_3_L2:
assumes Al: "IsAsubgroup(H,P)"
shows "H C G"

(proof)

The group’s neutral element (denoted 1 in the group0 context) is a neutral
element for the subgroup with respect to the group action.
lemma (in group0) groupO_3_L3:

assumes "IsAsubgroup(H,P)"

shows "VheH. 1'-h = h A h-1 = h"

{proof)

The neutral element of a subgroup is the same as that of the group.

lemma (in group0) groupO_3_L4: assumes Al: "IsAsubgroup(H,P)"
shows "TheNeutralElement (H,restrict(P,HxH)) = 1"

(proof)

The neutral element of the group (denoted 1 in the group0 context) belongs
to every subgroup.

lemma (in group0) groupO_3_L5: assumes Al: "IsAsubgroup(H,P)"
shows "1 ¢ H"

(proof)

Subgroups are closed with respect to the group operation.

127

lemma (in group0) group0_3_L6: assumes Al: "IsAsubgroup(H,P)"
and A2: "acH" "beH"
shows "ab € H"

(proof)

A preliminary lemma that we need to show that taking the inverse in the
subgroup is the same as taking the inverse in the group.

lemma group0_3_L7A:
assumes Al: "IsAgroup(G,f)"
and A2: "IsAsubgroup(H,f)" and A3: "g = restrict(f,HxH)"
shows "GroupInv(G,f) N HxH = GroupInv(H,g)"

(proof)

Using the lemma above we can show the actual statement: taking the inverse
in the subgroup is the same as taking the inverse in the group.

theorem (in group0) groupO_3_T1:
assumes Al: "IsAsubgroup(H,P)"
and A2: "g = restrict(P,HxH)"
shows "GroupInv(H,g) = restrict(GroupInv(G,P),H)"

(proof)

A sligtly weaker, but more convenient in applications, reformulation of the
above theorem.

theorem (in group0) group0_3_T2:
assumes "IsAsubgroup(H,P)"
and "g = restrict(P,HxH)"
shows "VheH. GroupInv(H,g)‘(h) = h™1"

(proof)

Subgroups are closed with respect to taking the group inverse.

theorem (in group0) groupO_3_T3A:
assumes Al: "IsAsubgroup(H,P)" and A2: "heH"
shows "h~le H"

(proof)

The next theorem states that a nonempty subset of a group G that is closed
under the group operation and taking the inverse is a subgroup of the group.

theorem (in group0) groupO0_3_T3:
assumes Al: "H#0"
and A2: "HCG"
and A3: "H {is closed under} P"
and A4: "VxeH. x ! € H"
shows "IsAsubgroup(H,P)"

(proof)

Intersection of subgroups is a subgroup.

lemma group0_3_L7:

128

assumes Al: "IsAgroup(G,f)"
and A2: "IsAsubgroup(H;,f)"
and A3: "IsAsubgroup(Hy,f)"
shows "IsAsubgroup(H;NHy,restrict (f,H; xH;))"

{proof)
The range of the subgroup operation is the whole subgroup.

lemma image_subgr_op: assumes Al: "IsAsubgroup(H,P)"
shows "restrict(P,HxH)‘‘(HxH) = H"

(proof)

If we restrict the inverse to a subgroup, then the restricted inverse is onto
the subgroup.

lemma (in group0) restr_inv_onto: assumes Al: "IsAsubgroup(H,P)"
shows "restrict(GroupInv(G,P),H)‘‘(H) = H"

(proof)

end

26 Groups 1

theory Group_ZF_1 imports Group_ZF
begin

In this theory we consider right and left translations and odd functions.

26.1 Translations

In this section we consider translations. Translations are maps T : G — G
of the form Ty(a) = g-a or Tg(a) = a-g. We also consider two-dimensional
translations Ty : G x G — G x G, where Ty(a,b) = (a-g,b- g) or Ty(a,b) =
(9-a,g-b).

For an element a € G the right translation is defined a function (set of pairs)
such that its value (the second element of a pair) is the value of the group
operation on the first element of the pair and g. This looks a bit strange in
the raw set notation, when we write a function explicitely as a set of pairs
and value of the group operation on the pair (a,b) as P‘(a,b) instead of the
usual infix a - b or a + b.

definition
"RightTranslation(G,P,g) = {(a,b) € GxXG. P‘(a,g) = b}"

A similar definition of the left translation.

definition
"LeftTranslation(G,P,g) = {(a,b) € GXG. P‘(g,a) = b}"

129

Translations map G into G. Two dimensional translations map G x G into
itself.

lemma (in group0) groupO_5_L1: assumes Al: "geG"

shows "RightTranslation(G,P,g) : G—G" and "LeftTranslation(G,P,g)
: GG
(proof)

The values of the translations are what we expect.

lemma (in group0) groupO_5_L2: assumes "geG" "acG"
shows
"RightTranslation(G,P,g) ‘(a) = ag"
"LeftTranslation(G,P,g) ‘(a) = ga"
(proof)

Composition of left translations is a left translation by the product.

lemma (in group0) groupO_5_L4: assumes Al: "geG" "heG" "acG" and
A2: "T, = LeftTranslation(G,P,g)" "T, = LeftTranslation(G,P,h)"
shows

"Ty (T (a)) = gh-a"
"Ty(Tp‘(a)) = LeftTranslation(G,P,gh)‘(a)"
(proof)

Composition of right translations is a right translation by the product.

lemma (in group0) groupO_5_L5: assumes Al: "geG" "heG" "acG" and
A2: "T, = RightTranslation(G,P,g)" "Tj = RightTranslation(G,P,h)"
shows

"Ty (T (a)) = ah-g"
"Ty(Tp‘(a)) = RightTranslation(G,P,h-g)‘(a)"

(proof)

Point free version of group0_5_L4 and group0_5_L5.

lemma (in group0) trans_comp: assumes "g&G" "heG" shows
"RightTranslation(G,P,g) 0 RightTranslation(G,P,h) = RightTranslation(G,P,h-g)"
"LeftTranslation(G,P,g) O LeftTranslation(G,P,h) = LeftTranslation(G,P,gh)"
(proof)

The image of a set under a composition of translations is the same as the
image under translation by a product.

lemma (in group0) trans_comp_image: assumes Al: "geG" "heG" and
A2: "T, = LeftTranslation(G,P,g)" "Tj = LeftTranslation(G,P,h)"
shows "T,¢ ‘(T “(A)) = LeftTranslation(G,P,gh)‘‘(A)"

(proof)

Another form of the image of a set under a composition of translations

lemma (in group0) groupO_5_L6:
assumes Al: "geG" "heG" and A2: "ACG" and
A3: "T, = RightTranslation(G,P,g)" "T; = RightTranslation(G,P,h)"

130

shows "T, ‘(T “(A)) = {ah-.g. acA}"
(proof)

The translation by neutral element is the identity on group.

lemma (in group0) trans_neutral: shows
"RightTranslation(G,P,1) = id(G)" and "LeftTranslation(G,P,1) = id(G)"
(proof)

Composition of translations by an element and its inverse is identity.

lemma (in group0) trans_comp_id: assumes "g&G" shows
"RightTranslation(G,P,g) O RightTranslation(G,P,g’l) id(G)" and
"RightTranslation(G,P,g~!) O RightTranslation(G,P,g) = id(G)" and
"LeftTranslation(G,P,g) 0 LeftTranslation(G,P,g~!) = id(G)" and
"LeftTranslation(G,P,g_l) 0 LeftTranslation(G,P,g) = id(G)"

(proof)

Translations are bijective.

lemma (in group0) trans_bij: assumes "gcG" shows
"RightTranslation(G,P,g) € bij(G,G)" and "LeftTranslation(G,P,g) €

bij(G,G)"

(proof)

Converse of a translation is translation by the inverse.

lemma (in group0) trans_conv_inv: assumes "gcG" shows
"converse (RightTranslation(G,P,g)) = RightTranslation(G,P,g~')" and
"converse(LeftTranslation(G,P,g)) = LeftTranslation(G,P,g’l)" and
"LeftTranslation(G,P,g) = converse(LeftTranslation(G,P,g"!))" and
"RightTranslation(G,P,g) = converse(RightTranslation(G,P,g’l))"

(proof)

The image of a set by translation is the same as the inverse image by by the
inverse element translation.
lemma (in group0) trans_image_vimage: assumes "g€cG" shows

"LeftTranslation(G,P,g) ‘¢ (A) = LeftTranslation(G,P,g"!)-<“(A)" and
"RightTranslation(G,P,g) ¢ ‘(4) = RightTranslation(G,P,g_l)—‘ c

(proof)

Another way of looking at translations is that they are sections of the group
operation.

lemma (in group0) trans_eq_section: assumes "geG" shows
"RightTranslation(G,P,g) = Fix2ndVar(P,g)" and
"LeftTranslation(G,P,g) = FixlstVar(P,g)"

(proof)

A lemma about translating sets.

lemma (in group0) ltrans_image: assumes Al: "VCG" and A2: "xeG"
shows "LeftTranslation(G,P,x)‘‘(V) = {xv. veVv}"

131

(proof)

A technical lemma about solving equations with translations.

lemma (in group0) ltrans_inv_in: assumes Al: "VCG" and A2: "yeG" and
A3: "x € LeftTranslation(G,P,y)‘‘(GroupInv(G,P)‘‘(V))"
shows "y € LeftTranslation(G,P,x)‘‘ (V)"

(proof)

We can look at the result of interval arithmetic operation as union of trans-
lated sets.
lemma (in group0) image_ltrans_union: assumes "ACG" "BCG" shows
"(P {lifted to subsets of} G)‘(A,B) = (|JacA. LeftTranslation(G,P,a)‘‘(B))"
(proof)

If the neutral element belongs to a set, then an element of group belongs
the translation of that set.
lemma (in group0) neut_trans_elem:

assumes Al: "ACG" "geG" and A2: "1€A"
shows "g € LeftTranslation(G,P,g)‘‘(A)"

(proof)
The neutral element belongs to the translation of a set by the inverse of an
element that belongs to it.

lemma (in group0) elem_trans_neut: assumes Al: "ACG" and A2: "geA"
shows "1 € LeftTranslation(G,P,g™1)““(A)"

(proof)

26.2 0Odd functions

This section is about odd functions.

Odd functions are those that commute with the group inverse: f(a™!) =
(f(a)~".
definition

"Is0dd(G,P,f) = (VaeG. f‘(GroupInv(G,P)‘(a)) = GroupInv(G,P)‘(f‘(a))
)II

Let’s see the definition of an odd function in a more readable notation.

lemma (in group0) groupO_6_L1:
shows "Is0dd(G,P,p) <+— (VacG. p‘(a~!) = (p<(a)~!)"

(proof)

We can express the definition of an odd function in two ways.

lemma (in group0) groupO_6_L2:
assumes Al: "p : G—G"
shows
"(VaeG. p(a) = (p (@)™ +— (VaeG. (p(a)~ =p(a))"

132

(proof)

end

27 Groups - and alternative definition

theory Group_ZF_1b imports Group_ZF
begin

In a typical textbook a group is defined as a set G with an associative
operation such that two conditions hold:

A: there is an element e € G such that for all g € G we have e- g = g and
g-e = g. We call this element a "unit” or a "neutral element” of the group.

B: for every a € GG there exists a b € G such that a - b = e, where e is the
element of G whose existence is guaranteed by A.

The validity of this definition is rather dubious to me, as condition A does
not define any specific element e that can be referred to in condition B -
it merely states that a set of such units e is not empty. Of course it does
work in the end as we can prove that the set of such neutral elements has
exactly one element, but still the definition by itself is not valid. You just
can’t reference a variable bound by a quantifier outside of the scope of that
quantifier.

One way around this is to first use condition A to define the notion of a
monoid, then prove the uniqueness of e and then use the condition B to
define groups.

Another way is to write conditions A and B together as follows:
Jecc (Ve €9 =9gNg-e=g) A (VacGTrec a-b=ce).
This is rather ugly.

What I want to talk about is an amusing way to define groups directly
without any reference to the neutral elements. Namely, we can define a
group as a non-empty set G with an associative operation ”-” such that

C: for every a,b € G the equations a-x = b and y-a = b can be solved in G.

This theory file aims at proving the equivalence of this alternative definition
with the usual definition of the group, as formulated in Group_zF.thy. The
informal proofs come from an Aug. 14, 2005 post by buli on the matem-
atyka.org forum.

27.1 An alternative definition of group
First we will define notation for writing about groups.

We will use the multiplicative notation for the group operation. To do this,

133

we define a context (locale) that tells Isabelle to interpret a - b as the value
of function P on the pair (a,b).

locale group2 =
fixes P
fixes dot (infixl "-" 70)
defines dot_def [simp]l: "a - b = P‘(a,b)"

The next theorem states that a set G with an associative operation that
satisfies condition C is a group, as defined in IsarMathLib Group_ZF theory.

theorem (in group2) altgroup_is_group:
assumes Al: "G#0" and A2: "P {is associative on} G"
and A3: "VaeG.VbeG. IxeG. ax = b"
and A4: "VaeG.VbeG. JyeG. y-a = b"
shows "IsAgroup(G,P)"
(proof)

The converse of altgroup_is_group: in every (classically defined) group con-
dition C holds. In informal mathematics we can say ” Obviously condition C
holds in any group.” In formalized mathematics the word ”obviously” is not
in the language. The next theorem is proven in the context called group0
defined in the theory Group_ZF.thy. Similarly to the group2 that context
defines a - b as P({a,b) It also defines notation related to the group inverse
and adds an assumption that the pair (G, P) is a group to all its theorems.
This is why in the next theorem we don’t explicitely assume that (G, P) is
a group - this assumption is implicit in the context.

theorem (in group0) group_is_altgroup: shows
"VaeG.VbeG. Ix€G. ax = b" and "VaeG.VbeG. JyeG. y-a = b"
(proof)

end

28 Abelian Group

theory AbelianGroup_ZF imports Group_ZF
begin

A group is called “abelian“ if its operation is commutative, i.e. P{a,b) =
P{a,b) for all group elements a,b, where P is the group operation. It is
customary to use the additive notation for abelian groups, so this condition
is typically written as a+b = b+ a. We will be using multiplicative notation
though (in which the commutativity condition of the operation is written as
a-b=>b-a), just to avoid the hassle of changing the notation we used for
general groups.

134

28.1 Rearrangement formulae

This section is not interesting and should not be read. Here we will prove
formulas is which right hand side uses the same factors as the left hand side,
just in different order. These facts are obvious in informal math sense, but
Isabelle prover is not able to derive them automatically, so we have to prove
them by hand.

Proving the facts about associative and commutative operations is quite
tedious in formalized mathematics. To a human the thing is simple: we can
arrange the elements in any order and put parantheses wherever we want,
it is all the same. However, formalizing this statement would be rather
difficult (I think). The next lemma attempts a quasi-algorithmic approach
to this type of problem. To prove that two expressions are equal, we first
strip one from parantheses, then rearrange the elements in proper order,
then put the parantheses where we want them to be. The algorithm for
rearrangement is easy to describe: we keep putting the first element (from
the right) that is in the wrong place at the left-most position until we get
the proper arrangement. As far removing parantheses is concerned Isabelle
does its job automatically.
lemma (in group0) groupO_4_L2:

assumes Al:"P {is commutative on} G"

and A2:"a€G" "bEG" "cE€G" "dEG" "EEG" "FEG"

shows "(a-b)-(c-d)-(EF) = (a-(dF))-(b-(cE))"
{(proof)

Another useful rearrangement.

lemma (in group0) groupO_4_L3:
assumes Al:"P {is commutative on} G"
and A2: "acG" "beG" and A3: "ceG" "deG" "EeG" "FeG"
shows "ab-((c:d) "L (EF)™1) = (a-(Ec) 1) -(b-(F-d))"
(proof)

Some useful rearrangements for two elements of a group.

lemma (in group0) groupO_4_L4:
assumes Al:"P {is commutative on} G"
and A2: "aeG" "beG"

shows

"b_1~a_1 = a—l_b—ln

"(a-b)*l = afl_bflu

n(a.bfl)fl = afl‘bu
(proof)

Another bunch of useful rearrangements with three elements.

lemma (in group0) groupO_4_L4A:
assumes Al: "P {is commutative on} G"
and A2: "aeG" "beG" "ceG"

135

shows
"a-b.c = c-a-b"
"a~h. (b~ lcT) 7l = (a(bc)"H)tn
"a-(b-c)”! = abl.cln
"a-(b-c_l)_l = a~b_1~c"
nap—l.c! = ga.c—lp—ln

{proof)

Another useful rearrangement.

lemma (in group0) groupO_4_L4B:
assumes "P {is commutative on} G"
and "acG" "beG" "ceG"
shows "a-b~1.(b-c™1) = ac™ "

(proof)

A couple of permutations of order for three alements.

lemma (in group0) groupO_4_L4C:
assumes Al: "P {is commutative on} G"
and A2: "aceG" "beG" "ceG"
shows
"a-b.c = c-a-b"
"a-b-c = a-(cb)"
"a-b-c = c-(ab)"
"a-b-c = c-b-a"

{(proof)

Some rearangement with three elements and inverse.

lemma (in group0) groupO_4_L4D:
assumes Al: "P {is commutative on} G"
and A2: "aeG" "beG" "ceG"
shows
"a*1~b*1'c = C.afl.bfln
"b71~a71~c = C.afl.bflu
"(afl-b~c)*1 = a.bfllcfln

(proof)

Another rearrangement lemma with three elements and equation.

lemma (in group0) groupO_4_L5: assumes Al:"P {is commutative on} G"
and A2: "aeG" "beG" "ceG"
and A3: "c = ab!"

shows "a = b-c"

(proof)

In abelian groups we can cancel an element with its inverse even if separated
by another element.

lemma (in group0) groupO_4_L6A: assumes Al: "P {is commutative on} G"
and A2: "aeG" "beG"

136

shows

"a~b-a*1 = p"
"a_1~b-a = p"
lla—l.(b.a) = p"
"a-(b-a_l) = p"

(proof)

Another lemma about cancelling with two elements.

lemma (in group0) groupO_4_L6AA:

assumes Al: "P {is commutative on} G" and A2: "acG" "beG"
shows "ab~l.a=l = p~lv
(proof)

Another lemma about cancelling with two elements.

lemma (in group0) groupO_4_L6AB:

assumes Al: "P {is commutative on} G" and A2: "acG" "beG"
shows
na_(a_b)fl - bflu
na_(b_a—l) = p"
(proof)

Another lemma about cancelling with two elements.

lemma (in group0) groupO_4_L6AC:

assumes "P {is commutative on} G" and "acG" "beG"
shows "a-(ab~ 1)~ = p"
(proof)

In abelian groups we can cancel an element with its inverse even if separated
by two other elements.

lemma (in group0) groupO_4_L6B: assumes Al: "P {is commutative on} G"
and A2: "aeG" "beG" "ceG"

shows

"ab-ca”! = b-c"

"a~l.b.cca = b-c"
(proof)

In abelian groups we can cancel an element with its inverse even if separated
by three other elements.

lemma (in group0) groupO_4_L6C: assumes Al: "P {is commutative on} G"
and A2: "aeG" "beG" "ceG" "deG"
shows "ab-c-da”! = b-cd"

(proof)

Another couple of useful rearrangements of three elements and cancelling.

lemma (in group0) groupO_4_L6D:
assumes Al: "P {is commutative on} G"
and A2: "aeG" "beG" "ceG"

137

shows

"ab l(ac™)"! = cp v
"(a-c) "t (bc) = a~lb"
"a-(b-(c-a” b)) = ¢"
"a-b-cl-(ca”l) = b"

(proof)

Another useful rearrangement of three elements and cancelling.

lemma (in group0) groupO_4_L6E:
assumes Al: "P {is commutative on} G"
and A2: "aceG" "beG" '"ceG"
shows
"a-b-(ac) ! = bcT"

(proof)

A rearrangement with two elements and canceelling, special case of group0_4_L6D
when ¢ = b~ L.

lemma (in group0) groupO_4_L6F:
assumes Al: "P {is commutative on} G"
and A2: "aeG" "beG"
shows "a-b~!'-(a-b)~! = b~ Lp~In

(proof)

Some other rearrangements with four elements. The algorithm for proof as
in group0_4_L2 works very well here.

lemma (in group0) rearr_ab_gr_4_elemA:
assumes Al: "P {is commutative on} G"
and A2: "aeG" "beG" "ceG" "deG"

shows

"a-b-c-d = a-d-b-c"

"a-b-c-d = a-c-(b-d)"
(proof)

Some rearrangements with four elements and inverse that are applications
of rearr_ab_gr_4_elem

lemma (in group0) rearr_ab_gr_4_elemB:
assumes Al: "P {is commutative on} G"
and A2: "acG" "beG" "ceG" "deG"
shows
nap—l.c=l.g—! = a.g—lp—l.c—ln
"abcd ! = ad lbc"
"abc ld™! = acl(bd)"

(proof)

Some rearrangement lemmas with four elements.

lemma (in group0) groupO_4_L7:
assumes Al: "P {is commutative on} G"
and A2: "aeG" "beG" "ceG" "degG"

138

shows
"ab-c:d”! = ad7! bec"
"a-d-(b-d-(c-d))~! = a-(b-c) " l.d7l"
"a-(b:c)-d = ab-d-c"

(proof)

Some other rearrangements with four elements.

lemma (in group0) groupO_4_L8:
assumes Al: "P {is commutative on} G"
and A2: "acG" "beG" "ceG" "deG"

shows
"a-(bc) ! = (ad tcl) (@b)"
"a-b-(c-d) = c-a-(bd)"

"a'b-(c-d) = ac-(b-d)"

"a-(b-c™1)-d = a-b-d-c!"

"(a-b)-(c:d) "t (b-d)" = acIn
(proof)

Some other rearrangements with four elements.

lemma (in group0) groupO_4_L8A:
assumes Al: "P {is commutative on} G"
and A2: "aeG" "beG" "ceG" "deG"

shows

"ab l(cd™D) = ac (b td)"

"ab l(cd™h) = acb ldln
(proof)

Some rearrangements with an equation.

lemma (in group0) groupO_4_L9:
assumes Al: "P {is commutative on} G"
and A2: "acG" "beG" "ceG" "deG"
and A3: "a = b.c lg7ln
shows
ng = pa—l.c-ln
"g = a_1~b-c_1"

"p = a-d-c"
(proof)
end
29 Groups 2

theory Group_ZF_2 imports AbelianGroup_ZF func_ZF EquivClassl
begin

This theory continues Group_-ZF.thy and considers lifting the group struc-
ture to function spaces and projecting the group structure to quotient spaces,
in particular the quotient qroup.

139

29.1 Lifting groups to function spaces

If we have a monoid (group) G than we get a monoid (group) structure on
a space of functions valued in in G by defining (f - g)(z) := f(z) - g(x). We
call this process "lifting the monoid (group) to function space”. This section
formalizes this lifting.

The lifted operation is an operation on the function space.

lemma (in monoid0) Group_ZF_2_1_LOA:

assumes Al: "F = f {lifted to function space over} X"
shows "F : (X—=G) X (X—=G)— (X—-G)"
(proof)

The result of the lifted operation is in the function space.

lemma (in monoid0) Group_ZF_2_1_LO:
assumes A1:"F = f {lifted to function space over} X"
and A2:"s:X—G" "r:X—G"
shows "F‘(s,r) : X—G"

(proof)

The lifted monoid operation has a neutral element, namely the constant
function with the neutral element as the value.

lemma (in monoid0) Group_ZF_2_1_L1:
assumes Al: "F = f {lifted to function space over} X"
and A2: "E = ConstantFunction(X,TheNeutralElement(G,f))"
shows "E : X—=G A (Vs€X—G. F*(E,s) = s A F(s,E) = s)"
(proof)

Monoids can be lifted to a function space.

lemma (in monoid0) Group_ZF_2_1_T1:
assumes Al: "F = f {lifted to function space over} X"
shows "IsAmonoid (X—G,F)"

(proof)

The constant function with the neutral element as the value is the neutral
element of the lifted monoid.

lemma Group_ZF_2_1_L2:
assumes Al: "IsAmonoid(G,f)"
and A2: "F = f {lifted to function space over} X"
and A3: "E = ConstantFunction(X,TheNeutralElement(G,f))"
shows "E = TheNeutralElement (X—G,F)"

(proof)

The lifted operation acts on the functions in a natural way defined by the
monoid operation.

lemma (in monoid0) lifted_val:
assumes "F = f {lifted to function space over} X"

140

and "s:X—G" "r:X—G"

and "xeX"
shows "(F'(s,r))‘(x) = s‘(x) & ‘()"
(proof)

The lifted operation acts on the functions in a natural way defined by the
group operation. This is the same as 1ifted_val, but in the group0 context.

lemma (in group0) Group_ZF_2_1_L3:
assumes "F = P {lifted to function space over} X"
and "s:X—G" "r:X—G"

and "xeX"
shows "(F'(s,r))‘(x) = s“(x)-r‘(x)"
(proof)

In the group0 context we can apply theorems proven in monoid0 context to
the lifted monoid.

lemma (in group0) Group_ZF_2_1_L4:
assumes Al: "F = P {lifted to function space over} X"
shows "monoidO0(X—G,F)"

(proof)

The compostion of a function f : X — G with the group inverse is a right
inverse for the lifted group.

lemma (in group0) Group_ZF_2_1_L5:
assumes Al: "F = P {lifted to function space over} X"
and A2: "s : X—>G"
and A3: "i = GroupInv(G,P) 0 s"
shows "i: X—G" and "F‘(s,i) = TheNeutralElement (X—G,F)"

(proof)

Groups can be lifted to the function space.

theorem (in group0) Group_ZF_2_1_T2:
assumes Al: "F = P {lifted to function space over} X"
shows "IsAgroup(X—G,F)"

(proof)

What is the group inverse for the lifted group?

lemma (in group0) Group_ZF_2_1_L6:
assumes Al: "F = P {lifted to function space over} X"
shows "Vse(X—G). GroupInv(X—G,F)‘(s) = GroupInv(G,P) 0O s"

(proof)

What is the value of the group inverse for the lifted group?

corollary (in group0) lift_gr_inv_val:
assumes "F = P {lifted to function space over} X" and
"s : X—G" and "xeX"
shows " (GroupInv(X—G,F)‘(s))‘(x) = (s‘(x))~!"

141

(proof)

What is the group inverse in a subgroup of the lifted group?

lemma (in group0) Group_ZF_2_1_L6A:
assumes Al: "F = P {lifted to function space over} X"
and A2: "IsAsubgroup(H,F)"
and A3: "g = restrict(F,HxH)"
and A4: "scH"
shows "GroupInv(H,g)‘(s) = GroupInv(G,P) 0O s"

(proof)

If a group is abelian, then its lift to a function space is also abelian.

lemma (in group0) Group_ZF_2_1_L7:
assumes Al: "F = P {lifted to function space over} X"
and A2: "P {is commutative on} G"
shows "F {is commutative on} (X—G)"

(proof)

29.2 Equivalence relations on groups

The goal of this section is to establish that (under some conditions) given
an equivalence relation on a group or (monoid)we can project the group
(monoid) structure on the quotient and obtain another group.

The neutral element class is neutral in the projection.

lemma (in monoidO) Group_ZF_2_2_L1:
assumes Al: "equiv(G,r)" and A2:"Congruent2(r,f)"
and A3: "F = ProjFun2(G,r,f)"
and A4: "e TheNeutralElement (G,f)"
shows "r‘‘{e} € G//r A
Ve € G//r. F*(r‘“{e},c) =c A F(c,r‘{e}) = c)"
(proof)

The projected structure is a monoid.

theorem (in monoid0) Group_ZF_2_2_T1:
assumes Al: "equiv(G,r)" and A2: "Congruent2(r,f)"
and A3: "F = ProjFun2(G,r,f)"
shows "IsAmonoid(G//r,F)"

(proof)

The class of the neutral element is the neutral element of the projected
monoid.

lemma Group_ZF_2_2_L1:
assumes Al: "IsAmonoid(G,f)"
and A2: "equiv(G,r)" and A3: "Congruent2(r,f)"
and A4: "F = ProjFun2(G,r,f)"
and A5: "e = TheNeutralElement(G,f)"

142

shows " r¢‘{e} = TheNeutralElement(G//r,F)"
(proof)

The projected operation can be defined in terms of the group operation on
representants in a natural way.

lemma (in group0) Group_ZF_2_2_L2:
assumes Al: "equiv(G,r)" and A2: "Congruent2(r,P)"
and A3: "F = ProjFun2(G,r,P)"
and A4: "aeG" "beG"
shows "F¢(r‘‘{a},r‘‘{b}) = r‘‘{a-b}"
(proof)

The class of the inverse is a right inverse of the class.

lemma (in group0) Group_ZF_2_2_L3:
assumes Al: "equiv(G,r)" and A2: "Congruent2(r,P)"
and A3: "F = ProjFun2(G,r,P)"
and A4: "aeG"
shows "F(r‘‘{a},r‘‘{a"!}) = TheNeutralElement(G//r,F)"

(proof)

The group structure can be projected to the quotient space.

theorem (in group0) Group_ZF_3_T2:
assumes Al: "equiv(G,r)" and A2: "Congruent2(r,P)"
shows "IsAgroup(G//r,ProjFun2(G,r,P))"

(proof)

The group inverse (in the projected group) of a class is the class of the
inverse.

lemma (in group0) Group_ZF_2_2_L4:
assumes Al: "equiv(G,r)" and
A2: "Congruent2(r,P)" and
A3: "F = ProjFun2(G,r,P)" and

Ad: "aeG"
shows "r‘‘{a='} = GroupInv(G//r,F)‘(r‘‘{a})"
(proof)

29.3 Normal subgroups and quotient groups

If H is a subgroup of G, then for every a € G we can cosider the sets
{a-h.h € H} and {h-a.h € H} (called a left and right ”coset of H”,
resp.) These sets sometimes form a group, called the ”quotient group”.
This section discusses the notion of quotient groups.

A normal subgorup N of a group G is such that aba™' belongs to N if
a€G,beN.

definition
"IsAnormalSubgroup(G,P,N) = IsAsubgroup(N,P) A

143

(VneN.VgeG. P(P‘(g,n),GroupInv(G,P)‘(g)) € M"

Having a group and a normal subgroup N we can create another group
consisting of eqivalence classes of the relation a ~ b = a-b"! € N. We
will refer to this relation as the quotient group relation. The classes of this
relation are in fact cosets of subgroup H.

definition
"QuotientGroupRel(G,P,H) =
{({ a,b) € GxG. P‘(a, GroupInv(G,P) ‘(b)) € H}"

Next we define the operation in the quotient group as the projection of the
group operation on the classses of the quotient group relation.

definition
"QuotientGroupOp(G,P,H) = ProjFun2(G,QuotientGroupRel(G,P,H),P)"

Definition of a normal subgroup in a more readable notation.

lemma (in group0) Group_ZF_2_4_LO:
assumes "IsAnormalSubgroup(G,P,H)"
and llgeGll IlneHll
shows "gn.g™! € H"

(proof)

The quotient group relation is reflexive.

lemma (in group0) Group_ZF_2_4_L1:
assumes "IsAsubgroup(H,P)"
shows "refl(G,QuotientGroupRel(G,P,H))"

{proof)

The quotient group relation is symmetric.

lemma (in group0) Group_ZF_2_4_L2:
assumes Al:"IsAsubgroup(H,P)"
shows "sym(QuotientGroupRel(G,P,H))"

(proof)

The quotient group relation is transistive.

lemma (in group0) Group_ZF_2_4_L3A:
assumes Al: "IsAsubgroup(H,P)" and
A2: "(a,b) € QuotientGroupRel(G,P,H)" and
A3: "(b,c) € QuotientGroupRel(G,P,H)"
shows "(a,c) € QuotientGroupRel(G,P,H)"

(proof)

The quotient group relation is an equivalence relation. Note we do not need
the subgroup to be normal for this to be true.

lemma (in group0) Group_ZF_2_4_L3: assumes Al:"IsAsubgroup(H,P)"

shows "equiv(G,QuotientGroupRel(G,P,H))"
(proof)

144

The next lemma states the essential condition for congruency of the group
operation with respect to the quotient group relation.

lemma (in group0) Group_ZF_2_4_L4:
assumes Al: "IsAnormalSubgroup(G,P,H)"
and A2: "(al,a2) € QuotientGroupRel(G,P,H)"
and A3: "(b1,b2) € QuotientGroupRel(G,P,H)"
shows "(al-bl, a2-b2) € QuotientGroupRel(G,P,H)"

(proof)

If the subgroup is normal, the group operation is congruent with respect to
the quotient group relation.

lemma Group_ZF_2_4_L5A:
assumes "IsAgroup(G,P)"
and "IsAnormalSubgroup(G,P,H)"
shows "Congruent2(QuotientGroupRel(G,P,H),P)"

{proof)

The quotient group is indeed a group.

theorem Group_ZF_2_4_T1:
assumes "IsAgroup(G,P)" and "IsAnormalSubgroup(G,P,H)"
shows
"IsAgroup(G//QuotientGroupRel (G,P,H) ,QuotientGroupOp(G,P,H))"
(proof)

The class (coset) of the neutral element is the neutral element of the quotient
group.
lemma Group_ZF_2_4_L5B:

assumes "IsAgroup(G,P)" and "IsAnormalSubgroup(G,P,H)"

and "r = QuotientGroupRel(G,P,H)"

and "e = TheNeutralElement(G,P)"

shows " r¢‘{e} = TheNeutralElement(G//r,QuotientGroupOp(G,P,H))"

(proof)

A group element is equivalent to the neutral element iff it is in the subgroup
we divide the group by.

lemma (in group0) Group_ZF_2_4_L5C: assumes "acG"
shows "(a,1) € QuotientGroupRel(G,P,H) «— a€cH"

(proof)

A group element is in H iff its class is the neutral element of G/H.

lemma (in group0) Group_ZF_2_4_L5D:
assumes Al: "IsAnormalSubgroup(G,P,H)" and
A2: "aeG" and
A3: "r = QuotientGroupRel(G,P,H)" and
A4: "TheNeutralElement(G//r,QuotientGroupOp(G,P,H)) = e"
shows "r‘‘{a} = e «— (a,1) € r"

(proof)

145

The class of a € G is the neutral element of the quotient G/H iff a € H.
lemma (in group0) Group_ZF_2_4_L5E:

assumes "IsAnormalSubgroup(G,P,H)" and

"a€eG" and "r = QuotientGroupRel(G,P,H)" and
"TheNeutralElement (G//r,QuotientGroupOp(G,P,H)) = e"
shows "r‘‘{a} = e +— acH"

(proof)

Essential condition to show that every subgroup of an abelian group is nor-
mal.

lemma (in group0) Group_ZF_2_4_L5:
assumes Al: "P {is commutative on} G"
and A2: "IsAsubgroup(H,P)"
and A3: "geG" "heH"
shows "g-h-.g=! € H"

(proof)

Every subgroup of an abelian group is normal. Moreover, the quotient group
is also abelian.

lemma Group_ZF_2_4_L6:
assumes Al: "IsAgroup(G,P)"
and A2: "P {is commutative on} G"
and A3: "IsAsubgroup(H,P)"
shows "IsAnormalSubgroup(G,P,H)"
"QuotientGroupOp(G,P,H) {is commutative on} (G//QuotientGroupRel(G,P,H))"

(proof)

The group inverse (in the quotient group) of a class (coset) is the class of
the inverse.

lemma (in group0) Group_ZF_2_4_L7:
assumes "IsAnormalSubgroup(G,P,H)"
and "a€G" and "r = QuotientGroupRel(G,P,H)"
and "F = QuotientGroupOp(G,P,H)"
shows "r‘‘{a=!} = GroupInv(G//r,F)‘(r‘‘{a})"
(proof)

29.4 Function spaces as monoids

On every space of functions {f : X — X} we can define a natural monoid
structure with composition as the operation. This section explores this fact.

The next lemma states that composition has a neutral element, namely the
identity function on X (the one that maps = € X into itself).

lemma Group_ZF_2_5_L1: assumes Al: "F = Composition(X)"

shows "JI€(X—X). VE€(X—X). F(I,£) = £ A F*(£,I) = £"
(proof)

146

The space of functions that map a set X into itsef is a monoid with compo-
sition as operation and the identity function as the neutral element.

"IsAmonoid (X—X,Composition(X))"
"id(X) = TheNeutralElement (X—X,Composition(X))"

(proof)

lemma Group_ZF_2_5_L2: shows

end

30 Groups 3

theory Group_ZF_3 imports Group_ZF_2 Finitel
begin

In this theory we consider notions in group theory that are useful for the
construction of real numbers in the Real_ZF_x series of theories.

30.1 Group valued finite range functions

In this section show that the group valued functions f : X — G, with the
property that f(X) is a finite subset of G, is a group. Such functions play
an important role in the construction of real numbers in the Real_ZF series.

The following proves the essential condition to show that the set of finite
range functions is closed with respect to the lifted group operation.
lemma (in group0) Group_ZF_3_1_L1:

assumes Al: "F = P {lifted to function space over} X"

and

A2: "s € FinRangeFunctions(X,G)" "r € FinRangeFunctions(X,G)"
shows "F‘(s,r) € FinRangeFunctions(X,G)"

(proof)

The set of group valued finite range functions is closed with respect to the
lifted group operation.
lemma (in group0) Group_ZF_3_1_L2:

assumes Al: "F = P {lifted to function space over} X"
shows "FinRangeFunctions(X,G) {is closed under} F"

(proof)

A composition of a finite range function with the group inverse is a finite
range function.
lemma (in group0) Group_ZF_3_1_L3:

assumes Al: "s € FinRangeFunctions(X,G)"
shows "GroupInv(G,P) 0 s € FinRangeFunctions(X,G)"

(proof)

147

The set of finite range functions is s subgroup of the lifted group.

theorem Group_ZF_3_1_T1:
assumes Al: "IsAgroup(G,P)"
and A2: "F = P {lifted to function space over} X"
and A3: "X#0"
shows "IsAsubgroup(FinRangeFunctions(X,G),F)"

(proof)

30.2 Almost homomorphisms

An almost homomorphism is a group valued function defined on a monoid
M with the property that the set {f(m+n) — f(m) — f(n)}mnenm is finite.
This term is used by R. D. Arthan in ”The Eudoxus Real Numbers”. We
use this term in the general group context and use the A‘Campo’s term
"slopes” (see his ”A natural construction for the real numbers”) to mean
an almost homomorphism mapping interegers into themselves. We consider
almost homomorphisms because we use slopes to define real numbers in the
Real _ZF_x series.

HomDiff is an acronym for ”homomorphism difference”. This is the expres-
sion s(mn)(s(m)s(n))~L, or s(m+n)—s(m)—s(n) in the additive notation.
It is equal to the neutral element of the group if s is a homomorphism.

definition
"HomDiff (G,f,s,x) =
£(s(£¢(fst(x),snd(x))) ,
(GroupInv(G,f) ‘(£°(s (fst(x)),s*(snd(x)))))"

Almost homomorphisms are defined as those maps s : G — G such that the
homomorphism difference takes only finite number of values on G x G.

definition
"AlmostHoms (G,f) =
{s € G—=>G.{HomDiff(G,f,s,x). x € GXG } € Fin(G)}"

AlHomOpl(G, f) is the group operation on almost homomorphisms defined
in a natural way by (s-r)(n) = s(n) - r(n). In the terminology defined in
funcl.thy this is the group operation f (on G) lifted to the function space
G — G and restricted to the set AlmostHoms(G, f).

definition
"AlHomOpl(G,f) =
restrict(f {lifted to function space over} G,
AlmostHoms (G,f) x AlmostHoms (G,f))"

We also define a composition (binary) operator on almost homomorphisms
in a natural way. We call that operator A1HomOp2 - the second operation on
almost homomorphisms. Composition of almost homomorphisms is used to
define multiplication of real numbers in Real_ZF series.

148

definition
"AlHom0p2(G,f) =
restrict (Composition(G),AlmostHoms (G, f) xAlmostHoms (G,f))"

This lemma provides more readable notation for the HomDiff definition.
Not really intended to be used in proofs, but just to see the definition in the
notation defined in the group0 locale.

lemma (in group0) HomDiff_notation:
shows "HomDiff(G,P,s,(m,n)) = s‘(mn)-(s(m)-s“(n)) 1"

(proof)

The next lemma shows the set from the definition of almost homomorphism
in a different form.

lemma (in group0) Group_ZF_3_2_L1A: shows
"{HomDiff (G,P,s,x). x € GxG } = {s‘(mn)-(s‘(m)-s“(m))~!. (m,n) € GXG}"
(proof)

Let’s define some notation. We inherit the notation and assumptions from
the group0 context (locale) and add some. We will use AH to denote the
set of almost homomorphisms. ~ is the inverse (negative if the group is
the group of integers) of almost homomorphisms, (~ p)(n) = p(n)~1. § will
denote the homomorphism difference specific for the group (HomDiff(G, f)).
The notation s ~ r will mean that s,r are almost equal, that is they are in
the equivalence relation defined by the group of finite range functions (that
is a normal subgroup of almost homomorphisms, if the group is abelian).
We show that this is equivalent to the set {s(n)-7(n)~! : n € G} being
finite. We also add an assumption that the G is abelian as many needed
properties do not hold without that.

locale groupl = group0O +

assumes isAbelian: "P {is commutative on} G"

fixes AH
defines AH_def [simp]: "AH = AlmostHoms(G,P)"

fixes Opl
defines Opl_def [simp]: "Opl = AlHomOp1(G,P)"

fixes 0p2
defines 0Op2_def [simp]: "Op2 = AlHomOp2(G,P)"

fixes FR
defines FR_def [simp]: "FR = FinRangeFunctions(G,G)"

fixes neg ("~_" [90] 91)
defines neg_def [simp]: "~s = GroupInv(G,P) 0O s"

fixes §

149

defines 0_def [simp]l: "0(s,x) = HomDiff(G,P,s,x)"

fixes AHprod (infix "-" 69)
defines AHprod_def [simpl: "s - r = AlHomOp1(G,P)‘(s,r)"

fixes AHcomp (infix "o" 70)
defines AHcomp_def [simp]l: "s o r = AlHomOp2(G,P) ‘(s,r)"

fixes AlEq (infix "~" 68)
defines AlEq_def [simp]:
"s % r = (s,r) € QuotientGroupRel(AH,0p1,FR)"

HomDiff is a homomorphism on the lifted group structure.

lemma (in groupl) Group_ZF_3_2_L1:
assumes Al: "s:G—G" "r:G—G"
and A2: "x € GXG"
and A3: "F = P {lifted to function space over} G"
shows "6(F‘(s,r),x) = 0(s,x)-0(x,x)"
(proof)

The group operation lifted to the function space over G preserves almost
homomorphisms.

lemma (in groupl) Group_ZF_3_2_L2: assumes Al: "s € AH" "r € AH"
and A2: "F = P {lifted to function space over} G"
shows "F‘(s,r) € AH"

(proof)

The set of almost homomorphisms is closed under the lifted group operation.

lemma (in groupl) Group_ZF_3_2_L3:
assumes "F = P {lifted to function space over} G"
shows "AH {is closed under} F"

(proof)

The terms in the homomorphism difference for a function are in the group.

lemma (in groupl) Group_ZF_3_2_L4:
assumes "s:G—G" and "meG" "neG"
shows
"mn € G"
"s‘(mn) € G"
"s‘(m) € G" "s‘(n) € G"
"6(s,(m,n)) € G"
"s‘(m)-s‘(n) € G"
(proof)

It is handy to have a version of Group_ZF_3_2_L4 specifically for almost ho-
momorphisms.

corollary (in groupl) Group_ZF_3_2_L4A:

assumes "s € AH" and "meG" "neG"

150

shows "m'n € G"
"s‘(mn) € G"

"s‘(m) € G" "s‘(n) € G"
"6(s,(m,n)) € G"
"s‘(m)-s‘(n) € G"

(proof)

The terms in the homomorphism difference are in the group, a different
form.

lemma (in groupl) Group_ZF_3_2_L4B:
assumes Al:"s € AH" and A2:"xeGxG"
shows "fst(x)-snd(x) € G"
"s‘(fst(x)-snd(x)) € G"
"s‘(fst(x)) € G" "s‘(snd(x)) € G"
"6(s,x) € G"
"s(fst(x))-s‘(snd(x)) € G"

(proof)

What are the values of the inverse of an almost homomorphism?

lemma (in groupl) Group_ZF_3_2_L5:
assumes "s € AH" and "neG"
shows "(~s)‘(n) = (s‘(n))"!"

(proof)

Homomorphism difference commutes with the inverse for almost homomor-
phisms.

lemma (in groupl) Group_ZF_3_2_L6:
assumes Al:"s € AH" and A2:"xeGXG"
shows "§(~s,x) = (6(s,x)) "

(proof)

The inverse of an almost homomorphism maps the group into itself.

lemma (in groupl) Group_ZF_3_2_L7:
assumes "s € AH"
shows "~s : G—G"

{proof)

The inverse of an almost homomorphism is an almost homomorphism.

lemma (in groupl) Group_ZF_3_2_L8:
assumes Al: "F = P {lifted to function space over} G"
and A2: "s € AH"
shows "GroupInv(G—G,F)‘(s) € AH"

(proof)

The function that assigns the neutral element everywhere is an almost ho-
momorphism.

lemma (in groupl) Group_ZF_3_2_L9: shows

151

"ConstantFunction(G,1) € AH" and "AH#Q"
(proof)

If the group is abelian, then almost homomorphisms form a subgroup of the
lifted group.

lemma Group_ZF_3_2_L10:
assumes Al: "IsAgroup(G,P)"
and A2: "P {is commutative on} G"
and A3: "F = P {lifted to function space over} G"
shows "IsAsubgroup(AlmostHoms(G,P),F)"

(proof)

If the group is abelian, then almost homomorphisms form a group with the
first operation, hence we can use theorems proven in groupO context aplied
to this group.

lemma (in groupl) Group_ZF_3_2_L10A:

shows "IsAgroup(AH,O0pl)" "groupO(AH,0p1)"
(proof)

The group of almost homomorphisms is abelian

lemma Group_ZF_3_2_L11: assumes Al: "IsAgroup(G,f)"
and A2: "f {is commutative on} G"
shows
"IsAgroup(AlmostHoms (G,f) ,A1HomOp1(G,£))"
"AlHomOp1(G,f) {is commutative on} AlmostHoms(G,f)"

(proof)

The first operation on homomorphisms acts in a natural way on its operands.

lemma (in groupl) Group_ZF_3_2_L12:

assumes "scAH" "rcAH" and "neG"
shows "(s:r)‘(n) = s‘(n)-r‘(n)"
(proof)

What is the group inverse in the group of almost homomorphisms?

lemma (in groupl) Group_ZF_3_2_L13:
assumes Al: "scAH"
shows
"GroupInv(AH,Opl) ‘(s) = GroupInv(G,P) 0O s"
"GroupInv(AH,Opl) ‘(s) € AH"
"GroupInv(G,P) 0 s € AH"

(proof)

The group inverse in the group of almost homomorphisms acts in a natural
way on its operand.

lemma (in groupl) Group_ZF_3_2_L14:
assumes "s€AH" and "neG"
shows " (GroupInv(AH,Op1)‘(s))‘(n) = (s¢(n)) 1"

152

(proof)

The next lemma states that if s, 7 are almost homomorphisms, then s -7~}
is also an almost homomorphism.

lemma Group_ZF_3_2_L15: assumes "IsAgroup(G,f)"
and "f {is commutative on} G"
and "AH = AlmostHoms(G,f)" "Opl = AlHomOp1(G,f)"
and "s € AH" "r € AH"
shows
"Op1(s,r) € AH"
"GroupInv(AH,0pl) ‘(r) € AH"
"Opl‘(s,GroupInv(AH,0pl) ‘(x)) € AH"

(proof)

A version of Group_zF_3_2_L15 formulated in notation used in groupl con-
text. States that the product of almost homomorphisms is an almost homo-
morphism and the the product of an almost homomorphism with a (point-

wise) inverse of an almost homomorphism is an almost homomorphism.

corollary (in groupl) Group_ZF_3_2_L16: assumes "s € AH" "r € AH"

shows "s.r € AH" "s-(~1) € AH"

(proof)

30.3 The classes of almost homomorphisms

In the Real_ZF series we define real numbers as a quotient of the group of
integer almost homomorphisms by the integer finite range functions. In this
section we setup the background for that in the general group context.

Finite range functions are almost homomorphisms.

lemma (in groupl) Group_ZF_3_3_L1: shows "FR C AH"
(proof)

Finite range functions valued in an abelian group form a normal subgroup
of almost homomorphisms.

and A2:"f {is commutative on} G"

shows

"IsAsubgroup(FinRangeFunctions(G,G) ,A1HomOp1(G,£))"
"IsAnormalSubgroup(AlmostHoms (G,f) ,A1HomOp1(G,f),
FinRangeFunctions(G,G))"

{(proof)

The group of almost homomorphisms divided by the subgroup of finite range
functions is an abelian group.

lemma Group_ZF_3_3_L2: assumes Al:"IsAgroup(G,f)"

theorem (in groupl) Group_ZF_3_3_T1:
shows
"IsAgroup (AH//QuotientGroupRel (AH,0pl,FR) ,QuotientGroupOp (AH,0pl,FR))"

153

and

"QuotientGroupOp(AH,0pl,FR) {is commutative on}
(AH//QuotientGroupRel (AH,0p1,FR))"

(proof)

It is useful to have a direct statement that the quotient group relation is an
equivalence relation for the group of AH and subgroup FR.

lemma (in groupl) Group_ZF_3_3_L3: shows
"QuotientGroupRel (AH,Op1,FR) C AH x AH" and
"equiv (AH,QuotientGroupRel (AH,0p1,FR))"
(proof)

The ”almost equal” relation is symmetric.

lemma (in groupl) Group_ZF_3_3_L3A: assumes Al: "s~r"
shows "r~s"

(proof)

Although we have bypassed this fact when proving that group of almost
homomorphisms divided by the subgroup of finite range functions is a group,
it is still useful to know directly that the first group operation on AH is
congruent with respect to the quotient group relation.

lemma (in groupl) Group_ZF_3_3_L4:
shows "Congruent2(QuotientGroupRel (AH,0p1,FR),0p1)"
(proof)

The class of an almost homomorphism s is the neutral element of the quo-
tient group of almost homomorphisms iff s is a finite range function.

lemma (in groupl) Group_ZF_3_3_L5: assumes "s € AH" and
"r = QuotientGroupRel (AH,0pl,FR)" and
"TheNeutralElement (AH//r,QuotientGroupOp (AH,0pl1,FR)) = e"

shows "r‘‘{s} = e +— s € FR"

(proof)

The group inverse of a class of an almost homomorphism f is the class of
the inverse of f.

lemma (in groupl) Group_ZF_3_3_L6:

assumes Al: "s € AH" and

"r = QuotientGroupRel (AH,O0p1,FR)" and

"F = ProjFun2(AH,r,0p1)"

shows "r¢‘{~s} = GroupInv(AH//r,F)‘(r‘‘{s})"
(proof)

30.4 Compositions of almost homomorphisms

The goal of this section is to establish some facts about composition of almost
homomorphisms. needed for the real numbers construction in Real_ZF_x
series. In particular we show that the set of almost homomorphisms is

154

closed under composition and that composition is congruent with respect
to the equivalence relation defined by the group of finite range functions (a
normal subgroup of almost homomorphisms).

The next formula restates the definition of the homomorphism difference to
express the value an almost homomorphism on a product.

lemma (in groupl) Group_ZF_3_4_L1:

assumes "scAH" and "meG" "neG"
shows "s‘(mn) = s‘(@)s‘(@)-0(s,(m,n))"
(proof)

What is the value of a composition of almost homomorhisms?

lemma (in groupl) Group_ZF_3_4_L2:
assumes "scAH" "rcAH" and "meG"
shows "(sor)‘(m) = s‘(r‘(m))" "s‘(r‘(m)) € G"
(proof)

What is the homomorphism difference of a composition?

lemma (in groupl) Group_ZF_3_4_L3:

assumes Al: "scAH" '"rcAH" and A2: "meG" '"neG"

shows "d(sor,(m,n)) =

0(s,(r‘(m,r @N-s(x,{ m,n)))-0(s,(r'm)-r‘(n),0(r,(m,n))))"
{(proof)

What is the homomorphism difference of a composition (another form)?
Here we split the homomorphism difference of a composition into a product
of three factors. This will help us in proving that the range of homomorphism
difference for the composition is finite, as each factor has finite range.

lemma (in groupl) Group_ZF_3_4_L4:
assumes Al: "scAH" "reAH" and A2: "x € GXG"

and A3:
"A = 40(s,(r*(fst(x)),r (snd ()"
"B = S‘((S(r,x))"

"C = 0(s,((r‘(fst(x))-r‘(snd(x))),0(r,x)))"
shows "¢ (sor,x) = A-B-C"
(proof)

The range of the homomorphism difference of a composition of two almost
homomorphisms is finite. This is the essential condition to show that a
composition of almost homomorphisms is an almost homomorphism.

lemma (in groupl) Group_ZF_3_4_L5:

assumes Al: "scAH" "rcAH"

shows "{§(Composition(G)‘(s,r),x). x € GXG} € Fin(G)"
(proof)

Composition of almost homomorphisms is an almost homomorphism.

theorem (in groupl) Group_ZF_3_4_T1:

155

assumes Al: "scAH" "rcAH"
shows "Composition(G)‘(s,r) € AH" "sor € AH"

(proof)

The set of almost homomorphisms is closed under composition. The second
operation on almost homomorphisms is associative.

lemma (in groupl) Group_ZF_3_4_L6: shows
"AH {is closed under} Composition(G)"
"AlHomOp2(G,P) {is associative on} AH"

{(proof)

Type information related to the situation of two almost homomorphisms.

lemma (in groupl) Group_ZF_3_4_L7:
assumes Al: "scAH" "rcAH" and A2: "neG"

shows

"s(n) € G" "(r‘()! € a"

"sC(m)-(r‘@) !t € g s (r‘(n)) € G"
{(proof)

Type information related to the situation of three almost homomorphisms.

lemma (in groupl) Group_ZF_3_4_L8:
assumes Al: "scAH" ‘"rcAH" "q€AH" and A2: "neG"
shows
"q‘(n)eG"
"s‘(r‘(m)) € G"
"r(n)-(q‘@)~! € a"
"s(r‘(m)-(q‘m)~"H € g"
"5(s,{ q‘(@),r (n)-(q“(m))~1)) € a"
(proof)

A formula useful in showing that the composition of almost homomorphisms
is congruent with respect to the quotient group relation.

lemma (in groupl) Group_ZF_3_4_L9:
assumes Al: "s1 € AH" "rl1 € AH" "s2 € AH" "r2 € AH"
and A2: "neG"
shows "(storl) ¢ (n)-((s20r2)‘(n)) ! =
s19(r2°(n))- (s2°(r2°(@))) 1s1(r1“(n)-(x2° (m))~1)-
d(s1,(r2°(n),r1“(n)-(x2°(n)) ~1t)"

(proof)

The next lemma shows a formula that translates an expression in terms of
the first group operation on almost homomorphisms and the group inverse
in the group of almost homomorphisms to an expression using only the
underlying group operations.

lemma (in groupl) Group_ZF_3_4_L10: assumes Al: "s € AH" "r € AH"
and A2: "n € G"
shows " (s-(GroupInv(AH,0p1) ‘(r)))‘(n) = s‘(n)-(r‘(n)) 1"

156

(proof)

A neccessary condition for two a. h. to be almost equal.

lemma (in groupl) Group_ZF_3_4_L11:
assumes Al: "s=r"
shows "{s‘(@)-(r‘(n))~'. neG} € Fin(G)"
(proof)

A sufficient condition for two a. h. to be almost equal.

lemma (in groupl) Group_ZF_3_4_L12: assumes Al: "sc€AH" "recAH"
and A2: "{s‘(@)-(r‘(m))~'. n€G} € Fin(G)"
shows "s~r"

(proof)

Another sufficient consdition for two a.h. to be almost equal. It is actually
just an expansion of the definition of the quotient group relation.

lemma (in groupl) Group_ZF_3_4_L12A: assumes "scAH" "rcAH"

and "s-(GroupInv(AH,0Opl) ‘(r)) € FR"
shows "s~r" '"r=xs"

(proof)

Another necessary condition for two a.h. to be almost equal. It is actually
just an expansion of the definition of the quotient group relation.

shows "s:(GroupInv(AH,Opl) ‘(r)) € FR"
(proof)

lemma (in groupl) Group_ZF_3_4_L12B: assumes "s~r"

The next lemma states the essential condition for the composition of a. h.
to be congruent with respect to the quotient group relation for the subgroup
of finite range functions.

lemma (in groupl) Group_ZF_3_4_L13:

assumes Al: "slzxs2" '"rizxr2"
shows "(slorl) =~ (s2o0r2)"
(proof)

Composition of a. h. to is congruent with respect to the quotient group
relation for the subgroup of finite range functions. Recall that if an operation
say 7o” on X is congruent with respect to an equivalence relation R then we
can define the operation on the quotient space X/R by [s|go[r|r := [soT]r
and this definition will be correct i.e. it will not depend on the choice of

representants for the classes [x] and [y]. This is why we want it here.

lemma (in groupl) Group_ZF_3_4_L13A: shows
"Congruent2(QuotientGroupRel (AH,0p1,FR) ,0p2)"

(proof)

The homomorphism difference for the identity function is equal to the neu-
tral element of the group (denoted e in the groupl context).

157

lemma (in groupl) Group_ZF_3_4_L14: assumes Al: "x € GXG"
shows "§(id(G),x) = 1"
(proof)

The identity function (I(z) = z) on G is an almost homomorphism.

lemma (in groupl) Group_ZF_3_4_L15: shows "id(G) € AH"
(proof)

Almost homomorphisms form a monoid with composition. The identity
function on the group is the neutral element there.
lemma (in groupl) Group_ZF_3_4_L16:
shows
"IsAmonoid (AH,0p2)"
"monoidO (AH,0p2)"
"id(G) = TheNeutralElement (AH,0p2)"
(proof)

We can project the monoid of almost homomorphisms with composition to
the group of almost homomorphisms divided by the subgroup of finite range
functions. The class of the identity function is the neutral element of the
quotient (monoid).
theorem (in groupl) Group_ZF_3_4_T2:

assumes Al: "R = QuotientGroupRel (AH,Op1,FR)"

shows

"IsAmonoid (AH//R,ProjFun2(AH,R,0p2))"

"R‘‘{id(G)} = TheNeutralElement (AH//R,ProjFun2(AH,R,0p2))"
(proof)

30.5 Shifting almost homomorphisms

In this this section we consider what happens if we multiply an almost
homomorphism by a group element. We show that the resulting function is
also an a. h., and almost equal to the original one. This is used only for
slopes (integer a.h.) in Int_ZF_2 where we need to correct a positive slopes
by adding a constant, so that it is at least 2 on positive integers.

If s is an almost homomorphism and ¢ is some constant from the group,
then s - ¢ is an almost homomorphism.
lemma (in groupl) Group_ZF_3_5_L1:

assumes Al: "s € AH" and A2: "ceG" and

A3: "r = {(x,s°(x)c). xEG}"

shows

"WxeG. r(x) = s (x)-c"

"r € AH"

IIS ~ rlI

(proof)

end

158

31 Direct product

theory DirectProduct_ZF imports func_ZF
begin

This theory considers the direct product of binary operations. Contributed
by Seo Sanghyeon.

31.1 Definition

In group theory the notion of direct product provides a natural way of
creating a new group from two given groups.

Given (G,-) and (H,o) a new operation (G x H, x) is defined as (g, h) x
(g W) =(g9-g' hol).
definition

"DirectProduct(P,Q,G,H) =

{(x, (P (fst(fst(x)),fst(snd(x))) , Q‘(snd(fst(x)),snd(snd(x))))).
x € (GXH)x (GxH)}"

We define a context called direct0 which holds an assumption that P, Q) are
binary operations on G, H, resp. and denotes R as the direct product of
(G, P) and (H, Q).
locale directO =

fixes P Q G H

assumes Pfun: "P : GXG—G"

assumes Qfun: "Q : HxH—H"

fixes R

defines Rdef [simp]: "R = DirectProduct(P,Q,G,H)"

The direct product of binary operations is a binary operation.

lemma (in directO) DirectProduct_ZF_1_L1:
shows "R : (GxH)x (GxH)—GxH"

(proof)
And it has the intended value.

lemma (in direct0) DirectProduct_ZF_1_L2:
shows "Vxe(GxH). Vye(GxH).
R'(x,y) = (P(fst(x),fst(y)),Q (snd(x),snd(y)))"
(proof)

And the value belongs to the set the operation is defined on.

lemma (in directO) DirectProduct_ZF_1_L3:
shows "Vxe(GxH). Vye(GxH). R‘(x,y) € GxH"

(proof)

159

31.2 Associative and commutative operations

If P and Q are both associative or commutative operations, the direct prod-
uct of P and Q has the same property.

Direct product of commutative operations is commutative.

lemma (in directO) DirectProduct_ZF_2_L1:
assumes "P {is commutative on} G" and "Q {is commutative on} H"
shows "R {is commutative on} GxH"

(proof)

Direct product of associative operations is associative.

lemma (in directO) DirectProduct_ZF_2_L2:
assumes "P {is associative on} G" and "Q {is associative on} H"
shows "R {is associative on} GxH"

(proof)

end

32 Ordered groups - introduction

theory OrderedGroup_ZF imports Group_ZF_1 AbelianGroup_ZF Order_ZF Finite_ZF_1

begin

This theory file defines and shows the basic properties of (partially or lin-
early) ordered groups. We define the set of nonnegative elements and the
absolute value function. We show that in linearly ordered groups finite sets
are bounded and provide a sufficient condition for bounded sets to be finite.
This allows to show in Int_ZF_IML.thy that subsets of integers are bounded
iff they are finite.

32.1 Ordered groups

This section defines ordered groups and various related notions.

An ordered group is a group equipped with a partial order that is ”transla-
tion invariant”, that isif a < bthena-g<b-gand g-a < g-b.

definition

"IsAnOrdGroup(G,P,r) =

(IsAgroup(G,P) A rCGxG A IsPartOrder(G,r) A (VgeG. Va b.

(ab) €r — (P{a,g),P(bg)erA(P(ga),P(gb)ecr)
)l|

We define the set of nonnegative elements in the obvious way as GT = {z €
G:1<uz}.

definition

160

"Nonnegative(G,P,r) = {x€G. (TheNeutralElement(G,P),x) € r}"

The PositiveSet (G,P,r) is a set similar to Nonnegative(G,P,r), but without
the unit.

definition
"PositiveSet(G,P,r) =
{x€G. (TheNeutralElement(G,P),x) € r A TheNeutralElement(G,P)# x}"

We also define the absolute value as a ZF-function that is the identity on
G and the group inverse on the rest of the group.

definition
"AbsoluteValue(G,P,r) = id(Nonnegative(G,P,r)) U
restrict (GroupInv(G,P),G - Nonnegative(G,P,r))"

The odd functions are defined as those having property f(a=') = (f(a))™!.

This looks a bit strange in the multiplicative notation, I have to admit. For
linearly oredered groups a function f defined on the set of positive elements
iniquely defines an odd function of the whole group. This function is called
an odd extension of f

definition
"0OddExtension(G,P,r,f) =
(f U {(a, GroupInv(G,P)‘(f‘(GroupInv(G,P)‘(a)))).
a € GroupInv(G,P)‘‘(PositiveSet(G,P,r))} U
{(TheNeutralElement (G,P) ,TheNeutralElement (G,P))})"

We will use a similar notation for ordered groups as for the generic groups.
GT denotes the set of nonnegative elements (that satisfy 1 < a) and G, is
the set of (strictly) positive elements. -A is the set inverses of elements from
A. I hope that using additive notation for this notion is not too shocking
here. The symbol £° denotes the odd extension of f. For a function defined
on G4 this is the unique odd function on G that is equal to f on G.

locale group3 =
fixes G and P and r
assumes ordGroupAssum: "IsAnOrdGroup(G,P,r)"

fixes unit ("1")
defines unit_def [simp]: "1 = TheNeutralElement(G,P)"

fixes groper (infixl "-" 70)
defines groper_def [simpl: "a - b = P‘(a,b)"

fixes inv ("_~1 " [90] 91)

defines inv_def [simp]: "x ! = GroupInv(G,P)‘(x)"

fixes lesseq (infix "<" 68)

161

defines lesseq_def [simp]: "a < b = (a,b) € "

fixes sless (infix "<" 68)
defines sless_def [simpl: "a < b = a<b A a#b"

fixes nonnegative ("Gt")
defines nonnegative_def [simp]l: "G = Nonnegative(G,P,r)"

fixes positive ("G")
defines positive_def [simp]: "G; = PositiveSet(G,P,r)"

fixes setinv ("- _" 72)
defines setninv_def [simp]l: "-A = GroupInv(G,P)‘‘(A)"

fixes abs ("| _ ™)
defines abs_def [simp]: "la| = AbsoluteValue(G,P,r)‘(a)"

fixes oddext ("_ °")

defines oddext_def [simp]: "f° = 0ddExtension(G,P,r,f)"
In group3 context we can use the theorems proven in the group0 context.
lemma (in group3) OrderedGroup_ZF_1_L1: shows "group0(G,P)"

(proof)

Ordered group (carrier) is not empty. This is a property of monoids, but it
is good to have it handy in the group3 context.

lemma (in group3) OrderedGroup_ZF_1_L1A: shows "G##0"
{proof)

The next lemma is just to see the definition of the nonnegative set in our
notation.

lemma (in group3) OrderedGroup_ZF_1_L2:
shows "geGt «— 1<g"
{proof)

The next lemma is just to see the definition of the positive set in our notation.

lemma (in group3) OrderedGroup_ZF_1_L2A:
shows "geG, +— (1<g A g#)"
(proof)
For total order if g is not in G, then it has to be less or equal the unit.

lemma (in group3) OrderedGroup_ZF_1_L2B:
assumes Al: "r {is total on} G" and A2: "acG-Gt"
shows "a<1"

(proof)

The group order is reflexive.

lemma (in group3) OrderedGroup_ZF_1_L3: assumes "geG"

162

shows "g<g"
{proof)

1 is nonnegative.

lemma (in group3) OrderedGroup_ZF_1_L3A: shows "1eG™"

(proof)

In this context a < b implies that both a and b belong to G.

lemma (in group3) OrderedGroup_ZF_1_L4:
assumes "a<b" shows "acG" "beG"

(proof)
It is good to have transitivity handy.

lemma (in group3) Group_order_transitive:
assumes Al: "a<b" "b<c" shows "a<c"

(proof)

The order in an ordered group is antisymmetric.

lemma (in group3) group_order_antisym:
assumes Al: "a<b" "b<a" shows "a=b"

(proof)

Transitivity for the strict order: if a < b and b < ¢, then a < c.

lemma (in group3) OrderedGroup_ZF_1_L4A:
assumes Al: "a<b" and A2: "b<c"
shows "a<c"

(proof)

Another version of transitivity for the strict order: if a < b and b < ¢, then
a<ec.

lemma (in group3) group_strict_ord_transit:
assumes Al: "a<b" and A2: "b<c"
shows "a<c"

(proof)

Strict order is preserved by translations.

lemma (in group3) group_strict_ord_transl_inv:
assumes "a<b" and "ceG"
shows
"a-c < b-c"
"c-a < c-b"

(proof)
If the group order is total, then the group is ordered linearly.

lemma (in group3) group_ord_total_is_lin:
assumes "r {is total on} G"
shows "IsLinOrder(G,r)"

163

(proof)

For linearly ordered groups elements in the nonnegative set are greater than
those in the complement.

lemma (in group3) OrderedGroup_ZF_1_L4B:
assumes "r {is total on} G"
and "acG™" and "b € G-G*t"
shows "b<a"

(proof)

Ifa<landa#1,thenacG\GT.

lemma (in group3) OrderedGroup_ZF_1_LAC:
assumes Al: "a<1l" and A2: "a#1"
shows "a € G-G*"

(proof)

An element smaller than an element in G\ G' isin G\ G™.

lemma (in group3) OrderedGroup_ZF_1_L4D:
assumes Al: "acG-Gt" and A2: "b<a"
shows "bcG-GT"

(proof)

The nonnegative set is contained in the group.

lemma (in group3) OrderedGroup_ZF_1_L4E: shows "GT C G"

(proof)

Taking the inverse on both sides reverses the inequality.
lemma (in group3) OrderedGroup_ZF_1_L5:

assumes Al: "a<b" shows "b l<a~l®
(proof)

If an element is smaller that the unit, then its inverse is greater.
lemma (in group3) OrderedGroup_ZF_1_L5A:

assumes Al: "a<1" shows "1<al®
(proof)

If an the inverse of an element is greater that the unit, then the element is
smaller.

lemma (in group3) OrderedGroup_ZF_1_L5AA:
assumes Al: "acG" and A2: "lgafl"
shows "a<1"

{(proof)

If an element is nonnegative, then the inverse is not greater that the unit.
Also shows that nonnegative elements cannot be negative

lemma (in group3) OrderedGroup_ZF_1_L5AB:
assumes Al: "1<a" shows "a !<1" and "—(a<1l A a=l1)"

164

(proof)

If two elements are greater or equal than the unit, then the inverse of one
is not greater than the other.
lemma (in group3) OrderedGroup_ZF_1_L5AC:
assumes Al: "1<a" "1<b"
shows "a~! < p"
(proof)

32.2 Inequalities
This section developes some simple tools to deal with inequalities.

Taking negative on both sides reverses the inequality, case with an inverse
on one side.
lemma (in group3) OrderedGroup_ZF_1_L5AD:

assumes Al: "b € G" and A2: "agb’l"
shows "b < a~l»

(proof)

We can cancel the same element on both sides of an inequality.

lemma (in group3) OrderedGroup_ZF_1_L5AE:
assumes Al: "acG" "beG" "ceG" and A2: "ab < a-c"
shows "b<c"

(proof)

We can cancel the same element on both sides of an inequality, a version
with an inverse on both sides.
lemma (in group3) OrderedGroup_ZF_1_L5AF:

assumes Al: "aeG" "beG" "ceG" and A2: "ab ! < a-c”In
shows "c<b"

{(proof)

Taking negative on both sides reverses the inequality, another case with an
inverse on one side.
lemma (in group3) OrderedGroup_ZF_1_L5AG:

assumes Al: "a € G" and A2: "a_lgb"

shows "b~1 < a"

(proof)

We can multiply the sides of two inequalities.

lemma (in group3) OrderedGroup_ZF_1_L5B:
assumes Al: "a<b" and A2: "c<d"
shows "a-c < b-d"

(proof)

We can replace first of the factors on one side of an inequality with a greater
one.

165

lemma (in group3) OrderedGroup_ZF_1_L5C:
assumes Al: "ceG" and A2: "a<b-c" and A3: "b<by"
shows "a<b;-c"

(proof)

We can replace second of the factors on one side of an inequality with a
greater one.

lemma (in group3) OrderedGroup_ZF_1_L5D:
assumes Al: "beG" and A2: "a < b-¢c" and A3: "c<by"
shows "a < b-by"

(proof)

We can replace factors on one side of an inequality with greater ones.

lemma (in group3) OrderedGroup_ZF_1_L5E:

assumes Al: "a < b-¢c" and A2: "b<b;" "c<c;"
shows "a < bj-cy"
(proof)

We don’t decrease an element of the group by multiplying by one that is
nonnegative.

lemma (in group3) OrderedGroup_ZF_1_L5F:
assumes Al: "1<a" and A2: "beG"
shows "b<a-b" "b<b-a"

(proof)

We can multiply the right hand side of an inequality by a nonnegative ele-
ment.

lemma (in group3) OrderedGroup_ZF_1_L5G: assumes Al: "a<b"
and A2: "1<c" shows "a<b-c" "a<c-b"
(proof)

We can put two elements on the other side of inequality, changing their sign.

lemma (in group3) OrderedGroup_ZF_1_L5H:
assumes Al: "acG" "beG" and A2: "ab ! < c"
shows
"y S c-b"
"c_1~a S b"

(proof)

We can multiply the sides of one inequality by inverse of another.

lemma (in group3) OrderedGroup_ZF_1_L5I:
assumes "a<b" and "c<d"
shows "a-d~! < b-c1n

{proof)

We can put an element on the other side of an inequality changing its sign,
version with the inverse.

166

lemma (in group3) OrderedGroup_ZF_1_L5J:
assumes Al: "acG" "beG" and A2: "c < ab "
shows "cb < a"

(proof)

We can put an element on the other side of an inequality changing its sign,
version with the inverse.

lemma (in group3) OrderedGroup_ZF_1_L5JA:
assumes Al: "acG" "beG" and A2: "c < a~Lp"
shows "a-c< b"

(proof)

A special case of OrderedGroup_ZF_1_L5J where ¢ = 1.

corollary (in group3) OrderedGroup_ZF_1_L5K:
assumes Al: "acG" "beG" and A2: "1 < abl®
shows "b < a"

(proof)

A special case of OrderedGroup_ZF_1_L5JA where ¢ = 1.

corollary (in group3) OrderedGroup_ZF_1_L5KA:
assumes Al: "acG" "beG" and A2: "1 < a—l.p"
shows "a < b"

(proof)

If the order is total, the elements that do not belong to the positive set are
negative. We also show here that the group inverse of an element that does
not belong to the nonnegative set does belong to the nonnegative set.

lemma (in group3) OrderedGroup_ZF_1_L6:
assumes Al: "r {is total on} G" and A2: "acG-GT"
shows "a<1" "a~! € G*" ‘"restrict(GroupInv(G,P),G-Gt)‘(a) € Gg+"

(proof)

If a property is invariant with respect to taking the inverse and it is true on
the nonnegative set, than it is true on the whole group.

lemma (in group3) OrderedGroup_ZF_1_L7:
assumes Al: "r {is total on} G"
and A2: "VaeGt.VbeGT. Q(a,b)"
and A3: "VacG.¥YbeG. Q(a,b)—Q(a"!,b)"
and A4: "VacG.VDbeG. Q(a,b)—>Q(a,b_1)"
and A5: "aeG" "beG"
shows "Q(a,b)"

(proof)

A lemma about splitting the ordered group ”plane” into 6 subsets. Useful
for proofs by cases.

lemma (in group3) OrdGroup_6cases: assumes Al: "r {is total on} G"
and A2: "aeG" '"beG"

167

shows

"1<a A 1<b V a<l A b<1l V

a<l AN1<b A1 < ab Vas<l A1I<bAab <1l V
1<a AT A1 < ab V 1<a A b<1l A ab < 1"

(proof)

The next lemma shows what happens when one element of a totally ordered
group is not greater or equal than another.

lemma (in group3) OrderedGroup_ZF_1_L8:
assumes Al: "r {is total on} G"
and A2: "aeG" "beG"
and A3: "= (a<b)"
shows "b S a" na—l S b—ln "a;éb" "p<a"

(proof)

If one element is greater or equal and not equal to another, then it is not
smaller or equal.

lemma (in group3) OrderedGroup_ZF_1_L8AA:
assumes Al: "a<b" and A2: "a#b"
shows "—(b<a)"

(proof)

A special case of OrderedGroup_ZF_1_L8 when one of the elements is the unit.

corollary (in group3) OrderedGroup_ZF_1_L8A:
assumes Al: "r {is total on} G"
and A2: "a€eG" and A3: "~ (1<a)"
shows "1 < a~!" "1s#£a" nma<l®

(proof)

A negative element can not be nonnegative.

lemma (in group3) OrderedGroup_ZF_1_L8B:
assumes Al: "a<1l" and A2: "a#1" shows "-(1<a)"

(proof)

An element is greater or equal than another iff the difference is nonpositive.

lemma (in group3) OrderedGroup_ZF_1_L9:
assumes Al: "aeG" "beG"
shows "a<b <— ab~! < 1"

(proof)

We can move an element to the other side of an inequality.

lemma (in group3) OrderedGroup_ZF_1_L9A:
assumes Al: "aeG" "beG" "ceG"
shows "ab < ¢ +— a < cbIn

(proof)

A one side version of the previous lemma with weaker assuptions.

168

lemma (in group3) OrderedGroup_ZF_1_L9B:
assumes Al: "acG" "beG" and A2: "ab ! < c"
shows "a < c-b"

(proof)

We can put en element on the other side of inequality, changing its sign.

lemma (in group3) OrderedGroup_ZF_1_L9C:
assumes Al: "acG" "beG" and A2: "c<a-b"
shows
"C'b71 < a"
"a_1~c S b"

(proof)

If an element is greater or equal than another then the difference is nonneg-
ative.

lemma (in group3) OrderedGroup_ZF_1_L9D: assumes Al: "a<b"
shows "1 < b-a—ln

(proof)

If an element is greater than another then the difference is positive.

lemma (in group3) OrderedGroup_ZF_1_L9E:
assumes Al: "a<b" "a#b"
shows "1 < ba™!" "1 # ba"!" "ba! € G,"
(proof)

If the difference is nonnegative, then a < b.

lemma (in group3) OrderedGroup_ZF_1_L9F:
assumes Al: "a€G" "beG" and A2: "1 < b-a”l"
shows "a<b"

(proof)

If we increase the middle term in a product, the whole product increases.

lemma (in group3) OrderedGroup_ZF_1_L10:

assumes "acG" "beG" and "c<d4d"
shows "a-c:b < a-d-b"
(proof)

A product of (strictly) positive elements is not the unit.

lemma (in group3) OrderedGroup_ZF_1_L11:
assumes Al: "1<a" "1<b"
and A2: "1 # a" "1 # b"
shows "1 # a-b"

(proof)

A product of nonnegative elements is nonnegative.

lemma (in group3) OrderedGroup_ZF_1_L12:
assumes Al1: "1 < a" "1 < Db"

169

shows "1 < a-b"
(proof)

If a is not greater than b, then 1 is not greater than b-a~!.

lemma (in group3) OrderedGroup_ZF_1_L12A:
assumes Al: "a<b" shows "1 < b-a~l"

(proof)

We can move an element to the other side of a strict inequality.

lemma (in group3) OrderedGroup_ZF_1_L12B:
assumes Al: "acG" "beG" and A2: "ab !l < ¢
shows "a < c-b"

{(proof)

We can multiply the sides of two inequalities, first of them strict and we get
a strict inequality.
lemma (in group3) OrderedGroup_ZF_1_L12C:

assumes Al: "a<b" and A2: "c<d"
shows "a-c < b-d"

(proof)

We can multiply the sides of two inequalities, second of them strict and we
get a strict inequality.
lemma (in group3) OrderedGroup_ZF_1_L12D:

assumes Al: "a<b" and A2: "c<d"
shows "a-c < b-d"

(proof)

32.3 The set of positive elements

In this section we study G, - the set of elements that are (strictly) greater
than the unit. The most important result is that every linearly ordered
group can decomposed into {1}, G; and the set of those elements a € G
such that a=! €G,. Another property of linearly ordered groups that we
prove here is that if G,# (), then it is infinite. This allows to show that
nontrivial linearly ordered groups are infinite.

The positive set is closed under the group operation.

lemma (in group3) OrderedGroup_ZF_1_L13: shows "G, {is closed under}
Pll
(proof)

For totally ordered groups every nonunit element is positive or its inverse is
positive.

lemma (in group3) OrderedGroup_ZF_1_L14:
assumes Al: "r {is total on} G" and A2: "acG"
shows "a=1 V acG, V a~leG,"

170

(proof)

If an element belongs to the positive set, then it is not the unit and its
inverse does not belong to the positive set.

lemma (in group3) OrderedGroup_ZF_1_L15:
assumes Al: "acG," shows "a#l" "a“l¢G,"

(proof)

If o~ ! is positive, then a can not be positive or the unit.

lemma (in group3) OrderedGroup_ZF_1_L16:
assumes Al: "acG" and A2: "a '€G," shows "a#l" "a¢G,"

(proof)

For linearly ordered groups each element is either the unit, positive or its
inverse is positive.

lemma (in group3) 0rdGroup_decomp:
assumes Al: "r {is total on} G" and A2: "a€eG"
shows "Exactly_1_of_3_holds (a=1,a€G+,a’1EG+)"
(proof)

1

A if a is a nonunit element that is not positive, then ¢~ is is positive. This

is useful for some proofs by cases.

lemma (in group3) OrdGroup_cases:
assumes Al: "r {is total on} G" and A2: "acG"
and A3: "a#l" "a¢G,"
shows "a=! € G "

(proof)

Elements from G \ G4 are not greater that the unit.

lemma (in group3) OrderedGroup_ZF_1_L17:
assumes Al: "r {is total on} G" and A2: "a € G-G."
shows "a<1"

(proof)

The next lemma allows to split proofs that something holds for all « € G
intocasesa=1,a € G4, —a € G4.
lemma (in group3) OrderedGroup_ZF_1_L18:

assumes Al: "r {is total on} G" and A2: "be&G"

and A3: "Q(1)" and A4: "VacG,. Q(a)" and A5: "VacG,. Q(a—H)"
shows "Q(b)"

(proof)

All elements greater or equal than an element of G, belong to G,.

lemma (in group3) OrderedGroup_ZF_1_L19:
assumes Al: "a € G, " and A2: "a<b"
shows "b € G."

(proof)

171

The inverse of an element of G, cannot be in G;.

lemma (in group3) OrderedGroup_ZF_1_L20:
assumes Al: "r {is total on} G" and A2: "a € G,"
shows "a=! ¢ G."

(proof)

The set of positive elements of a nontrivial linearly ordered group is not
empty.
lemma (in group3) OrderedGroup_ZF_1_L21:

assumes Al: "r {is total on} G" and A2: "G # {1}"
shows "G, # O"

(proof)

If b Gy, then a < a - b. Multiplying a by a positive elemnt increases a.

lemma (in group3) OrderedGroup_ZF_1_L22:
assumes Al: "acG" "beGip"
shows "a<a-b" "a 7é a-b" "ab € G"
(proof)

If G is a nontrivial linearly ordered hroup, then for every element of G we
can find one in G, that is greater or equal.

lemma (in group3) OrderedGroup_ZF_1_L23:
assumes Al: "r {is total on} G" and A2: "G # {1}"
and A3: "aeG"
shows "JbeGy. a<b"

(proof)

The G* is G, plus the unit.
lemma (in group3) OrderedGroup_ZF_1_L24: shows "G* = G U{1}"

{proof)
What is —G, really?
lemma (in group3) OrderedGroup_ZF_1_L25: shows

"(-Gy) = {a~l. acG,}"
n (_G+) g el
(proof)

If the inverse of a is in G, then a is in the inverse of G.

lemma (in group3) OrderedGroup_ZF_1_L26:
assumes Al: "acG" and A2: "a7! € Gy "
shows "a € (-Gy)"

(proof)

If @ is in the inverse of G, then its inverse is in G..

lemma (in group3) OrderedGroup_ZF_1_L27:
assumes "a € (-G)"
shows "a=! € G, "

172

(proof)
A linearly ordered group can be decomposed into G4, {1} and —G 4+

lemma (in group3) OrdGroup_decomp?2:
assumes Al: "r {is total on} G"
shows
"G = Gy U (-GU {1}
"G+N(-G4) = o"
"l ¢ GLU-GL)"

(proof)

If a - b~! is nonnegative, then b < a. This maybe used to recover the order
from the set of nonnegative elements and serve as a way to define order by
prescibing that set (see the ” Alternative definitions” section).

lemma (in group3) OrderedGroup_ZF_1_L28:
assumes Al: "a€G" "beG" and A2: "ab~ ! € G
shows "b<a"

(proof)

A special case of OrderedGroup_zF_1_128 when a - b~ ! is positive.

corollary (in group3) OrderedGroup_ZF_1_L29:
assumes Al: "acG" "beG" and A2: "ab ! € Gy
shows "b<a" "b#a"

(proof)

A bit stronger that OrderedGroup_zF_1_L29, adds case when two elements
are equal.
lemma (in group3) OrderedGroup_ZF_1_L30:

assumes "acG" "beG" and "a=b V ba"l € Gy
shows "a<b"

(proof)

A different take on decomposition: we can have a =bor a < bor b < a.

lemma (in group3) OrderedGroup_ZF_1_L31:
assumes Al: "r {is total on} G" and A2: "a€G" "begG"
shows "a=b V (a<b A a#b) V (b<a A bz#a)"

(proof)

32.4 Intervals and bounded sets
Intervals here are the closed intervals of the form {z € G.a < x < b}.

A bounded set can be translated to put it in GT and then it is still bounded
above.

lemma (in group3) OrderedGroup_ZF_2_L1:
assumes Al: "VgeA. L<g A g<M"
and A2: "S = RightTranslation(G,P,L_l)"

173

and A3: "a € S‘‘(A)"
shows "a < M-L7I" "1<a"
(proof)

Every bounded set is an image of a subset of an interval that starts at 1.

lemma (in group3) OrderedGroup_ZF_2_L2:
assumes Al: "IsBounded(A,r)"
shows "3B.3geGT.3TeG—G. A = T*“(B) A B C Interval(r,1,g)"

(proof)

If every interval starting at 1 is finite, then every bounded set is finite. I
find it interesting that this does not require the group to be linearly ordered
(the order to be total).

theorem (in group3) OrderedGroup_ZF_2_T1:
assumes Al: "VgeGT. Interval(r,1,g) € Fin(G)"
and A2: "IsBounded(A,r)"
shows "A € Fin(G)"

(proof)

In linearly ordered groups finite sets are bounded.

theorem (in group3) ord_group_fin_bounded:
assumes "r {is total on} G" and "B€Fin(G)"
shows "IsBounded(B,r)"

(proof)

For nontrivial linearly ordered groups if for every element G we can find one
in A that is greater or equal (not necessarily strictly greater), then A can
neither be finite nor bounded above.

lemma (in group3) OrderedGroup_ZF_2_L2A:
assumes Al: "r {is total on} G" and A2: "G # {1}"
and A3: "VaeG. dbcA. a<b"
shows
"Va€eG. dbeA. a#b A a<b"
"—IsBoundedAbove(A,r)"
"A ¢ Fin(G)"
(proof)

Nontrivial linearly ordered groups are infinite. Recall that Fin(A) is the
collection of finite subsets of A. In this lemma we show that G ¢ Fin(G),
that is that G is not a finite subset of itself. This is a way of saying that
G is infinite. We also show that for nontrivial linearly ordered groups G, is
infinite.

theorem (in group3) Linord_group_infinite:
assumes Al: "r {is total on} G" and A2: "G # {1}"
shows
"G, ¢ Fin(G)"
"G ¢ Fin(G)"

174

(proof)

A property of nonempty subsets of linearly ordered groups that don’t have
a maximum: for any element in such subset we can find one that is strictly
greater.
lemma (in group3) OrderedGroup_ZF_2_L2B:

assumes Al: "r {is total on} G" and A2: "ACG" and

A3: "—HasAmaximum(r,A)" and A4: "xcA"
shows "JyeA. x<y"

(proof)

In linearly ordered groups G \ G is bounded above.

lemma (in group3) OrderedGroup_ZF_2_L3:
assumes Al: "r {is total on} G" shows "IsBoundedAbove(G-G,r)"

(proof)

In linearly ordered groups if A NG is finite, then A is bounded above.

lemma (in group3) OrderedGroup_ZF_2_L4:
assumes Al: "r {is total on} G" and A2: "ACG"
and A3: "A N G4 € Fin(G)"
shows "IsBoundedAbove(A,r)"

(proof)

If a set —A C G is bounded above, then A is bounded below.

lemma (in group3) OrderedGroup_ZF_2_L5:
assumes Al: "ACG" and A2: "IsBoundedAbove(-A,r)"
shows "IsBoundedBelow(A,r)"

(proof)

If a < b, then the image of the interval a..b by any function is nonempty.

lemma (in group3) OrderedGroup_ZF_2_L6:
assumes "a<b" and "f:G—G"
shows "f‘‘(Interval(r,a,b)) # 0"

(proof)

end

33 More on ordered groups

theory OrderedGroup_ZF_1 imports OrderedGroup_ZF
begin

In this theory we continue the OrderedGroup_ZF theory development.

175

33.1 Absolute value and the triangle inequality
The goal of this section is to prove the triangle inequality for ordered groups.

Absolute value maps G into G.

lemma (in group3) OrderedGroup_ZF_3_L1:
shows "AbsoluteValue(G,P,r) : G—G"

(proof)
If a € G, then |a| = a.
lemma (in group3) OrderedGroup_ZF_3_L2:

assumes Al: "acGt" shows "l|a| = a"
(proof)

The absolute value of the unit is the unit. In the additive totation that
would be |0 = 0.

lemma (in group3) OrderedGroup_ZF_3_L2A:
shows "|1| = 1" (proof)

If @ is positive, then |a| = a.
lemma (in group3) OrderedGroup_ZF_3_L2B:

assumes "acG," shows "l|a| = a"
(proof)

If a € G\ GY, then |a| = a1

lemma (in group3) OrderedGroup_ZF_3_L3:
assumes Al: "a € G-GT" shows "|a| = a=!"

(proof)

For elements that not greater than the unit, the absolute value is the inverse.

lemma (in group3) OrderedGroup_ZF_3_L3A:
assumes Al: "a<l"
shows "|a| = a—!"

(proof)

In linearly ordered groups the absolute value of any element is in G™.

lemma (in group3) OrderedGroup_ZF_3_L3B:
assumes Al: "r {is total on} G" and A2: "acG"
shows "|a|l € gt

(proof)

For linearly ordered groups (where the order is total), the absolute value
maps the group into the positive set.

lemma (in group3) OrderedGroup_ZF_3_L3C:
assumes Al: "r {is total on} G"
shows "AbsoluteValue(G,P,r) : G—GT"

(proof)

176

If the absolute value is the unit, then the elemnent is the unit.

lemma (in group3) OrderedGroup_ZF_3_L3D:
assumes Al: "acG" and A2: "|al| = 1"
shows "a = 1"

(proof)

In linearly ordered groups the unit is not greater than the absolute value of
any element.

lemma (in group3) OrderedGroup_ZF_3_L3E:
assumes "r {is total on} G" and "a&G"
shows "1 < |al"

(proof)

If b is greater than both a and a~!, then b is greater than |al.

lemma (in group3) OrderedGroup_ZF_3_L4:
assumes Al: "a<b" and A2: "a"!< b"
shows "|a|< b"

(proof)

In linearly ordered groups a < |a|.

lemma (in group3) OrderedGroup_ZF_3_L5:
assumes Al: "r {is total on} G" and A2: "acG"
shows "a < |al"

(proof)
a~! < |a| (in additive notation it would be —a < |al.

lemma (in group3) OrderedGroup_ZF_3_L6:
assumes Al: "acG" shows "a=! < |al|"

(proof)

Some inequalities about the product of two elements of a linearly ordered
group and its absolute value.

lemma (in group3) OrderedGroup_ZF_3_L6A:

assumes "r {is total on} G" and "acG" "beG"
shows
"a3.b §|a||b|"

na_bfl §|a||b|"
"a_1~b §|a||b|"
"a_1~b_1 Slal'lblu

(proof)
o™t < |al.

lemma (in group3) OrderedGroup_ZF_3_L7:
assumes "r {is total on} G" and "aeG"
shows "la"!|<|al"

(proof)

o™ = lal.

177

lemma (in group3) OrderedGroup_ZF_3_L7A:
assumes Al: "r {is total on} G" and A2: "aeG"

shows "la"!| = |a|"
(proof)
la- b7t = |b-a~!. It doesn’t look so strange in the additive notation:
la —b] = |b—al.

lemma (in group3) OrderedGroup_ZF_3_L7B:
assumes Al: "r {is total on} G" and A2: "acG" "beG"
shows "|ab~!| = |b-a”l|"

(proof)

Triangle inequality for linearly ordered abelian groups. It would be nice to
drop commutativity or give an example that shows we can’t do that.

theorem (in group3) OrdGroup_triangle_ineq:
assumes Al: "P {is commutative on} G"
and A2: "r {is total on} G" and A3: "aeG" "beG"
shows "lab| < [al-Ib|"

(proof)
We can multiply the sides of an inequality with absolute value.

lemma (in group3) OrderedGroup_ZF_3_L7C:
assumes Al: "P {is commutative on} G"
and A2: "r {is total on} G" and A3: "acG" "beG"

and A4: "lal < c" "[b| < 4"
shows "lab| < c-d"
(proof)

A version of the OrderedGroup_ZF_3_L7C but with multiplying by the inverse.

lemma (in group3) OrderedGroup_ZF_3_L7CA:
assumes "P {is commutative on} G"
and "r {is total on} G" and "acG" "beG"

and nlal S c" nlbl S q"
shows "|lab™!| < c-4"
(proof)

Triangle inequality with three integers.

lemma (in group3) OrdGroup_triangle_ineq3:
assumes Al: "P {is commutative on} G"
and A2: "r {is total on} G" and A3: "acG" "beG" "ceG"
shows "labc| < lal-Ibl-lc|"

(proof) B

Some variants of the triangle inequality.

lemma (in group3) OrderedGroup_ZF_3_L7D:
assumes Al: "P {is commutative on} G"
and A2: "r {is total on} G" and A3: "acG" "beG"

178

and A4: "|ab™l| < ¢
shows

"lal < c-lb|"

"lal < Ibl-c"

"c_1~a b"

Some more variants of the triangle inequality.

lemma (in group3) OrderedGroup_ZF_3_L7E:
assumes Al: "P {is commutative on} G"
and A2: "r {is total on} G" and A3: "acG" "beG"
and A4: "lab ! < ¢
shows "b.c™1 < a"
(proof)

An application of the triangle inequality with four group elements.

lemma (in group3) OrderedGroup_ZF_3_L7F:
assumes Al: "P {is commutative on} G"
and A2: "r {is total on} G" and
A3: "a€G" "bEG" "ceG" "deG"
shows "la.c™'| < |abl-lcdl-lbd™|"
(proof)

la| < L implies L~! < a (it would be —L < a in the additive notation).

lemma (in group3) OrderedGroup_ZF_3_L8:
assumes Al: "aceG" and A2: "|a|<L"
shows
anlSau

(proof)

In linearly ordered groups |a| < L implies a < L (it would be a < L in the
additive notation).

lemma (in group3) OrderedGroup_ZF_3_L8A:
assumes Al: "r {is total on} G"
and A2: "acG" and A3: "|a|<L"
shows
l|a§L|l
"1<Lll

(proof)

A somewhat generalized version of the above lemma.

lemma (in group3) OrderedGroup_ZF_3_L8B:
assumes Al: "acG" and A2: "la|<L" and A3: "1<c"
shows "(L-¢c)~! < a"

{(proof)

If b is between a and a - ¢, then b-a~! < c.

179

lemma (in group3) OrderedGroup_ZF_3_L8C:
assumes Al: "a<b" and A2: "ceG" and A3: "b<c-a"
shows "|b-a"l| < ¢"

(proof)

For linearly ordered groups if the absolute values of elements in a set are
bounded, then the set is bounded.

lemma (in group3) OrderedGroup_ZF_3_L9:
assumes Al: "r {is total on} G"
and A2: "ACG" and A3: "VacA. |lal < L"
shows "IsBounded(A,r)"

(proof)

A slightly more general version of the previous lemma, stating the same fact
for a set defined by separation.
lemma (in group3) OrderedGroup_ZF_3_L9A:

assumes Al: "r {is total on} G"

and A2: "VxeX. b(x)€G A |b(x)|<L"

shows "IsBounded({b(x). x€X},r)"

(proof)

A special form of the previous lemma stating a similar fact for an image of
a set by a function with values in a linearly ordered group.
lemma (in group3) OrderedGroup_ZF_3_LO9B:

assumes Al: "r {is total on} G"

and A2: "f:X—G" and A3: "ACX"

and Ad: "VxeA. [£x)| < L"

shows "IsBounded(f‘‘(A),r)"

(proof)

For linearly ordered groups if | < a < u then |a| is smaller than the greater
of [1],|ul.
lemma (in group3) OrderedGroup_ZF_3_L10:

assumes Al: "r {is total on} G"

and A2: "1<a" "a<u"

shows

"lal < Greater0f(r, |1/, |ul)"

{(proof)

For linearly ordered groups if a set is bounded then the absolute values are
bounded.
lemma (in group3) OrderedGroup_ZF_3_L10A:

assumes Al: "r {is total on} G"

and A2: "IsBounded(A,r)"
shows "dL. VacA. |a|] < L"

(proof)

A slightly more general version of the previous lemma, stating the same fact
for a set defined by separation.

180

lemma (in group3) OrderedGroup_ZF_3_L11:
assumes "r {is total on} G"
and "IsBounded({b(x).xeX},r)"
shows "dL. VxeX. |[b(xx)|] < L"

(proof)

Absolute values of elements of a finite image of a nonempty set are bounded
by an element of the group.

lemma (in group3) OrderedGroup_ZF_3_L11A:
assumes Al: "r {is total on} G"
and A2: "X#0" and A3: "{b(x). x€X} € Fin(G®)"
shows "JLeG. VxeX. [b(x)| < L"

(proof)

In totally oredered groups the absolute value of a nonunit element is in G .

lemma (in group3) OrderedGroup_ZF_3_L12:
assumes Al: "r {is total on} G"
and A2: "a€eG" and A3: "a#l"
shows "lal € G4"

(proof)

33.2 Maximum absolute value of a set

Quite often when considering inequalities we prefer to talk about the abso-
lute values instead of raw elements of a set. This section formalizes some
material that is useful for that.

If a set has a maximum and minimum, then the greater of the absolute
value of the maximum and minimum belongs to the image of the set by the
absolute value function.

lemma (in group3) OrderedGroup_ZF_4_L1:
assumes "A C G"
and "HasAmaximum(r,A)" "HasAminimum(r,A)"
and "M = GreaterOf(r, |Minimum(r,A) |, IMaximum(r,A)|)"
shows "M € AbsoluteValue(G,P,r)‘‘(A)"
(proof)

If a set has a maximum and minimum, then the greater of the absolute value
of the maximum and minimum bounds absolute values of all elements of the
set.

lemma (in group3) OrderedGroup_ZF_4_L2:
assumes Al: "r {is total on} G"
and A2: "HasAmaximum(r,A)" "HasAminimum(r,A)"
and A3: "acA"
shows "lal|< GreaterOf(r, |[Minimum(r,A) |, |Maximum(r,A) [)"

(proof)

181

If a set has a maximum and minimum, then the greater of the absolute value
of the maximum and minimum bounds absolute values of all elements of the
set. In this lemma the absolute values of ekements of a set are represented
as the elements of the image of the set by the absolute value function.

lemma (in group3) OrderedGroup_ZF_4_L3:
assumes "r {is total on} G" and "A C G"
and "HasAmaximum(r,A)" "HasAminimum(r,A)"
and "b € AbsoluteValue(G,P,r)‘‘(A)"
shows "b< GreaterOf(r, |IMinimum(r,A) |, IMaximum(xr,A)|)"

(proof)

If a set has a maximum and minimum, then the set of absolute values also
has a maximum.

lemma (in group3) OrderedGroup_ZF_4_L4:
assumes Al: "r {is total on} G" and A2: "A C G"
and A3: "HasAmaximum(r,A)" "HasAminimum(r,A)"
shows "HasAmaximum(r,AbsoluteValue(G,P,r) ‘‘(A))"

(proof)

If a set has a maximum and a minimum, then all absolute values are bounded
by the maximum of the set of absolute values.

lemma (in group3) OrderedGroup_ZF_4_L5:
assumes Al: "r {is total on} G" and A2: "A C G"
and A3: "HasAmaximum(r,A)" "HasAminimum(r,A)"
and A4: "acA"
shows "|a| < Maximum(r,AbsoluteValue(G,P,r) “‘(A))"

(proof)

33.3 Alternative definitions

Sometimes it is usful to define the order by prescibing the set of positive
or nonnegative elements. This section deals with two such definitions. One
takes a subset H of G that is closed under the group operation, 1 ¢ H and
for every a € H we have either a € H or a~' € H. Then the order is defined
as a < biff a =bor a'b € H. For abelian groups this makes a linearly
ordered group. We will refer to order defined this way in the comments
as the order defined by a positive set. The context used in this section is
the group0 context defined in Group_ZF theory. Recall that £ in that context
denotes the group operation (unlike in the previous sections where the group
operation was denoted P.

The order defined by a positive set is the same as the order defined by a
nonnegative set.

lemma (in group0) OrderedGroup_ZF_5_L1:
assumes Al: "r = {p € GxG. fst(p) = snd(p) V fst(p) '-snd(p) € H}"
shows "(a,b) € r <+— acG A beG A a~'b € H U {1}"

182

(proof)

The relation defined by a positive set is antisymmetric.

lemma (in group0) OrderedGroup_ZF_5_L2:
assumes Al: "r = {p € GxG. fst(p) = snd(p) V fst(p) '-snd(p) € H}"
and A2: "VacG. a#l — (acH) Xor (a~'eH)"
shows "antisym(r)"

(proof)

The relation defined by a positive set is transitive.

lemma (in group0) OrderedGroup_ZF_5_L3:
assumes Al: "r = {p € GxG. fst(p) = snd(p) V fst(p) '-snd(p) € H}"
and A2: "HCG" "H {is closed under} P"
shows "trans(r)"

(proof)

The relation defined by a positive set is translation invariant. With our
definition this step requires the group to be abelian.

lemma (in group0) OrderedGroup_ZF_5_L4:
assumes Al: "r = {p € GxG. fst(p) = snd(p) V fst(p) '-snd(p) € H}"
and A2: "P {is commutative on} G"
and A3: "(a,b) € r" and A4: "ceG"
shows "(a:c,bc) € r A (c-a,cb) € r"
(proof)

If H C G is closed under the group operation 1 ¢ H and for every a € H
we have either a € H ora™! € H, then the relation ”<” defined by a < b &
a~'b € H orders the group G. In such order H may be the set of positive
or nonnegative elements.

lemma (in group0) OrderedGroup_ZF_5_L5:
assumes Al: "P {is commutative on} G"
and A2: "HCG" "H {is closed under} P"
and A3: "VacG. a#l — (acH) Xor (a~'em)"
and A4: "r = {p € GxG. fst(p) = snd(p) V fst(p) '-snd(p) € H}"
shows
"IsAnOrdGroup(G,P,r)"
"r {is total on} G"
"Nonnegative(G,P,r) = PositiveSet(G,P,r) U {1}"

(proof)

If the set defined as in OrderedGroup_ZF_5_L4 does not contain the neutral
element, then it is the positive set for the resulting order.

lemma (in group0) OrderedGroup_ZF_5_L6:
assumes "P {is commutative on} G"
and "HCG" and "1 ¢ H"
and "r = {p € GxG. fst(p) = snd(p) V fst(p) !-snd(p) € H}"
shows "PositiveSet(G,P,r) = H"

183

(proof)

The next definition describes how we construct an order relation from the
prescribed set of positive elements.

definition
"OrderFromPosSet (G,P,H) =
{p € GxG. fst(p) = snd(p) V P‘(GroupInv(G,P)‘(fst(p)),snd(p)) € H }"

The next theorem rephrases lemmas OrderedGroup_ZF_5_L5 and OrderedGroup_ZF_5_L6
using the definition of the order from the positive set OrderFromPosSet. To
summarize, this is what it says: Suppose that H C G is a set closed under

that group operation such that 1 ¢ H and for every nonunit group element a

either a € H or a~! € H. Define the order as a < biffa=bora ' -b e H.

Then this order makes G into a linearly ordered group such H is the set

of positive elements (and then of course H U {1} is the set of nonnegative
elements).

theorem (in group0) Group_ord_by_positive_set:
assumes "P {is commutative on} G"

and "HCG" "H {is closed under} P" "1 ¢ H"
and "VacG. a#l — (a€H) Xor (a~'eH)"
shows

"IsAnOrdGroup(G,P,OrderFromPosSet (G,P,H))"
"OrderFromPosSet (G,P,H) {is total on} G"
"PositiveSet (G,P,0rderFromPosSet(G,P,H))
"Nonnegative(G,P,0OrderFromPosSet (G,P,H))

(proof)

Hll
HU {1}"

33.4 0Odd Extensions

In this section we verify properties of odd extensions of functions defined on
G4. An odd extension of a function f : G — G is a function f°: G — G
defined by f°(z) = f(z) if z € G4, f(1) =1 and f°(z) = (f(z=1))~! for
x < 1. Such function is the unique odd function that is equal to f when
restricted to G .

The next lemma is just to see the definition of the odd extension in the
notation used in the groupl context.

lemma (in group3) OrderedGroup_ZF_6_L1:
shows "f* = £ U {(a, (‘@) 1). a € -G.} U {(1,1)}"
{proof)

A technical lemma that states that from a function defined on G, with values
in G we have (f(a™!))"! € G.

lemma (in group3) OrderedGroup_ZF_6_L2:
assumes "f: G;—G" and "ae-G, "
shows

184

"f‘(ail) c g"
n(fl(afl))fl c g
(proof)

The main theorem about odd extensions. It basically says that the odd
extension of a function is what we want to to be.

lemma (in group3) odd_ext_props:
assumes Al: "r {is total on} G" and A2: "f: GL—G"
shows
"£f° G — G"
"acG,. (£)°(a) = £ (a)"
"Wae(-GL). (£)(a) = (£(a 1))~ 1In
"(£7) (1) = 1"
(proof)

Odd extensions are odd, of course.

lemma (in group3) oddext_is_odd:
assumes Al: "r {is total on} G" and A2: "f: G, —G"
and A3: "aeG"
shows "(£)“(a™!) = ((£)“(a))~!"

(proof)

Another way of saying that odd extensions are odd.

lemma (in group3) oddext_is_odd_alt:
assumes Al: "r {is total on} G" and A2: "f: G, —G"
and A3: "acG"
shows "((£) ‘(a7 = (£)“(a)"

(proof)

33.5 Functions with infinite limits

In this section we consider functions f : G — G with the property that for
f(x) is arbitrarily large for large enough x. More precisely, for every a € G
there exist b € G4 such that for every x > b we have f(z) > a. In a sense
this means that lim,_,~ f(2) = oo, hence the title of this section. We also
prove dual statements for functions such that lim,_, o f(z) = —oc.

If an image of a set by a function with infinite positive limit is bounded
above, then the set itself is bounded above.

lemma (in group3) OrderedGroup_ZF_7_L1:
assumes Al: "r {is total on} G" and A2: "G # {1}" and
A3: "f:G—G" and
Ad: "VaeG.dbeGy.Vx. b<x — a < £°(x)" and
A5: "ACG" and
A6: "IsBoundedAbove(f‘‘(A),r)"
shows "IsBoundedAbove(A,r)"

(proof)

185

If an image of a set defined by separation by a function with infinite positive
limit is bounded above, then the set itself is bounded above.

lemma (in group3) OrderedGroup_ZF_7_L2:
assumes Al: "r {is total on} G" and A2: "G # {1}" and
A3: "X#£0" and A4: "f:G—G" and
A5: "VacG.3beG, .Vy. b<y — a < £(y)" and
A6: "VxeX. b(x) € G A £°(b(x)) < U"
shows "Ju.VxeX. b(x) < u"

(proof)

If the image of a set defined by separation by a function with infinite negative
limit is bounded below, then the set itself is bounded above. This is dual to
OrderedGroup_ZF_7_L2.

lemma (in group3) OrderedGroup_ZF_7_L3:
assumes Al: "r {is total on} G" and A2: "G # {1}" and
A3: "X#0" and A4: "f:G—G" and
A5: "Va€G.3beG, .Vy. b<y — f(y 1) < a" and
A6: "VxeX. b(x) € G AL < £(&N"
shows "d1.VxeX. 1 < bx)"

(proof)

The next lemma combines OrderedGroup_ZF_7_L2 and OrderedGroup_ZF_7_L3
to show that if an image of a set defined by separation by a function with
infinite limits is bounded, then the set itself i bounded.

lemma (in group3) OrderedGroup_ZF_7_L4:
assumes Al: "r {is total on} G" and A2: "G # {1}" and
A3: "X#0" and A4: "f:G—G" and
A5: "VaeG.3beC,.Vy. b<y — a < £‘(y)" and
A6: "VaeG.3beG,.Vy. b<y — £(y 1) < a" and
A7: "VxeX. b(x) € G AL < £(M&) A £(bkx) <U"
shows "JdM.VzeX. |[b(x)| < M"

(proof)

end

34 Rings - introduction

theory Ring_ZF imports AbelianGroup_ZF
begin

This theory file covers basic facts about rings.

34.1 Definition and basic properties

In this section we define what is a ring and list the basic properties of rings.

186

We say that three sets (R, A, M) form a ring if (R, A) is an abelian group,
(R, M) is a monoid and A is distributive with respect to M on R. A rep-
resents the additive operation on R. As such it is a subset of (R x R) X R
(recall that in ZF set theory functions are sets). Similarly M represents the
multiplicative operation on R and is also a subset of (R x R) x R. We don’t
require the multiplicative operation to be commutative in the definition of
a ring.
definition
"IsAring(R,A,M) = IsAgroup(R,A) A (A {is commutative on} R) A
IsAmonoid(R,M) A IsDistributive(R,A,M)"

We also define the notion of having no zero divisors. In standard notation
the ring has no zero divisors if for all a,b € R we have a-b = 0 implies a = 0
or b=0.

definition
"HasNoZeroDivs(R,A,M) = (VacR. VbeR.
M‘(a,b) = TheNeutralElement(R,A) —>
a = TheNeutralElement(R,A) V b = TheNeutralElement(R,A))"

Next we define a locale that will be used when considering rings.

locale ring0 =
fixes R and A and M
assumes ringAssum: "IsAring(R,A,M)"

fixes ringa (infixl "+" 90)
defines ringa_def [simpl: "a+b = A‘(a,b)"

fixes ringminus ("- _" 89)
defines ringminus_def [simp]: "(-a) = GroupInv(R,A)‘(a)"

fixes ringsub (infixl "-" 90)
defines ringsub_def [simp]: "a-b = a+(-b)"

fixes ringm (infixl "-" 95)
defines ringm_def [simp]l: "ab = M‘(a,b)"

fixes ringzero ("0")
defines ringzero_def [simp]: "O = TheNeutralElement(R,A)"

fixes ringone ("1")
defines ringone_def [simp]: "1 = TheNeutralElement(R,M)"

fixes ringtwo ("2")
defines ringtwo_def [simp]l: "2 = 1+1"

fixes ringsq ("_2" [96] 97)

187

defines ringsq_def [simp]: "a? = a-a"

In the ring0 context we can use theorems proven in some other contexts.

lemma (in ring0) Ring ZF_1_L1: shows
"monoidO(R,M)"
"groupO(R,A)"
"A {is commutative on} R"

(proof)

The additive operation in a ring is distributive with respect to the multi-
plicative operation.

lemma (in ring0) ring_oper_distr: assumes Al: "acR" "beR" "ceR"
shows
"a-(b+c) = ab + a-c"
"(b+c)-a = b-a + c-a"
(proof)

Zero and one of the ring are elements of the ring. The negative of zero is
Z€ro.

lemma (in ring0) Ring ZF_1_L2:
shows "OcR" "ler" "(-0) = O"
{proof)

The next lemma lists some properties of a ring that require one element of
a ring.

lemma (in ring0) Ring ZF_1_L3: assumes "acR"
shows
"(-a) € R"
"(-(-a)) = a"
"a+0 = a"
"O+a = a"
"a-1 = a"
"l-a = a"
"a-a = 0"
"a-0 = a"
"2-a = at+a"
"(-a)+a = O"

(proof)

Properties that require two elements of a ring.

lemma (in ring0) Ring ZF_1_L4: assumes Al: "acR" "beR"
shows
"atb € R"
"a-b € R"
"a-b € R"
"a+b = b+a"

{proof)

188

Cancellation of an element on both sides of equality. This is a property of
groups, written in the (additive) notation we use for the additive operation
in rings.

lemma (in ring0) ring_cancel_add:

assumes Al: "acR" "beR" and A2: "a + b = a"
shows "b = 0"

(proof)

Any element of a ring multiplied by zero is zero.

lemma (in ring0) Ring ZF_1_L6:
assumes Al: "xc€R" shows "0O-x = 0" "x-0 = 0"

(proof)

Negative can be pulled out of a product.

lemma (in ring0) Ring ZF_1_L7:
assumes Al: "acR" "beR"

shows

"(-a)-b = -(a-b)"

"a-(-b) = -(a-b)"

"(—a)-b = a-(—b)"
(proof)

Minus times minus is plus.

lemma (in ring0) Ring ZF_1_L7A: assumes "acR" "beR"
shows "(-a)-(-b) = a:b"
(proof)

Subtraction is distributive with respect to multiplication.

lemma (in ring0) Ring_ZF_1_L8: assumes "acR" "b&R" "ceR"
shows
"a-(b-c) = ab - a-c"
"(b-c)-a = b-a - c-a"

{proof)

Other basic properties involving two elements of a ring.

lemma (in ring0) Ring_ZF_1_L9: assumes "acR" "beR"
shows
"(-b)-a = (-a)-b"
"(-(at+b)) = (-a)-b"

"(-(a-b)) = ((-a)+b)"
"a-(-b) = atb"
(proof)

If the difference of two element is zero, then those elements are equal.

lemma (in ring0) Ring ZF_1_LOA:
assumes Al: "acR" "beR" and A2: "a-b = O"
shows "a=b"

189

(proof)

Other basic properties involving three elements of a ring.

lemma (in ring0) Ring ZF_1_L10:
assumes "acR" "beR" '"ceR"

shows
"a+(btc) = atb+c"
"a-(b+c) = a-b-c"
"a-(b-c) = a-b+c"
(proof)

Another property with three elements.

lemma (in ring0) Ring ZF_1_L10A:
assumes A1 . IlaeRll llbeRll I’CGR"
shows "at+(b-c) = atb-c"
(proof)

Associativity of addition and multiplication.

lemma (in ring0) Ring ZF_1_L11:
assumes "acR" "b&R" "c&R"
shows
"at+b+c = a+(b+c)"
"a-b-c = a-(b-c)"
(proof)

An interpretation of what it means that a ring has no zero divisors.

lemma (in ring0) Ring ZF_1_L12:
assumes "HasNoZeroDivs(R,A,M)"
and llaeRll lla#oll llbeRll llb#Oll
shows "a-b#0"
(proof)

In rings with no zero divisors we can cancel nonzero factors.

lemma (in ring0) Ring ZF_1_L12A:
assumes Al: "HasNoZeroDivs(R,A,M)" and A2: "ac€R" "beR"
and A3: "ac = b-c" and Ad: "c#0"
shows "a=b"

(proof)

"CGR"

In rings with no zero divisors if two elements are different, then after mul-

tiplying by a nonzero element they are still different.

lemma (in ring0) Ring_ZF_1_L12B:
assumes Al: "HasNoZeroDivs(R,A,M)"

naeRn "beR" "CGR" "a#b" "C?é()"
shows "a-c # b-c"
(proof)

190

In rings with no zero divisors multiplying a nonzero element by a nonone
element changes the value.

lemma (in ring0) Ring_ZF_1_L12C:
assumes Al: "HasNoZeroDivs(R,A,M)" and
A2: "acR" "beR" and A3: "O#£a" "1#b"
shows "a # a-b"

(proof)

If a square is nonzero, then the element is nonzero.

lemma (in ring0) Ring_ ZF_1_L13:
assumes "acR" and "a? # 0"
shows "a£0"

(proof)

Square of an element and its opposite are the same.

lemma (in ring0) Ring ZF_1_L14:
assumes "acR" shows "(-a)? = ((a)2)"

(proof)

Adding zero to a set that is closed under addition results in a set that is
also closed under addition. This is a property of groups.
lemma (in ring0) Ring ZF_1_L15:

assumes "H C R" and "H {is closed under} A"
shows "(H U {0}) {is closed under} A"

(proof)

Adding zero to a set that is closed under multiplication results in a set that
is also closed under multiplication.

lemma (in ring0) Ring_ ZF_1_L16:
assumes Al: "H C R" and A2: "H {is closed under} M"
shows "(H U {0}) {is closed under} M"

(proof)
The ring is trivial iff 0 = 1.

lemma (in ring0) Ring ZF_1_L17: shows "R = {0} +<— 0=1"
(proof)

The sets {m - z.xz € R} and {—m - z.z € R} are the same.

lemma (in ring0) Ring_ZF_1_L18: assumes Al: "meR"
shows "{m-x. x€R} = {(-m)-x. x€R}"
(proof)

34.2 Rearrangement lemmas

In happens quite often that we want to show a fact like (a + b)c + d =
(ac+d—e)+ (be+e)in rings. This is trivial in romantic math and probably

191

there is a way to make it trivial in formalized math. However, I don’t know
any other way than to tediously prove each such rearrangement when it is
needed. This section collects facts of this type.

Rearrangements with two elements of a ring.

lemma (in ring0) Ring ZF_2_L1: assumes "acR" "beR"
shows "atb-a = (b+1)-a"

(proof)

Rearrangements with two elements and cancelling.

lemma (in ring0) Ring_ZF_2_L1A: assumes "acR" "b&R"
shows
"a-b+b = a"
"atb-a = b"
"(-a)+b+a = b"
"(-a)+(b+a) = b"
"a+(b-a) = b"
(proof)

In commutative rings a— (b+1)c = (a—d—c)+(d—bc). For unknown reasons
we have to use the raw set notation in the proof, otherwise all methods fail.

lemma (in ring0) Ring_ ZF_2_L2:
assumes Al: "acR" "beR" "ceR" "deR"
shows "a-(b+1)-c = (a-d-c)+(d-b-c)"
(proof)

Rerrangement about adding linear functions.

lemma (in ring0) Ring ZF_2_L3:
assumes Al: "acR" "beR" "ceR" "deR" "xeR"
shows "(a:x + b) + (cx + d) = (atc)-x + (b+d)"

(proof)

Rearrangement with three elements

lemma (in ring0) Ring ZF_2_L4:
assumes "M {is commutative on} R"
and "a€R" "beR" "ceR"
shows "a-(b-c) = a-c-b"

(proof)

Some other rearrangements with three elements.

lemma (in ring0) ring rearr_3_elemA:
assumes Al: "M {is commutative on} R" and
A2: "a€R" "b&R" "ceR"
shows
"a-(a-c) - b-(-b-c) = (aa + b-b)-c"
"a-(-b-c) + b-(a-c) o"

(proof)

192

Some rearrangements with four elements. Properties of abelian groups.

lemma (in ring0) Ring ZF_2_L5:
assumes "acR" "bcR" "ccR" "deR"

shows
"a-b-c-d=a-d-b-=c"
"a+b+c-d=a-d+b+c"
"a+b-c-d=a-c¢c+ (b-d)"
"a+b+c+d=a+c+ (b+d"
(proof)

Two big rearranegements with six elements, useful for proving properties of
complex addition and multiplication.

lemma (in ring0) Ring ZF_2_L6:
assumes Al: "acR" "beR" "ceR" "deR" '"eceR" "fe&R"
shows
"a-(cre - d-f) - b-(cf + de) =
(a:c - b-d)-e - (ad + b-c)-f"
"a-(c-f + d-e) + b-(ce - df) =
(a:c - b-d)-f + (a-d + b-c)-e"
"a-(cte) - b-(d+f) = a.:c - bd + (ae - b-f)"
"a-(d+f) + b-(c+e) = a-d + b.c + (af + b-e)"
(proof)

end

35 DMore on rings
theory Ring ZF_1 imports Ring ZF Group_ZF_3
begin

This theory is devoted to the part of ring theory specific the construction of
real numbers in the Real_ZF_x series of theories. The goal is to show that
classes of almost homomorphisms form a ring.

35.1 The ring of classes of almost homomorphisms

Almost homomorphisms do not form a ring as the regular homomorphisms
do because the lifted group operation is not distributive with respect to
composition — we have so (r-¢q) # sor-soq in general. However, we do
have so (r-q) &~ sor-soq in the sense of the equivalence relation defined
by the group of finite range functions (that is a normal subgroup of almost
homomorphisms, if the group is abelian). This allows to define a natural
ring structure on the classes of almost homomorphisms.

The next lemma provides a formula useful for proving that two sides of the
distributive law equation for almost homomorphisms are almost equal.

193

lemma (in groupl) Ring ZF_1_1_L1:
assumes Al: "scAH" "reAH" "q€AH" and A2: "neG"
shows
"((so(r-q)) “(m))-(((sor)-(soq)) “(m)) ~!= §(s,({ r'(n),q @)))"
"((r-q)os) ‘(n) = ((ros)-(qos)) ‘(m)"
(proof)

The sides of the distributive law equations for almost homomorphisms are
almost equal.

lemma (in groupl) Ring_ ZF_1_1_L2:
assumes Al: "scAH" "rcAH" "qcAH"
shows
"so(r.q) ~ (sor)-(soq)"
"(r-q)os = (ros)-(qos)"

(proof)

The essential condition to show the distributivity for the operations defined
on classes of almost homomorphisms.

lemma (in groupl) Ring ZF_1_1_L3:
assumes Al: "R = QuotientGroupRel (AH,Op1,FR)"
and A2: "a € AH//R" "b € AH//R" "c € AH//R"
and A3: "A = ProjFun2(AH,R,0p1)" "M = ProjFun2(AH,R,0p2)"
shows "M‘(a,A‘(b,c)) = A“(M‘(a,b),M‘(a,c)) A
M(A‘(b,c),a) = A(M(b,a),M(c,a))"
(proof)

The projection of the first group operation on almost homomorphisms is
distributive with respect to the second group operation.

lemma (in groupl) Ring ZF_1_1_L4:
assumes Al: "R = QuotientGroupRel (AH,Opl1,FR)"
and A2: "A = ProjFun2(AH,R,Opl1)" "M = ProjFun2(AH,R,0p2)"
shows "IsDistributive(AH//R,A,M)"

(proof)

The classes of almost homomorphisms form a ring.

theorem (in groupl) Ring ZF_1_1_T1:
assumes "R = QuotientGroupRel (AH,Op1,FR)"
and "A = ProjFun2(AH,R,0Op1)" "M = ProjFun2(AH,R,0p2)"
shows "IsAring(AH//R,A,M)"
(proof)

end

36 Ordered rings

theory OrderedRing_ZF imports Ring_ZF OrderedGroup_ZF_1

194

begin

In this theory file we consider ordered rings.

36.1 Definition and notation

This section defines ordered rings and sets up appriopriate notation.

We define ordered ring as a commutative ring with linear order that is
preserved by translations and such that the set of nonnegative elements is
closed under multiplication. Note that this definition does not guarantee
that there are no zero divisors in the ring.

definition
"IsAnOrdRing(R,A,M,r) =
(IsAring(R,A,M) A (M {is commutative on} R) A
rCRXR A IsLinOrder(R,r) A
(Va b. V ceR. (a,b) € r — (A°(a,c),A(b,c)) € r) A
(Nonnegative(R,A,r) {is closed under} M))"

The next context (locale) defines notation used for ordered rings. We do
that by extending the notation defined in the ring0 locale and adding some
assumptions to make sure we are talking about ordered rings in this context.

locale ringl = ring0 +
assumes mult_commut: "M {is commutative on} R"
fixes r
assumes ordincl: "r C RXxR"
assumes linord: "IsLinOrder(R,r)"

fixes lesseq (infix "<" 68)
defines lesseq_def [simpl: "a < b = (a,b) € r"

fixes sless (infix "<" 68)
defines sless_def [simpl: "a < b = a<b A a#b"

assumes ordgroup: "Va b. V ceR. a<b — atc < b+c"
assumes pos_mult_closed: "Nonnegative(R,A,r) {is closed under} M"

fixes abs ("I _ ™)
defines abs_def [simp]: "lal = AbsoluteValue(R,A,r)‘(a)"

fixes positiveset ("Ry")
defines positiveset_def [simp]: "R, = PositiveSet(R,A,r)"

195

The next lemma assures us that we are talking about ordered rings in the
ringl context.

lemma (in ringl) OrdRing ZF_1_L1: shows "IsAnOrdRing(R,A,M,r)"
{proof)

We can use theorems proven in the ringl context whenever we talk about
an ordered ring.

lemma OrdRing_ZF_1_L2: assumes "IsAnOrdRing(R,A,M,r)"
shows "ringl(R,A,M,r)"
(proof)

In the ringl context a < b implies that a,b are elements of the ring.

lemma (in ringl) OrdRing ZF_1_L3: assumes "a<b"
shows "acR" "beR"

(proof)

Ordered ring is an ordered group, hence we can use theorems proven in the
group3 context.

lemma (in ringl) OrdRing ZF_1_L4: shows
"IsAnOrdGroup(R,A,r)"
"r {is total on} R"
"A {is commutative on} R"
"group3(R,A,r)"

(proof)

The order relation in rings is transitive.

lemma (in ringl) ring ord_transitive: assumes Al: "a<b" "b<c"
shows "a<c"
(proof)

Transitivity for the strict order: if a < b and b < ¢, then a < ¢. Property of
ordered groups.
lemma (in ringl) ring_strict_ord_trans:

assumes Al: "a<b" and A2: "b<c"
shows "a<c"

(proof)

Another version of transitivity for the strict order: if a < b and b < ¢, then
a < c. Property of ordered groups.
lemma (in ringl) ring_strict_ord_transit:

assumes Al: "a<b" and A2: "b<c"
shows "a<c"

(proof)

The next lemma shows what happens when one element of an ordered ring
is not greater or equal than another.

196

lemma (in ringl) OrdRing ZF_1_L4A: assumes Al: "a€R" "beR"
and A2: "-(a<b)"
ShOWS llb S all Il(_a) é (_b)ll lla#bll

(proof)

A special case of OrdRing_ZF_1_L4A when one of the constants is 0. This is
useful for many proofs by cases.

corollary (in ringl) ord_ring_split2: assumes Al: "a&R"
shows "a<0 Vv (0<a A a#0)"
(proof)

Taking minus on both sides reverses an inequality.

lemma (in ringl) OrdRing ZF_1_L4B: assumes "a<b"
shows "(-b) < (-a)"
{proof)

The next lemma just expands the condition that requires the set of non-
negative elements to be closed with respect to multiplication. These are
properties of totally ordered groups.

lemma (in ringl) OrdRing ZF_1_L5:

assumes "0<a" "0<b"
shows "0 < a-b"
(proof)

Double nonnegative is nonnegative.

lemma (in ringl) OrdRing_ZF_1_L5A: assumes Al: "0<a"
shows "0<2-a"

(proof)

A sufficient (somewhat redundant) condition for a structure to be an ordered
ring. It says that a commutative ring that is a totally ordered group with
respect to the additive operation such that set of nonnegative elements is
closed under multiplication, is an ordered ring.

lemma OrdRing_ ZF_1_L6:
assumes
"IsAring(R,A,M)"
"M {is commutative on} R"
"Nonnegative(R,A,r) {is closed under} M"
"IsAnOrdGroup(R,A,r)"
"r {is total on} R"
shows "IsAnOrdRing(R,A,M,r)"
(proof)

a <biff a—b < 0. This is a fact from OrderedGroup.thy, where it is stated
in multiplicative notation.

lemma (in ringl) OrdRing ZF_1_L7:
assumes "acR" "beR"

197

shows "a<b +— a-b < 0"
(proof)

Negative times positive is negative.

lemma (in ringl) OrdRing ZF_1_L8:
assumes Al: "a<0" and A2: "0<Db"
shows "ab < 0"

(proof)

We can multiply both sides of an inequality by a nonnegative ring element.
This property is sometimes (not here) used to define ordered rings.

lemma (in ringl) OrdRing_ ZF_1_L9:
assumes Al: "a<b" and A2: "0<c"
shows
"a:c < b-c"
"cca < cb"

(proof)

A special case of OrdRing_ZF_1_L9: we can multiply an inequality by a posi-
tive ring element.
lemma (in ringl) OrdRing ZF_1_LOA:

assumes Al: "a<b" and A2: "c&R,"

shows

"a.c S b-c"

"c.a S cb"

(proof)

A square is nonnegative.

lemma (in ringl) OrdRing ZF_1_L10:
assumes Al: "acR" shows "0<(a?)"

(proof)

1 is nonnegative.

corollary (in ringl) ordring_one_is_nonneg: shows "0 < 1"
(proof)

In nontrivial rings one is positive.

lemma (in ringl) ordring one_is_pos: assumes "0#1"
shows "1 € R."

{proof)

Nonnegative is not negative. Property of ordered groups.

lemma (in ringl) OrdRing ZF_1_L11: assumes "0<a"
shows "—-(a<0 A a#0)"
{proof)

A negative element cannot be a square.

198

lemma (in ringl) OrdRing ZF_1_L12:
assumes Al: "a<0" "a#0"
shows "—(3beR. a = ()"

(proof)
If a <b, then 0 < b—a.

lemma (in ringl) OrdRing ZF_1_L13: assumes "a<b"
shows "0 < b-a"

(proof)
If a < b, then 0 < b —a.

lemma (in ringl) OrdRing ZF_1_L14: assumes "a<b" "a#b"
shows
||0 S b-a" ||O ;é b-a"
"b-a € Ry"

(proof)

If the difference is nonnegative, then a < b.

lemma (in ringl) OrdRing ZF_1_L15:
assumes "acR" "beR" and "0 < b-a"
shows "a<b"

(proof)

A nonnegative number is does not decrease when multiplied by a number
greater or equal 1.

lemma (in ringl) OrdRing ZF_1_L16:
assumes Al: "0<a" and A2: "1<b"
shows "a<a-b"

(proof)

We can multiply the right hand side of an inequality between nonnegative
ring elements by an element greater or equal 1.

lemma (in ringl) OrdRing ZF_1_L17:
assumes Al: "0<a" and A2: "a<b" and A3: "1<c"
shows "a<b-c"

(proof)

Strict order is preserved by translations.

lemma (in ringl) ring_strict_ord_trans_inv:
assumes "a<b" and "ceR"
shows
"atc < b+c"
"c+a < c+b"

(proof)

We can put an element on the other side of a strict inequality, changing its
sign.

199

lemma (in ringl) OrdRing ZF_1_L18:

assumes "acR" "beR" and "a-b < c"
shows "a < c+b"
(proof)

We can add the sides of two inequalities, the first of them strict, and we get
a strict inequality. Property of ordered groups.
lemma (in ringl) OrdRing ZF_1_L19:

assumes "a<b" and "c<d"
shows "a+c < b+d"

(proof)

We can add the sides of two inequalities, the second of them strict and we
get a strict inequality. Property of ordered groups.
lemma (in ringl) OrdRing ZF_1_L20:

assumes "a<b" and "c<d"
shows "a+c < b+d"

(proof)

36.2 Absolute value for ordered rings

Absolute value is defined for ordered groups as a function that is the identity
on the nonnegative set and the negative of the element (the inverse in the
multiplicative notation) on the rest. In this section we consider properties
of absolute value related to multiplication in ordered rings.

Absolute value of a product is the product of absolute values: the case when
both elements of the ring are nonnegative.

lemma (in ringl) OrdRing ZF_2_L1:
assumes "0<a" "0<b"
shows "lab| = lal-Ib|"

(proof)

The absolue value of an element and its negative are the same.

lemma (in ringl) OrdRing ZF_2_L2: assumes "acR"
shows "|-al = |al"
{proof)

The next lemma states that |a - (=b)| = |(—a) - b] = |(—a) - (=b)| = |a - b].
lemma (in ringl) OrdRing ZF_2_L3:

assumes "acR" "beR"
shows

"|(-a)-bl = lab|"
"la-(-b)| = labl|"
"|(-a)-(-b)| = |ab|"
(proof)

200

This lemma allows to prove theorems for the case of positive and negative
elements of the ring separately.

lemma (in ringl) OrdRing ZF_2_L4: assumes "acR" and "—(0<a)"
shows "0 < (-a)" "O#a"
{proof)

Absolute value of a product is the product of absolute values.

lemma (in ringl) OrdRing ZF_2_L5:
assumes Al: "a€eR" "beR"
shows "|a-bl = |lal-|b|"

(proof)

Triangle inequality. Property of linearly ordered abelian groups.

lemma (in ringl) ord_ring_triangle_ineq: assumes "acR" "beR"
shows "la+b| < |al+|bl"

{proof)

Ifa<candb<c¢, thena+b<2-c.

lemma (in ringl) OrdRing ZF_2_L6:
assumes "a<c" "b<c" shows "a+b < 2.c"

(proof)

36.3 Positivity in ordered rings
This section is about properties of the set of positive elements R, .

The set of positive elements is closed under ring addition. This is a property
of ordered groups, we just reference a theorem from OrderedGroup_ZF theory
in the proof.

lemma (in ringl) OrdRing ZF_3_L1: shows "R, {is closed under} A"

(proof)

Every element of a ring can be either in the postitive set, equal to zero or its
opposite (the additive inverse) is in the positive set. This is a property of
ordered groups, we just reference a theorem from OrderedGroup_ZF theory.

lemma (in ringl) OrdRing ZF_3_L2: assumes "a€&R"
shows "Exactly_1_of_3_holds (a=0, acR;, (-a) € Ry)"
(proof)

If a ring element a # 0, and it is not positive, then —a is positive.

lemma (in ringl) OrdRing_ZF_3_L2A: assumes "ac€R" "a#0" "a ¢ R."
shows "(-a) € R."
{proof)

R, is closed under multiplication iff the ring has no zero divisors.

lemma (in ringl) OrdRing ZF_3_L3:

201

shows "(R; {is closed under} M)<— HasNoZeroDivs(R,A,M)"
(proof)

Another (in addition to OrdRing_ZF_1_L6 sufficient condition that defines
order in an ordered ring starting from the positive set.

theorem (in ring0) ring_ord_by_positive_set:
assumes
Al: "M {is commutative on} R" and
A2: "PCR" "P {is closed under} A" "O ¢ P" and
A3: "Va€eR. a#0 — (a€P) Xor ((-a) € P)" and
Ad: "P {is closed under} M" and
A5: "r = OrderFromPosSet(R,A,P)"
shows
"IsAnOrdGroup(R,A,r)"
"IsAnOrdRing(R,A,M,r)"
"r {is total on} R"
"PositiveSet(R,A,r)
"Nonnegative(R,A,r)
"HasNoZeroDivs(R,A,M)"
(proof)

Nontrivial ordered rings are infinite. More precisely we assume that the
neutral element of the additive operation is not equal to the multiplicative
neutral element and show that the the set of positive elements of the ring is
not a finite subset of the ring and the ring is not a finite subset of itself.

Pll
P U {0}"

theorem (in ringl) ord_ring_infinite: assumes "0#1"
shows
"Ry ¢ Fin(R)"
"R ¢ Fin(R)"
(proof)

If every element of a nontrivial ordered ring can be dominated by an element
from B, then we B is not bounded and not finite.

lemma (in ringl) OrdRing ZF_3_L4:
assumes "0#1" and "VacR. dbeB. a<b"
shows
"—IsBoundedAbove(B,r)"
"B ¢ Fin(R)"
(proof)

If m is greater or equal the multiplicative unit, then the set {m-n:n € R}
is infinite (unless the ring is trivial).
lemma (in ringl) OrdRing ZF_3_L5: assumes Al: "0#1" and A2: "1<m"
shows
"{m'x. x€R}} ¢ Fin(R)"
"{mx. x€R} ¢ Fin(R)"
"{(-m)-x. x€R} ¢ Fin(R)"
(proof)

202

If m is less or equal than the negative of multiplicative unit, then the set

{m-n:n € R} is infinite (unless the ring is trivial).

lemma (in ringl) OrdRing ZF_3_L6: assumes Al: "0#1" and A2: "m < -1"
shows "{m-x. x€R} ¢ Fin(R)"

(proof)

All elements greater or equal than an element of R, belong to R.. Property
of ordered groups.

lemma (in ringl) OrdRing ZF_3_L7: assumes Al: "a € R;" and A2: "a<b"
shows "b € Ry"

(proof)

A special case of OrdRing_ZF_3_L7: a ring element greater or equal than 1 is

positive.

corollary (in ringl) OrdRing_ ZF_3_L8: assumes Al: "0#1" and A2: "1<a"
shows "a € R."

(proof)

Adding a positive element to a strictly increases a. Property of ordered
groups.

lemma (in ringl) OrdRing ZF_3_L9: assumes Al: "acR" "be&R,"
shows "a < a+b" "a # atb"

(proof)

A special case of OrdRing_zF_3_L9: in nontrivial rings adding one to a in-
creases a.

corollary (in ringl) OrdRing_ ZF_3_L10: assumes Al: "0#1" and A2: "acR"
shows "a < a+1" "a # a+l1"

(proof)

If a is not greater than b, then it is strictly less than b+ 1.

lemma (in ringl) OrdRing ZF_3_L11: assumes Al: "0#1" and A2: "a<b"
shows "a< b+1"

(proof)

For any ring element a the greater of a and 1 is a positive element that is
greater or equal than m. If we add 1 to it we get a positive element that is
strictly greater than m. This holds in nontrivial rings.

lemma (in ringl) OrdRing ZF_3_L12: assumes Al: "0#1" and A2: "acR"
shows
"a < Greater0f(r,1,a)"
"GreaterOf (r,1,a) € R."
"GreaterOf(r,1,a) + 1 € R."
"a < Greater0f(r,1,a) + 1" "a # Greater0f(r,1,a) + 1"

(proof)

We can multiply strict inequality by a positive element.

203

lemma (in ringl) OrdRing_ ZF_3_L13:
assumes Al: "HasNoZeroDivs(R,A,M)" and
A2: "a<b" and A3: "ceR,"
shows
lla.c < b.cll
"c-a < cb"

(proof)

A sufficient condition for an element to be in the set of positive ring elements.

lemma (in ringl) OrdRing ZF_3_L14: assumes "0<a" and "a#0"
shows "a € R."

(proof)

If a ring has no zero divisors, the square of a nonzero element is positive.

lemma (in ringl) OrdRing ZF_3_L15:
assumes "HasNoZeroDivs(R,A,M)" and "acR" "a#0"
shows "0 S 8.2" ||a2 ?é o" "8.2 c R+||
(proof)

In rings with no zero divisors we can (strictly) increase a positive element
by multiplying it by an element that is greater than 1.

lemma (in ringl) OrdRing ZF_3_L16:
assumes "HasNoZeroDivs(R,A,M)" and "a € Ry" and "1<b" "1+#b"
shows "a<a-b" "a #* ab"

{proof)

If the right hand side of an inequality is positive we can multiply it by a
number that is greater than one.

lemma (in ringl) OrdRing ZF_3_L17:
assumes Al: "HasNoZeroDivs(R,A,M)" and A2: "beR," and
A3: "a<b" and A4: "1<c"
shows "a<b-c"

(proof)

We can multiply a right hand side of an inequality between positive numbers
by a number that is greater than one.

lemma (in ringl) OrdRing ZF_3_L18:
assumes Al: "HasNoZeroDivs(R,A,M)" and A2: "a € R." and
A3: "a<b" and A4: "1<c"
shows "a<b-c"

(proof)

In ordered rings with no zero divisors if at least one of a, b is not zero, then
0 < a? + b?, in particular a? 4 b # 0.

lemma (in ringl) OrdRing ZF_3_L19:
assumes Al: "HasNoZeroDivs(R,A,M)" and A2: "acR" "beR" and
A3: "a # 0V b # 0"

204

shows "0 < aZ + b2"
(proof)

end

37 Cardinal numbers

theory Cardinal_ ZF imports CardinalArith funcl
begin

This theory file deals with results on cardinal numbers (cardinals). Cardinals
are a genaralization of the natural numbers, used to measure the cardinality
(size) of sets. Contributed by Daniel de la Concepcion.

37.1 Some new ideas on cardinals

All the results of this section are done without assuming the Axiom of
Choice. With the Axiom of Choice in play, the proofs become easier and
some of the assumptions may be dropped.

Since General Topology Theory is closely related to Set Theory, it is very
interesting to make use of all the possibilities of Set Theory to try to classify
homeomorphic topological spaces. These ideas are generally used to prove
that two topological spaces are not homeomorphic.

There exist cardinals which are the successor of another cardinal, but; as
happens with ordinals, there are cardinals which are limit cardinal.
definition

"LimitC(i) = Card(i) A 0<i A (Vy. (y<iACard(y)) — csucc(y)<i)"
Simple fact used a couple of times in proofs.
lemma nat_less_infty: assumes "né€nat" and "InfCard(X)" shows "n<X"

(proof)

There are three types of cardinals, the zero one, the succesors of other car-
dinals and the limit cardinals.

lemma Card_cases_disj:

assumes "Card(i)"

shows "i=0 | (3j. Card(j) A i=csucc(j)) | LimitC(i)"
(proof)

Given an ordinal bounded by a cardinal in ordinal order, we can change to
the order of sets.

205

lemma le_imp_lesspoll:
assumes "Card(Q)"
shows "A < Q = A < Q"
(proof)

There are two types of infinite cardinals, the natural numbers and those that
have at least one infinite strictly smaller cardinal.

lemma InfCard_cases_disj:
assumes "InfCard(Q)"
shows "Q=nat V (3j. csucc(j)<Q A InfCard(j))"

(proof)

A more readable version of standard Isabelle/ZF 0rd_linear_lt

lemma Ord_linear_1t_IML: assumes "Ord(i)" "Ord(j)"
shows "i<j V i=j V j<i"
(proof)

A set is injective and not bijective to the successor of a cardinal if and only
if it is injective and possibly bijective to the cardinal.

lemma Card_less_csucc_eq_le:
assumes "Card(m)"
shows "A < csucc(m) +— A < m"

(proof)

If the successor of a cardinal is infinite, so is the original cardinal.

lemma csucc_inf_imp_inf:
assumes "Card(j)" and "InfCard(csucc(j))"
shows "InfCard(j)"

(proof)

Since all the cardinals previous to nat are finite, it cannot be a successor
cardinal; hence it is a LimitC cardinal.
corollary LimitC_nat:

shows "LimitC(nat)"
(proof)

37.2 Main result on cardinals (without the Aziom of Choice)

If two sets are strictly injective to an infinite cardinal, then so is its union.
For the case of successor cardinal, this theorem is done in the isabelle library
in a more general setting; but that theorem is of not use in the case where
LimitC(Q) and it also makes use of the Axiom of Choice. The mentioned
theorem is in the theory file Cardinal_AC.thy

Note that if @) is finite and different from 1, let’s assume) = n, then the
union of A and B is not bounded by). Counterexample: two disjoint sets

206

of n — 1 elements each have a union of 2n — 2 elements which are more than
n.

Note also that if Q = 1 then A and B must be empty and the union is then
empty too; and () cannot be 0 because no set is injective and not bijective
to 0.

The proof is divided in two parts, first the case when both sets A and B
are finite; and second, the part when at least one of them is infinite. In the
first part, it is used the fact that a finite union of finite sets is finite. In the
second part it is used the linear order on cardinals (ordinals). This proof
can not be generalized to a setting with an infinite union easily.

lemma less_less_imp_un_less:
assumes "A<Q" and "B<Q" and "InfCard(Q)"
shows "A U B=<Q"

(proof)

37.3 Choice axioms

We want to prove some theorems assuming that some version of the Axiom
of Choice holds. To avoid introducing it as an axiom we will defin an ap-
propriate predicate and put that in the assumptions of the theorems. That
way technically we stay inside ZF.

The first predicate we define states that the axiom of (J-choice holds for
subsets of K if we can find a choice function for every family of subsets of
K whose (that family’s) cardinality does not exceed Q.

definition
AxiomCardinalChoice ("{the axiom of}_{choice holds for subsets}_") where
"{the axiom of} Q {choice holds for subsets}K = Card(Q) A (V M N. (M

<Q A (VteM. Nt#0 A NtCK)) — (If. £:Pi(M,At. Nt) A (VteM. fteN‘t)))"

Next we define a general form of () choice where we don’t require a collection
of files to be included in a file.

definition

AxiomCardinalChoiceGen ("{the axiom of}_{choice holds}") where

"{the axiom of} Q {choice holds} = Card(Q) A (V M N. (M <Q A (VteM.
Nt#0)) — (If. f:Pi(M, t. Nt) A (VteM. fteN‘t)))"

The axiom of finite choice always holds.

theorem finite_choice:
assumes '"n€nat"
shows "{the axiom of} n {choice holds}"

(proof)

The axiom of choice holds if and only if the AxiomCardinalChoice holds for
every couple of a cardinal Q and a set K.

207

lemma choice_subset_imp_choice:
shows "{the axiom of} Q {choice holds} <+— (V K. {the axiom of} Q {choice
holds for subsets}K)"

{proof)

A choice axiom for greater cardinality implies one for smaller cardinality

lemma greater_choice_imp_smaller_choice:

assumes "Q<Q1" "Card(Q)"

shows "{the axiom of} Q1 {choice holds} — ({the axiom of} Q {choice
holds})" (proof)

If we have a surjective function from a set which is injective to a set of
ordinals, then we can find an injection which goes the other way.

lemma surj_fun_inv:
assumes "f € surj(A,B)" "ACQ" "Ord(Q)"
shows "B<A"

(proof)

The difference with the previous result is that in this one A is not a subset
of an ordinal, it is only injective with one.

theorem surj_fun_inv_2:
assumes "f:surj(A,B)" "A<Q" "Ord(Q)"
shows "B<A"

(proof)
end

38 Groups 4

theory Group_ZF_4 imports Group_ZF_1 Group_ZF_2 Finite_ZF Ring_ZF
Cardinal _ZF Semigroup_ZF

begin

This theory file deals with normal subgroup test and some finite group the-
ory. Then we define group homomorphisms and prove that the set of endo-
morphisms forms a ring with unity and we also prove the first isomorphism
theorem.

38.1 Conjugation of subgroups

The conjugate of a subgroup is a subgroup.

theorem (in group0) semigrO:
shows "semigr0(G,P)"

(proof)

208

theorem (in group0) conj_group_is_group:
assumes "IsAsubgroup(H,P)" "geG"
shows "IsAsubgroup({g-(h-g~!). h€H},P)"
(proof)

Every set is equipollent with its conjugates.

theorem (in group0) conj_set_is_eqpoll:
assumes "HCG" "geG"
shows "H~{g-(h-g~!). hcH}"

(proof)

Every normal subgroup contains its conjugate subgroups.

theorem (in group0) norm_group_cont_conj:
assumes "IsAnormalSubgroup(G,P,H)" "geG"
shows "{g-(h-g~!). heH}CH"

(proof)

If a subgroup contains all its conjugate subgroups, then it is normal.

theorem (in group0) cont_conj_is_normal:
assumes "IsAsubgroup(H,P)" "VgeG. {g (h-g~!). heH}CH"
shows "IsAnormalSubgroup(G,P,H)"

(proof)

If a group has only one subgroup of a given order, then this subgroup is
normal.
corollary (in group0) only_one_equipoll_sub:
assumes "IsAsubgroup(H,P)" "VM. IsAsubgroup(M,P)A H=M — M=H"
shows "IsAnormalSubgroup(G,P,H)"

(proof)

The trivial subgroup is then a normal subgroup.

corollary (in group0) trivial_normal_subgroup:
shows "IsAnormalSubgroup(G,P,{1})"

(proof)

lemma(in group0) whole_normal_subgroup:
shows "IsAnormalSubgroup(G,P,G)"

(proof)

Since the whole group and the trivial subgroup are normal, it is natural to
define simplicity of groups in the following way:
definition
IsSimple ("[_,_]1{is a simple group}" 89)
where "[G,f]{is a simple group} = IsAgroup(G,f)A(VM. IsAnormalSubgroup(G,f,M)
— M=GVM={TheNeutralElement(G,f)})"

From the definition follows that if a group has no subgroups, then it is
simple.

209

corollary (in group0) noSubgroup_imp_simple:
assumes "VH. IsAsubgroup(H,P)— H=GVH={1}"
shows "[G,P]{is a simple group}"

(proof)

Since every subgroup is normal in abelian groups, it follows that commuta-
tive simple groups do not have subgroups.
corollary (in groupO) abelian_simple_noSubgroups:

assumes "[G,P]{is a simple group}" "P{is commutative on}G"
shows "VH. IsAsubgroup(H,P) — H=GVH={1}"

(proof)

38.2 Finite groups

The subgroup of a finite group is finite.

lemma(in group0) finite_subgroup:
assumes "Finite(G)" "IsAsubgroup(H,P)"
shows "Finite(H)"

{proof)

The space of cosets is also finite. In particular, quotient groups.

lemma(in group0) finite_cosets:
assumes "Finite(G)" "IsAsubgroup(H,P)" "r=QuotientGroupRel(G,P,H)"
shows "Finite(G//r)"

(proof)

All the cosets are equipollent.

lemma(in group0) cosets_equipoll:
assumes "IsAsubgroup(H,P)" "r=QuotientGroupRel(G,P,H)" "gleG""g2eG"
shows "r¢‘{gi}~r‘‘{g2}"

(proof)

The order of a subgroup multiplied by the order of the space of cosets is the
order of the group. We only prove the theorem for finite groups.
theorem (in group0) Lagrange:
assumes "Finite(G)" "IsAsubgroup(H,P)" "r=QuotientGroupRel(G,P,H)"
shows "|G|=|H| #* |G//r|"
(proof)

38.3 Subgroups generated by sets

Given a subset of a group, we can ask ourselves which is the smallest group
that contains that set; if it even exists.
lemma(in group0) inter_subgroups:

assumes "VHES. IsAsubgroup(H,P)" "$H£0"
shows "IsAsubgroup([)$,P)"

(proof)

210

As the previous lemma states, the subgroup that contains a subset can be
defined as an intersection of subgroups.

definition (in group0)
SubgroupGenerated ("(_)g" 80)
where "(X)¢ = [{HE€Pow(G). XCH A IsAsubgroup(H,P)}"

theorem (in group0) subgroupGen_is_subgroup:
assumes "XCG"
shows "IsAsubgroup((X)g,P)"

(proof)

38.4 Homomorphisms

A homomorphism is a function between groups that preserves group opera-
tions.

definition

Homomor ("_{is a homomorphism}{_,_}—{_,_}" 85)

where "IsAgroup(G,P) — IsAgroup(H,F) — Homomor(f,G,P,H,F) = VgleG.
Vg2eG. £(P‘(gl,g2))=F‘(f‘gl,f g2)"

Now a lemma about the definition:

lemma homomor_eq:

assumes "IsAgroup(G,P)" "IsAgroup(H,F)" "Homomor(f,G,P,H,F)" "gleG"
llg2€Gll

shows "f‘(P‘(gl,g2))=F‘(f‘gl,f‘g2)"

{proof)

An endomorphism is a homomorphism from a group to the same group. In
case the group is abelian, it has a nice structure.

definition
End
where "End(G,P) = {f:G—G. Homomor (f,G,P,G,P)}"

The set of endomorphisms forms a submonoid of the monoid of function
from a set to that set under composition.

lemma (in group0) end_composition:
assumes "f1€End(G,P)""f2€End(G,P)"
shows "Composition(G) ‘(f1,f2)€End(G,P)"
(proof)

theorem (in group0) end_comp_monoid:

shows "IsAmonoid(End(G,P),restrict(Composition(G),End(G,P)XEnd(G,P)))"

and "TheNeutralElement (End(G,P) ,restrict(Composition(G),End(G,P) xEnd(G,P)))=id(G)"
(proof)

The set of endomorphisms is closed under pointwise addition. This is so
because the group is abelian.

211

theorem (in group0) end_pointwise_addition:

assumes "fcEnd(G,P)""gcEnd(G,P)""P{is commutative on}G""F = P {lifted
to function space overl} G"

shows "F‘(f,g)€End(G,P)"

(proof)

The inverse of an abelian group is an endomorphism.

lemma (in group0) end_inverse_group:
assumes "P{is commutative on}G"
shows "GroupInv(G,P)cEnd(G,P)"
(proof)

The set of homomorphisms of an abelian group is an abelian subgroup of
the group of functions from a set to a group, under pointwise multiplication.
theorem (in group0) end_addition_group:
assumes "P{is commutative on}G" "F = P {lifted to function space over}
Gll
shows "IsAgroup(End(G,P),restrict(F,End(G,P)xEnd(G,P)))" "restrict(F,End(G,P) xEnd(G,P))
commutative on}End(G,P)"

{(proof)

lemma (in group0) distributive_comp_pointwise:
assumes "P{is commutative on}G" "F = P {lifted to function space over}
Gll
shows "IsDistributive(End(G,P),restrict(F,End(G,P)xEnd(G,P)) ,restrict(Composition(G) ,End

(proof)

The endomorphisms of an abelian group is in fact a ring with the previous
operations.
theorem (in group0) end_is_ring:
assumes "P{is commutative on}G" "F = P {lifted to function space over}
Gll
shows "IsAring(End(G,P),restrict(F,End(G,P) xEnd(G,P)),restrict(Composition(G),End(G,P) XE

(proof)

38.5 First isomorphism theorem

Now we will prove that any homomorphism f : G — H defines a bijective
homomorphism between G/H and f(G).

A group homomorphism sends the neutral element to the neutral element
and commutes with the inverse.

lemma image_neutral:
assumes "IsAgroup(G,P)" "IsAgroup(H,F)" "Homomor(f,G,P,H,F)" "f:G—H"
shows "f ‘TheNeutralElement (G,P)=TheNeutralElement (H,F)"

(proof)

lemma image_inv:

212

assumes "IsAgroup(G,P)" "IsAgroup(H,F)" "Homomor(f,G,P,H,F)" "f:G—H"
||g€G|I
shows "f‘(GroupInv(G,P) ‘g)=GroupInv(H,F)‘ (f‘g)"

(proof)

The kernel of an homomorphism is a normal subgroup.

theorem kerner_normal_sub:
assumes "IsAgroup(G,P)" "IsAgroup(H,F)" "Homomor(f,G,P,H,F)" "f:G—H"
shows "IsAnormalSubgroup(G,P,f-¢‘{TheNeutralElement (H,F)})"

(proof)

The image of a homomorphism is a subgroup.

theorem image_sub:
assumes "IsAgroup(G,P)" "IsAgroup(H,F)" "Homomor(f,G,P,H,F)" "f:G—H"
shows "IsAsubgroup(f‘‘G,F)"

(proof)

Now we are able to prove the first isomorphism theorem. This theorem
states that any group homomorphism f : G — H gives an isomorphism
between a quotient group of G and a subgroup of H.
theorem isomorphism_first_theorem:
assumes "IsAgroup(G,P)" "IsAgroup(H,F)" "Homomor(f,G,P,H,F)" "f:G—H"
defines "r = QuotientGroupRel(G,P,f-‘‘{TheNeutralElement(H,F)})" and

"PP = QuotientGroupOp(G,P,f-*‘{TheNeutralElement (H,F)})"
shows "Jff. Homomor (ff,G//r,PP,f‘G,restrict(F,(f ‘G)x(£°‘G))) A ffebij(G//r,f ‘G)"

(proof)

As a last result, the inverse of a bijective homomorphism is an homomor-
phism. Meaning that in the previous result, the homomorphism we found
is an isomorphism.

theorem bij_homomor:
assumes "fe€bij(G,H)""IsAgroup(G,P)""IsAgroup(H,F)""Homomor (f,G,P,H,F)"
shows "Homomor (converse(f) ,H,F,G,P)"

(proof)

end

39 Fields - introduction

theory Field_ZF imports Ring_ ZF
begin

This theory covers basic facts about fields.

213

39.1 Definition and basic properties

In this section we define what is a field and list the basic properties of fields.

Field is a notrivial commutative ring such that all non-zero elements have an
inverse. We define the notion of being a field as a statement about three sets.
The first set, denoted K is the carrier of the field. The second set, denoted A
represents the additive operation on X (recall that in ZF set theory functions
are sets). The third set M represents the multiplicative operation on X.

definition
"IsAfield(K,A,M) =
(IsAring(K,A,M) A (M {is commutative on} K) A
TheNeutralElement (K,A) # TheNeutralElement(K,M) A
(Va€K. a#TheNeutralElement (K,A) —
(3beK. M‘(a,b) = TheNeutralElement(K,M))))"

The field0 context extends the ring0 context adding field-related assump-
tions and notation related to the multiplicative inverse.

locale field0 = ring0 K A M for K A M +
assumes mult_commute: "M {is commutative on} K"

assumes not_triv: "0 # 1"
assumes inv_exists: "VacK. a#0 — (dbeK. ab = 1)"

fixes non_zero ("Ko")
defines non_zero_def [simp]: "Ky = K-{0}"

fixes inv ("_~! " [96] 97)

defines inv_def [simp]: "a~! = GroupInv(Kg,restrict(M,KyxKg))(a)"

The next lemma assures us that we are talking fields in the field0 context.

lemma (in field0) Field_ZF_1_L1: shows "IsAfield(K,A,M)"
(proof)

We can use theorems proven in the field0 context whenever we talk about
a field.

lemma field_field0: assumes "IsAfield(K,A,M)"
shows "fieldO(K,A,M)"
(proof)

Let’s have an explicit statement that the multiplication in fields is commu-
tative.

lemma (in field0) field_mult_comm: assumes "acK" "beK"
shows "a'b = b-a"
(proof)

Fields do not have zero divisors.

214

lemma (in field0) field_has_no_zero_divs: shows "HasNoZeroDivs(K,A,M)"
(proof)

Ky (the set of nonzero field elements is closed with respect to multiplication.

lemma (in field0) Field_ZF_1_L2:
shows "K; {is closed under} M"

{proof)
Any nonzero element has a right inverse that is nonzero.

lemma (in field0) Field_ZF_1_L3: assumes Al: "a€cKp"
shows "db€Ky. ab = 1"
(proof)

If we remove zero, the field with multiplication becomes a group and we can
use all theorems proven in group0 context.

theorem (in field0) Field_ZF_1_L4: shows
"IsAgroup(Kg,restrict (M,KoxKp))"
"group0 (Kg,restrict (M,KogxKg))"
"1l = TheNeutralElement (Kg,restrict (M,KoxKg))"

(proof)
The inverse of a nonzero field element is nonzero.

lemma (in field0) Field_ZF_1_L5: assumes Al: "acK" "a#0"
shows nafl c KOI' u(afl)Q c K0" ||a71 c K" nafl 7£ o"
(proof)

The inverse is really the inverse.

lemma (in field0) Field_ZF_1_L6: assumes Al: "a€K" "a#0"
shows "aa=! = 1" ma~l.a = 1

{(proof)

A lemma with two field elements and cancelling.

lemma (in field0) Field_ZF_1_L7: assumes "a€K" "beK" "b#0"
shows

"a~b~b*1 = a"
na_bfl Db = a"
(proof)

39.2 Equations and identities

This section deals with more specialized identities that are true in fields.
a/(a®) =1/a.

lemma (in field0) Field_ZF_2_L1: assumes Al: "acK" "a#0"

shows "a-(a=1)2 = a—!I»
(proof)

215

If we multiply two different numbers by a nonzero number, the results will
be different.

lemma (in field0) Field_ZF_2_L2:
assumes "acK" "beK" '"c€K" "a#b" "c#0"
shows "a-c™! # b.c7!"

{proof)

We can put a nonzero factor on the other side of non-identity (is this the
best way to call it?) changing it to the inverse.

lemma (in field0) Field_ZF_2_L3:
assumes Al: "a€K" "beK" "b#0" "ceK" and A2: "ab # c"
shows "a # cb 1"

(proof)

If if the inverse of b is different than a, then the inverse of a is different than
b.

lemma (in fieldO) Field_ZF_2_L4:

assumes "ack" "a#0" and "b~! # a"
ShOWS na—l 7& b"
(proof)

An identity with two field elements, one and an inverse.

lemma (in field0O) Field_ZF_2_L5:
assumes "a€K" "beK" "b#0"
shows "(1 + ab)-b~! = a + pIn

{proof)

An identity with three field elements, inverse and cancelling.

lemma (in field0) Field_ZF_2_L6: assumes Al: "acK" "beK" "b#0" "cek"
shows "ab-(cb™!) = a-c"

(proof)

39.3 1/0=0

InZF if f: X - Y and x ¢ X we have f(z) = (). Since () (the empty set)
in ZF is the same as zero of natural numbers we can claim that 1/0 = 0
in certain sense. In this section we prove a theorem that makes makes it
explicit.

The next locale extends the field0 locale to introduce notation for division
operation.

locale fieldd = fieldO +
fixes division
defines division_def[simp]: "division = {(p,fst(p)-snd(p)!). peKxKo}"

fixes fdiv (infixl "/" 95)

216

defines fdiv_def[simp]l: "x/y = division‘(x,y)"

Division is a function on K x K with values in K.

lemma (in fieldd) div_fun: shows "division: KxK; — K"

(proof)

So, really 1/0 = 0. The essential lemma is apply_0 from standard Isabelle’s
func.thy.

theorem (in fieldd) one_over_zero: shows "1/0 = 0"

(proof)

end

40 Ordered fields

theory OrderedField_ZF imports OrderedRing_ ZF Field_ZF
begin

This theory covers basic facts about ordered fiels.

40.1 Definition and basic properties
Here we define ordered fields and proove their basic properties.

Ordered field is a notrivial ordered ring such that all non-zero elements have
an inverse. We define the notion of being a ordered field as a statement about
four sets. The first set, denoted K is the carrier of the field. The second set,
denoted A represents the additive operation on X (recall that in ZF set theory
functions are sets). The third set M represents the multiplicative operation
on K. The fourth set r is the order relation on K.

definition
"IsAnOrdField(K,A,M,r) = (IsAnOrdRing(XK,A,M,r) A
(M {is commutative on} K) A
TheNeutralElement (K,A) # TheNeutralElement (K,M) A
(Va€K. a#TheNeutralElement (K,A) —
(3beK. M‘(a,b) = TheNeutralElement(K,M))))"

The next context (locale) defines notation used for ordered fields. We do
that by extending the notation defined in the ringl context that is used for
oredered rings and adding some assumptions to make sure we are talking
about ordered fields in this context. We should rename the carrier from R
used in the ringl context to K, more appriopriate for fields. Theoretically
the Isar locale facility supports such renaming, but we experienced diffculties
using some lemmas from ringl locale after renaming.

locale fieldl = ringl +

217

assumes mult_commute: "M {is commutative on} R"
assumes not_triv: "0 # 1"
assumes inv_exists: "Va€R. a#0 — (IbeR. ab = 1)"

fixes non_zero ("Ro")
defines non_zero_def [simp]: "Ry = R-{0}"

fixes inv ("_~1 " [96] 97)

defines inv_def [simp]: "a~! = GroupInv(Rg,restrict(M,RgoxRg))‘(a)"

The next lemma assures us that we are talking fields in the fieldl context.

lemma (in fieldl) OrdField_ZF_1_L1: shows "IsAnOrdField(R,A,M,r)"
(proof)

Ordered field is a field, of course.

lemma 0rdField_ZF_1_L1A: assumes "IsAnOrdField(K,A,M,r)"
shows "IsAfield(K,A,M)"

(proof)

Theorems proven in fieldo (about fields) context are valid in the field1
context (about ordered fields).

lemma (in fieldl) OrdField_ZF_1_L1B: shows "fieldO(R,A,M)"

(proof)

We can use theorems proven in the field1l context whenever we talk about
an ordered field.

lemma 0rdField_ZF_1_L2: assumes "IsAnOrdField(K,A,M,r)"
shows "field1(K,A,M,r)"

(proof)

In ordered rings the existence of a right inverse for all positive elements
implies the existence of an inverse for all non zero elements.

lemma (in ringl) OrdField_ZF_1_L3:
assumes Al: "VacR,. dbeR. ab = 1" and A2: "ceR" "c#0"
shows "JbeR. cb = 1"

(proof)

Ordered fields are easier to deal with, because it is sufficient to show the
existence of an inverse for the set of positive elements.

lemma (in ringl) OrdField_ZF_1_L4:
assumes "0 # 1" and "M {is commutative on} R"
and "VacR;. dbeR. ab = 1"
shows "IsAnOrdField(R,A,M,r)"
{proof)

218

The set of positive field elements is closed under multiplication.
lemma (in fieldl) OrdField_ZF_1_L5: shows "R, {is closed under} M"
(proof)

The set of positive field elements is closed under multiplication: the explicit
version.

lemma (in fieldl) pos_mul_closed:

assumes Al: "0 < a" "0 < Db"
shows "0 < a-b"
(proof)

In fields square of a nonzero element is positive.

lemma (in fieldl) OrdField_ZF_1_L6: assumes "acR" "a#0"
shows "a? € R, "
(proof)

The next lemma restates the fact Field_ZF that out notation for the field
inverse means what it is supposed to mean.
lemma (in fieldl) OrdField_ZF_1_L7: assumes "a€R" "a#0"

shows "a-(a~!) = 1" "(a 1)a = 1"

(proof)
A simple lemma about multiplication and cancelling of a positive field ele-
ment.

lemma (in fieldl) OrdField_ZF_1_L7A:
assumes Al: "acR" "b € R."

shows

"a-b-b_l = a"

na_b—l_b = a"
(proof)

Some properties of the inverse of a positive element.

lemma (in fieldl) OrdField_ZF_1_L8: assumes Al: "a € R."
shows na—l c R,+" ua_(a—l) = 1" ||(a—1)_a = 1"

(proof)

If a < b, then (b— a)~! is positive.

lemma (in fieldl) OrdField_ZF_1_L9: assumes "a<b"

shows "(b-a)~! € R "
{proof)

In ordered fields if at least one of a,b is not zero, then a? + b*> > 0, in
particular a? 4+ b # 0 and exists the (multiplicative) inverse of a? + b%.

lemma (in fieldl) OrdField_ZF_1_L10:
assumes Al: "acR" "beR" and A2: "a # 0 V b # 0"
shows "0 < a2 + b2" and "JceR. (a2 + b2).c = 1"

(proof)

219

40.2 Inequalities
In this section we develop tools to deal inequalities in fields.

We can multiply strict inequality by a positive element.

lemma (in fieldl) OrdField_ZF_2_L1:
assumes "a<b" and "ccR;"
shows "a.c < b-c"

(proof)

A special case of OrdField_zF_2_L1 when we multiply an inverse by an ele-
ment.

lemma (in fieldl) OrdField_ZF_2_L2:
assumes Al: "acR," and A2: "a~! < b"
shows "1 < b-a"

(proof)

We can multiply an inequality by the inverse of a positive element.

lemma (in fieldl) OrdField_ZF_2_L3:
assumes "a<b" and "ceR," shows "a-(c71) < b-(c "

(proof)

We can multiply a strict inequality by a positive element or its inverse.

lemma (in fieldl) OrdField_ZF_2_L4:
assumes "a<b" and "ceR,"
shows
"a-c < b-c"
"C'a < C‘b"
na_C—l < b_c—lu

(proof)

We can put a positive factor on the other side of an inequality, changing it
to its inverse.

lemma (in fieldl) OrdField_ZF_2_L5:
assumes Al: "acR" "beR;" and A2: "ab < ¢
shows "a < cb~ 1"

(proof)

We can put a positive factor on the other side of an inequality, changing it
to its inverse, version with a product initially on the right hand side.

lemma (in fieldl) OrdField_ZF_2_L5A:
assumes Al: "beR" "c€R," and A2: "a < bc"
shows "a.c™! < b"

(proof)

We can put a positive factor on the other side of a strict inequality, changing
it to its inverse, version with a product initially on the left hand side.

220

lemma (in fieldl) OrdField_ZF_2_L6:
assumes Al: "a€R" "beR," and A2: "ab < c"
shows "a < c-b™1"

(proof)

We can put a positive factor on the other side of a strict inequality, changing
it to its inverse, version with a product initially on the right hand side.

lemma (in fieldl) OrdField_ZF_2_L6A:
assumes Al: "beR" "ceR;" and A2: "a < b-c"
shows "a.c™! < b"

(proof)

Sometimes we can reverse an inequality by taking inverse on both sides.

lemma (in fieldl) OrdField_ZF_2_L7:
assumes Al: "acR,." and A2: "a”l < p"
shows "b~1 < a"

(proof)
Sometimes we can reverse a strict inequality by taking inverse on both sides.

lemma (in fieldl) OrdField_ZF_2_LS8:
assumes Al: "acR," and A2: "a~! < b"
shows "b~! < a"

(proof)

A technical lemma about solving a strict inequality with three field elements
and inverse of a difference.
lemma (in fieldl) OrdField_ZF_2_L9:

assumes Al: "a<b" and A2: "(b-a)~! < c"
shows "1 + a-c < b-c"

(proof)

40.3 Definition of real numbers

The only purpose of this section is to define what does it mean to be a model
of real numbers.

We define model of real numbers as any quadruple of sets (K, A, M, r) such
that (K, A, M,r) is an ordered field and the order relation r is complete,
that is every set that is nonempty and bounded above in this relation has a
supremum.

definition
"IsAmodel0fReals(K,A,M,r) = IsAnOrdField(X,A,M,r) A (r {is complete})"

end

221

41 Integers - introduction

theory Int_ZF_IML imports OrderedGroup_ZF_1 Finite_ZF_1 Int_ZF Nat_ZF_IML
begin

This theory file is an interface between the old-style Isabelle (ZF logic)
material on integers and the IsarMathLib project. Here we redefine the
meta-level operations on integers (addition and multiplication) to convert
them to ZF-functions and show that integers form a commutative group with
respect to addition and commutative monoid with respect to multiplication.
Similarly, we redefine the order on integers as a relation, that is a subset of
Z x Z. We show that a subset of intergers is bounded iff it is finite. As
we are forced to use standard Isabelle notation with all these dollar signs,
sharps etc. to denote ”type coercions” (?) the notation is often ugly and
difficult to read.

41.1 Addition and multiplication as ZF-functions.

In this section we provide definitions of addition and multiplication as sub-
sets of (Zx Z)x Z. We use the (higher order) relation defined in the standard
Int theory to define a subset of Z x Z that constitutes the ZF order relation
corresponding to it. We define the set of positive integers using the notion
of positive set from the OrderedGroup_zZF theory.

Definition of addition of integers as a binary operation on int. Recall that
in standard Isabelle/ZF int is the set of integers and the sum of integers is
denoted by prependig + with a dollar sign.

definition
"IntegerAddition = { (x,c) € (intxint)xint. fst(x) $+ snd(x) = c}"

Definition of multiplication of integers as a binary operation on int. In
standard Isabelle/ZF product of integers is denoted by prepending the dollar
sign to *.

definition
"IntegerMultiplication =
{ (x,c) € (intxint)xint. fst(x) $* snd(x) = c}"

Definition of natural order on integers as a relation on int. In the standard
Isabelle/ZF the inequality relation on integers is denoted < prepended with
the dollar sign.

definition
"IntegerOrder = {p € intxint. fst(p) $< snd(p)}"

This defines the set of positive integers.

definition

222

"PositiveIntegers = PositiveSet(int,IntegerAddition,IntegerOrder)"

IntegerAddition and IntegerMultiplication are functions on int x int.

lemma Int_ZF_1_L1: shows
"IntegerAddition : intXint — int"
"IntegerMultiplication : intxint — int"

(proof)

The next context (locale) defines notation used for integers. We define 0 to
denote the neutral element of addition, 1 as the unit of the multiplicative
monoid. We introduce notation m<n for integers and write m..n to denote
the integer interval with endpoints in m and n. abs(m) means the absolute
value of m. This is a function defined in OrderedGroup that assigns x to
itself if x is positive and assigns the opposite of x if z < 0. Unforunately we
cannot use the || notation as in the OrderedGroup theory as this notation has
been hogged by the standard Isabelle’s Int theory. The notation -A where A
is a subset of integers means the set {—m : m € A}. The symbol maxf (£,M)
denotes tha maximum of function f over the set A. We also introduce a
similar notation for the minimum.

locale int0 =

fixes ints ("Z")
defines ints_def [simp]l: "Z = int"

fixes ia (infixl "+" 69)
defines ia_def [simpl: "a+b = IntegerAddition‘(a,b)"

fixes iminus ("- _" 72)
defines rminus_def [simp]: "-a = GroupInv(Z,IntegerAddition)‘(a)"
fixes isub (infixl "-" 69)

defines isub_def [simp]: "a-b = a+ (- b)"

fixes imult (infixl "-" 70)
defines imult_def [simp]: "ab = IntegerMultiplication‘(a,b)"

fixes setneg ("- _" 72)
defines setneg_def [simpl: "-A = GroupInv(Z,IntegerAddition)‘‘(A)"

fixes izero ("O")
defines izero_def [simp]: "O = TheNeutralElement(Z,IntegerAddition)"

fixes ione ("1")
defines ione_def [simp]: "1

TheNeutralElement (Z,IntegerMultiplication)"

fixes itwo ("2")
defines itwo_def [simp]: "2 = 1+1"

223

fixes ithree ("3")
defines ithree_def [simp]: "3 = 2+1"

fixes nonnegative ("Z™")
defines nonnegative_def [simp]:
"Z*T = Nonnegative(Z,IntegerAddition,IntegerOrder)"

fixes positive ("Zi ")
defines positive_def [simp]:
"Z, = PositiveSet(Z,IntegerAddition,IntegerOrder)"

fixes abs
defines abs_def [simp]:
"abs(m) = AbsoluteValue(Z,IntegerAddition,IntegerOrder) ‘ (m)"

fixes lesseq (infix "<" 60)
defines lesseq_def [simp]l: "m < n = (m,n) € IntegerOrder"

fixes interval (infix ".." 70)
defines interval_def [simp]: "m..n = Interval(IntegerOrder,m,n)"

fixes maxf
defines maxf_def [simp]: "maxf(f,A) = Maximum(IntegerOrder,f‘‘(A))"

fixes minf
defines minf_def [simp]: "minf(f,A) = Minimum(IntegerOrder,f‘‘(A))"

Integer Addition adds integers and IntegerMultiplication multiplies integers.
This states that the ZF functions IntegerAddition and IntegerMultiplication
give the same results as the higher-order equivalents defined in the standard
Int theory.

lemma (in int0) Int_ZF_1_L2: assumes Al: "a € Z" "b € Z"
shows
"atb = a $+ b"
"a-b = a $* b"

(proof)

Integer addition and multiplication are associative.

lemma (in int0) Int_ZF_1_L3:
assumes "xeZ" "yeZ" "zeZ"
shows "x+y+z = x+(y+z)" '"xyz = x-(yz)"

(proof)

Integer addition and multiplication are commutative.

lemma (in int0) Int_ZF_1_L4:
assumes "xeZ" ‘"yeZ"
shows "x+y = y+x" '"xy = y-x

(proof)

224

Zero is neutral for addition and one for multiplication.

lemma (in int0) Int_ZF_1_L5: assumes Al:"xcZ"
shows "($# 0) + x = x A x + ($# 0) = x"
"($H Dx =x A x($# 1) = x"

(proof)

Zero is neutral for addition and one for multiplication.

lemma (in int0) Int_ZF_1_L6: shows "($# 0)cZ A
(VxeZ. ($# 0)+x = x A x+($# 0) = x)"

"($# 1)eZ A
(VxeZ. ($# 1) x=x A x($# 1) = x)"
(proof)

Integers with addition and integers with multiplication form monoids.

theorem (in int0) Int_ZF_1_T1: shows
"IsAmonoid(Z,IntegerAddition)"
"IsAmonoid(Z,IntegerMultiplication)"

(proof)
Zero is the neutral element of the integers with addition and one is the
neutral element of the integers with multiplication.
lemma (in int0) Int_ZF_1_L8: shows "($# 0) = 0" "($# 1) = 1"
(proof)
0 and 1, as defined in int0 context, are integers.
lemma (in int0) Int_ZF_1_L8A: shows "0 € Z" "1 € Z"
(proof)
Zero is not one.
lemma (in intO) int_zero_not_one: shows "0 # 1"
(proof)
The set of integers is not empty, of course.
lemma (in int0) int_not_empty: shows "Z # 0"
(proof)
The set of integers has more than just zero in it.
lemma (in int0) int_not_trivial: shows "Z # {0}"
(proof)
Each integer has an inverse (in the addition sense).

lemma (in int0) Int_ZF_1_L9: assumes Al: "g € Z"
shows "3 beZ. g+b = 0"

(proof)

Integers with addition form an abelian group. This also shows that we can
apply all theorems proven in the proof contexts (locales) that require the
assumpion that some pair of sets form a group like locale group0.

225

theorem Int_ZF_1_T2: shows
"IsAgroup(int,IntegerAddition)"
"IntegerAddition {is commutative on} int"
"groupO(int,IntegerAddition)"

(proof)

What is the additive group inverse in the group of integers?

lemma (in int0) Int_ZF_1_L9A: assumes Al: "meZ"
shows "$-m = -m"

(proof)

Subtracting integers corresponds to adding the negative.
lemma (in int0) Int_ZF_1_L10: assumes Al: "meZ" "neZ"
shows "m-n = m $+ $-n"
(proof)

Negative of zero is zero.

lemma (in int0) Int_ZF_1_L11: shows "(-0) = 0"

(proof)
A trivial calculation lemma that allows to subtract and add one.

lemma Int_ZF_1_L12:
assumes "mcint" shows "m $- $#1 $+ $#1 = m"

(proof)

A trivial calculation lemma that allows to subtract and add one, version
with ZF-operation.
lemma (in int0) Int_ZF_1_L13: assumes "meZ"

shows "(m $- $#1) + 1 = m"

(proof)

Adding or subtracing one changes integers.

lemma (in int0) Int_ZF_1_L14: assumes Al: "mecZ"
shows
nm+1 # mn
nm_l ;é mn

(proof)

If the difference is zero, the integers are equal.

lemma (in int0) Int_ZF_1_L15:
assumes Al: "meZ" "neZ" and A2: "m-n = 0"
shows "m=n"

{(proof)

41.2 Integers as an ordered group

In this section we define order on integers as a relation, that is a subset of
Z x Z and show that integers form an ordered group.

226

The next lemma interprets the order definition one way.

lemma (in int0) Int_ZF_2_L1:
assumes Al: "meZ" "neZ" and A2: "m $< n"
shows "m < n"

(proof)

The next lemma interprets the definition the other way.

lemma (in int0) Int_ZF_2_L1A: assumes Al: "'m < n"
ShOWS "m $§ n" anZu "IIEZ"
(proof)

Integer order is a relation on integers.
lemma Int_ZF_2_L1B: shows "IntegerOrder C intXxint"

(proof)

The way we define the notion of being bounded below, its sufficient for the
relation to be on integers for all bounded below sets to be subsets of integers.

lemma (in int0) Int_ZF_2_L1iC:
assumes Al: "IsBoundedBelow(A,IntegerOrder)"
shows "ACZ"

(proof)

The order on integers is reflexive.

lemma (in int0) int_ord_is_refl: shows "refl(Z,IntegerOrder)"
{proof)

The essential condition to show antisymmetry of the order on integers.

lemma (in int0) Int_ZF_2_L3:
assumes Al: "m < n" "n < m"

shows "m=n"
(proof)

The order on integers is antisymmetric.

lemma (in int0) Int_ZF_2_L4: shows "antisym(IntegerOrder)"
(proof)

The essential condition to show that the order on integers is transitive.

lemma Int_ZF_2_L5:

assumes Al: "(m,n) € IntegerOrder" "(n,k) € IntegerOrder"
shows "(m,k) € IntegerOrder"
(proof)

The order on integers is transitive. This version is stated in the int0 context
using notation for integers.

lemma (in int0) Int_order_transitive:
assumes Al: "m<n" "n<k"

227

shows "m<k"
(proof)

The order on integers is transitive.

lemma Int_ZF_2_L6: shows "trans(IntegerOrder)"
(proof)

The order on integers is a partial order.

lemma Int_ZF_2_L7: shows "IsPartOrder(int,IntegerOrder)"

(proof)

The essential condition to show that the order on integers is preserved by
translations.
lemma (in int0) int_ord_transl_inv:

assumes Al: "k € Z" and A2: "m < n"
shows "m+k < n+k " "k+m< k+n "

(proof)

Integers form a linearly ordered group. We can apply all theorems proven
in group3 context to integers.

theorem (in int0) Int_ZF_2_T1: shows
"IsAnOrdGroup(Z,IntegerAddition, IntegerOrder)"
"IntegerOrder {is total on} Z"
"group3(Z,IntegerAddition, IntegerOrder)"
"IsLinOrder(Z,IntegerOrder)"

(proof)
If a pair (¢, m) belongs to the order relation on integers and i # m, then
i < m in the sense of defined in the standard Isabelle’s Int.thy.

lemma (in int0) Int_ZF_2_L9: assumes Al: "i < m" and A2: "i#m"
shows "i $< m"

(proof)
This shows how Isabelle’s $< operator translates to IsarMathLib notation.

lemma (in int0) Int_ZF_2_L9AA: assumes Al: "meZ" "neZ"
and A2: "m $< n"
shows "m<n" "m # n"

(proof)
A small technical lemma about putting one on the other side of an inequality.

lemma (in int0) Int_ZF_2_L9A:
assumes Al: "keZ" and A2: "m < k $- ($# 1)
shows "m+1 < k"
(proof)
We can put any integer on the other side of an inequality reversing its sign.

lemma (in int0) Int_ZF_2_L9B: assumes "icZ" "meZ" "kecZ"

228

shows "i+m < k <+— i < k-m"
(proof)

A special case of Int_ZF_2_L9B with weaker assumptions.

lemma (in int0) Int_ZF_2_L9C:

assumes "ic€Z" '"meZ" and "i-m < k"
shows "i < k+m"
(proof)

Taking (higher order) minus on both sides of inequality reverses it.

lemma (in int0) Int_ZF_2_L10: assumes "k < i"
shows
"(-1) < (k)"
l|$_i S $_k||

(proof)

Taking minus on both sides of inequality reverses it, version with a negative
on one side.

lemma (in int0) Int_ZF_2_L10AA: assumes "ncZ" '"m<(-n)"
shows "n<(-m)"

(proof)

We can cancel the same element on on both sides of an inequality, a version
with minus on both sides.

lemma (in int0) Int_ZF_2_L10AB:
assumes "meZ" '"neZ" "keZ" and "m-n < m-k"
shows "k<n"

(proof)

If an integer is nonpositive, then its opposite is nonnegative.

lemma (in int0) Int_ZF_2_L10A: assumes "k < 0"
shows "0<(-k)"

{proof)

If the opposite of an integers is nonnegative, then the integer is nonpositive.

lemma (in int0) Int_ZF_2_L10B:
assumes "keZ" and "0<(-k)"
shows "k<0"

(proof)

Adding one to an integer corresponds to taking a successor for a natural
number.

lemma (in int0) Int_ZF_2_L11:
shows "i $+ $# n $+ ($# 1) = i $+ $# succ(n)"
(proof)

Adding a natural number increases integers.

229

lemma (in int0) Int_ZF_2_L12: assumes Al: "icZ" and A2: "n€nat"
shows "i < i $+ $#n"

(proof)

Adding one increases integers.

lemma (in int0) Int_ZF_2_L12A: assumes Al: "j<k"
shows "j < k $+ $#1" "j < k+1"

(proof)

Adding one increases integers, yet one more version.

lemma (in int0) Int_ZF_2_L12B: assumes Al: "meZ" shows "m < m+1"
{proof)

If £k 4+ 1 = m + n, where n is a non-zero natural number, then m < k.

lemma (in int0) Int_ZF_2_L13:
assumes Al: "keZ" "meZ" and A2: "nEnat"
and A3: "k $+ ($# 1) = m $+ $# succ(@)"
shows "m < k"

(proof)
The absolute value of an integer is an integer.

lemma (in int0) Int_ZF_2_L14: assumes Al: "meZ"
shows "abs(m) € Z"

{(proof)

If two integers are nonnegative, then the opposite of one is less or equal than
the other and the sum is also nonnegative.

lemma (in int0) Int_ZF_2_L14A:

assumes "0<m" "0<n"
shows

ll(_m) S nll

IIO S m + nll

(proof)

We can increase components in an estimate.

lemma (in int0) Int_ZF_2_L15:
assumes "b<b;" "c<cy;" and "a<b+c"
shows "a<bj+cy"

(proof)

We can add or subtract the sides of two inequalities.

lemma (in intO) int_ineq_add_sides:
assumes "a<b" and "c<4"
shows

230

We can increase the second component in an estimate.

lemma (in int0) Int_ZF_2_L15A:
assumes "beZ" and "a<b+c" and A3: "c<ci"
shows "a<b+c;"

(proof)

If we increase the second component in a sum of three integers, the whole
sum inceases.

lemma (in int0) Int_ZF_2_L15C:
assumes Al: "meZ" "neZ" and A2: "k < L"
shows "m+k+n < m+L+n"

(proof)

We don’t decrease an integer by adding a nonnegative one.

lemma (in int0) Int_ZF_2_L15D:

assumes "0<n" "meZ"
shows "m < n+m"
(proof)

Some inequalities about the sum of two integers and its absolute value.

lemma (in int0) Int_ZF_2_L15E:

assumes "meZ" "neZ"

shows

"m+n < abs(m)+abs(n)"

"m-n < abs(m)+abs(n)"
"(-m)+n < abs(m)+abs(n)"
"(-m)-n < abs(m)+abs(n)"
(proof)

We can add a nonnegative integer to the right hand side of an inequality.

lemma (in int0) Int_ZF_2_L15F: assumes "m<k" and "0<n"
shows "m < k+n" "m < n+k"

(proof)

Triangle inequality for integers.

lemma (in int0) Int_triangle_ineq:

assumes "meZ" '"neZ"
shows "abs(m+n) <abs(m)+abs(n)"
(proof)

Taking absolute value does not change nonnegative integers.

lemma (in int0) Int_ZF_2_L16:
assumes "0<m" shows "meZ*t" and "abs(m) = m"
(proof)

0<1,s0 1] =1.
lemma (in int0) Int_ZF_2_L16A: shows "0<1" and "abs(1l) = 1"

231

(proof)

1<2.

lemma (in int0) Int_ZF_2_L16B: shows "1<2"
(proof)

Integers greater or equal one are greater or equal zero.

lemma (in int0) Int_ZF_2_L16C:
assumes Al: "1<a" shows
llOSall lla#OIl
ll2 S a_'_1"
ll1 é a+1ll
IIO S a+1ll

(proof)

Absolute value is the same for an integer and its opposite.

lemma (in int0) Int_ZF_2_L17:
assumes "meZ" shows "abs(-m) = abs(m)"

(proof)

The absolute value of zero is zero.

lemma (in int0) Int_ZF_2_L18: shows "abs(0) = 0"

(proof)

A different version of the triangle inequality.

lemma (in intO) Int_triangle_ineql:

assumes Al: "meZ" '"neZ"

shows

"abs(m-n) < abs(n)+abs(m)"

"abs(m-n) < abs(m)+abs(n)"
(proof)

Another version of the triangle inequality.

lemma (in int0) Int_triangle_ineq2:
assumes "mcZ" '"neZ"
and "abs(m-n) < k"
shows
"abs(m) < abs(n)+k"
"m-k S n"
llm S n+kll
lln_k < mll

{proof)

Triangle inequality with three integers. We could use OrdGroup_triangle_ineq3,
but since simp cannot translate the notation directly, it is simpler to reprove
it for integers.

lemma (in int0) Int_triangle_ineq3:

232

assumes Al: "meZ" "neZ" "keZ"
shows "abs(m+n+k) < abs(m)+abs(n)+abs(k)"

(proof)

The next lemma shows what happens when one integers is not greater or
equal than another.
lemma (in int0) Int_ZF_2_L19:
assumes Al: "meZ" "neZ" and A2: "—(n<m)"
shows "m<n" "(-n) < (-m)" 'm#n"
(proof)

If one integer is greater or equal and not equal to another, then it is not
smaller or equal.

lemma (in int0) Int_ZF_2_L19AA: assumes Al: "m<n" and A2: "m#n"
shows "-(n<m)"

(proof)

The next lemma allows to prove theorems for the case of positive and neg-
ative integers separately.

lemma (in int0) Int_ZF_2_L19A: assumes Al: "meZ" and A2: "-(0<m)"
ShOWS llmSOIl IIO S (_m) n "Hl7é0"
(proof)

We can prove a theorem about integers by proving that it holds for m = 0,
m €Z, and —m €Z,.
lemma (in int0) Int_ZF_2_L19B:
assumes "meZ" and "Q(0)" and "VneZ,. Q)" and "VneZ,. Q(-n)"
shows "Q(m)"

(proof)

An integer is not greater than its absolute value.

lemma (in int0) Int_ZF_2_L19C: assumes Al: "mcZ"
shows
"m < abs(m)"
"(-m) < abs(m)"

(proof)
|m —n| =|n—m)|.

lemma (in int0) Int_ZF_2_L20: assumes "mcZ" "ncZ"
shows "abs(m-n) = abs(n-m)"

(proof)

We can add the sides of inequalities with absolute values.

lemma (in int0) Int_ZF_2_L21:
assumes Al: "meZ" "neZ"
and A2: "abs(m) < k" ‘"abs(n) < 1"
shows

233

"abs(m+n) < k + 1"
"abs(m-n) < k + 1"
(proof)

Absolute value is nonnegative.

lemma (in int0) int_abs_nonneg: assumes Al: "meZ"
shows "abs(m) € Zt" "0 < abs(m)"

(proof)

If an nonnegative integer is less or equal than another, then so is its absolute
value.

lemma (in int0) Int_ZF_2_123:

assumes "0<m" "m<k"
shows "abs(m) < k"
(proof)

41.3 Induction on integers.

In this section we show some induction lemmas for integers. The basic tools
are the induction on natural numbers and the fact that integers can be
written as a sum of a smaller integer and a natural number.

An integer can be written a a sum of a smaller integer and a natural number.

lemma (in int0) Int_ZF_3_L2: assumes Al: "i < m"
shows "dn€nat. m = i $+ $# n"

(proof)

Induction for integers, the induction step.

lemma (in int0) Int_ZF_3_L6: assumes Al: "ieZ"

and A2: "Vm. i<m A Q(m) — Q(m $+ ($# 1))

shows "Vkeénat. Q(i $+ ($# k)) — Q(i $+ ($# succ(k)))"
(proof)

Induction on integers, version with higher-order increment function.

lemma (in int0) Int_ZF_3_L7:
assumes Al: "i<k" and A2: "Q(i)"
and A3: "Vm. i<m A Q(m) — Q(m $+ ($# 1))"
shows "Q(k)"

(proof)

Induction on integer, implication between two forms of the induction step.

lemma (in int0) Int_ZF_3_L7A: assumes
Al: "Vm. i<m A Q(m) — Q(m+1)"
shows "Vm. i<m A Q(m) — Q(m $+ ($# 1))"

(proof)

Induction on integers, version with ZF increment function.

234

theorem (in int0) Induction_on_int:
assumes Al: "i<k" and A2: "Q(i)"
and A3: "Vm. i<m A Q(m) — Q(m+1)"
shows "Q(k)"

(proof)

Another form of induction on integers. This rewrites the basic theorem
Int_ZF_3_L7 substituting P(—k) for Q(k).

lemma (in int0) Int_ZF_3_L7B: assumes Al: "i<k" and A2: "P($-i)"
and A3: "Vm. i<m A P($-m) — P($-(m $+ ($# 1)))"
shows "P($-k)"

(proof)

Another induction on integers. This rewrites Int_ZF_3_L7 substituting —k
for £ and —: for .

lemma (in int0) Int_ZF_3_L8: assumes Al: "k<i" and A2: "P(i)"
and A3: "Vm. $-i<m A P($-m) — P($-(m $+ ($# 1)))"
shows "P(k)"

(proof)

An implication between two forms of induction steps.

lemma (in int0) Int_ZF_3_L9: assumes Al: "ieZ"
and A2: "Vn. n<i A P(n) — P(n $+ $-($#1))"
shows "Vm. $-i<m A P($-m) — P($-(m $+ ($# 1)))"
(proof)

Backwards induction on integers, version with higher-order decrement func-
tion.

lemma (in int0) Int_ZF_3_L9A: assumes Al: "k<i" and A2: "P(i)"
and A3: "Vn. n<i A P(n) —P(n $+ $-($#1)) "
shows "P(k)"

(proof)

Induction on integers, implication between two forms of the induction step.

lemma (in int0) Int_ZF_3_L10: assumes
Al: "Vn. n<i A P(n) — P(m-1)"
shows "Vn. n<i A P(n) — P(n $+ $-($#1))"

(proof)

Backwards induction on integers.

theorem (in int0) Back_induct_on_int:
assumes Al: "k<i" and A2: "P(i)"
and A3: "Vn. n<i A P(n) — P(@m-1)"
shows "P(k)"

(proof)

235

41.4 Bounded vs. finite subsets of integers

The goal of this section is to establish that a subset of integers is bounded
is and only is it is finite. The fact that all finite sets are bounded is already
shown for all linearly ordered groups in OrderedGroups_ZF.thy. To show the
other implication we show that all intervals starting at 0 are finite and then
use a result from OrderedGroups_ZF.thy.

There are no integers between k£ and k + 1.

lemma (in int0) Int_ZF_4_L1:
assumes Al: "keZ" "meZ" "n€nat" and A2: "k $+ $#1 = m $+ $#n"
shows "m = k $+ $#1 Vv m < k"

(proof)

A trivial calculation lemma that allows to subtract and add one.

lemma Int_ZF_4_L1A:
assumes "mcint" shows "m $- $#1 $+ $#1 = m"
(proof)

There are no integers between k£ and k + 1, another formulation.

lemma (in int0) Int_ZF_4_L1B: assumes Al: "m < L"
shows
"m=LV ntl <L"
"m=LVm<L-1"

(proof)

Ifjem.k+1,then jem..norj=%k+1.

lemma (in int0) Int_ZF_4_L2: assumes Al: "kecZ"
and A2: "j € m..(k $+ $#1)"
shows "j € m..k V j € {k $+ $#1}"

(proof)

Extending an integer interval by one is the same as adding the new endpoint.

lemma (in int0) Int_ZF_4_L3: assumes Al: "m< k"
shows "m..(k $+ $#1) = m..k U {k $+ $#1}"
(proof)

Integer intervals are finite - induction step.

lemma (in int0) Int_ZF_4_L4:
assumes Al: "i<m" and A2: "i..m € Fin(Z)"
shows "i..(m $+ $#1) € Fin(Z)"
(proof)

Integer intervals are finite.

lemma (in int0) Int_ZF_4_L5: assumes Al: "icZ" "keZ"
shows "i..k € Fin(Z)"

(proof)

236

Bounded integer sets are finite.

lemma (in int0) Int_ZF_4_L6: assumes Al: "IsBounded(A,IntegerOrder)"
shows "A € Fin(Z)"

(proof)

A subset of integers is bounded iff it is finite.

theorem (in int0) Int_bounded_iff_fin:
shows "IsBounded(A,IntegerOrder)<+— A€Fin(Z)"

(proof)

The image of an interval by any integer function is finite, hence bounded.

lemma (in int0) Int_ZF_4_L8:
assumes Al: "ieZ" "keZ" and A2: "f:Z—~Z"
shows
"fC4(i..k) € Fin(Z)"
"IsBounded(f‘‘(i..k),IntegerOrder)"

(proof)

If for every integer we can find one in A that is greater or equal, then A is
is not bounded above, hence infinite.

lemma (in int0) Int_ZF_4_L9: assumes Al: "VmeZ. dkeA. m<k"
shows
"—IsBoundedAbove (A, IntegerOrder)"
"A ¢ Fin(Z)"

(proof)

end

42 Integers 1
theory Int_ZF_1 imports Int_ZF_IML OrderedRing_ZF
begin

This theory file considers the set of integers as an ordered ring.

42.1 Integers as a ring
In this section we show that integers form a commutative ring.

The next lemma provides the condition to show that addition is distributive
with respect to multiplication.

lemma (in int0) Int_ZF_1_1_L1: assumes Al: "acZ" "beZ" "ceZ"
shows
"a-(b+c)
"(b+c)-a

ab + a.c"
b-a + c-a"

237

(proof)

Integers form a commutative ring, hence we can use theorems proven in
ring0 context (locale).

lemma (in int0) Int_ZF_1_1_L2: shows

"IsAring(Z ,IntegerAddition,IntegerMultiplication)"
"IntegerMultiplication {is commutative on} Z"
"ring0(Z,IntegerAddition,IntegerMultiplication)"

(proof)

Zero and one are integers.

lemma (in int0) int_zero_one_are_int: shows "0€Z" "1€Z"
(proof)

Negative of zero is zero.

lemma (in int0O) int_zero_one_are_intA: shows "(-0) = 0"
(proof)

Properties with one integer.

lemma (in int0) Int_ZF_1_1_L4: assumes Al: "a € Z"
shows

"a+0 = a"

"O+a = a"

"a-1 = a" "l-a = a"

llO_a = Oll lla.O = Oll

"(-a) € Z" "(-(-a)) = a"

"a-a = 0" "a-0 = a" "2-a = ata"
(proof)

Properties that require two integers.

lemma (in int0) Int_ZF_1_1_L5: assumes "acZ" "beZ"
shows
"at+b € Z"
"a-b € Z"
"ab € Z"
"atb = b+a"
"a-b = b-a"
"(-b)-a = (-a)-b"
"(-(atb)) = (-a)-b"
"(-(a-b)) = ((-a)+b)"
"(-a)-b = -(ab)"
"a-(-b) = -(a-b)"
"(—a)-(—b) = a_bu
(proof)

2 and 3 are integers.

lemma (in int0) int_two_three_are_int: shows "2 ¢ Z" "3 ¢ Z"

(proof)

238

Another property with two integers.
lemma (in int0) Int_ZF_1_1_L5B:

assumes "acZ" '"beZ"
shows "a-(-b) = a+b"
(proof)

Properties that require three integers.

lemma (in int0) Int_ZF_1_1_L6: assumes "acZ" "beZ" "ccZ"
shows
"a-(b+c) = a-b-c"
"a-(b-c) = a-b+c"
"a-(b-c) = a-b - a-c"
"(b-c)a = b-a - c-a"

(proof)

One more property with three integers.

lemma (in int0) Int_ZF_1_1_L6A: assumes "acZ" "beZ" "ccZ"
shows "a+(b-c) = a+b-c"

(proof)

Associativity of addition and multiplication.

lemma (in int0) Int_ZF_1_1_L7: assumes "acZ" "beZ" "“ccZ"
shows
"a+b+c = a+(b+c)"
"a-b-c = a-(b-c)"
(proof)

42.2 Rearrangement lemmas

In this section we collect lemmas about identities related to rearranging the
terms in expresssions

A formula with a positive integer.

lemma (in int0) Int_ZF_1_2_L1: assumes "0<a"

shows "abs(a)+1 = abs(a+1)"

(proof)

A formula with two integers, one positive.

lemma (in int0) Int_ZF_1_2_L2: assumes Al: "acZ" and A2: "0<b"

shows "a+(abs(b)+1)-a = (abs(b+1)+1)-a"
(proof)

A couple of formulae about canceling opposite integers.

lemma (in int0) Int_ZF_1_2_L3: assumes Al: "acZ" "beZ"
shows
"a+b-a

= p"
"at(b-a) =

'bll

239

"a+b-b = a"
"a-b+b = a"
"(-a)+(at+b) = b"
"a+(b-a) = b"
"(-b)+(at+b) = a"
"a-(b+a) = -b"

"a-(atb) = -b"
"a-(a-b) = b"

"a-b-a = -b"

"a-b - (atb) = (-b)-b"
(proof)

Subtracting one does not increase integers. This may be moved to a theory
about ordered rings one day.

lemma (in int0) Int_ZF_1_2_L3A: assumes Al: "a<b"
shows "a-1 < b"

(proof)

Subtracting one does not increase integers, special case.

lemma (in int0) Int_ZF_1_2_L3AA:
assumes Al: "acZ" shows
lla_l <all
"a-1 #£ a"
"—(aLa-1D)"
"—(atl <a)"
" (1+a <a)"

(proof)

A formula with a nonpositive integer.

lemma (in int0) Int_ZF_1_2_L4: assumes "a<Q"

shows "abs(a)+1 = abs(a-1)"
(proof)

A formula with two integers, one negative.
lemma (in int0) Int_ZF_1_2_L5: assumes Al: "acZ" and A2: "b<O"
shows "a+(abs(b)+1)-a = (abs(b-1)+1)-a"

(proof)

A rearrangement with four integers.

lemma (in int0) Int_ZF_1_2_L6:

assumes Al: "acZ" "beZ" "ceZ" "deZ"
shows
"a-(b-1)-c = (d-b-c)-(d-a-c)"

(proof)

Some other rearrangements with two integers.

lemma (in int0) Int_ZF_1_2_L7: assumes "acZ" "beZ"
shows

240

"a-b = (a-1)-b+b"
"a-(b+1) = a-b+a"

"(b+1l)-a = b-a+a"
"(b+1l)-a = atb-a"
(proof)

Another rearrangement with two integers.

lemma (in int0) Int_ZF_1_2_L8:
assumes Al: "acZ" "beZ"
shows "a+1+(b+1l) = b+a+2"

{proof)

A couple of rearrangement with three integers.

lemma (in int0) Int_ZF_1_2_L9:
assumes "acZ" "beZ" ‘“ceZ"
shows
"(a-b)+(b-c) = a-c"
"(a-b)-(a-c) = c-b"
"a+(b+(c-a-b)) = c"
"(-a)-b+c = c-a-b"
"(-b)-a+c = c-a-b"
"(-((-a)+b+c)) = a-b-c"
"atb+c-a = b+c"
"at+b-(atc) = b-c"

(proof)
Another couple of rearrangements with three integers.

lemma (in int0) Int_ZF_1_2_L9A:
assumes Al: "acZ" "beZ" ‘“cecZ"
shows "(-(a-b-c)) = c+b-a"

(proof)

Another rearrangement with three integers.

lemma (in int0) Int_ZF_1_2_L10:
assumes Al: "acZ" "beZ" "“ceZ"
shows "(a+1)b + (c+1)-b = (c+a+2)-b"

(proof)
A technical rearrangement involing inequalities with absolute value.

lemma (in int0) Int_ZF_1_2_L10A:
assumes Al: "acZ" "beZ" “"ceZ" "ecZ"
and A2: "abs(ab-c) < 4" "abs(b-a-e) < f"
shows "abs(c-e) < f+d"

(proof)

Some arithmetics.

lemma (in int0) Int_ZF_1_2_L11: assumes Al: "acZ"
shows

241

"a+1+2 = a+3"
"a = 2.a - a"
(proof)

A simple rearrangement with three integers.

lemma (in int0) Int_ZF_1_2_L12:
assumes "acZ" "beZ" "“ceZ"
shows
"(b-c)-a = ab - a-c"

(proof)

A big rearrangement with five integers.

lemma (in int0) Int_ZF_1_2_L13:
assumes Al: "acZ" "beZ" "ceZ" "deZ" "xeZ"
shows "(x+(a-x+b)+c)-d = d-(a+1)-x + (b-d+c-d)"

(proof)

Rerrangement about adding linear functions.

lemma (in int0) Int_ZF_1_2_L14:
assumes "acZ" "beZ" "ceZ" "deZ" "xeZ"
shows "(ax + b) + (cx + d) = (atc)-x + (b+d)"

(proof)

A rearrangement with four integers. Again we have to use the generic set
notation to use a theorem proven in different context.

lemma (in int0) Int_ZF_1_2_L15: assumes Al: "acZ" "beZ" '"ceZ" "deZ"
and A2: "a = b-c-4d"
shows
"d = b-a-c"
"d = (-a)+b-c"
"b = a+d+c"

(proof)

A rearrangement with four integers. Property of groups.

lemma (in int0) Int_ZF_1_2_L16:
assumes "acZ" "beZ" "ceZ" "deZ"
shows "a+(b-c)+d = a+b+d-c"
(proof)

Some rearrangements with three integers. Properties of groups.

lemma (in int0) Int_ZF_1_2_L17:
assumes Al: "acZ" "beZ" ‘“"ceZ"
shows
"atb-c+(c-b) = a"
"at+(btc)-c = atb"

(proof)

Another rearrangement with three integers. Property of abelian groups.

242

lemma (in int0) Int_ZF_1_2_L18:

assumes Al: "acZ" "beZ" ‘“"cecZ"
shows "a+b-c+(c-a) = b"
(proof)

42.3 Integers as an ordered ring

We already know from Int_zF that integers with addition form a linearly
ordered group. To show that integers form an ordered ring we need the fact
that the set of nonnegative integers is closed under multiplication.

We start with the property that a product of nonnegative integers is non-
negative. The proof is by induction and the next lemma is the induction
step.
lemma (in int0) Int_ZF_1_3_L1: assumes Al: "0<a" "0<b"

and A3: "0 < a-b"

shows "0 < a-(b+1)"

(proof)

Product of nonnegative integers is nonnegative.
lemma (in int0) Int_ZF_1_3_L2: assumes Al: "0<a" "0O<b"
shows "0<a-b"

(proof)

The set of nonnegative integers is closed under multiplication.

lemma (in int0) Int_ZF_1_3_L2A: shows

"Z* {is closed under} IntegerMultiplication"
(proof)

Integers form an ordered ring. All theorems proven in the ringi context are
valid in int0 context.

theorem (in int0) Int_ZF_1_3_T1: shows
"IsAnOrdRing(Z,IntegerAddition,IntegerMultiplication, IntegerOrder)"
"ring1(Z,IntegerAddition,IntegerMultiplication,IntegerOrder)"

(proof)

Product of integers that are greater that one is greater than one. The proof
is by induction and the next step is the induction step.

lemma (in int0) Int_ZF_1_3_L3_indstep:
assumes Al: "1<a" "1<b"
and A2: "1 < a-b"
shows "1 < a-(b+1)"

(proof)

Product of integers that are greater that one is greater than one.

lemma (in int0) Int_ZF_1_3_L3:

assumes Al: "1<a" "1<b"

243

shows "1 < a-b"
(proof)

la - (=b)] = [(—a)-b] = |(—a) - (=b)| = |a - b| This is a property of ordered
rings..
lemma (in int0) Int_ZF_1_3_L4: assumes "acZ" "beZ"

shows

"abs((-a)-b) = abs(a-b)"

"abs(a-(-b)) = abs(ab)"

"abs((-a)-(-b)) = abs(a-b)"

(proof)

Absolute value of a product is the product of absolute values. Property of
ordered rings.

lemma (in int0) Int_ZF_1_3_L5:

assumes Al: "acZ" "beZ"
shows "abs(a'b) = abs(a)-abs(b)"

{proof)

Double nonnegative is nonnegative. Property of ordered rings.
lemma (in int0) Int_ZF_1_3_L5A: assumes "0<a"
shows "0<2-a"

(proof)

The next lemma shows what happens when one integer is not greater or
equal than another.

lemma (in int0) Int_ZF_1_3_L6:
assumes Al: "acZ" "beZ"
shows "—(b<a) +— a+l < b"

(proof)

Another form of stating that there are no integers between integers m and
m 4+ 1.

corollary (in int0O) no_int_between: assumes Al: "acZ" "beZ"
shows "b<a V a+l < b"
(proof)

Another way of saying what it means that one integer is not greater or equal
than another.

corollary (in intO) Int_ZF_1_3_L6A:

assumes Al: "acZ" "beZ" and A2: "—(b<a)"
shows "a < b-1"
(proof)

Yet another form of stating that there are nointegers between m and m + 1.

lemma (in int0) no_int_betweenl:
assumes Al: "a<b" and A2: "a#b"

244

shows

n a+1 S b n

n a é _1 n
(proof)

We can decompose proofs into three cases: a = b, a < b—1bor a > b+ 1b.

lemma (in int0) Int_ZF_1_3_L6B: assumes Al: "acZ" "becZ"

shows "a=b V (a < b-1) V (b+l <a)"
(proof)

A special case of Int_ZF_1_3_1L6B when b = 0. This allows to split the proofs
in cases a < —1,a=0and a > 1.

corollary (in intO) Int_ZF_1_3_L6C: assumes Al: "acZ"

shows "a=0 V (a < -1) Vv (1<a)"
(proof)

An integer is not less or equal zero iff it is greater or equal one.

lemma (in int0) Int_ZF_1_3_L7: assumes "acZ"

shows "—(a<0) +— 1 < a"

(proof)
Product of positive integers is positive.

lemma (in int0) Int_ZF_1_3_L8:
assumes "acZ" "beZ"
and "—(a<0)" "= (b<0)"
shows "= ((a'b) < 0O)"
(proof)

If a - b is nonnegative and b is positive, then a is nonnegative. Proof by
contradiction.

lemma (in int0) Int_ZF_1_3_L9:
assumes Al: "acZ" "beZ"
and A2: "—(b<0)" and A3: "ab < O"
shows "a<0"

(proof)

One integer is less or equal another iff the difference is nonpositive.

lemma (in int0) Int_ZF_1_3_L10:

assumes "acZ" '"beZ"
shows "a<b +— a-b < 0"
(proof)

Some conclusions from the fact that one integer is less or equal than another.

lemma (in int0) Int_ZF_1_3_L10A: assumes "a<b"
shows "0 < b-a"

(proof)

We can simplify out a positive element on both sides of an inequality.

245

lemma (in int0) Int_ineq_simpl_positive:
assumes Al: "acZ" "beZ" ‘“ceZ"
and A2: "a-c < b-c" and A4d: "= (c<0)"
shows "a < b"

(proof)

A technical lemma about conclusion from an inequality between absolute
values. This is a property of ordered rings.

lemma (in int0) Int_ZF_1_3_L11:
assumes Al: "acZ" '"beZ"
and A2: "—(abs(a) < abs(b))"
shows "—(abs(a) < 0)"

(proof)

Negative times positive is negative. This a property of ordered rings.

lemma (in int0) Int_ZF_1_3_L12:
assumes "a<0" and "0<b"
shows "ab < 0"

(proof)

We can multiply an inequality by a nonnegative number. This is a property
of ordered rings.

lemma (in int0) Int_ZF_1_3_L13:
assumes Al: "a<b" and A2: "0<c"
shows
"a:c < b-c"
"cca < cb"

{proof)

A technical lemma about decreasing a factor in an inequality.

lemma (in int0) Int_ZF_1_3_L13A:
assumes "1<a" and "b<c" and "(a+l)-c < 4"
shows "(a+1)b < 4"

(proof)

We can multiply an inequality by a positive number. This is a property of
ordered rings.

lemma (in int0) Int_ZF_1_3_L13B:
assumes Al: "a<b" and A2: "ceZ. "
shows
"a-c < b-c"
"ca < c-b"

(proof)
A rearrangement with four integers and absolute value.

lemma (in int0) Int_ZF_1_3_L14:

assumes Al: "acZ" "beZ" ‘“ceZ" "deZ"

246

shows "abs(a-b)+(abs(a)+c)-d = (d+abs(b))-abs(a)+c-d"
(proof)

A technical lemma about what happens when one absolute value is not
greater or equal than another.

lemma (in int0) Int_ZF_1_3_L15: assumes Al: "meZ" "neZ"

and A2: "= (abs(m) < abs(n))"
shows "n < abs(m)" "m#O0"

(proof)

Negative of a nonnegative is nonpositive.

lemma (in int0) Int_ZF_1_3_L16: assumes Al: "0 < m"
shows "(-m) < 0"

(proof)

Some statements about intervals centered at 0.

lemma (in int0) Int_ZF_1_3_L17: assumes Al: "mcZ"
shows
"(-abs(m)) < abs(m)"
"(-abs(m))..abs(m) # 0"

(proof)

The greater of two integers is indeed greater than both, and the smaller one
is smaller that both.

lemma (in int0) Int_ZF_1_3_L18: assumes Al: "m€Z" "ncZ"
shows
"m < Greater0f(IntegerOrder,m,n)"
"n < Greater0f(IntegerOrder,m,n)"
"SmallerOf (IntegerOrder,m,n) < m"
"SmallerOf (IntegerOrder,m,n) < n"

(proof) -

If |m| < n, then m € —n..n.

lemma (in int0) Int_ZF_1_3_L19:
assumes Al: "meZ" and A2: "abs(m) < n"
shows
||<_n) g m" "m S n"
"m € (-n)..n"
IIO < nll

(proof)

A slight generalization of the above lemma.

lemma (in int0) Int_ZF_1_3_L19A:
assumes Al: "meZ" and A2: "abs(m) < n" and A3: "0<k"
shows "(-(n+k)) < m"
(proof)

Sets of integers that have absolute value bounded are bounded.

247

lemma (in int0) Int_ZF_1_3_L20:

assumes Al: "VxeX. b(x) € Z A abs(b(x)) < L"
shows "IsBounded({b(x). x€X},IntegerOrder)"

(proof)

If a set is bounded, then the absolute values of the elements of that set are
bounded.

lemma (in int0) Int_ZF_1_3_L20A: assumes "IsBounded(A,IntegerOrder)"

shows "dL. VacA. abs(a) < L"
(proof)

Absolute vaues of integers from a finite image of integers are bounded by an
integer.

lemma (in int0) Int_ZF_1_3_L20AA:

assumes Al: "{b(x). x€Z} € Fin(Z)"
shows "dLeZ. VxeZ. abs(b(x)) < L"
(proof)

If absolute values of values of some integer function are bounded, then the
image a set from the domain is a bounded set.
lemma (in int0) Int_ZF_1_3_L20B:
assumes "f:X—Z" and "ACX" and "Vx€A. abs(f‘(x)) < L"
shows "IsBounded(f‘‘(A),IntegerOrder)"
(proof)

A special case of the previous lemma for a function from integers to integers.

corollary (in int0) Int_ZF_1_3_L20C:

assumes "f:Z—Z" and "VmeZ. abs(f‘(m)) < L"
shows "f‘‘(Z) € Fin(Z)"
(proof)

A triangle inequality with three integers. Property of linearly ordered abelian
groups.
lemma (in intO) int_triangle_ineq3:

assumes Al: "acZ" "beZ" "ceZ"
shows "abs(a-b-c) < abs(a) + abs(b) + abs(c)"

{proof)
Ifa <cand b <c then a+b <2-c. Property of ordered rings.
lemma (in int0) Int_ZF_1_3_L21:

assumes Al: "a<c" "b<c" shows "at+b < 2-c"

{proof)
If an integer a is between b and b + ¢, then |b — a| < ¢. Property of ordered
groups.

lemma (in int0) Int_ZF_1_3_L22:

assumes "a<b" and "ceZ" and "b< c+a"

248

shows "abs(b-a) < c"

(proof)

An application of the triangle inequality with four integers. Property of
linearly ordered abelian groups.

lemma (in int0) Int_ZF_1_3_L22A:
assumes "acZ" "beZ" ‘'"ceZ" "deZ"
shows "abs(a-c) < abs(a+b) + abs(c+d) + abs(b-d)"

(proof)

If an integer a is between b and b + ¢, then |b — a| < ¢. Property of ordered
groups. A version of Int_zZF_1_3_L22 with sligtly different assumptions.

lemma (in int0) Int_ZF_1_3_L23:

assumes Al: "a<b" and A2: "ceZ" and A3: "b< a+c"
shows "abs(b-a) < c"

(proof)

42.4 Maximum and minimum of a set of integers

In this section we provide some sufficient conditions for integer subsets to
have extrema (maxima and minima).

Finite nonempty subsets of integers attain maxima and minima.

theorem (in int0) Int_fin_have_max_min:
assumes Al: "A € Fin(Z)" and A2: "A#0"
shows
"HasAmaximum(IntegerOrder,A)"
"HasAminimum(IntegerOrder,A)"
"Maximum(IntegerOrder,A) € A"
"Minimum(IntegerOrder,A) € A"
"WxeA. x < Maximum(IntegerOrder,A)"
"Vx€A. Minimum(IntegerOrder,A) < x"
"Maximum(IntegerOrder,A) € Z"
"Minimum(IntegerOrder,A) € Z"

(proof)

Bounded nonempty integer subsets attain maximum and minimum.

theorem (in int0) Int_bounded_have_max_min:
assumes "IsBounded(A,IntegerOrder)" and "A#0"
shows
"HasAmaximum(IntegerOrder,A)"
"HasAminimum(IntegerOrder,A)"
"Maximum(IntegerOrder,A) € A"
"Minimum(IntegerOrder,A) € A"
"Wx€A. x < Maximum(IntegerOrder,A)"
"Vx€A. Minimum(IntegerOrder,A) < x"
"Maximum(IntegerOrder,A) € Z"
"Minimum(IntegerOrder,A) € Z"

249

(proof)

Nonempty set of integers that is bounded below attains its minimum.

theorem (in int0) int_bounded_below_has_min:
assumes Al: "IsBoundedBelow(A,IntegerOrder)" and A2: "A#0"
shows "
HasAminimum(IntegerOrder,A)"
"Minimum(IntegerOrder,A) € A"

"Vx€A. Minimum(IntegerOrder,A) < x"

(proof)

Nonempty set of integers that is bounded above attains its maximum.

theorem (in int0) int_bounded_above_has_max:
assumes Al: "IsBoundedAbove(A,IntegerOrder)" and A2: "A#O"
shows
"HasAmaximum(IntegerOrder,A)"
"Maximum(IntegerOrder,A) € A"
"Maximum(IntegerOrder,A) € Z"
"Wx€A. x < Maximum(IntegerOrder,A)"

(proof)

A set defined by separation over a bounded set attains its maximum and
minimum.

lemma (in int0) Int_ZF_1_4_L1:
assumes Al: "IsBounded(A,IntegerOrder)" and A2: "A#0"
and A3: "VqeZ. F(q) € Z"
and A4: "K = {F(q). q € A}"
shows
"HasAmaximum(IntegerOrder,K)"
"HasAminimum(IntegerOrder,K)"
"Maximum(IntegerOrder,K) € K"
"Minimum(IntegerOrder,K) € K"
"Maximum(IntegerOrder,K) € Z"
"Minimum(IntegerOrder,K) € Z"
"WqeA. F(q) < Maximum(IntegerOrder,K)"
"Vq€A. Minimum(IntegerOrder,K) < F(q)"
"IsBounded (K, IntegerOrder)"

(proof)

A three element set has a maximume and minimum.

lemma (in int0) Int_ZF_1_4_L1A: assumes Al: "ac€Z" "beZ" "ceZ"
shows
"Maximum(IntegerOrder,{a,b,c}) € Z"
"a < Maximum(IntegerOrder,{a,b,c})"
"p < Maximum(IntegerOrder,{a,b,c})"
"¢ < Maximum(IntegerOrder,{a,b,c})"

{proof)

250

Integer functions attain maxima and minima over intervals.

lemma (in int0) Int_ZF_1_4_L2:
assumes Al: "f:Z—7Z" and A2: "a<b"
shows
"maxf (f,a..b) € Z"
"We € a..b. £(c) < maxf(f,a..b)"
"J¢c € a..b. £(c) = maxf(f,a..b)"
"minf (f,a..b) € Z"
"Yc¢ € a..b. minf(f,a..b) < £f(c)"
"Jc € a..b. £(c) = minf(f,a..b)"
(proof)

42.5 The set of nonnegative integers

The set of nonnegative integers looks like the set of natural numbers. We
explore that in this section. We also rephrase some lemmas about the set of
positive integers known from the theory of oredered grups.

The set of positive integers is closed under addition.

lemma (in intO) pos_int_closed_add:
shows "Z, {is closed under} IntegerAddition"

(proof)

Text expended version of the fact that the set of positive integers is closed
under addition

lemma (in int0) pos_int_closed_add_unfolded:
assumes "acZ.," "beZ." shows "atb € Z. "
{proof)

Z* is bounded below.

lemma (in int0) Int_ZF_1_5_L1: shows

"IsBoundedBelow(Z™',IntegerOrder)"
"IsBoundedBelow(Z, ,IntegerOrder)"

(proof)

Subsets of Zt are bounded below.

lemma (in int0) Int_ZF_1_5_L1A: assumes "A C Z*t"

shows "IsBoundedBelow(A,IntegerOrder)"
(proof)
Subsets of Z, are bounded below.

lemma (in intO0) Int_ZF_1_5_L1B: assumes Al: "A C Z."

shows "IsBoundedBelow(A,IntegerOrder)"

(proof)

Every nonempty subset of positive integers has a mimimum.

lemma (in int0) Int_ZF_1_5_L1C: assumes "A C Z." and "A # 0"

251

shows

"HasAminimum(IntegerOrder,A)"
"Minimum(IntegerOrder,A) € A"
"Vx€A. Minimum(IntegerOrder,A) < x"

(proof)

Infinite subsets of ZT do not have a maximum - If A C Z* then for every
integer we can find one in the set that is not smaller.

lemma (in int0) Int_ZF_1_5_L2:

assumes Al: "A C Z™" and A2: "A ¢ Fin(Z)" and A3: "DeZ"
shows "dneA. D<n"

(proof)

Infinite subsets of Z, do not have a maximum - If A C Z, then for every
integer we can find one in the set that is not smaller. This is very similar to
Int_ZF_1_5_L2, except we have Z, instead of Z* here.

lemma (in int0) Int_ZF_1_5_L2A:

assumes Al: "A C Z," and A2: "A ¢ Fin(Z)" and A3: "DeZ"
shows "dncA. D<n"

(proof)

An integer is either positive, zero, or its opposite is postitive.

lemma (in int0) Int_decomp: assumes "mcZ"
shows "Exactly_1_of_3_holds (m=0,meZ ,(-m)eZ)"
{proof)

An integer is zero, positive, or it’s inverse is positive.

lemma (in int0) int_decomp_cases: assumes "meZ"
shows "m=0 V meZ, V (-m) € Z."

(proof)

An integer is in the positive set iff it is greater or equal one.

lemma (in int0) Int_ZF_1_5_L3: shows "meZ, <+— 1<m"

(proof)

The set of positive integers is closed under multiplication. The unfolded
form.

lemma (in int0) pos_int_closed_mul_unfold:

assumes "ac€Z," "beZ."
shows "ab € Z,"
(proof)

The set of positive integers is closed under multiplication.

lemma (in intO) pos_int_closed_mul: shows
"Z, {is closed under} IntegerMultiplication"

(proof)

252

It is an overkill to prove that the ring of integers has no zero divisors this
way, but why not?
lemma (in intO) int_has_no_zero_divs:
shows "HasNoZeroDivs(Z,IntegerAddition,IntegerMultiplication)"
(proof)

Nonnegative integers are positive ones plus zero.

lemma (in int0) Int_ZF_1_5_L3A: shows "Z* = Z, U {0}"
(proof)

We can make a function smaller than any constant on a given interval of
positive integers by adding another constant.

lemma (in int0) Int_ZF_1_5_L4:

assumes Al: "f:Z—7Z" and A2: "KeZ" "NeZ"
shows "JCeZ. VneZ,. XK < £‘(n) + C — N<n"

(proof)
Absolute value is identity on positive integers.

lemma (in int0) Int_ZF_1_5_L4A:

assumes "a€Z," shows "abs(a) = a"

(proof)

One and two are in Z,.

lemma (in int0) int_one_two_are_pos: shows "1 € Z," "2 ¢ Z.,"
{proof)

The image of Z, by a function defined on integers is not empty.

lemma (in int0) Int_ZF_1_5_L5: assumes Al: "f : Z—X"
shows "f¢‘(Z,) # o"
(proof)

If n is positive, then n — 1 is nonnegative.

lemma (in int0) Int_ZF_1_5_L6: assumes Al: "'n € Z"
shows

"0 < n-1"
"0 € 0..(a-1)"
"0..(n-1) C Z"
(proof)

Intgers greater than one in Z, belong to Z,. This is a property of ordered
groups and follows from OrderedGroup_ZF_1_L19, but Isabelle’s simplifier has
problems using that result directly, so we reprove it specifically for integers.

lemma (in int0) Int_ZF_1_5_L7: assumes "a € Z." and "a<b"
shows "b € Z,"
(proof)

Adding a positive integer increases integers.

253

lemma (in int0) Int_ZF_1_5_L7A: assumes "acZ" "b € Z."

shows "a < a+b" "a # atb" '"atb € Z"

{proof)

For any integer m the greater of m and 1 is a positive integer that is greater
or equal than m. If we add 1 to it we get a positive integer that is strictly
greater than m.

lemma (in int0) Int_ZF_1_5_L7B: assumes "acZ"
shows
"a < Greater0f (IntegerOrder,1,a)"
"GreaterOf (IntegerOrder,1l,a) € Z,"
"GreaterOf (IntegerOrder,1,a) + 1 € Z_"
"a < Greater0f(IntegerOrder,1l,a) + 1"
"a # GreaterOf (IntegerOrder,1l,a) + 1"

(proof)

The opposite of an element of Z, cannot belong to Z, .

lemma (in int0) Int_ZF_1_5_L8: assumes "a € Z."
shows "(-a) ¢ Z,"
{proof)

For every integer there is one in Z, that is greater or equal.

lemma (in int0) Int_ZF_1_5_L9: assumes "acZ"
shows "JdbeZ,. a<b"

(proof)

A theorem about odd extensions. Recall from OrdereGroup_ZF.thy that the
odd extension of an integer function f defined on Z, is the odd function on
Z equal to f on Z, . First we show that the odd extension is defined on Z.

lemma (in int0) Int_ZF_1_5_L10: assumes "f : Z, —Z"

shows "OddExtension(Z,IntegerAddition,IntegerOrder,f) : Z—Z"
(proof)

On Z,, the odd extension of f is the same as f.

lemma (in int0) Int_ZF_1_5_L11: assumes "f : Z,—7Z" and "a € Z."
and

"g = OddExtension(Z,IntegerAddition,IntegerOrder,f)"

shows "g‘(a) = £‘(a)"

(proof)

On -Z., the value of the odd extension of f is the negative of f(—a).
lemma (in int0) Int_ZF_1_5_L12:

assumes "f : Z,—Z" and "a € (-Z,)" and
"g = 0OddExtension(Z,IntegerAddition,IntegerOrder,f)"
shows "g‘(a) = -(£°(-a))"

{proof)

0Odd extensions are odd on Z.

254

lemma (in int0) int_oddext_is_odd:
assumes "f : Z,—Z" and "acZ" and
"g = OddExtension(Z,IntegerAddition,IntegerOrder,f)"
shows "g‘(-a) = -(g‘(a))"
(proof)

Alternative definition of an odd function.

lemma (in int0) Int_ZF_1_5_L13: assumes Al: "f: Z—Z" shows

"(Va€Z. £'(-a) = (-£(a))) +— (Va€Z. (-(£‘(-a))) = £ (a)"
{proof)

Another way of expressing the fact that odd extensions are odd.
lemma (in int0) int_oddext_is_odd_alt:
assumes "f : Z,—Z" and "a€Z" and
"g = OddExtension(Z,IntegerAddition,IntegerOrder,f)"
shows "(-g‘(-a)) = g‘(a)"
{proof)

42.6 Functions with infinite limits

In this section we consider functions (integer sequences) that have infinite
limits. An integer function has infinite positive limit if it is arbitrarily large
for large enough arguments. Similarly, a function has infinite negative limit
if it is arbitrarily small for small enough arguments. The material in this
come mostly from the section in OrderedGroup_zF.thy with he same title.
Here we rewrite the theorems from that section in the notation we use for
integers and add some results specific for the ordered group of integers.

If an image of a set by a function with infinite positive limit is bounded
above, then the set itself is bounded above.

lemma (in int0) Int_ZF_1_6_L1: assumes "f: Z—Z" and
"WaeZ.3dbeZ, . Vx. b<x — a < £(x)" and "A C Z" and
"IsBoundedAbove (f‘‘(A),IntegerOrder)"
shows "IsBoundedAbove(A,IntegerOrder)"

(proof)

If an image of a set defined by separation by a function with infinite positive
limit is bounded above, then the set itself is bounded above.

lemma (in int0) Int_ZF_1_6_L2: assumes Al: "X#0" and A2: "f: Z—Z"
and
A3: "WaeZ.3beZ, .Vx. b<x — a
Ad: "VxeX. b(x) € Z A £(b(x))
shows "Ju.VxeX. b(x) < u"
(proof)

f(x)" and

<
S UII

If an image of a set defined by separation by a integer function with infinite
negative limit is bounded below, then the set itself is bounded above. This
is dual to Int_ZF_1_6_L2.

255

lemma (in int0) Int_ZF_1_6_L3: assumes Al: "X=#0" and A2: "f: Z—Z"
and

A3: "VaeZ.3beZ, .Vy. b<y — £‘(-y) < a" and

Ad: "WxeX. b(x) € Z AL < £

shows "d1.VxeX. 1 < b(x)"

(proof)

The next lemma combines Int_ZF_1_6_L2 and Int_ZF_1_6_L3 to show that
if the image of a set defined by separation by a function with infinite limits
is bounded, then the set itself is bounded. The proof again uses directly a
fact from OrderedGroup_ZF.
lemma (in int0) Int_ZF_1_6_L4:

assumes Al: "X#0" and A2: "f: Z—Z" and

A3: "VaeZ.3beZ, .Vx. b<x — a < £°(x)" and

Ad: "VaeZ .3beZ, .Vy. b<y — £(-y) < a" and

A5: "VxeX. b(x) € Z N £(b(x)) <UAL < £(M)"

shows "IM.VxeX. abs(b(x)) < M"

(proof)

If a function is larger than some constant for arguments large enough, then
the image of a set that is bounded below is bounded below. This is not true
for ordered groups in general, but only for those for which bounded sets are
finite. This does not require the function to have infinite limit, but such
functions do have this property.
lemma (in int0) Int_ZF_1_6_L5:

assumes Al: "f: Z—7Z" and A2: "NeZ" and

A3: "Vm. N<m — L < £f‘(m)" and

A4: "IsBoundedBelow(A,IntegerOrder)"

shows "IsBoundedBelow(f‘‘(A),IntegerOrder)"

(proof)

A function that has an infinite limit can be made arbitrarily large on positive
integers by adding a constant. This does not actually require the function
to have infinite limit, just to be larger than a constant for arguments large
enough.

lemma (in int0) Int_ZF_1_6_L6: assumes Al: "NeZ" and

A2: "Vm. N<m — L < f‘(m)" and
A3: "f: Z—7Z" and A4: "KeZ"
shows "JdceZ. VneZ,. K < £ (n)+c"

(proof)

If a function has infinite limit, then we can add such constant such that
minimum of those arguments for which the function (plus the constant) is
larger than another given constant is greater than a third constant. It is not
as complicated as it sounds.

lemma (in int0) Int_ZF_1_6_L7:

assumes Al: "f: Z—Z" and A2: "KeZ" "NeZ" and

256

A3: "VaeZ.3beZ, . Vx. b<x — a < £‘(x)"
shows "JCcZ. N < Minimum(IntegerOrder,{nc€Z,. K < f‘(n)+C}H)"

(proof)

For any integer m the function k& +— m - k has an infinite limit (or negative
of that). This is why we put some properties of these functions here, even
though they properly belong to a (yet nonexistent) section on homomor-
phisms. The next lemma shows that the set {a -z : x € Z} can finite only
if a = 0.

lemma (in int0) Int_ZF_1_6_L8:

assumes Al: "acZ" and A2: "{ax. x€Z} € Fin(Z)"
shows "a = 0"

{(proof)

42.7 Miscelaneous

In this section we put some technical lemmas needed in various other places
that are hard to classify.

Suppose we have an integer expression (a meta-function)F' such that F'(p)|p|
is bounded by a linear function of |p|, that is for some integers A, B we have
F(p)|p| < Alp| + B. We show that F is then bounded. The proof is easy, we
just divide both sides by |p| and take the limit (just kidding).

lemma (in int0) Int_ZF_1_7_L1:

assumes Al: "VqeZ. F(q) € Z" and
A2: "VqeZ. F(q)-abs(q) < A-abs(q) + B" and
A3: "A€Z" "BeZ"
shows "JL. VpeZ. F(p) < L"
(proof)

A lemma about splitting (not really, there is some overlap) the ZxZ into
six subsets (cases). The subsets are as follows: first and third qaudrant, and
second and fourth quadrant farther split by the b = —a line.

lemma (in int0) int_plane_split_in6: assumes "acZ" "beZ"
shows
"0<a A 0<b V. a<0 A b<0 V
a<0 A 0<b A0 < at+b V a<0 A 0<b A atb < 0 V

0<a A b<0O A 0O < at+tb V 0<a A b<0O A at+b < 0"

(proof)

end

43 Division on integers

theory IntDiv_ZF_IML imports Int_ZF_1 IntDiv_ZF

begin

257

This theory translates some results form the Isabelle’s IntDiv.thy theory to
the notation used by IsarMathLib.

43.1 Quotient and reminder

For any integers m,n , n > 0 there are unique integers ¢, p such that 0 <
p <nand m =n-q+ p. Number p in this decompsition is usually called m
mod n. Standard Isabelle denotes numbers ¢,p as m zdiv n and m zmod n,
resp., and we will use the same notation.

The next lemma is sometimes called the ”quotient-reminder theorem”.

lemma (in int0) IntDiv_ZF_1_L1: assumes "mcZ" "neZ"
shows "m = n-(m zdiv n) + (m zmod n)"

(proof)

If n is greater than 0 then m zmod n is between 0 and n — 1.

lemma (in int0) IntDiv_ZF_1_L2:
assumes Al: "meZ" and A2: "0<n" "n#0"
shows
"0 < m zmod n"
"m zmod n < n" "m zmod n #* n"
"m zmod n < n-1"

(proof)
(m- k) div k =m.

lemma (in int0) IntDiv_ZF_1_L3:
assumes "meZ" "keZ" and "k#0"

shows
"(mk) zdiv k = m"
"(k'm) zdiv k = m"
(proof)

The next lemma essentially translates zdiv_mono1 from standard Isabelle to
our notation.

lemma (in int0) IntDiv_ZF_1_L4:
assumes Al: "m < k" and A2: "0<n" '"n#0"
shows "m zdiv n < k zdiv n"

(proof)

A quotient-reminder theorem about integers greater than a given product.

lemma (in int0) IntDiv_ZF_1_L5:
assumes Al: "n € Z," and A2: "n < k" and A3: "kn < m"
shows
"m = n-(m zdiv n) + (m zmod n)"

m = (m zdiv n)-n + (m zmod n)"

"(m zmod n) € 0..(n-1)"

"k < (m zdiv n)"

258

"m zdiv n € Z,"
(proof)

end

44 Integers 2

theory Int_ZF_2 imports func_ZF_1 Int_ZF_1 IntDiv_ZF_IML Group_ZF_3
begin

In this theory file we consider the properties of integers that are needed for
the real numbers construction in Real_ZF series.

44.1 Slopes

In this section we study basic properties of slopes - the integer almost homo-
morphisms. The general definition of an almost homomorphism f on a group
G written in additive notation requires the set {f(m 4+ n) — f(m) — f(n) :
m,n € G} to be finite. In this section we establish a definition that is equiva-
lent for integers: that for all integer m, n we have | f(m+n)—f(m)—f(n)| < L
for some L.

First we extend the standard notation for integers with notation related to
slopes. We define slopes as almost homomorphisms on the additive group
of integers. The set of slopes is denoted S. We also define ”positive” slopes
as those that take infinite number of positive values on positive integers.
We write §(s,m,n) to denote the homomorphism difference of s at m,n (i.e
the expression s(m +n) — s(m) — s(n)). We denote maxd(s) the maximum
absolute value of homomorphism difference of s as m,n range over integers.
If s is a slope, then the set of homomorphism differences is finite and this
maximum exists. In Group_ZF_3 we define the equivalence relation on almost
homomorphisms using the notion of a quotient group relation and use ”~” to
denote it. As here this symbol seems to be hogged by the standard Isabelle,
we will use ”~” instead ”~”. We show in this section that s ~ r iff for some
L we have |s(m) — r(m)| < L for all integer m. The ”+” denotes the first
operation on almost homomorphisms. For slopes this is addition of functions
defined in the natural way. The ”o” symbol denotes the second operation
on almost homomorphisms (see Group_zZF_3 for definition), defined for the
group of integers. In short ”o” is the composition of slopes. The ”~1” symbol
acts as an infix operator that assigns the value min{n € Z, : p < f(n)} to
a pair (of sets) f and p. In application f represents a function defined on
Z, and p is a positive integer. We choose this notation because we use
it to construct the right inverse in the ring of classes of slopes and show

259

that this ring is in fact a field. To study the homomorphism difference
of the function defined by p — f~!(p) we introduce the symbol ¢ defined
as e(f, (m,n)) = f~1(m +n) — f~1(m) — f~1(n). Of course the intention
is to use the fact that e(f, (m,n)) is the homomorphism difference of the
function g defined as g(m) = f~'(m). We also define y(s,m,n) as the
expression §(f, m, —n) + s(0) — §(f,n, —n). This is useful because of the
identity f(m —n) =~y(m,n)+ f(m)— f(n) that allows to obtain bounds on
the value of a slope at the difference of of two integers. For every integer m
we introduce notation m® defined by m”(n) = m - n. The mapping ¢ — ¢°
embeds integers into S preserving the order, (that is, maps positive integers
into S4).

locale intl = int0 +

fixes slopes ("S")
defines slopes_def[simp]: "S = AlmostHoms(Z,IntegerAddition)"

fixes posslopes ("S;")
defines posslopes_def [simp]l: "S; = {s€S. s‘‘(Zy) N Z, ¢ Fin(Z)}"

fixes ¢
defines §_def [simp]: "d(s,m,n) = s‘(m+n)-s‘(m)-s‘(n)"

fixes maxhomdiff ("maxd")
defines maxhomdiff_def [simp] :
"maxd(s) = Maximum(IntegerOrder,{abs(d(s,m,n)). (m,n) € ZxZ}"

fixes AlEqRel
defines AlEqRel_def [simp]:
"AlEqRel = QuotientGroupRel(S,AlHomOpl(Z,IntegerAddition) ,FinRangeFunctions(Z,Z))"

fixes AlEq (infix "~" 68)
defines AlEq_def[simp]: "s ~ r = (s,r) € AlEqRel"

fixes slope_add (infix "+" 70)
defines slope_add_def[simp]: "s + r = AlHomOpl(Z,IntegerAddition) ‘(

S,I‘>"

fixes slope_comp (infix "o" 70)

defines slope_comp_def[simp]: "s o r = AlHomOp2(Z,IntegerAddition) ‘(
s,r> n
fixes neg ("-_" [90] 91)

defines neg_def [simp]: "-s GroupInv(Z,IntegerAddition) 0 s"
fixes slope_inv (infix "~!" 71)

defines slope_inv_def [simp]:

"f~1(p) = Minimum(IntegerOrder,{n€Z,. p < £‘(@)P"

fixes ¢

260

defines ¢_def [simp]:
"e(f,p) = £ 1(fst(p)+snd(p)) - £ 1(£st(p)) - £ 1(snd(p))"

fixes ~
defines ~y_def [simp]:
"y(s,m,n) = 6(s,m,-n) - §(s,n,-n) + s(0)"

fixes intembed ("_°")
defines intembed_def [simp]: "m® = {(n,mn). ncZ}"

We can use theorems proven in the groupl context.

lemma (in int1) Int_ZF_2_1_L1: shows "groupl(Z,IntegerAddition)"

(proof)

Type information related to the homomorphism difference expression.

lemma (in int1) Int_ZF_2_1_L2: assumes "feS" and "ncZ" "meZ"
shows
"m+n € Z"
vlft(m+n) c y/Al
"f(m) € Z" "f(n) € Z"
"f'(m) + £(n) € Z"
"HomDiff (Z,IntegerAddition,f,(m,n)) € Z"
(proof)

Type information related to the homomorphism difference expression.

lemma (in int1) Int_ZF_2_1_L2A:
assumes "f:Z—7Z" and "neZ" '"meZ"
shows
"mtn € Z"
"f(m+n) € Z" "f(m) € Z" "f¢(n) € Z"
"f¢(m) + £(n) € Z"
"HomDiff (Z,IntegerAddition,f,(m,n)) € Z"
(proof)

Slopes map integers into integers.

lemma (in inti1) Int_ZF_2_1_L2B:

assumes Al: "feS" and A2: "meZ"
shows "f‘(m) € Z"

(proof)

The homomorphism difference in multiplicative notation is defined as the
expression s(m - n) - (s(m) - s(n))~!. The next lemma shows that in the
additive notation used for integers the homomorphism difference is f(m +
n) — f(m) — f(n) which we denote as §(£,m,n).

lemma (in int1) Int_ZF_2_1_L3:
assumes "f:Z—7Z" and "meZ" "neZ"
shows "HomDiff (Z,IntegerAddition,f,(m,n)) = 6(f,m,n)"
(proof)

261

The next formula restates the definition of the homomorphism difference to
express the value an almost homomorphism on a sum.

lemma (in int1) Int_ZF_2_1_L3A:
assumes Al: "feS" and A2: "meZ" "neZ"
shows
"fC(mtn) = £C@+E)+ (f,m,n))"

(proof)

The homomorphism difference of any integer function is integer.

lemma (in int1) Int_ZF_2_1_L3B:
assumes "f:Z—Z" and "meZ" "neZ"
shows "6(f,m,n) € Z"

(proof)

The value of an integer function at a sum expressed in terms of 4.

lemma (in int1) Int_ZF_2_1_L3C: assumes Al: "f:Z—7Z" and A2: "meZ"
llnezll
shows "f‘(m+n) = 6(f,m,n) + £‘(n) + £‘(m)"

(proof)

The next lemma presents two ways the set of homomorphism differences can
be written.

lemma (in int1) Int_ZF_2_1_L4: assumes Al: "f:Z—Z"
shows "{abs(HomDiff (Z,IntegerAddition,f,x)). x € ZxZ} =
{abs(6(f,m,n)). (m,n) € ZxZ}"

(proof)

If f maps integers into integers and for all m,n € Z we have |f(m +n) —
f(m) — f(n)| < L for some L, then f is a slope.

lemma (in int1) Int_ZF_2_1_L5: assumes Al: "f:Z—Z"

and A2: "VmeZ.VneZ. abs(6(f,m,n)) < L"
shows "feS"

(proof)

The absolute value of homomorphism difference of a slope s does not exceed
maxd (s).

lemma (in int1) Int_ZF_2_1_L7:
assumes Al: "seS" and A2: "neZ" "meZ"
shows
"abs(d(s,m,n)) < maxd(s)"
"6(s,m,n) € Z" "maxd(s) € Z"
"(-maxd(s)) < d(s,m,n)"

{(proof)

A useful estimate for the value of a slope at 0, plus some type information
for slopes.

lemma (in int1) Int_ZF_2_1_L8: assumes Al: "s&S"

262

shows

"abs(s‘(0)) < maxd(s)"

"0 < maxd(s)"

"abs(s‘(0)) € Z" "maxd(s) € Z"

"abs(s‘(0)) + maxd(s) € Z"
(proof)

Int Group_zF_3.thy we show that finite range functions valued in an abelian
group form a normal subgroup of almost homomorphisms. This allows to
define the equivalence relation between almost homomorphisms as the re-
lation resulting from dividing by that normal subgroup. Then we show in
Group_ZF_3_4_L12 that if the difference of f and g has finite range (actually
f(n) - g(n)~! as we use multiplicative notation in Group_zF_3.thy), then f
and g are equivalent. The next lemma translates that fact into the notation

used in int1 context.

lemma (in int1) Int_ZF_2_1_L9: assumes Al: "seS" '"reS"

and A2: "VmeZ. abs(s‘(m)-r‘(m)) < L"
shows "s ~ r"

(proof)

A neccessary condition for two slopes to be almost equal. For slopes the
definition postulates the set {f(m) — g(m) : m € Z} to be finite. This
lemma shows that this implies that |f(m) — g(m)| is bounded (by some
integer) as m varies over integers. We also mention here that in this context
s ~ r implies that both s and r are slopes.

lemma (in int1) Int_ZF_2_1_L9A: assumes "s ~ r"

shows

"JLeZ. VmeZ. abs(s‘@m)-r‘(m)) < L"
IISeSII Ilr€SII

(proof)

Let’s recall that the relation of almost equality is an equivalence relation on
the set of slopes.

lemma (in int1) Int_ZF_2_1_L9B: shows
"AlEqRel C SxS"
"equiv(S,A1EqRel)"
(proof)

Another version of sufficient condition for two slopes to be almost equal: if
the difference of two slopes is a finite range function, then they are almost
equal.

lemma (in int1) Int_ZF_2_1_L9C: assumes "scS" "reS" and
"s + (-r) € FinRangeFunctions(Z,Z)"
shows
lls ~ rll
llr ~ Sll

(proof)

263

If two slopes are almost equal, then the difference has finite range. This is
the inverse of Int_zF_2_1_L9C.

lemma (in int1) Int_ZF_2_1_L9D: assumes Al: "s ~ r"

shows "s + (-r) € FinRangeFunctions(Z,Z)"
(proof)

What is the value of a composition of slopes?

lemma (in inti1) Int_ZF_2_1_L10:

assumes "scS" "reS" and "meZ"
shows "(sor)‘(m) = s‘(r‘(m))" "s‘(r‘(m)) € Z"
(proof)

Composition of slopes is a slope.

lemma (in inti1) Int_ZF_2_1_L11:

assumes "s€S" "reS"
shows "sor € S"
(proof)

Negative of a slope is a slope.

lemma (in int1) Int_ZF_2_1_L12: assumes "s€S" shows "-s € S"
(proof)

What is the value of a negative of a slope?

lemma (in int1) Int_ZF_2_1_L12A:
assumes "sc€S" and "meZ" shows "(-s)‘(m) = -(s‘(m))"

{proof)

What are the values of a sum of slopes?

lemma (in int1) Int_ZF_2_1_L12B: assumes "scS" "reS" and "meZ"

shows "(s+r)‘(m) = s‘(m) + r‘(m)"
(proof)
Sum of slopes is a slope.

lemma (in int1) Int_ZF_2_1_L12C: assumes "scS" "reS"
shows "s+r € S§"

(proof)
A simple but useful identity.
lemma (in inti1) Int_ZF_2_1_L13:

assumes "scS" and "neZ" "meZ"
shows "s‘(a'm) + (s‘(m) + 6(s,nm,m)) = s‘((n+1)m)"
(proof)

Some estimates for the absolute value of a slope at the opposite integer.

lemma (in int1) Int_ZF_2_1_L14: assumes Al: "s&S" and A2: "meZ"
shows

264

"s‘(-m) = s°(0) - §(s,m,-m) - s‘(m)"
"abs(s‘(m)+s‘(-m)) < 2maxd(s)"
"abs(s‘(-m)) < 2maxdi(s) + abs(s‘(m))"
"s‘(-m) < abs(s‘(0)) + maxd(s) - s‘(m)"

(proof)

An identity that expresses the value of an integer function at the opposite
integer in terms of the value of that function at the integer, zero, and the
homomorphism difference. We have a similar identity in Int_ZF_2_1_L14,
but over there we assume that f is a slope.

lemma (in int1) Int_ZF_2_1_L14A: assumes Al: "f:Z—Z" and A2: "mcZ"
shows "f‘(-m) = (-6(f,m,-m)) + £(0) - £(m)"
(proof)

The next lemma allows to use the expression maxf (f,0..M-1). Recall that
maxf (£,A) is the maximum of (function) f on (the set) A.

lemma (in inti1) Int_ZF_2_1_L15:
assumes "s€S" and "M € Z,"
shows
"maxf (s,0..(M-1)) € Z"
"Wn € 0..(M-1). s‘(n) < maxf(s,0..(M-1))"
"minf(s,0..(M-1)) € Z"
"Yn € 0..(M-1). minf(s,0..(M-1)) < s‘(@)"

(proof)

A lower estimate for the value of a slope at nM + k.

lemma (in inti1) Int_ZF_2_1_L16:

assumes Al: "se€S" and A2: "meZ" and A3: "M € Z." and A4: "k €
0..(M-1)"

shows "s‘(m-M) + (minf(s,0..(M-1))- maxd(s)) < s‘(mM+k)"
(proof)

Identity is a slope.
lemma (in int1) Int_ZF_2_1_L17: shows "id(Z) € S"
(proof)
Simple identities about (absolute value of) homomorphism differences.

lemma (in inti1) Int_ZF_2_1_L18:
assumes Al: "f:Z—7Z" and A2: "meZ" '"necZ"
shows

"abs(f‘(n) + £(m) - £(m+n)) = abs(6(f,m,n))"
"abs(f‘(m) + £‘(n) - £f‘(m+n)) = abs(f(f,m,n))"
"= @) - £() + £°(m+n) = §(f,m,n)"

(- (@) - £(m) + £(m+n) = §(£f,m,n)"
"abs((-f‘(m+n)) + £‘(m) + £‘(n)) = abs(d(f,m,n))"
(proof)

Some identities about the homomorphism difference of odd functions.

265

lemma (in int1) Int_ZF_2_1_L19:
assumes Al: "f:Z—7Z" and A2: "VxeZ. (-f‘(-x)) = £ (x)"
and A3: "meZ" "neZ"
shows
"abs(§(f,-m,m+n)) = abs(d(f,m,n))"
"abs(d(f,-n,m+n)) = abs(d(f,m,n))"
"5(f,n,-(m+n)) = 6(f,m,n)"
"5(f,m,-(m+n)) = 6(f,m,n)"
"abs(6(f,-m,-n)) = abs(d(f,m,n))"

(proof)

Recall that f is a slope iff f(m+n)— f(m)— f(n) is bounded as m, n ranges
over integers. The next lemma is the first step in showing that we only need
to check this condition as m,n ranges over positive intergers. Namely we
show that if the condition holds for positive integers, then it holds if one
integer is positive and the second one is nonnegative.

lemma (in int1) Int_ZF_2_1_L20: assumes Al: "f:Z—Z" and
A2: "VaeZ,. VbeZ,. abs(6(f,a,b)) < L" and
A3: "meZ't" "neZ."
shows
"0 < L"
"abs(0(f,m,n)) < L + abs(£f(0))"

(proof)

If the slope condition holds for all pairs of integers such that one integer is
positive and the second one is nonnegative, then it holds when both integers
are nonnegative.

lemma (in intl) Int_ZF_2_1_L21: assumes Al: "f:Z—Z" and
A2: "Va€Z'. VbeZ,. abs(i(f,a,b)) < L" and
A3: "IIEZ+" "mEZ"'"
shows "abs(d(f,m,n)) < L + abs(£(0))"

(proof)

If the homomorphism difference is bounded on Z, xZ, then it is bounded
on ZtxZ+.

lemma (in intl) Int_ZF_2_1_L22: assumes Al: "f:Z—Z" and
A2: "WaeZ,. VbeZ,. abs(d(f,a,b)) < L"
shows "IM. VmeZ*t. VneZ*t. abs(6(f,m,n)) < M"

(proof)

For odd functions we can do better than in Int_zZF_2_1_L22: if the homomor-

phism difference of f is bounded on Z*xZ*, then it is bounded on ZxZ,
hence f is a slope. Loong prof by splitting the ZxZ into six subsets.

lemma (in int1) Int_ZF_2_1_L23: assumes Al: "f:Z—Z" and
A2: "WaeZ,. VbeZ,. abs(d(f,a,b)) < L"
and A3: "VxeZ. (-f‘(-x)) = £°(x)"

shows "feS"

266

(proof)

If the homomorphism difference of a function defined on positive integers is
bounded, then the odd extension of this function is a slope.

lemma (in intl) Int_ZF_2_1_L24:
assumes Al: "f:Z,—7Z" and A2: "Va€Z,. VbeZ,. abs(§(f,a,b)) < L"
shows "OddExtension(Z,IntegerAddition,IntegerOrder,f) € S"

(proof)

Type information related to ~.

lemma (in int1) Int_ZF_2_1_L25:
assumes Al: "f:Z—7Z" and A2: "meZ" "neZ"
shows
"6(f,m,-n) € Z"
"6(f,n,-n) € Z"
"(-6(f,n,-n)) € Z"
"£4(0) € Z"
"~v(f,m,n) € Z"

(proof)

A couple of formulae involving f(m —n) and y(f, m,n).

lemma (in inti1) Int_ZF_2_1_L26:

assumes Al: "f:Z—7Z" and A2: "meZ" '"neZ"

shows

"f(m-n) = y(E,m,n) + £°(@ - £°(@"

"f‘(m-n) = y(f,m,n) + (£‘(m) - £°@)"

"f(m-n) + (£‘() - v(£,mn,n)) = £ (@"
(proof)

A formula expressing the difference between f(m—n—k) and f(m)— f(n)—
f(k) in terms of ~.
lemma (in int1) Int_ZF_2_1_L26A:

assumes Al: "f:Z—7Z" and A2: "meZ" "neZ" "keZ"
shows

"f‘(m—n—k) - (f‘(m)— f‘(n) - f‘(k)) = ’Y(f,m_n,k) + ’Y(f,m,n)"
(proof)

If s is a slope, then 7(s, m,n) is uniformly bounded.

lemma (in int1) Int_ZF_2_1_L27: assumes Al: "scS"

shows "dLeZ. VmeZ.VneZ. abs(y(s,m,n)) < L"
(proof)

If s is a slope, then s(m) < s(m — 1) + M, where L does not depend on m.
lemma (in int1) Int_ZF_2_1_L28: assumes Al: "scS"

shows "dMeZ. VmeZ. s‘(m) < s‘(m-1) + M"
(proof)

If s is a slope, then the difference between s(m—n—k) and s(m)—s(n)—s(k)
is uniformly bounded.

267

lemma (in int1) Int_ZF_2_1_L29: assumes Al: "s&S"
shows
"IMeZ. VmeZ . NneZ NkeZ. abs(s‘(m-n-k) - (s‘(m)-s‘(n)-s‘(k))) <M"

(proof)

If s is a slope, then we can find integers M, K such that s(m —n — k) <
s(m) — s(n) — s(k) + M and s(m) — s(n) — s(k) + K < s(m —n — k), for all
integer m,n, k.
lemma (in int1) Int_ZF_2_1_L30: assumes Al: "seS"
shows
"IMeZ. VmeZ .VneZ VkeZ. s‘(m-n-k) < s‘(m)-s‘(n)-s‘(k)+M"
"JKeZ. VmeZ VneZ VkeZ. s‘(m)-s‘(n)-s‘ (kK)+K < s‘(m-n-k)"
(proof)

By definition functions f,g are almost equal if f — ¢g* is bounded. In the
next lemma we show it is sufficient to check the boundedness on positive
integers.

lemma (in intl1) Int_ZF_2_1_131: assumes Al: "s&e§" '"reS"

and A2: "VmeZ,. abs(s‘(@)-r‘(@m)) < L"
shows "s ~ r"

(proof)

A sufficient condition for an odd slope to be almost equal to identity: If for
all positive integers the value of the slope at m is between m and m plus
some constant independent of m, then the slope is almost identity.

lemma (in int1) Int_ZF_2_1_L32: assumes Al: "seS" "MeZ"

and A2: "VmeZ,. m < s‘(m) A s‘(m) < m+M"
shows "s ~ id(Z)"
(proof)

A lemma about adding a constant to slopes. This is actually proven in
Group_ZF_3_5_L1, in Group_ZF_3.thy here we just refer to that lemma to

show it in notation used for integers. Unfortunately we have to use raw set
notation in the proof.

lemma (in inti1) Int_ZF_2_1_L33:

assumes Al: "seS" and A2: "ceZ" and
A3: "r = {(m,s‘(m)+c). meZ}"
shows
"WmeZ. r‘(m) = s‘(m)+c"
"reS"
IIS ~ rll
(proof)

44.2 Composing slopes

Composition of slopes is not commutative. However, as we show in this
section if f and g are slopes then the range of fog— go f is bounded. This
allows to show that the multiplication of real numbers is commutative.

268

Two useful estimates.

lemma (in int1) Int_ZF_2_2_L1:

assumes Al: "f:Z—Z" and A2: "peZ" '"qeZ"

shows

"abs (£ ((p+1)-@)-(p+1)-£°(q)) < abs(d(f,p-q,q))+abs(f (p:q)-p-f (g))"

"abs(f¢((p-1)-@)-(p-1)-£(q)) < abs(d(f, (p-1)-q,9))+abs(f‘(p-q)-p-f‘(g))"
(proof)

If f is a slope, then |f(p-q) —p- f(q)] < (|p| + 1)maxd(£). The proof is by
induction on p and the next lemma is the induction step for the case when
0<p.

lemma (in intl) Int_ZF_2_2_L2:
assumes Al: "feS" and A2: "0<p" "qeZ"
and A3: "abs(f‘(p:q)-pf‘(q)) < (abs(p)+1)-maxd(f)"
shows
"abs(f ((p+1)-@)-(p+1)-£(q)) < (abs(p+1)+ 1)maxd(£)"

(proof)

If f is a slope, then |f(p-q) —p- f(q)| < (|p| + 1)maxé. The proof is by
induction on p and the next lemma is the induction step for the case when
p <0.

lemma (in int1) Int_ZF_2_2_L3:

assumes Al: "feS" and A2: "p<O" ‘"qeZ"

and A3: "abs(f‘(p-q)-pf°(q)) < (abs(p)+1l)maxd(£)"

shows "abs(f‘((p-1)-9)-(p-1)-£°(q)) < (abs(p-1)+ 1)maxdi(f)"
(proof)

If f is a slope, then |f(p-q) —p- f(¢)| < (|p| + 1)maxd(f). Proof by cases
on 0 < p.

lemma (in intl) Int_ZF_2_2_L4:

assumes Al: "feS" and A2: "peZ" "qeZ"
shows "abs(f‘(p-@)-p-£(q)) < (abs(p)+1) maxd(£f)"
(proof)

The next elegant result is Lemma 7 in the Arthan’s paper [2].

lemma (in int1) Arthan_Lem_7:

assumes Al: "feS" and A2: "peZ" ‘"qeZ"

shows "abs(q-f‘(p)-pf‘(q)) < (abs(p)+abs(q)+2) -maxd(£)"
(proof)

This is Lemma 8 in the Arthan’s paper.

lemma (in int1) Arthan_Lem_8: assumes Al: "feS"
shows "JA B. AcZ N BeZ N (VpeZ. abs(f‘(p)) < A-abs(p)+B)"

(proof)

If f and g are slopes, then f o g is equivalent (almost equal) to g o f. This
is Theorem 9 in Arthan’s paper [2].

269

theorem (in int1) Arthan_Th_9: assumes Al: "feS" '"geS"
shows "fog ~ gof"
(proof)

end

45 Integers 3

theory Int_ZF_3 imports Int_ZF_2
begin

This theory is a continuation of Int_zF_2. We consider here the properties
of slopes (almost homomorphisms on integers) that allow to define the order
relation and multiplicative inverse on real numbers. We also prove theorems
that allow to show completeness of the order relation of real numbers we
define in Real _ZF.

45.1 Positive slopes

This section provides background material for defining the order relation on
real numbers.

Positive slopes are functions (of course.)

lemma (in int1) Int_ZF_2_3_L1: assumes Al: "feS." shows "f:Z—Z"

(proof)

A small technical lemma to simplify the proof of the next theorem.

lemma (in inti1) Int_ZF_2_3_L1A:

assumes Al: "feS." and A2: "dn € £°°(Zy) N Z,. a<n"
shows "dMeZ,. a < £°(M"
(proof)

The next lemma is Lemma 3 in the Arthan’s paper.

lemma (in int1) Arthan_Lem_3:
assumes Al: "feS." and A2: "D € Z,"
shows "dMeZ,. VmeZ,. (n+1)D < £‘(m:M"
(proof)

A special case of Arthan_Lem_3 when D = 1.

corollary (in int1) Arthan_L_3_spec: assumes Al: "f € S."

shows "dMeZ, .VneZ, . n+l < £f‘(nM)"
(proof)

We know from Group_zZF_3.thy that finite range functions are almost homo-
morphisms. Besides reminding that fact for slopes the next lemma shows
that finite range functions do not belong to S, . This is important, because

270

the projection of the set of finite range functions defines zero in the real
number construction in Real_ZF_x.thy series, while the projection of S, be-
comes the set of (strictly) positive reals. We don’t want zero to be positive,
do we? The next lemma is a part of Lemma 5 in the Arthan’s paper [2].

lemma (in int1) Int_ZF_2_3_L1B:
assumes Al: "f € FinRangeFunctions(Z,Z)"
shows "feS" "f ¢ S,

(proof)

We want to show that if f is a slope and neither f nor —f are in S;, then
f is bounded. The next lemma is the first step towards that goal and shows
that if slope is not in Sy then f(Z,) is bounded above.

lemma (in int1) Int_ZF_2_3_L2: assumes Al: "feS" and A2: "f ¢ S."
shows "IsBoundedAbove(f‘‘(Z,), IntegerOrder)"

(proof)

If fis aslope and —f ¢ Sy, then f(Z,) is bounded below.
lemma (in intl1) Int_ZF_2_3_L3: assumes Al: "f&S" and A2: "-f ¢ S."

shows "IsBoundedBelow(f‘‘(Z,), IntegerOrder)"

{(proof)

A slope that is bounded on Z, is bounded everywhere.

lemma (in intl) Int_ZF_2_3_L4:

assumes Al: "fcS" and A2: "meZ"
and A3: "VneZ,. abs(f‘(n)) < L"
shows "abs(f‘(m)) < 2maxd(f) + L"

(proof)

A slope whose image of the set of positive integers is bounded is a finite
range function.

lemma (in int1) Int_ZF_2_3_L4A:

assumes Al: "feS" and A2: "IsBounded(f‘‘(Z,), IntegerOrder)"
shows "f € FinRangeFunctions(Z,Z)"

(proof)

A slope whose image of the set of positive integers is bounded below is a
finite range function or a positive slope.

lemma (in inti1) Int_ZF_2_3_L4B:

assumes "f€S" and "IsBoundedBelow(f‘‘(Z,), IntegerOrder)"
shows "f € FinRangeFunctions(Z,Z) V feS."

(proof)

If one slope is not greater then another on positive integers, then they are
almost equal or the difference is a positive slope.

lemma (in int1) Int_ZF_2_3_L4C: assumes Al: "feS" "geS" and
A2: "WneZ, . £°(m) < g‘(@m)"

271

shows "f~g V g + (-f) € S;"
(proof)

Positive slopes are arbitrarily large for large enough arguments.

lemma (in int1) Int_ZF_2_3_L5:

assumes Al: "fe€S,." and A2: "Ke€Z"
shows "dNeZ,. Vm. N<m — K < £°(m)"
(proof)

Positive slopes are arbitrarily small for small enough arguments. Kind of
dual to Int_ZF_2_3_L5.

lemma (in int1) Int_ZF_2_3_L5A: assumes Al: "fcS." and A2: "KeZ"

shows "dNeZ,. Vm. N<m — £‘(-m) < K"
(proof)

A special case of Int_ZF_2_3_L5 where K = 1.

shows "dNeZ, . Vm. N<m — £‘(m) € Z,"
{proof)

corollary (in int1) Int_ZF_2_3_L6: assumes "feS."

A special case of Int_ZF_2_3_L5 where m = N.
corollary (in int1) Int_ZF_2_3_L6A: assumes "feS," and "KeZ"

shows "JINeZ,. K < £°(N)"

(proof)

If values of a slope are not bounded above, then the slope is positive.

lemma (in int1) Int_ZF_2_3_L7: assumes Al: "feS"

and A2: "VKEZ. JneZ,. K < £(n)"
shows "f € S."

(proof)

For unbounded slope f either f €S, of —f €8,.
theorem (in int1) Int_ZF_2_3_L8:

assumes Al: "feS" and_Aiz_"f ¢ FinRangeFunctions(Z,Z)"
shows "(f € §;) Xor ((-f) € S;)"

(proof)

The sum of positive slopes is a positive slope.

theorem (in intl) sum_of_pos_sls_is_pos_sl:
assumes Al: "f € S4" "g € S."
shows "f+g € S;"

(proof)

The composition of positive slopes is a positive slope.

theorem (in intl) comp_of_pos_sls_is_pos_sl:
assumes Al: "f € S4" "g € S."
shows "fog € &4

272

(proof)

A slope equivalent to a positive one is positive.

lemma (in int1) Int_ZF_2_3_L9:
assumes Al: "f € S;." and A2: "(f,g) € AlEqRel" shows "g € S;"
(proof)

The set of positive slopes is saturated with respect to the relation of equiv-
alence of slopes.

lemma (in intl) pos_slopes_saturated: shows "IsSaturated(AlEqRel,S)"
(proof)

A technical lemma involving a projection of the set of positive slopes and a
logical epression with exclusive or.

lemma (in intl) Int_ZF_2_3_L10:
assumes Al: "feS" ‘"geS"
and A2: "R = {AlEqRel‘‘{s}. s&eS }"
and A3: "(feSy) Xor (gesS)"
shows "(AlEqRel‘‘{f} € R) Xor (AlEqRel‘‘{g} € R)"

(proof)

Identity function is a positive slope.

lemma (in int1) Int_ZF_2_3_L11: shows "id(Z) € S."
(proof)

The identity function is not almost equal to any bounded function.

lemma (in int1) Int_ZF_2_3_L12: assumes Al: "f € FinRangeFunctions(Z,Z)"
shows "= (id(Z) ~ f)"
(proof)

45.2 Inverting slopes

Not every slope is a 1:1 function. However, we can still invert slopes in the
sense that if f is a slope, then we can find a slope g such that f o g is almost
equal to the identity function. The goal of this this section is to establish
this fact for positive slopes.

If f is a positive slope, then for every positive integer p the set {n € Z; :
p < f(n)} is a nonempty subset of positive integers. Recall that f~!(p) is
the notation for the smallest element of this set.

lemma (in intl) Int_ZF_2_4_L1:
assumes Al: "f € §." and A2: "peZ," and A3: "A = {neZ,. p < £°(n)}"
shows
IIA g Z+|I
"A ?é On
"fil(p) c A"
"WmeA. £71(p) < m"

273

(proof)

If f is a positive slope and p is a positive integer p, then f~!(p) (defined as
the minimum of the set {n € Z; : p < f(n)}) is a (well defined) positive
integer.

lemma (in intl) Int_ZF_2_4_L2:
assumes "f € §," and "peZ."
shows
"t-l(p) € Z,"
"p < £C(ET (P

{proof)

If f is a positive slope and p is a positive integer such that n < f(p), then
f7Hn) <p.
lemma (in int1) Int_ZF_2_4_L3:

assumes "f € §;" and "meZ," "peZ," and "m < f‘(p)"
shows "f~1(m) < p"

(proof)

An upper bound f(f~!(m) — 1) for positive slopes.
lemma (in intl) Int_ZF_2_4_14:

assumes Al: "f € S+"_ a_n& A2: "me€Z," and A3: "f l(m)-1 € Z."
shows "f‘(f7!(m)-1) < m" "f(E'(m)-1) # m"

(proof)

The (candidate for) the inverse of a positive slope is nondecreasing.

lemma (in int1) Int_ZF_2_4_L5:
assumes Al: "f € S." and A2: "meZ," and A3: "m<n"
shows "f1(m) < f~1(n)"

(proof)

If f~!(m) is positive and n is a positive integer, then, then f~'(m +n) — 1
is positive.

lemma (in int1) Int_ZF_2_4_L6:
assumes Al: "f € S;" and A2: "meZ," "neZ." and
A3: "f7l(m)-1 € Z,"
shows "f1(m+n)-1 € Z,"

(proof)

If f is a slope, then f(f~'(m+n)— f~1(m)— f~!(n)) is uniformly bounded
above and below. Will it be the messiest IsarMathLib proof ever? Only time
will tell.

lemma (in int1) Int_ZF_2_4_L7: assumes Al: "f € S;" and
A2: "WmeZ,. £ 1(m)-1 € Z,"
shows
"JUEZ. VmeZ,. VneZ,. £ (f '(mtn)-f1(@m-£f"1(n)) < U"

"INEZ. YmeZ,. VneZ,. N < £ (1 (m+n)-f 1 (m)-£f 1 (n))"

274

(proof)

The expression f~!(m+n) — f~1(m) — f~(n) is uniformly bounded for all
pairs (m,n) € Z,xZ,. Recall that in the int1 context e(f,x) is defined so
that e(f, (m,n)) = f~1(m+n) — f71(m) — f~1(n).
lemma (in int1) Int_ZF_2_4_18: assumes Al: "f € S;" and

A2: "WmeZ.,. £71(m)-1 € Z,"

shows "dM. Vx€Z xZ,. abs(e(f,x)) < M"
(proof)

The (candidate for) inverse of a positive slope is a (well defined) function
onZ,.

lemma (in intl) Int_ZF_2_4_L9:

assumes Al: "f € S, " and A2: "g = {(p,f 1 (p)). pEZ,}"
shows

"g : Z+—>Z+"
"g . Zy—2Z"
(proof)

What are the values of the (candidate for) the inverse of a positive slope?

lemma (in intl) Int_ZF_2_4_L10:
assumes Al: "f € S, " and A2: "g = {(p,f 1 (p)). pEZ,}" and A3: "peZ. "
shows "g‘(p) = £ 1(p)"

(proof)

The (candidate for) the inverse of a positive slope is a slope.

lemma (in int1) Int_ZF_2_4_L11: assumes Al: "f € S;" and

A2: "VmeZ,. £ 1(m)-1 € Z,." and
A3: "g = {(p,£7'(p)). pEZ}"
shows "OddExtension(Z,IntegerAddition,IntegerOrder,g) € S"

(proof)

Every positive slope that is at least 2 on positive integers almost has an
inverse.

lemma (in intl) Int_ZF_2_4_L12: assumes Al: "f € S;" and

A2: "VmeZ,. £ 1m)-1 € Z,."
shows "JheS. foh ~ id(Z)"

(proof)

Int_ZF_2_4_1.12 is almost what we need, except that it has an assumption
that the values of the slope that we get the inverse for are not smaller than 2
on positive integers. The Arthan’s proof of Theorem 11 has a mistake where
he says "note that for all but finitely many m,n € N p = g(m) and ¢ = g(n)
are both positive”. Of course there may be infinitely many pairs (m, n) such
that p, g are not both positive. This is however easy to workaround: we just
modify the slope by adding a constant so that the slope is large enough on
positive integers and then look for the inverse.

275

theorem (in intl) pos_slope_has_inv: assumes Al: "f € S,"
shows "dgeS. f~g A (FheS. goh ~ id(Z))"
(proof)

45.3 Completeness

In this section we consider properties of slopes that are needed for the proof
of completeness of real numbers constructred in Real_ZF_1.thy. In particular
we consider properties of embedding of integers into the set of slopes by the
mapping m — m® , where m® is defined by m®(n) = m - n.

S

If m is an integer, then m* is a slope whose value is m - n for every integer.

lemma (in int1) Int_ZF_2_5_L1: assumes Al: "'m € Z"
shows
"“Wn e Z. @®)‘(n) = nn"
nms c Sll

(proof)

For any slope f there is an integer m such that there is some slope g that
is almost equal to m® and dominates f in the sense that f < g on positive
integers (which implies that either g is almost equal to f or g— f is a positive
slope. This will be used in Real_ZF_1.thy to show that for any real number
there is an integer that (whose real embedding) is greater or equal.

lemma (in int1) Int_ZF_2_5_L2: assumes Al: "f ¢ S"

shows "ImcZ. JgeS. (m°~g A (f~g V g+(-f) € S)"
(proof)

The negative of an integer embeds in slopes as a negative of the orgiginal
embedding.
lemma (in intl) Int_ZF_2_5_L3: assumes Al: "m € Z"

shows "(-m)° = —(ms)"_ o
(proof)

The sum of embeddings is the embeding of the sum.

lemma (in int1) Int_ZF_2_5_L3A: assumes Al: "meZ" "keZ"

shows "@m®) + (k%) = ((m+k)°)"
(proof)

The composition of embeddings is the embeding of the product.

lemma (in int1) Int_ZF_2_5_L3B: assumes Al: "meZ" "keZ"

shows "(m%) o (k%) = ((mk)%)"

(proof)

Embedding integers in slopes preserves order.

lemma (in int1) Int_ZF_2_5_L4: assumes Al: "m<n"
shows "(m%) ~ @%) v @)+(-®)) € S,"
(proof)

276

We aim at showing that m +— m® is an injection modulo the relation of

almost equality. To do that we first show that if m® has finite range, then
m = 0.

lemma (in int1) Int_ZF_2_5_L5:

assumes "meZ" and "m° € FinRangeFunctions(Z,Z)"
shows "m=0"

(proof)

Embeddings of two integers are almost equal only if the integers are equal.

lemma (in int1) Int_ZF_2_5_L6:

assumes Al: "meZ" "keZ" and A2: "(m%) ~ (&)
shows "m=k"

(proof)

Embedding of 1 is the identity slope and embedding of zero is a finite range
function.

lemma (in int1) Int_ZF_2_5_L7: shows

"1S = ld(Z)"
"0° ¢ FinRangeFunctions(Z,Z)"
(proof)

A somewhat technical condition for a embedding of an integer to be ”less or
equal” (in the sense apriopriate for slopes) than the composition of a slope
and another integer (embedding).
lemma (in intl) Int_ZF_2_5_L8:

assumes Al: "f € §" and A2: "N € Z" "M € Z" and

A3: "VneZ,. Mn < £¢(N-n)"

shows "M° ~ fo(N°) Vv (fo(N®)) + (-(M%)) € S,

(proof)

Another technical condition for the composition of a slope and an integer
(embedding) to be "less or equal” (in the sense apriopriate for slopes) than
embedding of another integer.

lemma (in int1) Int_ZF_2_5_L9:

assumes Al: "f € §" and A2: "N € Z" "M € Z" and

A3: "VneZ,. £f‘(Nn) < Mn "

shows "fo(N) ~ (M%) v (M%) + (-(£o(N®))) € S."
(proof)

end

46 Construction real numbers - the generic part

theory Real_ZF imports Int_ZF_IML Ring ZF_1

begin

277

The goal of the Real_ZF series of theory files is to provide a contruction of
the set of real numbers. There are several ways to construct real numbers.
Most common start from the rational numbers and use Dedekind cuts or
Cauchy sequences. Real_ZF_x.thy series formalizes an alternative approach
that constructs real numbers directly from the group of integers. Our for-
malization is mostly based on [2]. Different variants of this contruction are
also described in [1] and [3]. I recommend to read these papers, but for the
impatient here is a short description: we take a set of maps s : Z — Z such
that the set {s(m +n) — s(m) — s(n)}n,mez is finite (Z means the integers
here). We call these maps slopes. Slopes form a group with the natural
addition (s +17)(n) = s(n) +r(n). The maps such that the set s(Z) is finite
(finite range functions) form a subgroup of slopes. The additive group of
real numbers is defined as the quotient group of slopes by the (sub)group of
finite range functions. The multiplication is defined as the projection of the
composition of slopes into the resulting quotient (coset) space.

46.1 The definition of real numbers

This section contains the construction of the ring of real numbers as classes
of slopes - integer almost homomorphisms. The real definitions are in
Group_ZF_2 theory, here we just specialize the definitions of almost homomor-
phisms, their equivalence and operations to the additive group of integers
from the general case of abelian groups considered in Group_zZF_2.

The set of slopes is defined as the set of almost homomorphisms on the
additive group of integers.
definition

"Slopes = AlmostHoms(int,IntegerAddition)"
The first operation on slopes (pointwise addition) is a special case of the
first operation on almost homomorphisms.
definition

"SlopeOpl = AlHomOpl(int,IntegerAddition)"
The second operation on slopes (composition) is a special case of the second
operation on almost homomorphisms.
definition

"SlopeOp2 = AlHomOp2(int,IntegerAddition)"
Bounded integer maps are functions from integers to integers that have finite
range. They play a role of zero in the set of real numbers we are constructing.
definition

"BoundedIntMaps = FinRangeFunctions(int,int)"

Bounded integer maps form a normal subgroup of slopes. The equivalence
relation on slopes is the (group) quotient relation defined by this subgroup.

278

definition
"SlopeEquivalenceRel = QuotientGroupRel(Slopes,SlopeOpl,BoundedIntMaps)"

The set of real numbers is the set of equivalence classes of slopes.

definition
"RealNumbers = Slopes//SlopeEquivalenceRel"

The addition on real numbers is defined as the projection of pointwise ad-
dition of slopes on the quotient. This means that the additive group of real
numbers is the quotient group: the group of slopes (with pointwise addition)
defined by the normal subgroup of bounded integer maps.

definition
"RealAddition = ProjFun2(Slopes,SlopeEquivalenceRel,SlopeOpl)"

Multiplication is defined as the projection of composition of slopes on the
quotient. The fact that it works is probably the most surprising part of the
construction.

definition
"RealMultiplication = ProjFun2(Slopes,SlopeEquivalenceRel,SlopeOp2)"

We first show that we can use theorems proven in some proof contexts (lo-
cales). The locale groupl requires assumption that we deal with an abelian
group. The next lemma allows to use all theorems proven in the context
called groupi.

lemma Real_ZF_1_L1: shows "groupl(int,IntegerAddition)"
{proof)

Real numbers form a ring. This is a special case of the theorem proven in
Ring_ZF_1.thy, where we show the same in general for almost homomor-
phisms rather than slopes.

theorem Real_ZF_1_T1: shows "IsAring(RealNumbers,RealAddition,RealMultiplication)"

(proof)

We can use theorems proven in group0 and groupl contexts applied to the
group of real numbers.

lemma Real_ZF_1_L2: shows
"groupO (RealNumbers,RealAddition)"
"RealAddition {is commutative on} RealNumbers"
"groupl (RealNumbers,RealAddition)"

(proof)

Let’s define some notation.

locale real0 =

fixes real ("R")
defines real_def [simp]: "IR = RealNumbers"

279

fixes ra (infixl "+" 69)
defines ra_def [simpl: "a+ b = RealAddition‘(a,b)"

fixes rminus ("- _" 72)
defines rminus_def [simp]:"-a = GroupInv(IR,RealAddition) ‘(a)"

fixes rsub (infixl "-" 69)

defines rsub_def [simp]: "a-b a+(-b)"

fixes rm (infixl "-" 70)
defines rm_def [simp]: "ab = RealMultiplication‘(a,b)"

fixes rzero ("0")
defines rzero_def [simp]:
"0 = TheNeutralElement (RealNumbers,RealAddition)"

fixes rone ("1")
defines rone_def [simp]:
"l = TheNeutralElement (RealNumbers,RealMultiplication)"

fixes rtwo ("2")
defines rtwo_def [simp]l: "2 = 1+1"

fixes non_zero ("Ry")
defines non_zero_def [simp]: "Ry = R-{0}"

fixes inv ("_~! " [90] 91)

defines inv_def [simp]:

gl = GroupInv(Rg,restrict(RealMultiplication,RoxRg)) ‘(a)"
In realo context all theorems proven in the ring0, context are valid.

lemma (in realO) Real_ZF_1_L3: shows
"ring0(IR,RealAddition,RealMultiplication)"

(proof)
Lets try out our notation to see that zero and one are real numbers.
lemma (in realO) Real_ZF_1_L4: shows "0OcR" "1€R"

(proof)
The lemma below lists some properties that require one real number to state.

lemma (in realO) Real_ZF_1_L5: assumes Al: "acR"

shows

"(-a) € R"
"(-(-a)) = a"
"a+t0Q = a"
"O+a = a"
"a-1 = a"
"l-a = a"

280

"g—a = Q"
"a-0 = a"

(proof)

The lemma below lists some properties that require two real numbers to
state.

lemma (in realO) Real_ZF_1_L6: assumes "acR" "beR"
shows
"atb € R"
"a-b € R"
"ab € R"
"a+b = b+a"
"(-a)-b = -(ab)"
"a-(-b) = -(a-b)"
(proof)

Multiplication of reals is associative.

lemma (in realO) Real_ZF_1_L6A: assumes "aclR" "beR" "ceR"
shows "a-(b-c) = (a-b)-c"

(proof)

Addition is distributive with respect to multiplication.

lemma (in realO) Real_ZF_1_L7: assumes "acR" "beR" "cecR"
shows

"a-(b+c) = ab + a-c"
"(b+c)-a = b-a + c-a"
"a-(b-c) = ab - a-c"
"(b-c)-a = b-a - c-a"
(proof)

A simple rearrangement with four real numbers.

lemma (in realO) Real_ZF_1_L7A:
assumes "acR" "belR" "ceR" "deR"
shows "a-b + (c-d) = a+c-b-d"

(proof)

RealAddition is defined as the projection of the first operation on slopes
(that is, slope addition) on the quotient (slopes divided by the ”almost
equal” relation. The next lemma plays with definitions to show that this
is the same as the operation induced on the appriopriate quotient group.
The names AH, Op1 and FR are used in groupl context to denote almost
homomorphisms, the first operation on AH and finite range functions resp.

lemma Real_ZF_1_L8: assumes
"AH = AlmostHoms (int,IntegerAddition)" and
"Opl = AlHomOp1(int,IntegerAddition)" and
"FR = FinRangeFunctions(int,int)"
shows "RealAddition = QuotientGroupOp(AH,Opl,FR)"

281

(proof)

The symbol 0 in the real0 context is defined as the neutral element of real
addition. The next lemma shows that this is the same as the neutral element
of the appriopriate quotient group.

lemma (in realO) Real_ZF_1_L9: assumes
"AH = AlmostHoms(int,IntegerAddition)" and
"Opl = AlHomOpl(int,IntegerAddition)" and
"FR = FinRangeFunctions(int,int)" and
"r = QuotientGroupRel (AH,Opl,FR)"
shows
"TheNeutralElement (AH//r,QuotientGroupOp(AH,0pl,FR)) = O"
"SlopeEquivalenceRel = r"

(proof)

Zero is the class of any finite range function.

lemma (in realO) Real_ZF_1_L10:
assumes Al: "s € Slopes"
shows "SlopeEquivalenceRel‘‘{s} = 0 <— s € BoundedIntMaps"

(proof)

We will need a couple of results from Group_zF_3.thy The first two that
state that the definition of addition and multiplication of real numbers
are consistent, that is the result does not depend on the choice of the
slopes representing the numbers. The second one implies that what we call
SlopeEquivalenceRel is actually an equivalence relation on the set of slopes.
We also show that the neutral element of the multiplicative operation on
reals (in short number 1) is the class of the identity function on integers.

lemma Real_ZF_1_L11: shows
"Congruent2(SlopeEquivalenceRel,SlopeOpl)"
"Congruent2(SlopeEquivalenceRel,SlopeOp2)"
"SlopeEquivalenceRel C Slopes X Slopes"
"equiv(Slopes, SlopeEquivalenceRel)"
"SlopeEquivalenceRel‘ ‘{id(int)} =
TheNeutralElement (RealNumbers,RealMultiplication)"
"BoundedIntMaps C Slopes"

(proof)

A one-side implication of the equivalence from Real_ZF_1_L10: the class of a
bounded integer map is the real zero.

lemma (in real0) Real _ZF_1_L11A: assumes "s € BoundedIntMaps"
shows "SlopeEquivalenceRel‘‘{s} = 0"

{proof)

The next lemma is rephrases the result from Group_zF_3.thy that says that
the negative (the group inverse with respect to real addition) of the class of
a slope is the class of that slope composed with the integer additive group

282

inverse. The result and proof is not very readable as we use mostly generic
set theory notation with long names here. Real_ZF_1.thy contains the same
statement written in a more readable notation: [—s|] = —[s].

lemma (in real0) Real_ZF_1_L12: assumes Al: "s € Slopes" and
Dr: "r = QuotientGroupRel(Slopes,SlopeOpl,BoundedIntMaps)"
shows "r‘¢‘{GroupInv(int,IntegerAddition) 0 s} = -(r‘‘{s}H)"

(proof)

Two classes are equal iff the slopes that represent them are almost equal.

lemma Real_ZF_1_L13: assumes "s € Slopes" "p € Slopes"
and "r = SlopeEquivalenceRel"
shows "r‘‘{s} = r*‘{p} +— (s,p) € "

(proof)

Identity function on integers is a slope. Thislemma concludes the easy part
of the construction that follows from the fact that slope equivalence classes
form a ring. It is easy to see that multiplication of classes of almost homo-
morphisms is not commutative in general. The remaining properties of real
numbers, like commutativity of multiplication and the existence of multi-
plicative inverses have to be proven using properties of the group of integers,
rather that in general setting of abelian groups.

lemma Real ZF_1_L14: shows "id(int) € Slopes"
(proof)

end

47 Construction of real numbers
theory Real_ZF_1 imports Real_ZF Int_ZF_3 OrderedField_ZF
begin

In this theory file we continue the construction of real numbers started in
Real_ZF to a succesful conclusion. We put here those parts of the construc-
tion that can not be done in the general settings of abelian groups and
require integers.

47.1 Definitions and notation

In this section we define notions and notation needed for the rest of the
construction.

We define positive slopes as those that take an infinite number of posititive
values on the positive integers (see Int_zZF_2 for properties of positive slopes).

definition

283

"PositiveSlopes = {s € Slopes.
s‘‘(PositivelIntegers) N PositiveIntegers ¢ Fin(int)}"

The order on the set of real numbers is constructed by specifying the set
of positive reals. This set is defined as the projection of the set of positive
slopes.

definition
"PositiveReals = {SlopeEquivalenceRel‘‘{s}. s € PositiveSlopes}"

The order relation on real numbers is constructed from the set of posi-
tive elements in a standard way (see section ”Alternative definitions” in
OrderedGroup_ZF.)

definition
"OrderOnReals = OrderFromPosSet(RealNumbers,RealAddition,PositiveReals)"

The next locale extends the locale realo to define notation specific to the
construction of real numbers. The notation follows the one defined in
Int_ZF_2.thy. If m is an integer, then the real number which is the class
of the slope n — m - n is denoted mf. For a real number a notation |a|
means the largest integer m such that the real version of it (that is, m)
not greater than a. For an integer m and a subset of reals S the expression
['(S,m) is defined as max{|p®- x| : 2 € S}. This is plays a role in the proof
of completeness of real numbers. We also reuse some notation defined in the
int0 context, like Z, (the set of positive integers) and abs(m) (the absolute
value of an integer, and some defined in the int1 context, like the addition
(+) and composition (o of slopes.

18

locale reall = realO +

fixes AlEq (infix "~" 68)
defines AlEq_def[simp]l: "s ~ r = (s,r) € SlopeEquivalenceRel"

fixes slope_add (infix "+" 70)
defines slope_add_def [simp]:
"s + r = SlopeOpl‘(s,r)"

fixes slope_comp (infix "o" 71)
defines slope_comp_def[simp]: "s o r = SlopeOp2‘(s,r)"

fixes slopes ("S")
defines slopes_def [simp]: "S = AlmostHoms(int,IntegerAddition)"

fixes posslopes ("S;")
defines posslopes_def [simp]: "S; = PositiveSlopes"

fixes slope_class ("[_ 1")
defines slope_class_def [simp]: "[f] = SlopeEquivalenceRel‘‘{f}"

284

fixes slope_neg ("-_" [90] 91)
defines slope_neg_def [simp]: "-s = GroupInv(int,IntegerAddition) 0 s"

fixes lesseqr (infix "<" 60)
defines lesseqr_def[simp]: "a < b = (a,b) € OrderOnReals"

fixes sless (infix "<" 60)
defines sless_def[simpl: "a < b = a<b A a#b"

fixes positivereals ("R ")
defines positivereals_def [simp]: "IR; = PositiveSet(IR,RealAddition,OrderOnReals)"

fixes intembed ("_f" [90] 91)
defines intembed_def [simp]:
"m® = [{(n,IntegerMultiplication‘(m,n)). n € int}]"

fixes floor ("| _ |™
defines floor_def [simp]:
"|a] = Maximum(IntegerOrder,{m € int. mf < a})"

fixes T’
defines I'_def [simp]: "I'(S,p) = Maximum(IntegerOrder,{|pfx|. x€sS})"

fixes ia (infixl "+" 69)
defines ia_def[simp]l: "a+b = IntegerAddition‘(a,b)"

fixes iminus ("- _" 72)
defines iminus_def [simp]: "-a = GroupInv(int,IntegerAddition) ‘(a)"
fixes isub (infixl "-" 69)

defines isub_def [simp]: "a-b = a+ (- b)"

fixes intpositives ("Zi ")
defines intpositives_def [simp]:
"Z, = PositiveSet(int,IntegerAddition,IntegerOrder)"

fixes zlesseq (infix "<" 60)
defines lesseq_def[simp]: "m < n = (m,n) € IntegerOrder"

fixes imult (infixl "-" 70)
defines imult_def [simp]: "a'b

IntegerMultiplication‘(a,b)"

fixes izero ("0z")
defines izero_def [simp]: "0z = TheNeutralElement (int,IntegerAddition)"

fixes ione ("1z")
defines ione_def [simp]: "1, = TheNeutralElement(int,IntegerMultiplication)"

285

fixes itwo ("2z")
defines itwo_def [simp]l: "2z = 1z+1z"

fixes abs
defines abs_def [simp]:
"abs(m) = AbsoluteValue(int,IntegerAddition,IntegerOrder) ‘(m)"

fixes ¢
defines 0_def [simp]: "0(s,m,n) = s‘(m+n)-s‘(m)-s‘(n)"

47.2 Multiplication of real numbers

Multiplication of real numbers is defined as a projection of composition of
slopes onto the space of equivalence classes of slopes. Thus, the product of
the real numbers given as classes of slopes s and 7 is defined as the class of
sor. The goal of this section is to show that multiplication defined this way
is commutative.

Let’s recall a theorem from Int_ZF_2.thy that states that if f, g are slopes,
then fog is equivalent to go f. Here we conclude from that that the classes
of fogand go f are the same.

lemma (in reall) Real ZF_1_1_L2: assumes Al: "f € §" "g e §"
shows "[fog] = [gof]"
(proof)

Classes of slopes are real numbers.

lemma (in reall) Real_ZF_1_1_L3: assumes Al: "f €¢ S"
shows "[f] € R"

(proof)

Each real number is a class of a slope.

lemma (in reall) Real_ZF_1_1_L3A: assumes Al: "acR"
shows "dfeS . a = [f]"

(proof)

It is useful to have the definition of addition and multiplication in the reall
context notation.

lemma (in reall) Real_ZF_1_1_L4:
assumes Al: "f € §S" '"g € S"
shows
"[£f] + [g] = [f+gl"
"[£f] - [g] = [fogl"

{(proof)

The next lemma is essentially the same as Real_ZF_1_L12, but written in the
notation defined in the reall context. It states that if f is a slope, then

—[1=1[=11

286

lemma (in reall) Real_ZF_1_1_L4A: assumes "f € S"
shows "[-f] = -[f]"
(proof)

Subtracting real numbers correspods to adding the opposite slope.

shows "[f] - [g] = [f+(-g)1"
(proof)

Multiplication of real numbers is commutative.

lemma (in reall) Real ZF_1_1_14B: assumes Al: "f € §" '"g € S"

theorem (in reall) real _mult_commute: assumes Al: "aclR" "becR"
shows "a'b = b-a"
(proof)

Multiplication is commutative on reals.

lemma real_mult_commutative: shows
"RealMultiplication {is commutative on} RealNumbers"

(proof)

The neutral element of multiplication of reals (denoted as 1 in the reall
context) is the class of identity function on integers. This is really shown
in Real_ZF_1_L11, here we only rewrite it in the notation used in the reall
context.

lemma (in reall) real_one_cl_identity: shows "[id(int)] = 1"

(proof)

If f is bounded, then its class is the neutral element of additive operation
on reals (denoted as 0 in the reall context).

lemma (in reall) real_zero_cl_bounded_map:
assumes "f € BoundedIntMaps" shows "[f] = 0"

(proof)

Two real numbers are equal iff the slopes that represent them are almost
equal. This is proven in Real_ZF_1_L13, here we just rewrite it in the notation
used in the reall context.

lemma (in reall) Real _ZF_1_1_L5:
assumes "f € S" "g € S§"
shows "[f] = [g] ¢— f ~ g"
(proof)

If the pair of function belongs to the slope equivalence relation, then their
classes are equal. This is convenient, because we don’t need to assume that
f, g are slopes (follows from the fact that f ~ g).

lemma (in reall) Real_ZF_1_1_L5A: assumes "f ~ g"
shows "[f] = [g]"
{proof)

287

Identity function on integers is a slope. This is proven in Real ZF_1_L13,
here we just rewrite it in the notation used in the reall context.

lemma (in reall) id_on_int_is_slope: shows "id(int) € S"
(proof)

A result from Int_ZF_2.thy: the identity function on integers is not almost
equal to any bounded function.
lemma (in reall) Real _ZF_1_1_L7:

assumes Al: "f € BoundedIntMaps"

shows "—(id(int) ~ £)"

(proof)

Zero is not one.

lemma (in reall) real_zero_not_one: shows "1#0"

{proof)

Negative of a real number is a real number. Property of groups.

lemma (in reall) Real_ZF_1_1_18: assumes "acR" shows "(-a) € R"
(proof)

An identity with three real numbers.

lemma (in reall) Real_ZF_1_1_L9: assumes "aclR" "beR" "ceR"
shows "a-(b-c) = a-c-b"

(proof)

47.3 The order on reals

In this section we show that the order relation defined by prescribing the
set of positive reals as the projection of the set of positive slopes makes the
ring of real numbers into an ordered ring. We also collect the facts about
ordered groups and rings that we use in the construction.

Positive slopes are slopes and positive reals are real.

lemma Real_ZF_1_2_L1: shows

"PositiveSlopes C Slopes"
"PositiveReals C RealNumbers"

(proof)
Positive reals are the same as classes of a positive slopes.

lemma (in reall) Real_ZF_1_2_L2:

shows "a € PositiveReals «+— (IfeS,. a = [£f])"
(proof)

Let’s recall from Int_ZF_2.thy that the sum and composition of positive
slopes is a positive slope.

lemma (in reall) Real_ZF_1_2_L3:

288

assumes "feS," "geS,"
shows

"f+g € Sy

llfog c S+l|

(proof)

Bounded integer maps are not positive slopes.

lemma (in reall) Real_ZF_1_2_L5:

assumes "f € BoundedIntMaps"
shows "f ¢ S."
(proof)

The set of positive reals is closed under addition and multiplication. Zero
(the neutral element of addition) is not a positive number.

lemma (in reall) Real_ZF_1_2_L6: shows
"PositiveReals {is closed under} RealAddition"
"PositiveReals {is closed under} RealMultiplication"

"0 ¢ PositiveReals"

(proof)

If a class of a slope f is not zero, then either f is a positive slope or —f is
a positive slope. The real proof is in Int_ZF_2.thy.

lemma (in reall) Real_ZF_1_2_L7:
assumes Al: "f € §" and A2: "[f] # O"
shows "(f € §4) Xor ((-f) € S)"

(proof)

The next lemma rephrases Int_ZF_2_3_L10 in the notation used in reall
context.

lemma (in reall) Real_ZF_1_2_L8:
assumes Al: "f € §S" '"g € S"
and A2: "(f € §;) Xor (g € SL)"
shows "([f] € PositiveReals) Xor ([g] € PositiveReals)"

{proof)

The trichotomy law for the (potential) order on reals: if a # 0, then either
a is positive or —a is potitive.

lemma (in reall) Real_ZF_1_2_L9:

assumes Al: "acR" and A2: "a#0"
shows "(a € PositiveReals) Xor ((-a) € PositiveReals)"

(proof)

Finally we are ready to prove that real numbers form an ordered ring with
no zero divisors.

theorem reals_are_ord_ring: shows
"IsAnOrdRing(RealNumbers,RealAddition,RealMultiplication,OrderOnReals)"
"OrderOnReals {is total on} RealNumbers"

289

"PositiveSet (RealNumbers,RealAddition,OrderOnReals) = PositiveReals"
"HasNoZeroDivs (RealNumbers,RealAddition,RealMultiplication)"

(proof)

All theorems proven in the ringl (about ordered rings), group3 (about or-
dered groups) and groupi (about groups) contexts are valid as applied to
ordered real numbers with addition and (real) order.

lemma Real_ZF_1_2_L10: shows

"ringl(RealNumbers,RealAddition,RealMultiplication,OrderOnReals)"
"IsAnOrdGroup (RealNumbers,RealAddition,OrderOnReals)"
"group3(RealNumbers,RealAddition,OrderOnReals)"

"OrderOnReals {is total on} RealNumbers"

(proof)

If a = b or b — a is positive, then a is less or equal b.

lemma (in reall) Real_ZF_1_2_L11: assumes Al: "acR" "belR" and
A3: "a=b V b-a € PositiveReals"
shows "a<b"

(proof)

A sufficient condition for two classes to be in the real order.

lemma (in reall) Real_ZF_1_2_L12: assumes Al: "f € §" "g € §" and

A2: "frg V (g + (-)) € S."
shows "[f] < [g]"
(proof)

Taking negative on both sides reverses the inequality, a case with an inverse
on one side. Property of ordered groups.

lemma (in reall) Real_ZF_1_2_L13:
assumes Al: "acR" and A2: "(-a) < b"
shows "(-b) < a"

(proof)

Real order is antisymmetric.

lemma (in reall) real_ord_antisym:

assumes Al: "a<b" "b<a" shows "a=b"

(proof)

Real order is transitive.

lemma (in reall) real_ord_transitive: assumes Al: "a<b" "b<c"
shows "a<c"

(proof)

We can multiply both sides of an inequality by a nonnegative real number.

lemma (in reall) Real_ZF_1_2_L14:

assumes "a<b" and "0<c"
shows

290

"y.c S b-c"

"c.a S c-b"

(proof)
A special case of Real_ZF_1_2_L14: we can multiply an inequality by a real
number.

lemma (in reall) Real_ZF_1_2_L14A:

assumes Al: "a<b" and A2: "ceR. "
shows "c-a < c-b"
(proof)
In the reall context notation a < b implies that a and b are real numbers.
lemma (in reall) Real_ZF_1_2_L15: assumes "a<b" shows "aclR" "beR"
(proof)
a < b implies that 0 < b — a.

lemma (in reall) Real_ZF_1_2_L16: assumes "a<b"
shows "0 < b-a"

(proof)
A sum of nonnegative elements is nonnegative.

lemma (in reall) Real_ZF_1_2_L17: assumes "0<a" "0<b"
shows "0 < a+b"

(proof)
We can add sides of two inequalities

lemma (in reall) Real_ZF_1_2_L18: assumes "a<b" "c<d"
shows "a+c < b+d"

(proof)

The order on real is reflexive.

lemma (in reall) real_ord_refl: assumes "aclR" shows "a<a"
(proof)

We can add a real number to both sides of an inequality.

lemma (in reall) add_num_to_ineq: assumes "a<b" and "ceR"
shows "a+c < b+c"

(proof)
We can put a number on the other side of an inequality, changing its sign.

lemma (in reall) Real_ZF_1_2_L19:

assumes "aclR" "beR" and "c < a+b"
shows "c-b < a"

(proof)

What happens when one real number is not greater or equal than another?

lemma (in reall) Real_ZF_1_2_L20: assumes "aclR" "beR" and "—(a<b)"

291

shows "b < a"
(proof)

We can put a number on the other side of an inequality, changing its sign,
version with a minus.

lemma (in reall) Real_ZF_1_2_L21:

assumes "acR" "beR" and "c < a-b"
shows "c+b < a"

{proof)

The order on reals is a relation on reals.

lemma (in reall) Real_ZF_1_2_122: shows "OrderOnReals C IRRxIR"

(proof)

A set that is bounded above in the sense defined by order on reals is a subset
of real numbers.

lemma (in reall) Real_ZF_1_2_L23:

assumes Al: "IsBoundedAbove(A,OrderOnReals)"
shows "A C R"

(proof)

Properties of the maximum of three real numbers.

lemma (in reall) Real_ZF_1_2_L24:
assumes Al: "acR" "belR" "ceR"
shows
"Maximum(OrderOnReals,{a,b,c}) € {a,b,c}"
"Maximum(OrderOnReals,{a,b,c}) € R"
"a < Maximum(OrderOnReals,{a,b,c})"
"b < Maximum(OrderOnReals,{a,b,c})"
"¢ < Maximum(OrderOnReals,{a,b,c})"

(proof)

A form of transitivity for the order on reals.

lemma (in reall) real_strict_ord_transit:
assumes Al: "a<b" and A2: "b<c"
shows "a<c"

(proof)

We can multiply a right hand side of an inequality between positive real
numbers by a number that is greater than one.

lemma (in reall) Real_ZF_1_2_L25:

assumes "b € R," and "a<b" and "1<c"
shows "a<b-c"

{proof)

We can move a real number to the other side of a strict inequality, changing
its sign.

292

lemma (in reall) Real_ZF_1_2_L26:

assumes "acR" "beR" and "a-b < c"
shows "a < c+b"
(proof)

Real order is translation invariant.

lemma (in reall) real_ord_transl_inv:
assumes "a<b" and "ccR"
shows "c+a < c+b"

{proof)

It is convenient to have the transitivity of the order on integers in the nota-
tion specific to reall context. This may be confusing for the presentation
readers: even though < and < are printed in the same way, they are different
symbols in the source. In the reall context the former denotes inequality
between integers, and the latter denotes inequality between real numbers
(classes of slopes). The next lemma is about transitivity of the order rela-
tion on integers.

lemma (in reall) int_order_transitive:

assumes Al: "a<b" "b<c"
shows "a<c"
(proof)

A property of nonempty subsets of real numbers that don’t have a maximum:
for any element we can find one that is (strictly) greater.

lemma (in reall) Real_ZF_1_2_L27:

assumes "ACIR" and "—HasAmaximum(OrderOnReals,A)" and "xcA"
shows "JyecA. x<y"

(proof)

The next lemma shows what happens when one real number is not greater
or equal than another.
lemma (in reall) Real_ZF_1_2_L28:

assumes "acR" "belR" and "—(a<b)"
shows "b<a"

(proof)

If a real number is less than another, then the second one can not be less or
equal that the first.

lemma (in reall) Real_ZF_1_2_L29:

assumes "a<b" shows "—(b<a)"
(proof)

47.4 Inverting reals

In this section we tackle the issue of existence of (multiplicative) inverses
of real numbers and show that real numbers form an ordered field. We

293

also restate here some facts specific to ordered fields that we need for the
construction. The actual proofs of most of these facts can be found in
Field_ZF.thy and OrderedField_ZF.thy

We rewrite the theorem from Int_zF_2.thy that shows that for every positive
slope we can find one that is almost equal and has an inverse.

lemma (in reall) pos_slopes_have_inv: assumes "f € S, "
shows "JdgeS§. f~g A (FheS. goh ~ id(int))"
{proof)

The set of real numbers we are constructing is an ordered field.

theorem (in reall) reals_are_ord_field: shows
"IsAnOrdField (RealNumbers,RealAddition,RealMultiplication,OrderOnReals)"

(proof)
Reals form a field.

lemma reals_are_field:
shows "IsAfield(RealNumbers,RealAddition,RealMultiplication)"

(proof)

Theorem proven in field0 and fieldl contexts are valid as applied to real
numbers.

lemma field_cntxts_ok: shows
"fieldO(RealNumbers,RealAddition,RealMultiplication)"
"fieldl(RealNumbers,RealAddition,RealMultiplication,OrderOnReals)"

(proof)
If a is positive, then a~ ! is also positive.

lemma (in reall) Real ZF_1_3_L1: assumes "a € IR;"

shows "a=! € Ry" "a! e R"

(proof)
A technical fact about multiplying strict inequality by the inverse of one of
the sides.

lemma (in reall) Real_ZF_1_3_L2:
assumes "a € R;" and "a~! < b"
shows "1 < b-a"

{proof)
If @ is smaller than b, then (b — a)~! is positive.

lemma (in reall) Real_ZF_1_3_L3: assumes "a<b"
shows "(b-a)~! € R,"
(proof)

We can put a positive factor on the other side of a strict inequality, changing
it to its inverse.

lemma (in reall) Real_ZF_1_3_L4:

294

assumes Al: "acR" "belR." and A2: "ab < c"
shows "a < c-b™!"

(proof)

We can put a positive factor on the other side of a strict inequality, changing
it to its inverse, version with the product initially on the right hand side.
lemma (in reall) Real ZF_1_3_L4A:

assumes Al: "beR" "ceR," and A2: "a < b-c"

shows "a-.c™! < b"

(proof)

We can put a positive factor on the other side of an inequality, changing it
to its inverse, version with the product initially on the right hand side.

lemma (in reall) Real_ZF_1_3_L4B:
assumes Al: "beR" "ceR,." and A2: "a < Db-c"
shows "a.c™! < b"

(proof)

We can put a positive factor on the other side of an inequality, changing it
to its inverse, version with the product initially on the left hand side.

lemma (in reall) Real_ZF_1_3_L4C:

assumes Al: "acR" "beR." and A2: "ab < c"
shows "a < cb~ 1"

(proof)

A technical lemma about solving a strict inequality with three real numbers
and inverse of a difference.

lemma (in reall) Real_ZF_1_3_L5:
assumes "a<b" and "(b-a)~! < c¢"
shows "1 + a-c < b-c"

(proof)

We can multiply an inequality by the inverse of a positive number.
lemma (in reall) Real_ZF_1_3_L6:

assumes "a<b" and "c€R,." shows "ac! < b.c7!"

(proof)

We can multiply a strict inequality by a positive number or its inverse.
lemma (in reall) Real _ZF_1_3_L7:

assumes "a<b" and "ceR," shows
lla_c < b.CII

"C'a < C'b"

"a-c‘l < b_c—lu

(proof)

An identity with three real numbers, inverse and cancelling.
lemma (in reall) Real_ZF_1_3_L8: assumes"acR" "beR" "b#0" "cecR"

shows "ab-(c-b™1) = ac"

(proof)

295

47.5 Completeness

This goal of this section is to show that the order on real numbers is com-
plete, that is every subset of reals that is bounded above has a smallest
upper bound.

If m is an integer, then m® is a real number. Recall that in reall context m¥
denotes the class of the slope n +— m - n.

lemma (in reall) real_int_is_real: assumes "m € int"
shows "m®* € R"

(proof)
The negative of the real embedding of an integer is the embedding of the
negative of the integer.

lemma (in reall) Real_ZF_1_4_L1: assumes "m € int"
shows "(-m)% = -(@f)"
(proof)

The embedding of sum of integers is the sum of embeddings.

lemma (in reall) Real_ZF_1_4_L1A: assumes "m € int" "k € int"
shows "m” + k' = ((m+k)%)"
(proof)

The embedding of a difference of integers is the difference of embeddings.

lemma (in reall) Real_ZF_1_4_L1B: assumes Al: "m € int" "k € int"
shows "m® - k% = (m-k)&"
(proof)

The embedding of the product of integers is the product of embeddings.

lemma (in reall) Real_ZF_1_4_L1C: assumes "m € int" "k € int"
shows "m® . k* = (mk)E"
(proof)

For any real numbers there is an integer whose real version is greater or
equal.

lemma (in reall) Real_ZF_1_4_L2: assumes Al: "acR"
shows "dm€int. a < m

Rn
(proof)

For any real numbers there is an integer whose real version (embedding) is
less or equal.

lemma (in reall) Real_ZF_1_4_L3: assumes Al: "acR"

shows "{m € int. nf < a} # 0"

(proof)

Embeddings of two integers are equal only if the integers are equal.

lemma (in reall) Real_ZF_1_4_14:

296

assumes Al: "m € int" "k € int" and A2: "mf = kB¢
shows "m=k"
(proof)

The embedding of integers preserves the order.

lemma (in reall) Real_ZF_1_4_L5: assumes Al: "m<k"
shows "mft < kfiv

(proof)

The embedding of integers preserves the strict order.

lemma (in reall) Real ZF_1_4 _L5A: assumes Al: "m<k" "m#k"
shows "mft < kfn

(proof)

For any real number there is a positive integer whose real version is (strictly)
greater. This is Lemma 14 i) in [2].

lemma (in reall) Arthan_Lemmald4i: assumes Al: "acR"
shows "IncZ,. a < nf*"

(proof)
If one embedding is less or equal than another, then the integers are also
less or equal.

lemma (in reall) Real_ZF_1_4_16:

assumes Al: "k € int" "m € int" and A2: "m® < kfn
shows "m<k"
{(proof)

The floor function is well defined and has expected properties.

lemma (in reall) Real_ZF_1_4_L7: assumes Al: "acR"
shows
"IsBoundedAbove({m € int. m® < a},IntegerOrder)"
"{m € int. mf < a} # 0"

"la] € int"
n LaJR < a"
(proof)

Every integer whose embedding is less or equal a real number a is less or
equal than the floor of a.

lemma (in reall) Real_ZF_1_4_L8:
assumes Al: "m € int" and A2: "m® < a®
shows "m < |a]"

(proof)

Integer zero and one embed as real zero and one.

lemma (in reall) int_O_1_are_real_zero_one:

shows HOZR = Q" ulZR = 1"

(proof)

297

Integer two embeds as the real two.

lemma (in reall) int_two_is_real_two: shows "2, = 2"
(proof)

A positive integer embeds as a positive (hence nonnegative) real.

lemma (in reall) int_pos_is_real_pos: assumes Al: "peZ. "
shows
npR c R"
" < pRn
llpR e R+|l

(proof)

The ordered field of reals we are constructing is archimedean, i.e., if x,y are
its elements with y positive, then there is a positive integer M such that x
is smaller than M®y. This is Lemma 14 ii) in [2].

lemma (in reall) Arthan_Lemmal4ii: assumes Al: "x€R" "y € Ry"
shows "IMcZ,. x < ME.y"
(proof)

Taking the floor function preserves the order.

lemma (in reall) Real_ZF_1_4_L19: assumes Al: "a<b"
shows "|a|] < |b|"
(proof)

If S is bounded above and p is a positive intereger, then I'(S,p) is well
defined.

lemma (in reall) Real_ZF_1_4_L10:
assumes Al: "IsBoundedAbove(S,0OrderOnReals)" "S#0" and A2: "peZ,."
shows
"IsBoundedAbove ({|pf-x|. x€S},IntegerOrder)"
"T'(S,p) € {|pftx|. xeS}"
"I'(S,p) € int"
(proof)

If p is a positive integer, then for all s € S the floor of p - x is not greater
that T'(S, p).

lemma (in reall) Real_ZF_1_4_L11:

assumes Al: "IsBoundedAbove(S,0OrderOnReals)" and A2: "xeS" and A3:
"peZ "

shows "[pffx| < T'(S,p)"
(proof)

The candidate for supremum is an integer mapping with values given by I'.

lemma (in reall) Real_ZF_1_4_L12:
assumes Al: "IsBoundedAbove(S,0OrderOnReals)" "S#0" and
A2: "g = {(p,I'(8,p)). peZ,}"
shows

298

"g : Z,—int"
"WneZ,. g‘(m) = I'(S,n)"
(proof)

Every integer is equal to the floor of its embedding.

lemma (in reall) Real_ZF_1_4_L14: assumes Al: "m € int"
shows "|[mf*| = m"

(proof)

Floor of (real) zero is (integer) zero.

lemma (in reall) floor_01_is_zero_one: shows
"LOJ = OZ" "L]-J =]-Z"

(proof)

Floor of (real) two is (integer) two.

lemma (in reall) floor_2_is_two: shows "[2] = 2"

(proof)

Floor of a product of embeddings of integers is equal to the product of

integers.

lemma (in reall) Real_ZF_1_4_L14A: assumes Al: "m € int" "k € int"
shows "[mf*kf| = mk"

(proof)

Floor of the sum of a number and the embedding of an integer is the floor
of the number plus the integer.

lemma (in reall) Real_ZF_1_4_L15: assumes Al: "x€R" and A2: "p € int"

shows "|x + p®| = |x] +—p:)

(proof)

Floor of the difference of a number and the embedding of an integer is the
floor of the number minus the integer.

shows "[x - pf| = [x] -_p:)
(proof)

lemma (in reall) Real_ZF_1_4_L16: assumes Al: "x€R" and A2: "p € int"

The floor of sum of embeddings is the sum of the integers.

lemma (in reall) Real_ZF_1_4_L17: assumes "m € int" '"n € int"
shows "[(mf*) + nff| = m + n"
(proof)

A lemma about adding one to floor.

lemma (in reall) Real_ZF_1_4_L17A: assumes Al: "acR"

shows "1 + |a]® = (17 + |a]) "
(proof)

The difference between the a number and the embedding of its floor is
(strictly) less than one.

299

lemma (in reall) Real_ZF_1_4_L17B: assumes Al: "acR"
shows
"y - LaJR < 1"
"y < (1Z + LaJ)Ru

(proof)

The next lemma corresponds to Lemma 14 iii) in [2]. It says that we can
find a rational number between any two different real numbers.

lemma (in reall) Arthan_Lemmal4iii: assumes Al: "x<y"
shows "IMeint. IN€Z,. xNF < MB A ME < ynlftv

(proof)
Some estimates for the homomorphism difference of the floor function.

lemma (in reall) Real_ZF_1_4_L18: assumes Al: "xeR" "ycR"
shows
vabs (|xty) - [x) - [y)) < 22"

(proof)

Suppose S # () is bounded above and I'(S,m) = |m® - z| for some positive
integer m and x € S. Then if y € S,z < y we also have I'(S,m) = [mf-y|.

lemma (in reall) Real_ZF_1_4_L20:
assumes Al: "IsBoundedAbove(S,OrderOnReals)" "S#0" and
A2: "neZ, " "xeS" and
A3: "I'(S,n) = [n®x|" and
A4: "yes" "x<y"
shows "TI'(S,n) = [nf.y|"
(proof)

The homomorphism difference of n +— T'(S,n) is bounded by 2 on positive
integers.

lemma (in reall) Real_ZF_1_4_L21:
assumes Al: "IsBoundedAbove(S,0OrderOnReals)" "S#0" and
A2: "meZ.," '"neZ."
shows "abs(I'(S,m+n) - I'(S,m) - I'(S,n)) < 2z"

(proof)

The next lemma provides sufficient condition for an odd function to be an
almost homomorphism. It says for odd functions we only need to check that
the homomorphism difference (denoted ¢ in the reall context) is bounded
on positive integers. This is really proven in Int_ZF_2.thy, but we restate
it here for convenience. Recall from Group_ZF_3.thy that 0ddExtension of a
function defined on the set of positive elements (of an ordered group) is the
only odd function that is equal to the given one when restricted to positive
elements.

lemma (in reall) Real_ZF_1_4_L21A:

assumes Al: "f:Z,—int" "Va€Z,. VbeZ, . abs(6(f,a,b)) < L"
shows "OddExtension(int,IntegerAddition,IntegerOrder,f) € S"

300

(proof)

The candidate for (a representant of) the supremum of a nonempty bounded
above set is a slope.

lemma (in reall) Real_ZF_1_4_L122:
assumes Al: "IsBoundedAbove(S,OrderOnReals)" "S#0" and
A2: "g = {(p,I'(8,p)). peZ,}"
shows "OddExtension(int,IntegerAddition,IntegerOrder,g) € S"

(proof)

A technical lemma used in the proof that all elements of S are less or equal
than the candidate for supremum of S.

lemma (in reall) Real_ZF_1_4_L23:
assumes Al: "f € S" and A2: "N € int" "M € int" and
A3: "VneZ,. Mn < £¢(N-n)"
shows "M% < [£]-(nE)n

(proof)

A technical lemma aimed used in the proof the candidate for supremum of
S is less or equal than any upper bound for S.

lemma (in reall) Real_ZF_1_4_L23A:
assumes Al: "f € 8" and A2: "N € int" "M € int" and
A3: "VneZ,. £‘(Non) < Mn "
shows "[f]-(N}) < mftn

(proof)

The essential condition to claim that the candidate for supremum of S is
greater or equal than all elements of S.

lemma (in reall) Real_ZF_1_4_L24:
assumes Al: "IsBoundedAbove(S,0rderOnReals)" and
A2: "x<y" "yeS" and
Ad: "N € Z," "M € int" and
A5: "ME < y.NB" and A6: "p € Z,"
shows "p:M < I'(S,pND)"

(proof)

An obvious fact about odd extension of a function p — I'(s,p) that is used
a couple of times in proofs.

lemma (in reall) Real_ZF_1_4_L24A:
assumes Al: "IsBoundedAbove(S,OrderOnReals)" "S#0" and A2: "p € Z,"
and A3:
"h = OddExtension(int,IntegerAddition,IntegerOrder,{(p,I'(S,p)). peZ)"
shows "h‘(p) = I'(S,p)"

(proof)

The candidate for the supremum of S is not smaller than any element of S.

lemma (in reall) Real_ZF_1_4_L25:

301

assumes Al: "IsBoundedAbove(S,0rderOnReals)" and

A2: "—HasAmaximum(OrderOnReals,S)" and

A3: "xe€S" and A4:

"h = 0ddExtension(int,IntegerAddition,IntegerOrder,{(p,I'(S,p)). pEZ)"
shows "x < [h]"

(proof)

The essential condition to claim that the candidate for supremum of S is
less or equal than any upper bound of S.

lemma (in reall) Real_ZF_1_4_L26:
assumes Al: "IsBoundedAbove(S,0OrderOnReals)" and
A2: "x<y" "x€S" and
A4: "N € Z, " "M € int" and
A5: "yNft < ME " and A6: "p € Z,"
shows "| (N-p)F-x| < Mp"

(proof)

A piece of the proof of the fact that the candidate for the supremum of S
is not greater than any upper bound of S, done separately for clarity (of
mind).

lemma (in reall) Real_ZF_1_4_L27:

assumes "IsBoundedAbove(S,0OrderOnReals)" "S=#0" and

"h = OddExtension(int,IntegerAddition,IntegerOrder,{(p,I'(S,p)). peZ })"
and "p € Z."

shows "3x€S. h‘(p) = |pftx]"

(proof)

The candidate for the supremum of S is not greater than any upper bound
of S.

lemma (in reall) Real_ZF_1_4_128:

assumes Al: "IsBoundedAbove(S,OrderOnReals)" "S#O0"

and A2: "VxeS. x<y" and A3:

"h = OddExtension(int,IntegerAddition,IntegerOrder,{(p,I'(S,p)). peZ)"
shows "[h] < y"

(proof)

Now we can prove that every nonempty subset of reals that is bounded
above has a supremum. Proof by considering two cases: when the set has a
maximum and when it does not.

lemma (in reall) real_order_complete:
assumes Al: "IsBoundedAbove(S,0OrderOnReals)" "S#O"
shows "HasAminimum(OrderOnReals,(]a€S. OrderOnReals‘‘{a})"

(proof)

Finally, we are ready to formulate the main result: that the construction
of real numbers from the additive group of integers results in a complete
ordered field. This theorem completes the construction. It was fun.

302

theorem eudoxus_reals_are_reals: shows
"IsAmodelOfReals (RealNumbers,RealAddition,RealMultiplication,OrderOnReals)"

(proof)

end

48 Complex numbers

theory Complex_ZF imports func_ZF_1 OrderedField_ZF
begin

The goal of this theory is to define complex numbers and prove that the
Metamath complex numbers axioms hold.

48.1 From complete ordered fields to complex numbers

This section consists mostly of definitions and a proof context for talking
about complex numbers. Suppose we have a set R with binary operations
A and M and a relation r such that the quadruple (R, A, M,r) forms a
complete ordered field. The next definitions take (R, A, M,r) and construct
the sets that represent the structure of complex numbers: the carrier (C =
R x R), binary operations of addition and multiplication of complex numbers
and the order relation on R = R x 0. The ImCxAdd, ReCxAdd, ImCxMul,
ReCxMul are helper meta-functions representing the imaginary part of a sum
of complex numbers, the real part of a sum of real numbers, the imaginary
part of a product of complex numbers and the real part of a product of real
numbers, respectively. The actual operations (subsets of (R x R) x R are
named CplxAdd and CplxMul.

When R is an ordered field, it comes with an order relation. This induces
a natural strict order relation on {(z,0) : x € R} C R x R. We call
the set {(z,0) : x € R} ComplexReals(R,A) and the strict order relation
CplxROrder (R,A,r). The order on the real axis of complex numbers is de-
fined as the relation induced on it by the canonical projection on the first
coordinate and the order we have on the real numbers. OK, lets repeat this
slower. We start with the order relation r on a (model of) real numbers R.
We want to define an order relation on a subset of complex numbers, namely
on Rx{0}. To do that we use the notion of a relation induced by a mapping.
The mapping here is f : R x {0} — R, f(x,0) = x which is defined under a
name of SliceProjection in func_ZF.thy. This defines a relation r; (called
InducedRelation(f,r), see func_ZF) on R x {0} such that ({x,0), (y,0) € r;
iff (z,y) € r. This way we get what we call CplxROrder (R,A,r). However,
this is not the end of the story, because Metamath uses strict inequalities in
its axioms, rather than weak ones like IsarMathLib (mostly). So we need to

303

take the strict version of this order relation. This is done in the syntax def-
inition of <g in the definition of complex0 context. Since Metamath proves
a lot of theorems about the real numbers extended with +o0o and —oo, we
define the notation for inequalites on the extended real line as well.

A helper expression representing the real part of the sum of two complex
numbers.
definition
"ReCxAdd(R,A,a,b) = A‘(fst(a) ,fst (b))"
An expression representing the imaginary part of the sum of two complex
numbers.
definition
"ImCxAdd(R,A,a,b) = A‘(snd(a),snd(b))"
The set (function) that is the binary operation that adds complex numbers.

definition
"CplxAdd(R,A) =
{{p, (ReCxAdd(R,A,fst(p),snd(p)),ImCxAdd(R,A,fst(p),snd(p)))).
p€ (RxXR) x (RXR) }"

The expression representing the imaginary part of the product of complex
numbers.
definition

"ImCxMul (R,A,M,a,b) = A‘(M‘(fst(a),snd(b)), M‘(snd(a),fst(b)))"
The expression representing the real part of the product of complex numbers.

definition
"ReCxMul(R,A,M,a,b) =
A‘(M“(fst(a),fst(b)),GroupInv(R,A) ¢ (M (snd(a),snd(b))))"

The function (set) that represents the binary operation of multiplication of
complex numbers.

definition
"CplxMul(R,A,M) =
{ (p, (ReCxMul(R,A,M,fst(p),snd(p)),ImCxMul (R,A,M,fst(p),snd(p)))).

p € (RxR)x(RxR)}"

The definition real numbers embedded in the complex plane.

definition
"ComplexReals(R,A) = Rx{TheNeutralElement(R,A)}"

Definition of order relation on the real line.

definition
"CplxROrder(R,A,r) =

304

InducedRelation(SliceProjection(ComplexReals(R,A)),r)"

The next locale defines proof context and notation that will be used for
complex numbers.

locale complexO =
fixes R and A and M and r
assumes R_are_reals: "IsAmodelOfReals(R,A,M,r)"

fixes complex ("C")
defines complex_def [simp]: "C = RxR"

fixes rone ("1g")
defines rone_def [simp]: "1lp = TheNeutralElement(R,M)"

fixes rzero ("Ogr")
defines rzero_def [simp]: "Or = TheNeutralElement(R,A)"

fixes one ("1")
defines one_def [simp]: "1 = (1p, Op)"

fixes zero ("0")
defines zero_def[simp]: "0 = (0, Og)"

fixes iunit ("i")
defines iunit_def[simpl: "i = (Og,1g)"

fixes creal ("R")
defines creal_def[simp]: "R = {(r,0g). reR}"

fixes rmul (infixl "-" 71)
defines rmul_def[simp]: "a - b = M‘(a,b)"

fixes radd (infixl "+" 69)
defines radd_def[simp]: "a + b = A‘(a,b)"

fixes rneg ("- _" 70)
defines rneg_def [simp]: "- a = GroupInv(R,A)‘(a)"

fixes ca (infixl "+" 69)
defines ca_def[simp]l: "a + b = CplxAdd(R,A) ‘(a,b)"

fixes cm (infixl "-" 71)
defines cm_def[simp]l: "a - b = CplxMul(R,A,M) ‘(a,b)"

fixes cdiv (infixl "/" 70)
defines cdiv_def[simp]: "a / b

U{xeC.b-x=a}"

fixes sub (infixl "-" 69)
defines sub_def[simp]: "a -b =) {x € C. b+ x =a }"

305

fixes cneg ("-_" 95)
defines cneg_def [simp]: "- a =0 - a"

fixes lessr (infix "<g" 68)
defines lessr_def [simp]:

"a <g b = (a,b) € StrictVersion(CplxROrder(R,A,r))"

fixes cpnf ("4o0")

defines cpnf_def [simp]: "+o00o = C"
fixes cmnf ("—oo")
defines cmnf_def[simpl: "—o0 = {C}"

fixes cxr ("IR*")
defines cxr_def[simp]: "R* = R U {400, —00}"

fixes cxn ("IN")
defines cxn_def [simp]:
"N =) {N € Pow(R). 1 € N A (Vn. n€N — n+l € N)}"

fixes cltrrset ("<")

defines cltrrset_def [simp]:

"< = StrictVersion(CplxROrder(R,A,r)) N RxR U
{(—00,+0)} U (Rx{+c0}) U ({—occ}xR)"

fixes cltrr (infix "<" 68)
defines cltrr_def[simp]l: "a < b = (a,b) € <"

fixes 1sq (infix "<" 68)

defines 1sq_def([simpl: "a < b = = (b < a)"
fixes two ("2")

defines two_def[simp]: "2 = 1 + 1"

fixes three ("3")

defines three_def [simp]: "3 = 2+1"

fixes four ("4")
defines four_def [simp]: "4 = 3+1"

fixes five ("5")

defines five_def [simp]: "5 4+1"

fixes six ("6")
defines six_def [simp]l: "6 = 5+1"

fixes seven ("7")
defines seven_def [simp]: "7 = 6+1"

306

fixes eight ("8")
defines eight_def [simp]: "8 = 7+1"

fixes nine ("9")
defines nine_def [simp]: "9 = 8+1"

48.2 Axioms of complex numbers

In this section we will prove that all Metamath’s axioms of complex numbers
hold in the complex0 context.

The next lemma lists some contexts that are valid in the complex0 context.

lemma (in complex0) valid_cntxts: shows
"fieldl(R,A,M,r)"
"fieldO(R,A,M)"
"ringl(R,A,M,r)"
"group3(R,A,r)"
"ringO(R,A,M)"
"M {is commutative on} R"
"groupO(R,A)"
(proof)

The next lemma shows the definition of real and imaginary part of complex
sum and product in a more readable form using notation defined in complex0
locale.

lemma (in complex0) cplx_mul_add_defs: shows

"ReCxAdd(R, A, (a,b),(c,d)) = a + c"
"ImCxAdd (R, A, (a,b),(c,d)) = b + d"

"ImCxMul (R,A,M,(a,b),{c,d)) = a-d + b-c"
"ReCxMul(R,A,M,(a,b),{c,d)) = ac + (-b-d)"

(proof)

Real and imaginary parts of sums and products of complex numbers are
real.

lemma (in complex0) cplx_mul_add_types:
assumes Al: "z; € C" "zog € C"
shows
"ReCxAdd(R,A,z1,Z2) € R"
"ImCxAdd(R,A,z1,2Z2) € R"
"ImCxMul (R,A,M,z1,22) € R"
"ReCxMul (R,A,M,z;,2z9) € R"

(proof)

Complex reals are complex. Recall the definition of R in the complex0 locale.

lemma (in complex0) axresscn: shows "R C C"
(proof)

307

Complex 1 is not complex 0.

lemma (in complex0) axlneO: shows "1 # 0"
(proof)

Complex addition is a complex valued binary operation on complex numbers.

lemma (in complex0) axaddopr: shows "CplxAdd(R,A): C x C — C"
(proof)

Complex multiplication is a complex valued binary operation on complex
numbers.

lemma (in complex0) axmulopr: shows "CplxMul(R,A,M): C x C — C"
(proof)

What are the values of omplex addition and multiplication in terms of their
real and imaginary parts?

lemma (in complex0) cplx_mul_add_vals:
assumes Al: "a€R" "beR" "ceR" "deR"
shows
"(a,b) + {(c,d) = {a +c, b+ A"
"(a,b) - (c,d) = (a:c + (-b-d), ad + bc)"
(proof)

Complex multiplication is commutative.

lemma (in complex(0) axmulcom: assumes Al: "a € C" "pbp € C"
shows "ab = b-a"

(proof)

A sum of complex numbers is complex.

lemma (in complex0) axaddcl: assumes "a € C" "b € C"
shows "a+b € C"

(proof)

A product of complex numbers is complex.

lemma (in complex0) axmulcl: assumes "a € C" "b € C"
shows "ab € C"
(proof)

Multiplication is distributive with respect to addition.

lemma (in complex0) axdistr:
assumes Al: "a € C" "b € C" '"c € C"
shows "a:(b + ¢c) = ab + a-c"

(proof)

Complex addition is commutative.

lemma (in complex0) axaddcom: assumes "a € C" "b € C"
shows "at+b = b+a"

308

(proof)

Complex addition is associative.

lemma (in complex0) axaddass: assumes Al:
shows "a + b+ c=a+ (b + c)"

(proof)

Complex multiplication is associative.

lemma (in complex0) axmulass: assumes Al:
shows "a - b-c=a: - (b c)"

(proof)

l|a 6 @Il

LY c (Dn

llb e @ll

"p c (Du

|IC e @ll

e c (Du

Complex 1 is real. This really means that the pair (1,0) is on the real axis.

lemma (in complex0) axlre: shows "1 € R"

(proof)

The imaginary unit is a ”square root” of —1 (that is, 2 + 1 = 0).

lemma (in complex0) axi2ml: shows "ii + 1 = 0"

(proof)

0 is the neutral element of complex addition.

lemma (in complex0) ax0id: assumes "a € C"

shows "a + 0 = a"
(proof)

The imaginary unit is a complex number.

lemma (in complex0) axicn: shows "i € C"

{proof)

All complex numbers have additive inverses.

lemma (in complex0) axnegex: assumes Al: "a € C"

shows "dxeC. a + x = 0"

(proof)

A non-zero complex number has a multiplicative inverse.

lemma (in complex(0) axrecex: assumes Al: "a € C" and A2: "a#0"

shows "dxeC. ax = 1"

(proof)

Complex 1 is a right neutral element for multiplication.

lemma (in complex0) axlid: assumes Al: "a € C"

shows "a'1l = a"
(proof)

A formula for sum of (complex) real numbers.

lemma (in complex0) sum_of_reals: assumes "acR"

shows

309

IleRII

"a + b = (fst(a) + fst(b),0R)"
(proof)

The sum of real numbers is real.

lemma (in complex0) axaddrcl: assumes Al: "acR" "beR"
shows "a + b € R"
{proof)

The formula for the product of (complex) real numbers.

lemma (in complex0) prod_of_reals: assumes Al: "acR" "beR"
shows "a - b = (fst(a)-fst(b),0p)"

(proof)

The product of (complex) real numbers is real.

lemma (in complex0) axmulrcl: assumes "acR" "beR"
shows "a - b € R"
{proof)

The existence of a real negative of a real number.

lemma (in complex(0) axrnegex: assumes Al: "acR"
shows "d x € R. a + x = 0"
(proof)

Each nonzero real number has a real inverse

lemma (in complex0) axrrecex:

assumes Al: "a € R" "a # O"
shows "dx€eR. a - x = 1"
(proof)

Our R symbol is the real axis on the complex plane.

lemma (in complex0) real_means_real_axis: shows "R = ComplexReals(R,A)"
{proof)

The CplxROrder thing is a relation on the complex reals.

lemma (in complex0) cplx_ord_on_cplx_reals:
shows "CplxROrder(R,A,r) C RxIR"
{proof)

The strict version of the complex relation is a relation on complex reals.

lemma (in complex0) cplx_strict_ord_on_cplx_reals:
shows "StrictVersion(CplxROrder(R,A,r)) C RxR"

{proof)

The CplxROrder thing is a relation on the complex reals. Here this is for-
mulated as a statement that in complex0 context a < b implies that a,b are
complex reals

lemma (in complex0) strict_cplx_ord_type: assumes "a <g b"

310

shows "aclR" "beR"
(proof)

A more readable version of the definition of the strict order relation on the
real axis. Recall that in the complex0 context r denotes the (non-strict)
order relation on the underlying model of real numbers.

lemma (in complex(0) def_of_real_axis_order: shows
"(x,0g) <r (y,0R) <— (x,y) € ©r A x#y"
(proof)

The (non strict) order on complex reals is antisymmetric, transitive and
total.

lemma (in complex0) cplx_ord_antsym_trans_tot: shows
"antisym(CplxROrder (R,A,r))"
"trans (CplxROrder (R,A,r))"
"CplxROrder(R,A,r) {is total on} R"

(proof)

The trichotomy law for the strict order on the complex reals.

lemma (in complex0) cplx_strict_ord_trich:
assumes "a € R" "b € R"
shows "Exactly_1_of_3_holds(a<gb, a=b, b<ra)"

(proof)

The strict order on the complex reals is kind of antisymetric.

lemma (in complex0) pre_axlttri: assumes Al: "a € R" "b € R"
shows "a <g b «— —(a=b V b < a)"
(proof)

The strict order on complex reals is transitive.

lemma (in complex0) cplx_strict_ord_trans:
shows "trans(StrictVersion(CplxROrder(R,A,r)))"

(proof)

The strict order on complex reals is transitive - the explicit version of
cplx_strict_ord_trans.

lemma (in complex0) pre_axlttrn:

assumes Al: "a <g b" "b <gp c"
shows "a <g c"
(proof)

The strict order on complex reals is preserved by translations.

lemma (in complex0) pre_axltadd:
assumes Al: "a <g b" and A2: "c € R"
shows "c+a <g c+b"

(proof)

The set of positive complex reals is closed with respect to multiplication.

311

lemma (in complex0) pre_axmulgtO: assumes Al: "0 <g a" "0 <p b"
shows "0 <r a-b"
(proof)

The order on complex reals is linear and complete.

lemma (in complex0) cmplx_reals_ord_lin_compl: shows
"CplxROrder(R,A,r) {is completel}"
"IsLinOrder (R,CplxROrder(R,A,r))"

(proof)

The property of the strict order on complex reals that corresponds to com-
pleteness.

lemma (in complex(0) pre_axsup: assumes Al: "X C R" "X # 0" and
A2: "JxeR. VyeX. y <g x"
shows

"JxeR. (VyeX. = (x <g 7)) A (VyeR. (y <g x — (zeX. y <g)"
(proof)

end

49 Topology - introduction

theory Topology_ZF imports ZF1 Finite_ZF Foll

begin

This theory file provides basic definitions and properties of topology, open
and closed sets, closure and boundary.

49.1 Basic definitions and properties

A typical textbook defines a topology on a set X as a collection 1" of subsets
of X such that X € T,) € T and T is closed with respect to arbitrary
unions and intersection of two sets. One can notice here that since we always
have (JT = X, the set on which the topology is defined (the ”carrier” of
the topology) can always be constructed from the topology itself and is
superfluous in the definition. Moreover, as Marnix Klooster pointed out
to me, the fact that the empty set is open can also be proven from other
axioms. Hence, we define a topology as a collection of sets that is closed
under arbitrary unions and intersections of two sets, without any mention of
the set on which the topology is defined. Recall that Pow(T) is the powerset
of T, so that if M € Pow(T) then M is a subset of T. The sets that belong
to a topology T will be sometimes called ”"open in” T or just "open” if the
topology is clear from the context.

Topology is a collection of sets that is closed under arbitrary unions and
intersections of two sets.

312

definition
IsATopology ("_ {is a topology}" [90] 91) where
"T {is a topology} = (VM € Pow(T). UM € T) A
(VUET. V VeT. UNV € T)"

We define interior of a set A as the union of all open sets contained in A.
We use Interior(A,T) to denote the interior of A.

definition
"Interior(A,T) = |J {UET. U C A}"

A set is closed if it is contained in the carrier of topology and its complement
is open.
definition

IsClosed (infixl "{is closed in}" 90) where
"D {is closed in} T= O C YT A YT -D € TO"

To prove various properties of closure we will often use the collection of
closed sets that contain a given set A. Such collection does not have a
separate name in informal math. We will call it ClosedCovers(A,T).

definition
"ClosedCovers(A,T) = {D € Pow(|JT). D {is closed in} T A ACD}"

The closure of a set A is defined as the intersection of the collection of closed
sets that contain A.

definition
"Closure(A,T) = () ClosedCovers(A,T)"

We also define boundary of a set as the intersection of its closure with the
closure of the complement (with respect to the carrier).

definition
"Boundary(A,T) = Closure(A,T) N Closure(|T - A,T)"

A set K is compact if for every collection of open sets that covers K we can
choose a finite one that still covers the set. Recall that FinPow(M) is the col-
lection of finite subsets of M (finite powerset of M), defined in IsarMathLib’s
Finite_ZF theory.
definition

IsCompact (infix]l "{is compact in}" 90) where

"K {is compact in} T = (K C JT A

(V MePow(T). K C UM — (3 N € FinPow(M). K C JM))"

A basic example of a topology: the powerset of any set is a topology.

lemma Pow_is_top: shows "Pow(X) {is a topology}"
(proof)

Empty set is open.

313

lemma empty_open:
assumes "T {is a topology}" shows "0 € T"

(proof)

Union of a collection of open sets is open.

lemma union_open: assumes "T {is a topology}" and "VAcA. A € T"
shows "(|JA) € T" (proof)

Union of a indexed family of open sets is open.

lemma union_indexed_open: assumes Al: "T {is a topology}" and A2: "VieI.
P(i) € T"
shows "(|Ji€I. P(i)) € T" (proof)

The intersection of any nonempty collection of topologies on a set X is a
topology.

lemma Inter_tops_is_top:
assumes Al: "M # 0" and A2: "VTeM. T {is a topologyl}"
shows "((YM) {is a topologyl}"

(proof)

We will now introduce some notation. In Isar, this is done by definining
a "locale”. Locale is kind of a context that holds some assumptions and
notation used in all theorems proven in it. In the locale (context) below
called topology0 we assume that T is a topology. The interior of the set A
(with respect to the topology in the context) is denoted int (A). The closure
of aset A C|JT is denoted c1(A) and the boundary is OA.

locale topology0 =
fixes T
assumes topSpaceAssum: "T {is a topologyl}"

fixes int
defines int_def [simp]: "int(A) = Interior(A,T)"

fixes cl
defines cl_def [simp]: "cl(A) = Closure(A,T)"

fixes boundary ("0_" [91] 92)
defines boundary_def [simp]l: "OA = Boundary(A,T)"

Intersection of a finite nonempty collection of open sets is open.

lemma (in topology0O) fin_inter_open_open: assumes "N#0" "N € FinPow(T)"
shows "N € T"

(proof)

Having a topology T and a set X we can define the induced topology as the
one consisting of the intersections of X with sets from 7. The notion of a
collection restricted to a set is defined in ZF1.thy.

314

lemma (in topology0O) Top_1_L4:
shows "(T {restricted to} X) {is a topology}"
(proof)

49.2 Interior of a set
In section we show basic properties of the interior of a set.

Interior of a set A is contained in A.

lemma (in topology0) Top_2_L1: shows "int(A) C A"
(proof)

Interior is open.

lemma (in topology0) Top_2_L2: shows "int(A) € T"

(proof)

A set is open iff it is equal to its interior.

lemma (in topology0) Top_2_L3: shows "UET «— int(U) = U"
(proof)

Interior of the interior is the interior.

lemma (in topology0) Top_2_L4: shows "int(int(A)) = int(A)"
(proof)

Interior of a bigger set is bigger.

lemma (in topology0) interior_mono:
assumes Al: "ACB" shows "int(A) C int(B)"

(proof)

An open subset of any set is a subset of the interior of that set.

lemma (in topology0) Top_2_L5: assumes "UCA" and "UeT"
shows "U C int(A)"

{proof)

If a point of a set has an open neighboorhood contained in the set, then the

point belongs to the interior of the set.

lemma (in topology0) Top_2_L6: assumes "JUeT. (x€U A UCA)"
shows "x € int(A)"

{proof)

A set is open iff its every point has a an open neighbourhood contained in
the set. We will formulate this statement as two lemmas (implication one
way and the other way). The lemma below shows that if a set is open then

every point has a an open neighbourhood contained in the set.

lemma (in topology0) open_open_neigh:
assumes Al: "VeT"

315

shows "VxeV. JUET. (x€U A UCV)"
(proof)

If every point of a set has a an open neighbourhood contained in the set
then the set is open.
lemma (in topology0) open_neigh_open:

assumes Al: "VxeV. JUET. (x€U A UCV)"
shows "VeT"

(proof)

49.3 Closed sets, closure, boundary.

This section is devoted to closed sets and properties of the closure and
boundary operators.

The carrier of the space is closed.

lemma (in topology0) Top_3_L1: shows "(|JT) {is closed in} T"

(proof)

Empty set is closed.

lemma (in topology0O) Top_3_L2: shows "O {is closed in} T"
{proof)

The collection of closed covers of a subset of the carrier of topology is never
empty. This is good to know, as we want to intersect this collection to get
the closure.

lemma (in topology0) Top_3_L3:
assumes Al: "A C [JT" shows "ClosedCovers(A,T) # 0"

(proof)

Intersection of a nonempty family of closed sets is closed.

lemma (in topology0) Top_3_L4: assumes Al: "K#0" and
A2: "VDeK. D {is closed in} T"
shows "((X) {is closed in} T"

(proof)

The union and intersection of two closed sets are closed.

lemma (in topology0) Top_3_L5:
assumes Al: "D; {is closed in} T" "Dy {is closed in} T"
shows
"(D;MD2) {is closed in} T"
"(D1UDy) {is closed in} T"
(proof)

Finite union of closed sets is closed. To understand the proof recall that
D €Pow(|JT) means that D is a subset of the carrier of the topology.

lemma (in topology0) fin_union_cl_is_cl:

316

assumes
Al: "N € FinPow({D€Pow(|JT). D {is closed in} T})"
shows "(|JN) {is closed in} T"

(proof)

Closure of a set is closed.

lemma (in topology0) cl_is_closed: assumes "A C [JT"
shows "cl(A) {is closed in} T"
(proof)

Closure of a bigger sets is bigger.

lemma (in topology0O) top_closure_mono:
assumes Al: "A C (JT" "B C JT" and A2:"ACB"
shows "cl1(A) C c1(B)"

(proof)

Boundary of a set is closed.

lemma (in topology0) boundary_closed:
assumes Al: "A C (JT" shows "OA {is closed in} T"

(proof)

A set is closed iff it is equal to its closure.

lemma (in topology0) Top_3_L8: assumes Al: "A C |JT"
shows "A {is closed in} T «— cl(A) = A"

(proof)

Complement of an open set is closed.

lemma (in topology0) Top_3_L9:
assumes Al: "AeT"
shows "(|JT - A) {is closed in} T"

{(proof)

A set is contained in its closure.

lemma (in topology0) cl_contains_set: assumes "A C [JT" shows "A C
cl(a)"
{proof)

Closure of a subset of the carrier is a subset of the carrier and closure of the
complement is the complement of the interior.

lemma (in topology0) Top_3_L11: assumes Al: "A C [JT"
shows

"Cl(A) g UT"
"el(UT - &) = UT - int(A)"
(proof)

Boundary of a set is the closure of the set minus the interior of the set.

lemma (in topology0) Top_3_L12: assumes Al: "A C [JT"

317

shows "OA = cl(A) - int(A)"
(proof)

If a set A is contained in a closed set B, then the closure of A is contained
in B.

lemma (in topology0) Top_3_L13:

assumes Al: "B {is closed in} T" "ACB"
shows "cl(A) C B"
(proof)

If a set is disjoint with an open set, then we can close it and it will still be
disjoint.
lemma (in topology0) disj_open_cl_disj:
assumes Al: "A C [JT" "VET" and A2: "ANV = Q"
shows "cl1(A) NV = 0"
(proof)

A reformulation of disj_open_cl_disj: If a point belongs to the closure of a
set, then we can find a point from the set in any open neighboorhood of the
point.

lemma (in topology0) cl_inter_neigh:

assumes "A C (JT" and "UET" and "x € c1(A) N U"
shows "ANU # 0" (proof)

A reverse of cl_inter_neigh: if every open neiboorhood of a point has a
nonempty intersection with a set, then that point belongs to the closure of
the set.

lemma (in topology0) inter_neigh_cl:
assumes Al: "A C [JT" and A2: "x€JT" and A3: "VUET. x€U — UNA

7é On
shows "x € cl(A)"
(proof)

end

50 Topology 1
theory Topology_ZF_1 imports Topology_ZF
begin

In this theory file we study separation axioms and the notion of base and
subbase. Using the products of open sets as a subbase we define a natural
topology on a product of two topological spaces.

318

50.1 Separation axioms.

Topological spaces cas be classified according to certain properties called
”separation axioms”. In this section we define what it means that a topo-
logical space is Ty, 17 or 1.

A topology on X is Ty if for every pair of distinct points of X there is an
open set that contains only one of them.

definition
isTO ("_ {is To}" [90] 91) where
"T{is Top} =V xy. (xe UT Ay e UT A x#y) —
(JUET. (x€U A y¢U) V (y€U A x¢U)))"

A topology is T if for every such pair there exist an open set that contains
the first point but not the second.

definition
isT1 ("_ {is Ty}" [90] 91) where
"T{is 1} =V xy. (ke UT Ay e UT A zx#y) —
(JUET. (x€U A ygU)))"

A topology is Ty (Hausdorff) if for every pair of points there exist a pair of
disjoint open sets each containing one of the points. This is an important
class of topological spaces. In particular, metric spaces are Hausdorff.

definition
isT2 ("_ {is To}" [90] 91) where
"T{is Ta} =V xy. (xe UT Ay e UT A x#y) —
(3UeT. JVET. x€U A yeV A UNV=0))"

If a topology is T then it is Tg. We don’t really assume here that T is a
topology on X. Instead, we prove the relation between isTO condition and
isT1.

lemma T1_is_TO: assumes Al: "T {is T;}" shows "T {is Tg}"

(proof)

If a topology is T3 then it is 7.

lemma T2_is_T1: assumes Al: "T {is Ty}" shows "T {is T;}"

(proof)

In a T} space two points that can not be separated by an open set are equal.
Proof by contradiction.

lemma Top_1_1_L1: assumes Al: "T {is To}" and A2: "x € JT" "y € JT"
and A3: "VUET. (x€U +— ye)"
shows "x=y"

(proof)

319

50.2 Bases and subbases.

Sometimes it is convenient to talk about topologies in terms of their bases
and subbases. These are certain collections of open sets that define the
whole topology.

A base of topology is a collection of open sets such that every open set is a
union of the sets from the base.

definition
IsAbaseFor (infixl "{is a base for}" 65) where
"B {is a base for} T = BCT AT = {UA. AcPow(B) }"

A subbase is a collection of open sets such that finite intersection of those
sets form a base.

definition
IsAsubBaseFor (infixl "{is a subbase for}" 65) where
"B {is a subbase for} T =
BCTA {)A. A € FinPow(B)} {is a base for} T"

Below we formulate a condition that we will prove to be necessary and
sufficient for a collection B of open sets to form a base. It says that for any
two sets U,V from the collection B we can find a point x € U NV with a
neighboorhod from B contained in U NV

definition
SatisfiesBaseCondition ("_ {satisfies the base condition}" [50] 50)
where
"B {satisfies the base condition} =
YU V. ((UeB A VeB) — (Vx € UNV. JWeB. x€W A W C UNV))"

A collection that is closed with respect to intersection satisfies the base
condition.

lemma inter_closed_base: assumes "VUEB.(VYVEB. UNV € B)"
shows "B {satisfies the base condition}"

(proof)

Each open set is a union of some sets from the base.

lemma Top_1_2_L1: assumes "B {is a base for} T" and "UeT"
shows "JAc€Pow(B). U = [JA"

(proof)

Elements of base are open.

lemma base_sets_open:
assumes "B {is a base for} T" and "U € B"
shows "U € T"

(proof)
A base defines topology uniquely.

320

lemma same_base_same_top:
assumes "B {is a base for} T" and "B {is a base for} S"
shows "T = S"

{proof)

Every point from an open set has a neighboorhood from the base that is
contained in the set.

lemma point_open_base_neigh:
assumes Al: "B {is a base for} T" and A2: "UET" and A3: "xeU"
shows "3JVeB. VCU A xeV"

(proof)

A criterion for a collection to be a base for a topology that is a slight
reformulation of the definition. The only thing different that in the definition
is that we assume only that every open set is a union of some sets from the
base. The definition requires also the opposite inclusion that every union of
the sets from the base is open, but that we can prove if we assume that T
is a topology.

lemma is_a_base_criterion: assumes Al: "T {is a topology}"
and A2: "B C T" and A3: "VV € T. A € Pow(B). V = [JA"
shows "B {is a base for} T"

(proof)

A necessary condition for a collection of sets to be a base for some topology
: every point in the intersection of two sets in the base has a neighboorhood
from the base contained in the intersection.

lemma Top_1_2_L2:
assumes A1:"3T. T {is a topology} A B {is a base for} T"
and A2: "VeB" "WeB"
shows "V x € VNW. JUeB. xcU AU C VN W"

(proof)

We will construct a topology as the collection of unions of (would-be) base.
First we prove that if the collection of sets satisfies the condition we want
to show to be sufficient, the the intersection belongs to what we will define
as topology (am I clear here?). Having this fact ready simplifies the proof
of the next lemma. There is not much topology here, just some set theory.

lemma Top_1_2_L3:
assumes Al: "Vxe VW . JU€B. x€U A U C VNW"
shows "VNW € {|JA. Ac€Pow(B)}"

(proof)

The next lemma is needed when proving that the would-be topology is closed
with respect to taking intersections. We show here that intersection of two
sets from this (would-be) topology can be written as union of sets from the
topology.

321

lemma Top_1_2_L4:
assumes Al: "U; € {(JA. AcPow(B)}" "Up; € {|JA. A€Pow(B)}"
and A2: "B {satisfies the base condition}"
shows "3C. C C {(JA. A€Pow(B)} A UjNUy = [JC"

(proof)

If B satisfies the base condition, then the collection of unions of sets from
B is a topology and B is a base for this topology.

theorem Top_1_2_T1:
assumes Al: "B {satisfies the base condition}"
and A2: "T = {{JA. A€Pow(B)}"
shows "T {is a topology}" and "B {is a base for} T"

(proof)

The carrier of the base and topology are the same.

lemma Top_1_2_L5: assumes "B {is a base for} T"
shows "JT = [JB"
{proof)

If B is a base for T, then T is the smallest topology containing B.

lemma base_smallest_top:

assumes Al: "B {is a base for} T" and A2: "S {is a topologyl}" and
A3: "BCS"

shows "TCS"

(proof)
If B is a base for T and B is a topology, then B = T.

lemma base_topology: assumes "B {is a topology}" and "B {is a base for}
Tll
shows "B=T" (proof)

50.3 Product topology
In this section we consider a topology defined on a product of two sets.

Given two topological spaces we can define a topology on the product of the
carriers such that the cartesian products of the sets of the topologies are a
base for the product topology. Recall that for two collections S, T of sets
the product collection is defined (in ZF1.thy) as the collections of cartesian
products A x B, where A€ S,BeT.

definition
"ProductTopology(T,S) = {(JW. W € Pow(ProductCollection(T,S))}"

The product collection satisfies the base condition.

lemma Top_1_4_L1:
assumes Al: "T {is a topology}" "S {is a topology}"
and A2: "A € ProductCollection(T,S)" "B € ProductCollection(T,S)"

322

shows "Vxc(ANB). JIWeProductCollection(T,S). (x€W A W C A N B)"
(proof)

The product topology is indeed a topology on the product.

theorem Top_1_4_T1: assumes Al: "T {is a topology}" "S {is a topologyl}"
shows
"ProductTopology(T,S) {is a topologyl}"
"ProductCollection(T,S) {is a base for} ProductTopology(T,S)"
"|J ProductTopology(T,S) = JT x [JS"
(proof)

Each point of a set open in the product topology has a neighborhood which
is a cartesian product of open sets.

lemma prod_top_point_neighb:
assumes Al: "T {is a topology}" "S {is a topology}" and
A2: "U € ProductTopology(T,S)" and A3: "x € U"
shows "JV W. VET A WeS A VxW C U A x € VxW"

(proof)

Products of open sets are open in the product topology.

lemma prod_open_open_prod:
assumes Al: "T {is a topology}" "S {is a topologyl}" and
A2: "UET" "Ves"
shows "UxV € ProductTopology(T,S)"

(proof)

Sets that are open in th product topology are contained in the product of
the carrier.

lemma prod_open_type: assumes Al: "T {is a topology}" "S {is a topology}"
and

A2: "V € ProductTopology(T,S)"

shows "V C [JT x |s"
(proof)

Suppose we have subsets A C X, B C Y, where X, Y are topological spaces
with topologies T',.S. We can the consider relative topologies on T4, Sp on
sets A, B and the collection of cartesian products of sets open in T4, Spg,
(namely {U x V : U € T4,V € Sp}. The next lemma states that this
collection is a base of the product topology on X x Y restricted to the
product A x B.

lemma prod_restr_base_restr:
assumes Al: "T {is a topology}" "S {is a topologyl}"
shows
"ProductCollection(T {restricted to} A, S {restricted to} B)
{is a base for} (ProductTopology(T,S) {restricted to} AXB)"

(proof)

323

We can commute taking restriction (relative topology) and product topology.
The reason the two topologies are the same is that they have the same base.

lemma prod_top_restr_comm:
assumes Al: "T {is a topology}" "S {is a topologyl}"
shows
"ProductTopology (T {restricted to} A,S {restricted to} B) =
ProductTopology(T,S) {restricted to} (AxB)"

(proof)

Projection of a section of an open set is open.

lemma prod_sec_openl: assumes Al: "T {is a topology}" "S {is a topologyl}"
and

A2: "V € ProductTopology(T,S)" and A3: "x € |JT"

shows "{y € JS. (x,y) € V} € 8"
(proof)

Projection of a section of an open set is open. This is dual of prod_sec_openi
with a very similar proof.

lemma prod_sec_open2: assumes Al: "T {is a topology}" "S {is a topology}"
and

A2: "V € ProductTopology(T,S)" and A3: "y € [JsS"

shows "{x € JT. (x,y) € V} € T"
(proof)

end

51 Topology 1b

theory Topology_ZF_1b imports Topology_ZF_1
begin

One of the facts demonstrated in every class on General Topology is that in
a Ty (Hausdorff) topological space compact sets are closed. Formalizing the
proof of this fact gave me an interesting insight into the role of the Axiom
of Choice (AC) in many informal proofs.

A typical informal proof of this fact goes like this: we want to show that the
complement of K is open. To do this, choose an arbitrary point y € K¢€.
Since X is T3, for every point x € K we can find an open set U, such that
y ¢ U,. Obviously {U,}.cx covers K, so select a finite subcollection that
covers K, and so on. I had never realized that such reasoning requires the
Axiom of Choice. Namely, suppose we have a lemma that states "In 15
spaces, if z # y, then there is an open set U such that x € U and y ¢ U”
(like our lemma T2_c1_open_sep below). This only states that the set of such
open sets U is not empty. To get the collection {U,},cx in this proof we

324

have to select one such set among many for every x € K and this is where
we use the Axiom of Choice. Probably in 99/100 cases when an informal
calculus proof states something like Ve3d, - - - the proof uses AC. Most of the
time the use of AC in such proofs can be avoided. This is also the case for
the fact that in a T, space compact sets are closed.

51.1 Compact sets are closed - no need for AC

In this section we show that in a 75 topological space compact sets are
closed.

First we prove a lemma that in a T, space two points can be separated by
the closure of an open set.

lemma (in topology0) T2_cl_open_sep:

assumes "T {is To}" and "x € JT" "y € JT" ‘"x#y"
shows "JUET. (x€U A y ¢ c1(U))"
(proof)

AC-free proof that in a Hausdorfl space compact sets are closed. To un-
derstand the notation recall that in Isabelle/ZF Pow(A) is the powerset (the
set of subsets) of A and FinPow(A) denotes the set of finite subsets of A in
IsarMathLib.

theorem (in topology0) in_t2_compact_is_cl:
assumes Al: "T {is To}" and A2: "K {is compact in} T"
shows "K {is closed in} T"

(proof)
end

52 Topology 2
theory Topology_ZF_2 imports Topology_ZF_1 funcl Foll
begin

This theory continues the series on general topology and covers the definition
and basic properties of continuous functions. We also introduce the notion
of homeomorphism an prove the pasting lemma.

52.1 Continuous functions.

In this section we define continuous functions and prove that certain condi-
tions are equivalent to a function being continuous.

325

In standard math we say that a function is contiuous with respect to two
topologies 71, 1o if the inverse image of sets from topology 7 are in 7. Here
we define a predicate that is supposed to reflect that definition, with a dif-
ference that we don’t require in the definition that 71, 7 are topologies. This
means for example that when we define measurable functions, the definition
will be the same.

The notation £-°“(4) means the inverse image of (a set) A with respect to
(a function) f.

definition
"IsContinuous(7y,72,f) = (VUETy. £-°(U) € 7)"

A trivial example of a continuous function - identity is continuous.

lemma id_cont: shows "IsContinuous(r,7,id(|J7))"

(proof)

We will work with a pair of topological spaces. The following locale sets up
our context that consists of two topologies 7,7 and a continuous function
f X1 — Xo, where X; is defined as |J7; for i« = 1,2. We also define
notation cl;(A) and cly(A) for closure of a set A in topologies 7 and 7y,
respectively.

locale two_top_spaces0 =

fixes 71
assumes taul_is_top: "7 {is a topologyl}"

fixes 79
assumes tau2_is_top: "7 {is a topologyl}"

fixes X;
defines X1_def [simpl: "X; = Jm1"

fixes X,
defines X2_def [simpl: "Xo = [J72"

fixes f
assumes fmapAssum: "f: X; — X"

fixes isContinuous ("_ {is continuous}" [50] 50)
defines isContinuous_def [simp]l: "g {is continuous} = IsContinuous(ri,T2,g)"

fixes cl;
defines cl1_def [simp]l: "cl;(A) = Closure(A,7)"

fixes clo
defines c12_def [simp]: "clpo(A) = Closure(A,73)"

First we show that theorems proven in locale topology0 are valid when

326

applied to topologies 71 and 7o.

lemma (in two_top_spaces0) topol_cntxs_valid:
shows "topologyO(7;)" and "topologyO(r3)"
{proof)

For continuous functions the inverse image of a closed set is closed.

lemma (in two_top_spaces0) TopZF_2_1_L1:
assumes Al: "f {is continuous}" and A2: "D {is closed in} 75"
shows "f-¢¢(D) {is closed in} 7"

(proof)

If the inverse image of every closed set is closed, then the image of a closure
is contained in the closure of the image.

lemma (in two_top_spaces0) Top_ZF_2_1_L2:

assumes Al: "VD. ((D {is closed in} 79) — f-‘‘(D) {is closed in}
Tl)"

and A2: "A C X;"

shows "f‘“(cli(A)) C cla (£
(proof)

If f (A) C f(A) (the image of the closure is contained in the closure of the

image), then f~1(B) C f~! (B) (the inverse image of the closure contains
the closure of the inverse image).

assumes Al: "V A. (A C X; — £9(cly(A)) C cla(fec))"
shows "VB. (B C X9 — cl;(f-“(B)) C f-““(cly(B)))"
(proof)

lemma (in two_top_spaces0) Top_ZF_2_1_L3:

If f~%(B) C f~'(B) (the inverse image of a closure contains the clo-
sure of the inverse image), then the function is continuous. This lemma
closes a series of implications in lemmas Top_ZF_2_1_L1, Top_ZF_2_1_L2 and

Top_ZF_2_1_L3 showing equivalence of four definitions of continuity.

lemma (in two_top_spaces0) Top_ZF_2_1_L4:
assumes Al: "VB. (B C Xy — cl;(f-““(B)) C f-““(cly(B)))"
shows "f {is continuous}"

(proof)

Another condition for continuity: it is sufficient to check if the inverse image
of every set in a base is open.

lemma (in two_top_spaces0) Top_ZF_2_1_L5:

assumes Al: "B {is a base for} 75" and A2: "VUeB. f-‘‘(U) € 1"
shows "f {is continuous}"

(proof)

We can strenghten the previous lemma: it is sufficient to check if the inverse
image of every set in a subbase is open. The proof is rather awkward, as

327

usual when we deal with general intersections. We have to keep track of the
case when the collection is empty.

lemma (in two_top_spaces0) Top_ZF_2_1_L6:

assumes Al: "B {is a subbase for} 79" and A2: "VUe€B. f-‘“(U) € 7"

shows "f {is continuous}"

(proof)

A dual of Top_ZF_2_1_L5: a function that maps base sets to open sets is open.

lemma (in two_top_spaces0) base_image_open:

assumes Al: "B {is a base for} 71" and A2: "VBeB. £f‘‘(B) € 73" and
A3: "UeET"

shows "f¢‘(U) € 73"
(proof)

A composition of two continuous functions is continuous.

lemma comp_cont: assumes "IsContinuous(T,S,f)" and "IsContinuous(S,R,g)"
shows "IsContinuous(T,R,g 0 f)"

(proof)

A composition of three continuous functions is continuous.

lemma comp_cont3:
assumes "IsContinuous(T,S,f)" and "IsContinuous(S,R,g)" and "IsContinuous(R,P,h)"
shows "IsContinuous(T,P,h 0 g 0 £)"

(proof)

52.2 Homeomorphisms

This section studies "homeomorphisms” - continous bijections whose in-
verses are also continuous. Notions that are preserved by (commute with)
homeomorphisms are called ”topological invariants”.

Homeomorphism is a bijection that preserves open sets.

definition "IsAhomeomorphism(T,S,f) =
f € bij(UT,US) A IsContinuous(T,S,f) A IsContinuous(S,T,converse(f))"

Inverse (converse) of a homeomorphism is a homeomorphism.

lemma homeo_inv: assumes "IsAhomeomorphism(T,S,f)"
shows "IsAhomeomorphism(S,T,converse(f))"

(proof)

Homeomorphisms are open maps.

lemma homeo_open: assumes "IsAhomeomorphism(T,S,f)" and "UeT"
shows "f¢¢(U) € sS"

(proof)

A continuous bijection that is an open map is a homeomorphism.

328

lemma bij_cont_open_homeo:

assumes "f € bij(JT,|JS)" and "IsContinuous(T,S,f)" and "VUET. £ (U)
c Ss"

shows "IsAhomeomorphism(T,S,f)"

(proof)

A continuous bijection that maps base to open sets is a homeomorphism.

lemma (in two_top_spaces0) bij_base_open_homeo:

assumes Al: "f € bij(X;,X3)" and A2: "B {is a base for} 71" and A3:
"C {is a base for} 75" and

Ad: "WUeC. £f-“(U) € 71" and A5: "VVeB. £°“(V) € 75"

shows "IsAhomeomorphism(7ry,72,f)"

(proof)

A bijection that maps base to base is a homeomorphism.

lemma (in two_top_spaces0) bij_base_homeo:
assumes Al: "f € bij(X;,X2)" and A2: "B {is a base for} 71" and
A3: "{f‘‘(B). BeB} {is a base for} 79"
shows "IsAhomeomorphism(7r,7o,f)"

(proof)

Interior is a topological invariant.

theorem int_top_invariant: assumes Al: "AC|JT" and A2: "IsAhomeomorphism(T,S,f)"
shows "f‘‘(Interior(A,T)) = Interior(f¢‘(A),S)"
(proof)

52.3 Topologies induced by mappings

In this section we consider various ways a topology may be defined on a set
that is the range (or the domain) of a function whose domain (or range) is
a topological space.

A bijection from a topological space induces a topology on the range.

theorem bij_induced_top: assumes Al: "T {is a topologyl}" and A2: "f
€ bij(JT,M"

shows

"{£°°(U). UeT} {is a topology}" and

"{ {£(x).x€U}. UeT} {is a topology}" and

"(U{£). UeThH = Y" and

"IsAhomeomorphism(T, {f¢‘(U). UET},f)"
(proof)

52.4 Partial functions and continuity

Suppose we have two topologies 71,7 on sets X; = |J 7,7 = 1,2. Consider
some function f : A — Xs, where A C X7 (we will call such function
"partial”). In such situation we have two natural possibilities for the pairs

329

of topologies with respect to which this function may be continuous. One
is obvously the original 7,7 and in the second one the first element of the
pair is the topology relative to the domain of the function: {ANU|U € 7 }.
These two possibilities are not exactly the same and the goal of this section
is to explore the differences.

If a function is continuous, then its restriction is continous in relative topol-
ogy.

lemma (in two_top_spaces0) restr_cont:
assumes Al: "A C X;" and A2: "f {is continuous}"
shows "IsContinuous(7r; {restricted to} A, 79,restrict(f,A))"

(proof)

If a function is continuous, then it is continuous when we restrict the topol-
ogy on the range to the image of the domain.

lemma (in two_top_spaces0) restr_image_cont:
assumes Al: "f {is continuous}"
shows "IsContinuous(7;, 72 {restricted to} f£‘‘(X{),f)"

(proof)

A combination of restr_cont and restr_image_cont.

lemma (in two_top_spaces0) restr_restr_image_cont:
assumes Al: "A C X;" and A2: "f {is continuous}" and
A3: "g = restrict(f,A)" and
Ad: "73 = 71 {restricted to} A"
shows "IsContinuous(rs, T2 {restricted to} g‘‘(A),g)"

(proof)

We need a context similar to two_top_spaces0 but without the global func-
tion f : X1 — X2.

locale two_top_spacesl =

fixes 71
assumes taul_is_top: "7 {is a topologyl}"

fixes 79
assumes tau2_is_top: "7 {is a topologyl}"

fixes X;
defines X1_def [simp]: "X

Ur"

fixes X,
defines X2_def [simpl: "Xy = [J72"

If a partial function g : X1 2 A — X> is continuous with respect to (71, 72),
then A is open (in 71) and the function is continuous in the relative topology.

lemma (in two_top_spacesl) partial_fun_cont:

330

assumes Al: "g:A—Xy" and A2: "IsContinuous(ri,72,g)"
shows "A € 71" and "IsContinuous(7r; {restricted to} A, 72, g)"

(proof)

For partial function defined on open sets continuity in the whole and relative
topologies are the same.
lemma (in two_top_spacesl) part_fun_on_open_cont:

assumes Al: "g:A—Xo" and A2: "A € 1"

shows "IsContinuous(7y,72,g) +—
IsContinuous(r; {restricted to} A, 74, g)"

(proof)

52.5 Product topology and continuity

We start with three topological spaces (11, X1), (72, X2) and (73, X3) and a
function f : X7 x X9 — X3. We will study the properties of f with respect
to the product topology 71 X 79 and 73. This situation is similar as in locale
two_top_spaces0 but the first topological space is assumed to be a product
of two topological spaces.

First we define a locale with three topological spaces.
locale prod_top_spaces0 =

fixes 71
assumes taul_is_top: "7; {is a topologyl}"

fixes 79
assumes tau2_is_top: "72 {is a topology}"

fixes 73
assumes tau3_is_top: "73 {is a topologyl}"

fixes X;
defines X1_def [simpl: "X; = Jm"

fixes X,
defines X2_def [simpl: "Xy = [J72"

fixes X3
defines X3_def [simpl: "X3 = [J73"

fixes 7
defines eta_def [simp]: "n = ProductTopology(ry,72)"

Fixing the first variable in a two-variable continuous function results in a
continuous function.

lemma (in prod_top_spaces0) fix_1lst_var_cont:
assumes "f: X;xXo—X3" and "IsContinuous(n,73,f)"

331

and "xeXi"
shows "IsContinuous(7sy,73,FixlstVar(f,x))"

(proof)

Fixing the second variable in a two-variable continuous function results in
a continuous function.

lemma (in prod_top_spaces0) fix_2nd_var_cont:
assumes "f: X;xXy;—X3" and "IsContinuous(n,73,f)"

and "yeXy"
shows "IsContinuous(7t;,7s,Fix2ndVar(f,y))"
(proof)

Having two constinuous mappings we can construct a third one on the carte-
sian product of the domains.

lemma cart_prod_cont:
assumes Al: "7; {is a topology}" "72 {is a topology}" and
A2: "np; {is a topology}" "ns {is a topology}" and
A3a: "fi:Umi—Um" and A3b: "fy:(JTo—Jn2" and
A4: "IsContinuous(7y,n1,f1)" "IsContinuous(7s,n2,f2)" and
A5: "g = {{p,{f1°(£fst(p)),f2 (snd(p)))). p € UrixUra2}"
shows "IsContinuous(ProductTopology(7i,T2) ,ProductTopology(n;,n2),8)"

(proof)

A reformulation of the cart_prod_cont lemma above in slightly different
notation.

theorem (in two_top_spaces0) product_cont_functions:
assumes "f:X; X" "g:[Jrs—UTa"
"IsContinuous(7y,72,f)" "IsContinuous(7rs,74,8)"
"74{is a topology}" "73{is a topology}"
shows "IsContinuous(ProductTopology(71,T3),ProductTopology(Te,74),{({(x,y),{f‘x,g‘y)).
(x,y)eXixJrsH)"
{proof)

A special case of cart_prod_cont when the function acting on the second
axis is the identity.

lemma cart_prod_contl:
assumes Al: "7; {is a topology}" and Ala: "7 {is a topology}" and
A2: "np; {is a topology}" and
A3: "fi:Jrmi—Um" and A4: "IsContinuous(7ry,71,f1)" and
A5: "g = {(p, (£f1(£fst(p)),snd(p))). p € UrixUr2}"
shows "IsContinuous(ProductTopology(7i,72) ,ProductTopology(n,72),8)"
(proof)

52.6 Pasting lemma

The classical pasting lemma states that if Uy, Uy are both open (or closed)
and a function is continuous when restricted to both U; and Uy then it is

332

continuous when restricted to U; U Us. In this section we prove a gener-
alization statement stating that the set {U € 71|f|y is continuous } is a
topology.

A typical statement of the pasting lemma uses the notion of a function re-
stricted to a set being continuous without specifying the topologies with
respect to which this continuity holds. In two_top_spaces0 context the no-
tation g {is continuous} means continuity wth respect to topologies 71, 7.
The next lemma is a special case of partial_fun_cont and states that if for
some set A C X; = (J1 the function f|4 is continuous (with respect to
(11,72)), then A has to be open. This clears up terminology and indicates
why we need to pay attention to the issue of which topologies we talk about
when we say that the restricted (to some closed set for example) function is
continuos.

lemma (in two_top_spaces0) restriction_continuousl:
assumes Al: "A C X" and A2: "restrict(f,A) {is continuous}"
shows "A € 7"

(proof)

If a fuction is continuous on each set of a collection of open sets, then it is
continuous on the union of them. We could use continuity with respect to
the relative topology here, but we know that on open sets this is the same
as the original topology.

lemma (in two_top_spaces0) pasting_lemmal:
assumes Al: "M C 71" and A2: "VUeM. restrict(f,U) {is continuous}"
shows "restrict(f,(JM) {is continuous}"

(proof)

If a function is continuous on two sets, then it is continuous on intersection.

lemma (in two_top_spaces0) cont_inter_cont:
assumes Al: "A C X;" "B C X;" and

A2: "restrict(f,A) A{is continuous}" ‘"restrict(f,B) {is continuous}"
shows "restrict(f,ANB) {is continuous}"
(proof)

The collection of open sets U such that f restricted to U is continuous, is a
topology.

theorem (in two_top_spaces0) pasting_theorem:
shows "{U € 7;. restrict(f,U) {is continuous}} {is a topologyl}"

(proof)

0 is continuous.

corollary (in two_top_spacesO) zero_continuous: shows "0 {is continuous}"
(proof)

end

333

53 Topology 3
theory Topology_ZF_3 imports Topology_ZF_2 FiniteSeq_ZF
begin

Topology_ZF_1 theory describes how we can define a topology on a product
of two topological spaces. One way to generalize that is to construct topol-
ogy for a cartesian product of n topological spaces. The cartesian product
approach is somewhat inconvenient though. Another way to approach prod-
uct topology on X" is to model cartesian product as sets of sequences (of
length n) of elements of X. This means that having a topology on X we
want to define a toplogy on the space n — X, where n is a natural number
(recall that n = {0,1,...,n — 1} in ZF). However, this in turn can be done
more generally by defining a topology on any function space I — X, where
I is any set of indices. This is what we do in this theory.

53.1 The base of the product topology
In this section we define the base of the product topology.

Suppose X =1 — |JT is a space of functions from some index set I to the
carrier of a topology T'. Then take a finite collection of open sets W : N — T
indexed by N C I. We can define a subset of X that models the cartesian
product of W.

definition
"FinProd(X,W) = {x€X. V i€domain(W). x‘(i) € W (i)}"

Now we define the base of the product topology as the collection of all finite
products (in the sense defined above) of open sets.

definition
"ProductTopBase(I,T) = [JN€FinPow(I).{FinProd(I—{JT,W). WEN—-T}"

Finally, we define the product topology on sequences. We use the ”Seq”
prefix although the definition is good for any index sets, not only natural
numbers.

definition
"SeqProductTopology(I,T) = {(JB. B € Pow(ProductTopBase(I,T))}"

Product topology base is closed with respect to intersections.

lemma prod_top_base_inter:
assumes Al: "T {is a topology}" and
A2: "U € ProductTopBase(I,T)" "V € ProductTopBase(I,T)"
shows "UNV € ProductTopBase(I,T)"

(proof)

334

In the next theorem we show the collection of sets defined above as ProductTopBase (X, T)
satisfies the base condition. This is a condition, defined in Topology_ZF_1
that allows to claim that this collection is a base for some topology.

theorem prod_top_base_is_base: assumes "T {is a topology}"
shows "ProductTopBase(I,T) {satisfies the base condition}"

(proof)

The (sequence) product topology is indeed a topology on the space of se-
quences. In the proof we are using the fact that (§ — X) = {0}.
theorem seq_prod_top_is_top: assumes "T {is a topologyl}"
shows
"SeqgProductTopology(I,T) {is a topology}" and
"ProductTopBase(I,T) {is a base for} SeqProductTopology(I,T)" and
"|JSegProductTopology(I,T) = (I—{JT)"
(proof)

53.2 Finite product of topologies

As a special case of the space of functions I — X we can consider space of
lists of elements of X, i.e. space n — X, where n is a natural number (recall
that in ZF set theory n = {0, 1, ...,n—1}). Such spaces model finite cartesian
products X" but are easier to deal with in formalized way (than the said
products). This section discusses natural topology defined on n — X where
X is a topological space.

When the index set is finite, the definition of ProductTopBase(I,T) can be
simplifed.

lemma fin_prod_def_nat: assumes Al: "n€nat" and A2: "T {is a topologyl}"

shows "ProductTopBase(n,T) = {FinProd(n—JT,W). Wen—T}"
(proof)

A technical lemma providing a formula for finite product on one topological
space.

lemma single_top_prod: assumes Al: "W:1—7"
shows "FinProd(1—J7,W) = { {{(0,y)}. y € W (0)}"
(proof)

Intuitively, the topological space of singleton lists valued in X is the same
as X. However, each element of this space is a list of length one, i.e a set
consisting of a pair (0,2) where z is an element of X. The next lemma
provides a formula for the product topology in the corner case when we
have only one factor and shows that the product topology of one space is
essentially the same as the space.

lemma singleton_prod_top: assumes Al: "7 {is a topologyl}"
shows

335

"SeqProductTopology(1,7) = { { {{0,y)}. y€U }. Uer}" and
"IsAhomeomorphism(T,SeqProductTopology(l,7) ,{(y,{(0,y)}).y € UrhH"
(proof)

A special corner case of finite_top_prod_homeo: a space X is homeomorphic
to the space of one element lists of X.

theorem singleton_prod_topl: assumes Al: "7 {is a topologyl}"
shows "IsAhomeomorphism(SeqProductTopology(1l,7),7,{(x,x¢(0)). x€1—=J7H"
(proof)

A technical lemma describing the carrier of a (cartesian) product topology
of the (sequence) product topology of n copies of topology 7 and another
copy of 7.

lemma finite_prod_top: assumes "7 {is a topology}" and "T = SeqProductTopology(n,7)"
shows "(|JProductTopology(T,7)) = (a—Jr)xUr"
{proof)

If U is a set from the base of X™ and V is open in X, then U x V is in the
base of X"*!. The next lemma is an analogue of this fact for the function
space approach.

lemma finite_prod_succ_base: assumes Al: "7 {is a topology}" and A2:
"n € nat" and
A3: "U € ProductTopBase(n,7)" and A4: "Ver"
shows "{x € succ(n)—|J7. Init(x) € U A x‘(n) € V} € ProductTopBase(succ(n),7)"

(proof)

If U is open in X™ and V is open in X, then U x V is open in X"*!. The
next lemma is an analogue of this fact for the function space approach.

lemma finite_prod_succ: assumes Al: "7 {is a topology}" and A2: '"n
€ nat" and
A3: "U € SeqgProductTopology(n,7)" and A4: "Ver"
shows "{x € succ(n)—J7. Init(x) € U A x‘(n) € V} € SeqProductTopology(succ(n),7)"

{proof)

In the Topology_zF_2 theory we define product topology of two topological
spaces. The next lemma explains in what sense the topology on finite lists
of length n of elements of topological space X can be thought as a model
of the product topology on the cartesian product of n copies of that space.
Namely, we show that the space of lists of length n + 1 of elements of X
is homeomorphic to the product topology (as defined in Topology_zZF_2) of
two spaces: the space of lists of length n and X. Recall that if B is a base
(i.e. satisfies the base condition), then the collection {{J B|B € Pow(B)} is
a topology (generated by B).

theorem finite_top_prod_homeo: assumes Al: "7 {is a topologyl}" and A2:
"n € nat" and
A3: "f = {(x,(Init(x),x‘(@))). x € succ(n)—{J7}" and

336

A4: "T = SeqgProductTopology(n,7)" and
A5: "S = SeqProductTopology(succ(n),7)"
shows "IsAhomeomorphism(S,ProductTopology(T,7),f)"

{proof)
end

54 Topology 4

theory Topology_ZF_4 imports Topology_ZF_1 Order_ZF funcl
begin

This theory deals with convergence in topological spaces. Contributed by
Daniel de la Concepcion.

54.1 Nets

Nets are a generalization of sequences. It is known that sequences do not
determine the behavior of the topological spaces that are not first count-
able; i.e., have a countable neighborhood base for each point. To solve this
problem, nets were defined so that the behavior of any topological space can
be thought in terms of convergence of nets.

First we need to define what a directed set is:

definition

IsDirectedSet ("_ directs _" 90)

where "r directs D = refl(D,r) A trans(r) A (Vx€D. VyeD. JzeD. (x,z)€r
A (y,z)er)"

Any linear order is a directed set; in particular (N, <).

lemma linorder_imp_directed:
assumes "IsLinOrder(X,r)"
shows "r directs X"

(proof)

corollary Le_directs_nat:
shows "IsLinOrder(nat,Le)" "Le directs nat"

{(proof)

We are able to define the concept of net, now that we now what a directed
set is.
definition

IsNet ("_ {is a net on} _" 90)

where "N {is a net on} X = fst(N):domain(fst(N))—X A (snd(N) directs
domain(£fst(N))) A domain(fst(N))#0"

337

Provided a topology and a net directed on its underlying set, we can talk
about convergence of the net in the topology.
definition (in topology0)

NetConverges ("_ —n _" 90)

where "N {is a net on} JT = N —y x =
xelT) A (VU€Pow(UT). (x€int(U) — (JtEdomain(fst(N)). VmEdomain(fst(N)).

({(t,m)€snd(N) — £st(N) ‘meU))))"

One of the most important directed sets, is the neighborhoods of a point.

theorem (in topology0) directedset_neighborhoods:
assumes "xe|JT"
defines "Neigh={UcPow(|JT). x€int(U)}"
defines "r={(U,V)e (Neigh X Neigh). VCU}"
shows "r directs Neigh"

(proof)

There can be nets directed by the neighborhoods that converge to the point;
if there is a choice function.

theorem (in topology0) net_direct_neigh_converg:
assumes "xe|JT"
defines "Neigh={UcPow(|JT). x€int (U)}"
defines "r={(U,V)e(Neigh x Neigh). VCU}"
assumes "f:Neigh—|JT" "VU€Neigh. £(U) € U"
shows "(f,r) —xn x"

{(proof)

54.2 Filters

Nets are a generalization of sequences that can make us see that not all
topological spaces can be described by sequences. Nevertheless, nets are not
always the tool used to deal with convergence. The reason is that they make
use of directed sets which are completely unrelated with the topology.

The topological tools to deal with convergence are what is called filters.

definition
IsFilter ("_ {is a filter on} _" 90)
where "§ {is a filter on} X = (0¢F A (XeF) A (FCPow(X)) A
(VAEF. VBEF. ANBEF) A (VBEF. VCePow(X). BCC — CeEF"

Not all the sets of a filter are needed to be consider at all times; as it happens
with a topology we can consider bases.

definition
IsBaseFilter ("_ {is a base filter} _" 90)
where "C {is a base filter} § = CCF A F={AcPow(|JF). (IDeC. DCA)}"

Not every set is a base for a filter, as it happens with topologies, there is a
condition to be satisfied.

338

definition
SatisfiesFilterBase ("_ {satisfies the filter base condition}" 90)
where "C {satisfies the filter base condition} = (VAeC. VBeC. JDeC.
DCANB) A C#0 A O¢C"

Every set of a filter contains a set from the filter’s base.

lemma basic_element_filter:
assumes "A€eF" and "C {is a base filter} "
shows "dDeC. DCA"

(proof)

The following two results state that the filter base condition is necessary
and sufficient for the filter generated by a base, to be an actual filter. The
third result, rewrites the previous two.

theorem basic_filter_1:

assumes "C {is a base filter} §F" and "C {satisfies the filter base
condition}"

shows "§ {is a filter on} |Jg§"

(proof)
A base filter satisfies the filter base condition.

theorem basic_filter_2:
assumes "C {is a base filter} F" and "§ {is a filter on} JF"
shows "C {satisfies the filter base condition}"

(proof)

A base filter for a collection satisfies the filter base condition iff that collec-
tion is in fact a filter.

theorem basic_filter:
assumes "C {is a base filter} §"
shows "(C {satisfies the filter base condition}) +— (F {is a filter

on} U®"
(proof)

A base for a filter determines a filter up to the underlying set.

theorem base_unique_filter:
assumes "C {is a base filter} F1"and "C {is a base filter} F2"

shows "§1=32 «— |JF1=UF2"
(proof)

Suppose that we take any nonempty collection C' of subsets of some set X.
Then this collection is a base filter for the collection of all supersets (in X)
of sets from C.

theorem base_unique_filter_setl:
assumes "C C Pow(X)" and "C#0"
shows "C {is a base filter} {A€Pow(X). 3IDeC. DCA}" and "|J{A€Pow(X).

JDeC. DCAY=X"

339

(proof)

A collection C that satisfies the filter base condition is a base filter for some
other collection § iff § is the collection of supersets of C'.

theorem base_unique_filter_set2:
assumes "CCPow(X)" and "C {satisfies the filter base condition}"
shows "((C {is a base filter} §) A UF=X) +— F={AcPow(X). IDeC.
DQA}"

(proof)

A simple corollary from the previous lemma.

corollary base_unique_filter_set3:
assumes "CCPow(X)" and "C {satisfies the filter base condition}"
shows "C {is a base filter} {AcPow(X). 3IDeC. DCA}" and "|J{A€Pow(X).
3DeC. DCA} = X"
(proof)

The convergence for filters is much easier concept to write. Given a topol-
ogy and a filter on the same underlying set, we can define convergence as
containing all the neighborhoods of the point.

definition (in topology0)
FilterConverges ("_ —p _" 50) where
"F{is a filter on}JT = F—orx =
x€JT A ({U€Pow(UT). x€int(U)} C "

The neighborhoods of a point form a filter that converges to that point.

lemma (in topology0) neigh filter:
assumes "xelJT"
defines "Neigh={U€Pow(|JT). x€int (U)}"
shows "Neigh {is a filter on}\JT" and "Neigh —p x"

(proof)

Note that with the net we built in a previous result, it wasn’t clear that we
could construct an actual net that converged to the given point without the
axiom of choice. With filters, there is no problem.

Another positive point of filters is due to the existence of filter basis. If
we have a basis for a filter, then the filter converges to a point iff every
neighborhood of that point contains a basic filter element.

theorem (in topology0) convergence_filter_basel:

assumes "§ {is a filter on} (JT" and "C {is a base filter} §" and
"‘S’ _>F Xll

shows "VUe€Pow(|JT). x€int(U) — (3IDeC. DCU)" and "xe(JT"
(proof)

A sufficient condition for a filter to converge to a point.

theorem (in topology0) convergence_filter_base2:

340

assumes "§ {is a filter on} |JT" and "C {is a base filter} F"
and "VUePow(|JT). x€int(U) — (3IDeC. DCU)" and "xe[JT"
shows "§ —pF x"
(proof)

A necessary and sufficient condition for a filter to converge to a point.

theorem (in topologyO) convergence_filter_base_eq:
assumes "§ {is a filter on} |JT" and "C {is a base filter} F"
shows "(§F —F x) +— ((YUe€Pow(|JT). x€int(U) — (3IDeC. DCU)) A
xe D"
(proof)

54.3 Relation between nets and filters

In this section we show that filters do not generalize nets, but still nets and
filter are in w way equivalent as far as convergence is considered.

Let’s build now a net from a filter, such that both converge to the same
points.

definition
NetOfFilter ("Net(_)" 40) where
"§ {is a filter on} JF = Net(F =
({(A,fst(R)). Ae{(x,F)e(Ud) xF. x€F}},{(A,B)e{(x,F)e (U xT. xeFrx{(x,Fle(UB) xT.
x€F}Y. snd(B)Csnd(A)})"

Net of a filter is indeed a net.

theorem net_of_filter_is_net:
assumes "§ {is a filter on} X"
shows "(Net(§)) {is a net on} X"

(proof)

If a filter converges to some point then its net converges to the same point.

theorem (in topologyO) filter_conver_net_of_filter_conver:
assumes "§ {is a filter on} JT" and "§ —p x"
shows "(Net(§)) —ny x"

(proof)

If a net converges to a point, then a filter also converges to a point.

theorem (in topologyO) net_of_filter_conver_filter_conver:
assumes "§ {is a filter on}JT" and "(Net(F)) —n x"
shows "§ —p x"

(proof)

A filter converges to a point if and only if its net converges to the point.

theorem (in topology0) filter_conver_iff_net_of_filter_conver:
assumes "§ {is a filter on}JT"
shows "(F —r x) +— (MNet(F)) —n)"

341

(proof)

The previous result states that, when considering convergence, the filters do
not generalize nets. When considering a filter, there is always a net that
converges to the same points of the original filter.

Now we see that with nets, results come naturally applying the axiom of
choice; but with filters, the results come, may be less natural, but with
no choice. The reason is that Net(F) is a net that doesn’t come into our
attention as a first choice; maybe because we restrict ourselves to the anti-
symmetry property of orders without realizing that a directed set is not an
order.

The following results will state that filters are not just a subclass of nets,
but that nets and filters are equivalent on convergence: for every filter there
is a net converging to the same points, and also, for every net there is a filter
converging to the same points.

definition

FilterOfNet ("Filter (_ .. _)" 40) where

"(N {is a net on} X) = Filter N..X = {AcPow(X). IDe{{fst(N) ‘snd(s).
s€{s€domain(fst (N)) xdomain(fst(N)). s€snd(N) A fst(s)=t0}}. tOc€domain(fst(N))}.
DCA}"

Filter of a net is indeed a filter

theorem filter_of_net_is_filter:
assumes "N {is a net on} X"
shows "(Filter N..X) {is a filter on} X" and
"{{fst(N) ‘snd(s). s€{scdomain(fst(N)) xdomain(fst(N)). s€snd(N) A
fst(s)=t0}}. tOEdomain(fst(N))} {is a base filter} (Filter N..X)"

(proof)

Convergence of a net implies the convergence of the corresponding filter.

theorem (in topology0) net_conver_filter_of_net_conver:
assumes "N {is a net on} JT" and "N —x x"
shows "(Filter N..(UT)) —p x"

(proof)

Convergence of a filter corresponding to a net implies convergence of the
net.

theorem (in topologyO) filter_of_net_conver_net_conver:
assumes "N {is a net on} JT" and "(Filter N..(UT)) —p x"
shows "N —pn x"

(proof)

Filter of net converges to a point z if and only the net converges to x.

theorem (in topology0) filter_of_net_conv_iff_net_conv:
assumes "N {is a net on} JT"
shows "((Filter N..(UT)) —F x) +— (N =y)"

342

(proof)

We know now that filters and nets are the same thing, when working conver-
gence of topological spaces. Sometimes, the nature of filters makes it easier
to generalized them as follows.

Instead of considering all subsets of some set X, we can consider only open
sets (we get an open filter) or closed sets (we get a closed filter). There are
many more useful examples that characterize topological properties.

This type of generalization cannot be done with nets.
Also a filter can give us a topology in the following way:

theorem top_of_filter:
assumes "§ {is a filter on} JF"
shows "(§F U {0}) {is a topology}"
(proof)
We can use topology0 locale with filters.

lemma topologyO_filter:
assumes "§ {is a filter on} JJ"
shows "topologyO(F U {0}H)"
(proof)

The next abbreviation introduces notation where we want to specify the
space where the filter convergence takes place.

abbreviation FilConvTop("_ —p _ {in} _")
where "§ —r x {in} T = topology0.FilterConverges(T,§,x)"

The next abbreviation introduces notation where we want to specify the
space where the net convergence takes place.

abbreviation NetConvTop("_ —y _ {in} _")
where "N —y x {in} T = topology0.NetConverges(T,N,x)"

Each point of a the union of a filter is a limit of that filter.

lemma 1im_filter_top_of_filter:
assumes "§ {is a filter on} JF" and "xelJF"
shows "§ —pr x {in} (Fu{o})"

(proof)

end

55 Topology - examples

theory Topology_ZF_examples imports Topology_ZF Cardinal_ZF
begin

This theory deals with some concrete examples of topologies.

343

55.1 CoCardinal Topology of a set X
55.2 CoCardinal topology is a topology.

The collection of subsets of a set whose complement is strictly bounded by
a cardinal is a topology given some assumptions on the cardinal.

definition Cocardinal ("CoCardinal _ _" 50) where
"CoCardinal X T = {FecPow(X). X-F < T}U {0}"

For any set and any infinite cardinal; we prove that CoCardinal X Q forms a
topology. The proof is done with an infinite cardinal, but it is obvious that
the set Q can be any set equipollent with an infinite cardinal. It is a topology
also if the set where the topology is defined is too small or the cardinal too
large; in this case, as it is later proved the topology is a discrete topology.
And the last case corresponds with Q = 1 which translates in the indiscrete
topology.

lemma CoCar_is_topology:

assumes "InfCard (Q)"
shows "(CoCardinal X Q) {is a topologyl}"

(proof)

theorem topologyO_CoCardinal:
assumes "InfCard(T)"
shows "topology0O(CoCardinal X T)"

(proof)

It can also be proven that, if CoCardinal X T is a topology, X # 0, Card(T)
and T # 0; then T is an infinite cardinal, X < T or T=1. It follows from the
fact that the union of two closed sets is closed.

Choosing the appropriate cardinals, the cofinite and the cocountable topolo-
gies are obtained.

The cofinite topology is a very special topology because is extremely related
to the separation axiom 77. It also appears naturally in algebraic geometry.

definition
Cofinite ("CoFinite _" 90) where
"CoFinite X = CoCardinal X nat"

definition

Cocountable ("CoCountable _" 90) where
"CoCountable X = CoCardinal X csucc(nat)"

55.3 Total set, Closed sets, Interior, Closure and Boundary

There are several assertions that can be done to the CoCardinal X T topol-
ogy. In each case, we will not assume sufficient conditions for CoCardinal X

344

T to be a topology, but they will be enough to do the calculations in every
posible case.

The topology is defined in the set X

lemma union_cocardinal:
assumes "T#0"
shows "|J (CoCardinal X T)=X"

(proof)
The closed sets are the small subsets of X and X itself.

lemma closed_sets_cocardinal:
assumes "T#0"
shows "D {is closed in} (CoCardinal X T) <— (D€Pow(X) & D<T)V D=X"

(proof)

The interior of a set is itself if it is open or 0 if it isn’t open.

lemma interior_set_cocardinal:
assumes noC: "T#0" and "ACX"
shows "Interior(A, (CoCardinal X T))= (if ((X-A) < T) then A else 0)"

(proof)

X is a closed set that contains A. This lemma is necessary because we
cannot use the lemmas proven in the topology0 context since T # 0 is too
weak for CoCardinal X T to be a topology.

lemma X_closedcov_cocardinal:

assumes "T#0""ACX"
shows "XeClosedCovers(A, (CoCardinal X T))" (proof)

The closure of a set is itself if it is closed or X if it isn’t closed.

lemma closure_set_cocardinal:
assumes "T#0""ACX"
shows "Closure(A, (CoCardinal X T))=(if (A < T) then A else X)"

{proof)
The boundary of a set is 0 if A and X — A are closed, X if not A neither X — A
are closed and; if only one is closed, then the closed one is its boundary.

lemma boundary_cocardinal:

assumes "T#0""A CX"

shows "Boundary(A, (CoCardinal X T))=(if A< T then (if (X-A)< T then
0 else A) else (if (X-A)< T then X-A else X))"

{(proof)

55.4 Special cases and subspaces

If the set is too small or the cardinal too large, then the topology is just the
discrete topology.

lemma discrete_cocardinal:

345

assumes "X< T"
shows "(CoCardinal X T)=(Pow (X))"

(proof)

If the cardinal is taken as T = 1 then the topology is indiscrete.

lemma indiscrete_cocardinal:
shows "(CoCardinal X 1)={0,X}"

(proof)

The topological subspaces of the CoCardinal X T topology are also CoCar-
dinal topologies.

lemma subspace_cocardinal:
shows "(CoCardinal X T) {restricted to} Y=(CoCardinal (Y N X) T)"

(proof)

55.5 Excluded Set Topology

In this seccion, we consider all the subsets of a set which have empty inter-
section with a fixed set.

55.6 Excluded set topology is a topology.

definition
ExcludedSet ("ExcludedSet _ _" 50) where
"ExcludedSet X U = {FcPow(X). U N F=0}U {X}"

For any set; we prove that ExcludedSet X Q forms a topology.

theorem excludedset_is_topology:
shows "(ExcludedSet X Q) {is a topology}"

(proof)

theorem topologyO_excludedset:
shows "topologyO(ExcludedSet X T)"

(proof)

Choosing a singleton set, it is considered a point excluded topology.

definition
ExcludedPoint ("ExcludedPoint _ _" 90) where
"ExcludedPoint X p= ExcludedSet X {p}"

55.7 Total set, Closed sets, Interior, Closure and Boundary

The topology is defined in the set X

lemma union_excludedset:
shows "|J (ExcludedSet X T)=X"

(proof)

346

The closed sets are those which contain the set (X N T) and 0.

lemma closed_sets_excludedset:
shows "D {is closed in} (ExcludedSet X T) <— (D€Pow(X) & (X N T)
CD)V D=0"

(proof)

The interior of a set is itself if it is X or the difference with the set T

lemma interior_set_excludedset:
assumes "ACX"
shows "Interior(A, (ExcludedSet X T))= (if A=X then X else A-T)"

(proof)

The closure of a set is itself if it is 0 or the union with T.

lemma closure_set_excludedset:
assumes "ACX"
shows "Closure(A, (ExcludedSet X T))=(if A=0 then 0 else A U(XN T))"

(proof)

The boundary of a set is 0 if A is X or 0, and XNT in other case.

lemma boundary_excludedset:
assumes "A CX"
shows "Boundary (A, (ExcludedSet X T))=(if A=0VA=X then 0 else XNT)"

(proof)

55.8 Special cases and subspaces

The topology is equal in the sets T and XNT.

lemma smaller_excludedset:
shows " (ExcludedSet X T)=(ExcludedSet X (XNT))"

(proof)

If the set which is excluded is disjoint with X, then the topology is discrete.

lemma empty_excludedset:
assumes "TNX=0"
shows " (ExcludedSet X T)=Pow(X)"

(proof)

The topological subspaces of the ExcludedSet X T topology are also Exclud-
edSet topologies.

lemma subspace_excludedset:
shows "(ExcludedSet X T) {restricted to} Y=(ExcludedSet (Y N X) T)"

(proof)

55.9 Included Set Topology

In this section we consider the subsets of a set which contain a fixed set.

347

The family defined in this section and the one in the previous section are
dual; meaning that the closed set of one are the open sets of the other.

55.10 Included set topology is a topology.

definition
IncludedSet ("IncludedSet _ _" 50) where
"IncludedSet X U = {FecPow(X). U C F}U {0}"

For any set; we prove that IncludedSet X Q forms a topology.

theorem includedset_is_topology:
shows "(IncludedSet X Q) {is a topology}"

(proof)

theorem topologyO_includedset:
shows "topologyO(IncludedSet X T)"

{proof)

Choosing a singleton set, it is considered a point excluded topology. In the
following lemmas and theorems, when neccessary it will be considered that
T # 0and T C X. Theese cases will appear in the special cases section.

definition
IncludedPoint ("IncludedPoint _ _" 90) where
"IncludedPoint X p= IncludedSet X {p}"

55.11 Total set, Closed sets, Interior, Closure and Boundary

The topology is defined in the set X.

lemma union_includedset:
assumes "TCX "
shows "|J (IncludedSet X T)=X"

(proof)

The closed sets are those which are disjoint with T and X.

lemma closed_sets_includedset:

assumes "TCX"

shows "D {is closed in} (IncludedSet X T) +— (D€Pow(X) & (D N T)=0)V
D=X"
(proof)

The interior of a set is itself if it is open or 0 if it isn’t.

lemma interior_set_includedset:
assumes "ACX"
shows "Interior (A, (IncludedSet X T))= (if TCA then A else 0)"

(proof)

The closure of a set is itself if it is closed or X if it isn’t.

348

lemma closure_set_includedset:
assumes "ACX""TCX"
shows "Closure(A, (IncludedSet X T))= (if TNA=0 then A else X)"

(proof)

The boundary of a set is X-A if A contains T completely, is A if X — A contains
T completely and X if T is divided between the two sets. The case where T =
0 is considered as an special case.
lemma boundary_includedset:
assumes "A CX""T CX""T#0"
shows "Boundary(A, (IncludedSet X T))=(if TCA then X-A else (if TNA=0
then A else X))"

(proof)

55.12 Special cases and subspaces

The topology is discrete if T = 0
lemma smaller_includedset:
shows "(IncludedSet X 0)=Pow(X)"
(proof)

If the set which is included is not a subset of X, then the topology is trivial.

lemma empty_includedset:
assumes "~ (TCX)"
shows "(IncludedSet X T)={0}"
(proof)

The topological subspaces of the IncludedSet X T topology are also Includ-
edSet topologies. The trivial case does not fit the idea in the demonstration;
because if Y C X then IncludedSet (Y N X) (YNT) is never trivial. There is
no need of a separate proof because the only subspace of the trivial topology
is itself.

lemma subspace_includedset:

assumes "TCX"
shows "(IncludedSet X T) {restricted to} Y=(IncludedSet (Y N X) (YNT))"

(proof)

end

56 More examples in topology

theory Topology_ZF_examples_1
imports Topology_ZF_1 Order_ZF
begin

In this theory file we reformulate the concepts related to a topology in
relation with a base of the topology and we give examples of topologies
defined by bases or subbases.

349

56.1 New ideas using a base for a topology

56.2 The topology of a base

Given a family of subsets satisfiying the base condition, it is posible to
construct a topology where that family is a base. Even more, it is the only
topology with such characteristics.

definition

TopologyWithBase ("TopologyBase _ " 50) where

"U {satisfies the base condition} = TopologyBase U = THE T. U {is
a base for} T"

theorem Base_topology_is_a_topology:

assumes "U {satisfies the base condition}"

shows "(TopologyBase U) {is a topology}" and "U {is a base for} (TopologyBase
[O8
(proof)

A base doesn’t need the empty set.
lemma base_no_0:

shows "B{is a base for}T +— (B-{0}){is a base for}T"
(proof)

The interior of a set is the union of all the sets of the base which are fully
contained by it.
lemma interior_set_base_topology:

assumes "U {is a base for} T""T{is a topology}"
shows "Interior(A,T)={J{T€U. TCA}"

(proof)

In the following, we offer another lemma about the closure of a set given a ba-
sis for a topology. This lemma is based on c1_inter_neigh and inter_neigh_cl.
It states that it is only necessary to check the sets of the base, not all the
open sets.

lemma closure_set_base_topology:

assumes "U {is a base for} Q""Q{is a topology}""AC|JQ"
shows "Closure(A,Q)={xeJQ. VTEU. x€T—ANTAO0}"

(proof)

The restriction of a base is a base for the restriction.

lemma subspace_base_topology:
assumes "B{is a base for}T"
shows "(B{restricted to}Y){is a base for}(T{restricted tol}Y)"

(proof)

If the base of a topology is contained in the base of another topology, then
the topologies maintain the same relation.

350

theorem base_subset:
assumes "B{is a base for}T""B2{is a base for}T2""BCB2"
shows "TCT2"

(proof)

56.3 Dual Base for Closed Sets

A dual base for closed sets is the collection of complements of sets of a base
for the topology.

definition
DualBase ("DualBase _ _" 80) where
"B{is a base for}T — DualBase B T={|JT-U. UeB}YU{JT}"

lemma closed_inter_dual_base:
assumes "D{is closed in}T""B{is a base for}T"
obtains M where "MCDualBase B T""D=[|M"

(proof)

We have already seen for a base that whenever there is a union of open sets,
we can consider only basic open sets due to the fact that any open set is a
union of basic open sets. What we should expect now is that when there is
an intersection of closed sets, we can consider only dual basic closed sets.

lemma closure_dual_base:
assumes "U {is a base for} Q""Q{is a topology}""ACJQ"
shows "Closure(A,Q)=(){T€DualBase U Q. ACT}"

(proof)

56.4 Partition topology

In the theory file Partitions_ZF.thy; there is a definition to work with par-
titions. In this setting is much easier to work with a family of subsets.

definition
IsAPartition ("_{is a partition of}_" 90) where
"(U {is a partition of} X) = (JU=X A (VA€U. VBEU. A=BV ANB=0)A 0¢U)"

A subcollection of a partition is a partition of its union.

lemma subpartition:
assumes "U {is a partition of} X" "VCU"
shows "V{is a partition of}JV"

(proof)

A restriction of a partition is a partition. If the empty set appears it has to
be removed.

lemma restriction_partition:
assumes "U {is a partition of}X"

351

shows "((U {restricted to} Y)-{0}) {is a partition of} (XNY)"
{proof)

Given a partition, the complement of a union of a subfamily is a union of a
subfamily.

lemma diff_union_is_union_diff:
assumes "RCP" "P {is a partition of} X"
shows "X - |JR={J (P-R)"

(proof)

56.5 Partition topology is a topology.

A partition satisfies the base condition.

lemma partition_base_condition:
assumes "P {is a partition of} X"
shows "P {satisfies the base condition}"

(proof)

Since a partition is a base of a topology, and this topology is uniquely de-
termined; we can built it. In the definition we have to make sure that we
have a partition.

definition
PartitionTopology ("PTopology _ _" 50) where
"(U {is a partition of} X) == PTopology X U = TopologyBase U"

theorem Ptopology_is_a_topology:

assumes "U {is a partition ofl} X"

shows " (PTopology X U) {is a topology}" and "U {is a base for} (PTopology
X U) n

(proof)

lemma topologyO_ptopology:
assumes "U {is a partition of} X"
shows "topologyO(PTopology X U)"

{proof)

56.6 Total set, Closed sets, Interior, Closure and Boundary

The topology is defined in the set X

lemma union_ptopology:
assumes "U {is a partition of} X"
shows "(J (PTopology X U)=X"

(proof)

The closed sets are the open sets.

lemma closed_sets_ptopology:
assumes "T {is a partition of} X"

352

shows"D {is closed in} (PTopology X T) <— D&(PTopology X T)"
(proof)

There is a formula for the interior given by an intersection of sets of the dual
base. Is the intersection of all the closed sets of the dual basis such that
they do not complement A to X. Since the interior of X must be inside X,
we have to enter X as one of the sets to be intersected.

lemma interior_set_ptopology:

assumes "U {is a partition of} X""ACX"

shows "Interior (A, (PTopology X U))=(]{T€DualBase U (PTopology X U).
T=XVTUA#X}"
(proof)

The closure of a set is the union of all the sets of the partition which intersect
with A.

lemma closure_set_ptopology:

assumes "U {is a partition of} X""ACX"

shows "Closure(A, (PTopology X U))={J{T€U. TNA#O}"
(proof)

The boundary of a set is given by the union of the sets of the partition which
have non empty intersection with the set but that are not fully contained in
it. Another equivalent statement would be: the union of the sets of the par-
tition which have non empty intersection with the set and its complement.
lemma boundary_set_ptopology:

assumes "U {is a partition of} X""ACX"
shows "Boundary (A, (PTopology X U))={J{T€U. TNA#0 A ~(TCA)}"

(proof)

56.7 Special cases and subspaces

The discrete and the indiscrete topologies appear as special cases of this
partition topologies.

lemma discrete_partition:
shows "{{x}.x€X} {is a partition of}X"

(proof)

lemma indiscrete_partition:
assumes "X#0"
shows "{X} {is a partition of} X"

(proof)

theorem discrete_ptopology:
shows "(PTopology X {{x}.x€X})=Pow(X)"
(proof)

theorem indiscrete_ptopology:

353

assumes "X#£0"
shows " (PTopology X {X})={0,X}"
(proof)

The topological subspaces of the (PTopology X U) are partition topologies.

lemma subspace_ptopology:

assumes "U{is a partition of}X"

shows "(PTopology X U) {restricted to} Y=(PTopology (XNY) ((U {restricted
to} Y)-{0}))"
(proof)

56.8 Order topologies
56.9 Order topology is a topology

Given a totally ordered set, several topologies can be defined using the order
relation. First we define an open interval, notice that the set defined as
Interval is a closed interval; and open rays.

definition
IntervalX where
"IntervalX(X,r,b,c)=(Interval(r,b,c)NX)-{b,c}"
definition
LeftRayX where
"LeftRayX(X,r,b)={ceX. (c,b)er}-{b}"
definition
RightRayX where
"RightRayX(X,r,b)={ceX. (b,c)er}-{b}"

Intersections of intervals and rays.

lemma inter_two_intervals:
assumes "bueX""bveX""cueX""cveX""IsLinOrder(X,r)"
shows "IntervalX(X,r,bu,cu)NIntervalX(X,r,bv,cv)=IntervalX(X,r,Greater0f (r,bu,bv),Smalle:

{(proof)

lemma inter_rray_interval:
assumes "bveX""bueX""cveX""IsLinOrder(X,r)"
shows "RightRayX(X,r,bu)NIntervalX(X,r,bv,cv)=IntervalX(X,r,Greater0f(r,bu,bv),cv)"

(proof)

lemma inter_lray_interval:
assumes "bveX""cueX""cveX""IsLinOrder(X,r)"
shows "LeftRayX(X,r,cu)NIntervalX(X,r,bv,cv)=IntervalX(X,r,bv,Smaller0f(r,cu,cv))"

(proof)

lemma inter_lray_rray:
assumes "bueX""cveX""IsLinOrder(X,r)"
shows "LeftRayX(X,r,bu)NRightRayX(X,r,cv)=IntervalX(X,r,cv,bu)"

354

(proof)

lemma inter_lray_lray:
assumes "bueX""cveX""IsLinOrder(X,r)"
shows "LeftRayX(X,r,bu) LeftRayX(X,r,cv)=LeftRayX(X,r,Smaller0f (r,bu,cv))"

(proof)

lemma inter_rray_rray:

assumes "bueX""cveX""IsLinOrder(X,r)"

shows "RightRayX(X,r,bu)RightRayX(X,r,cv)=RightRayX(X,r,Greater0f (r,bu,cv))"
(proof)

The open intervals and rays satisfy the base condition.

lemma intervals_rays_base_condition:

assumes "IsLinOrder(X,r)"

shows "{IntervalX(X,r,b,c). (b,c)eXxX}U{LeftRayX(X,r,b). beX}U{RightRayX(X,r,b).
beX} {satisfies the base condition}"

(proof)

Since the intervals and rays form a base of a topology, and this topology is
uniquely determined; we can built it. In the definition we have to make sure
that we have a totally ordered set.
definition

OrderTopology ("OrdTopology _ _" 50) where

"IsLinOrder(X,r) = OrdTopology X r = TopologyBase {IntervalX(X,r,b,c).
(b,c)eXxXIU{LeftRayX(X,r,b). beX}U{RightRayX(X,r,b). beX}"

theorem Ordtopology_is_a_topology:

assumes "IsLinOrder(X,r)"

shows "(OrdTopology X r) {is a topology}" and "{IntervalX(X,r,b,c).
(b,c)eXxXIU{LeftRayX(X,r,b). beX}U{RightRayX(X,r,b). beX} {is a base
for} (OrdTopology X r)"

(proof)

lemma topologyO_ordtopology:
assumes "IsLinOrder(X,r)"
shows "topologyO(OrdTopology X r)"

(proof)

56.10 Total set

The topology is defined in the set X, when X has more than one point

lemma union_ordtopology:
assumes "IsLinOrder (X,r)""3x y. x#£y A x€XA yeX"
shows "(J (OrdTopology X r)=X"

(proof)

The interior, closure and boundary can be calculated using the formulas
proved in the section that deals with the base.

355

The subspace of an order topology doesn’t have to be an order topology.

56.11 Right order and Left order topologies.

Notice that the left and right rays are closed under intersection, hence they
form a base of a topology. They are called right order topology and left
order topology respectively.

If the order in X has a minimal or a maximal element, is necessary to
consider X as an element of the base or that limit point wouldn’t be in any
basic open set.

56.11.1 Right and Left Order topologies are topologies

lemma leftrays_base_condition:
assumes "IsLinOrder(X,r)"
shows "{LeftRayX(X,r,b). beX}U{X} {satisfies the base condition}"

(proof)

lemma rightrays_base_condition:
assumes "IsLinOrder(X,r)"
shows "{RightRayX(X,r,b). beX}U{X} {satisfies the base conditionl}"

(proof)

definition

LeftOrderTopology ("LOrdTopology _ _" 50) where

"IsLinOrder(X,r) = LOrdTopology X r = TopologyBase {LeftRayX(X,r,b).
beX}uU{x}"

definition

RightOrderTopology ("ROrdTopology _ _" 50) where

"IsLinOrder(X,r) = ROrdTopology X r = TopologyBase {RightRayX(X,r,b).
beXFU{X}"

theorem LOrdtopology_ROrdtopology_are_topologies:

assumes "IsLinOrder(X,r)"

shows "(LOrdTopology X r) {is a topology}" and "{LeftRayX(X,r,b). beX}U{X}
{is a base for} (LOrdTopology X r)"

and " (ROrdTopology X r) {is a topology}" and "{RightRayX(X,r,b). beX}U{X}
{is a base for} (ROrdTopology X r)"

(proof)

lemma topology0_lordtopology_rordtopology:

assumes "IsLinOrder(X,r)"

shows "topologyO(LOrdTopology X r)" and "topologyO(ROrdTopology X
r) n

(proof)

356

56.11.2 Total set

The topology is defined on the set X

lemma union_lordtopology_rordtopology:
assumes "IsLinOrder(X,r)"
shows "|J (LOrdTopology X r)=X" and "(J (ROrdTopology X r)=X"

(proof)

56.12 Union of Topologies
The union of two topologies is not a topology. A way to overcome this fact
is to define the following topology:

definition

joinT ("joinT _" 90) where

"(VTeM. T{is a topology} A (VQeM. JQ=UT)) = (joinT M = THE T.
(UM){is a subbase for} T)"

First let’s proof that given a family of sets, then it is a subbase for a topology.

The first result states that from any family of sets we get a base using finite
intersections of them. The second one states that any family of sets is a
subbase of some topology.

theorem subset_as_subbase:
shows "{(JA. A € FinPow(B)} {satisfies the base condition}"
(proof)

theorem Top_subbase:
assumes "T = {|JA. AcPow({[)A. A € FinPow(B)})}"
shows "T {is a topology}" and "B {is a subbase for} T"
(proof)

A subbase defines a unique topology.

theorem same_subbase_same_top:
assumes "B {is a subbase for} T" and "B {is a subbase for} S"
shows "T = S"

(proof)

end

57 Properties in Topology

theory Topology_ZF_properties imports Topology_ZF_examples Topology_ZF_examples_1
begin

This theory deals with topological properties which make use of cardinals.

357

57.1 Properties of compactness

It is already defined what is a compact topological space, but the is a gen-
eralization which may be useful sometimes.

definition
IsCompactOfCard ("_{is compact of cardinall}_ {in}_" 90)
where "K{is compact of cardinal} Q{in}T = (Card(Q) A K C T A
(V MePow(T). K C UM — (3 N € Pow(M). K C UN A N<@))"

The usual compact property is the one defined over the cardinal of the
natural numbers.

lemma Compact_is_card_nat:
shows "K{is compact in}T <— (K{is compact of cardinal} nat {in}T)"

(proof)

Another property of this kind widely used is the Lindeloef property; it is
the one on the successor of the natural numbers.

definition
IsLindeloef ("_{is lindeloef in}_" 90) where
"K {is lindeloef in} T=K{is compact of cardinal}csucc(nat){in}T"

It would be natural to think that every countable set with any topology is
Lindeloef; but this statement is not provable in ZF. The reason is that to
build a subcover, most of the time we need to choose sets from an infinite
collection which cannot be done in ZF. Additional axioms are needed, but
strictly weaker than the axiom of choice.

However, if the topology has not many open sets, then the topological space
is indeed compact.

theorem card_top_comp:
assumes "Card(Q)" "T<Q" "KCT"
shows "(K){is compact of cardinal}Q{in}T"

(proof)

The union of two compact sets, is compact; of any cardinality.

theorem union_compact:

assumes "K{is compact of cardinal}Q{in}T" "Ki{is compact of cardinal}Q{in}T"
"InfCard(Q)"

shows "(K U K1){is compact of cardinal}Q{in}T" (proof)

If a set is compact of cardinality Q for some topology, it is compact of car-
dinality Q for every coarser topology.

theorem compact_coarser:
assumes "T1CT" and "|JT1=JT" and "(X){is compact of cardinal}Q{in}T"
shows "(K){is compact of cardinal}Q{in}T1"

{(proof)

358

If some set is compact for some cardinal, it is compact for any greater
cardinal.

theorem compact_greater_card:
assumes "Q<Q1" and "(K){is compact of cardinal}Q{in}T" and "Card(Q1)"
shows "(K){is compact of cardinal}Qi{in}T"

(proof)

A closed subspace of a compact space of any cardinality, is also compact of
the same cardinality.

theorem compact_closed:
assumes "K {is compact of cardinall} Q {in} T"
and "R {is closed in} T"
shows "(KNR) {is compact of cardinal} Q {in} T"

(proof)

57.2 Properties of numerability

The properties of numerability deal with cardinals of some sets built from
the topology. The properties which are normally used are the ones related
to the cardinal of the natural numbers or its successor.

definition

IsFirstOfCard ("_ {is of first type of cardinal}_" 90) where

"(T {is of first type of cardinal} Q) = VxelJT. (IB. (B {is a base
for} T) A ({b€B. x&€b} <)"

definition
IsSecond0fCard ("_ {is of second type of cardinall}_" 90) where
"(T {is of second type of cardinall}Q) = (IB. (B {is a base for} T)
A B <"

definition
IsSeparableOfCard ("_{is separable of cardinal}_" 90) where
"T{is separable of cardinal}Q= JUcPow(|JT). Closure(U,T)=JT A U<Q"

definition
IsFirstCountable ("_ {is first countable}" 90) where
"(T {is first countable}) = T {is of first type of cardinal} csucc(nat)"

definition

IsSecondCountable ("_ {is second countablel}" 90) where

"(T {is second countable}) = (T {is of second type of cardinall}csucc(nat))"
definition

IsSeparable ("_{is separable}" 90) where
"T{is separable}= T{is separable of cardinal}csucc(nat)"

If a set is of second type of cardinal Q, then it is of first type of that same
cardinal.

359

theorem second_imp_first:
assumes "T{is of second type of cardinall}Q"
shows "T{is of first type of cardinal}Q"

(proof)

A set is dense iff it intersects all non-empty, open sets of the topology.

lemma dense_int_open:

assumes "T{is a topology}" and "AC|JT"

shows "Closure(A,T)={JT +— (VUET. U#A0 — ANU#AO0)"
(proof)

57.3 Relations between numerability properties and choice
principles

It is known that some statements in topology aren’t just derived from choice
axioms, but also equivalent to them. Here is an example

The following are equivalent:

e Every topological space of second cardinality csucc(Q) is separable of
cardinality csucc(Q).

e The axiom of Q choice.

In the article [4] there is a proof of this statement for Q= N, with more
equivalences.

If a topology is of second type of cardinal csucc(Q), then it is separable of
the same cardinal. This result makes use of the axiom of choice for the
cardinal Q on subsets of JT.

theorem Q_choice_imp_second_imp_separable:
assumes "T{is of second type of cardinall}csucc(Q)"
and "{the axiom of} Q {choice holds for subsets} (JT"
and "T{is a topology}"
shows "T{is separable of cardinal}csucc(Q)"
(proof)

The next theorem resolves that the axiom of Q choice for subsets of T
is necessary for second type spaces to be separable of the same cardinal
csucc ().

theorem second_imp_separable_imp_Q_choice:

assumes "VT. (T{is a topology} A (T{is of second type of cardinall}tcsucc(Q)))
— (T{is separable of cardinall}csucc(Q))"

and "Card(Q)"

shows "{the axiom of} Q {choice holds}"

(proof)

Here is the equivalence from the two previous results.

360

theorem Q_choice_eq_secon_imp_sepa:
assumes "Card(Q)"
shows "(VT. (T{is a topology} A (T{is of second type of cardinal}csucc(Q)))
— (T{is separable of cardinal}csucc(Q)))
< ({the axiom of} Q {choice holds})"

(proof)

Given a base injective with a set, then we can find a base whose elements
are indexed by that set.

lemma base_to_indexed_base:
assumes "B <Q" "B {is a base for}T"
shows "dN. {N‘i. ieQ}{is a base for}T"

(proof)

57.4 Relation between numerability and compactness

If the axiom of Q choice holds, then any topology of second type of cardinal
csucc(R) is compact of cardinal csucc(Q)

theorem compact_of_cardinal_Q:
assumes "{the axiom of} Q {choice holds for subsets} (Pow(Q))"
"T{is of second type of cardinall}csucc(Q)"
"T{is a topology}"
shows "((|JT){is compact of cardinal}csucc(Q){in}T)"
(proof)

In the following proof, we have chosen an infinite cardinal to be able to apply
the equation @ x Q ~ Q. For finite cardinals; both, the assumption and the
axiom of choice, are always true.

theorem second_imp_compact_imp_Q_choice_PowQ:

assumes "VT. (T{is a topology} A (T{is of second type of cardinall}csucc(Q)))
— ((UT){is compact of cardinall}csucc(Q){in}T)"

and "InfCard(Q)"

shows "{the axiom of} Q {choice holds for subsets} (Pow(Q))"

(proof)

The two previous results, state the following equivalence:

theorem Q_choice_Pow_eq_secon_imp_comp:
assumes "InfCard(Q)"
shows "(VT. (T{is a topology} A (T{is of second type of cardinall}csucc(Q)))
— ((UT){is compact of cardinal}csucc(Q){in}T))
< ({the axiom of} Q {choice holds for subsets} (Pow(Q)))"

(proof)

In the next result we will prove that if the space (k, Pow(k)), for k£ an infinite
cardinal, is compact of its successor cardinal; then all topologycal spaces
which are of second type of the successor cardinal of k are also compact of
that cardinal.

361

theorem Q_csuccQ_comp_eq_Q_choice_Pow:
assumes "InfCard(Q)" "(Q){is compact of cardinal}csucc(Q){in}Pow(Q)"
shows "VT. (T{is a topology} A (T{is of second type of cardinall}csucc(Q)))
— ((UT){is compact of cardinal}csucc(Q){in}T)"

(proof)

theorem Q_disc_is_second_card_csuccQ:
assumes "InfCard(Q)"
shows "Pow(Q){is of second type of cardinal}csucc(Q)"

(proof)

This previous results give us another equivalence of the axiom of Q choice
that is apparently weaker (easier to check) to the previous one.

theorem Q_disc_comp_csuccQ_eq_Q_choice_csuccQ:

assumes "InfCard(Q)"

shows "(Q{is compact of cardinal}csucc(Q){in}(Pow(Q))) <— ({the axiom
of}Q{choice holds for subsets}(Pow(Q)))"

(proof)
end

58 Topology 5

theory Topology_ZF_5 imports Topology_ZF_examples Topology_ZF_properties
funcl Topology_ZF_examples_1 Topology_ZF_4
begin

58.1 Some results for separation axioms

First we will give a global characterization of T}-spaces; which is interesting
because it involves the cardinal N.

lemma (in topology0) T1_cocardinal_coarser:
shows "(T {is T1}) +— (CoFinite (|JT))CT"

(proof)

In the previous proof, it is obvious that we don’t need to check if ever cofinite
set is open. It is enough to check if every singleton is closed.

corollary (in topology0O) T1_iff_singleton_closed:
shows "(T {is T1}) «— (VxelUT. {x}{is closed in}T)"
(proof)

Secondly, let’s show that the CoCardinal X Q topologies for different sets
Q@ are all ordered as the partial order of sets. (The order is linear when
considering only cardinals)

lemma order_cocardinal_top:
fixes X

362

assumes "Q1<Q2"
shows "(CoCardinal X Q1)C(CoCardinal X Q2)"

(proof)

corollary cocardinal_is_T1:
fixes X K
assumes "InfCard(K)"
shows "(CoCardinal X K) {is Ti}"

(proof)

In T5-spaces, filters and nets have at most one limit point.

lemma (in topology0) T2_imp_unique_limit_filter:
assumes "T {is To}" "§ {is a filter on}JT" "§ —rp x" "§ —p y"
shows "x=y"

(proof)

lemma (in topology0) T2_imp_unique_limit_net:
assumes "T {is T2}" "N {is a net on}JT" "N —y x" "N =y y"
shows "x=y"

(proof)

In fact, Th-spaces are characterized by this property. For this proof we build
a filter containing the union of two filters.

lemma (in topology0) unique_limit_filter_imp_T2:

assumes "VxeJT. VyeUT. VF. ((F {is a filter on}JT) A (§F —p x)
AN E —=r 7)) — x=y"

shows "T {is To}"
(proof)

lemma (in topologyO) unique_limit_net_imp_T2:

assumes "Vxe(JT. VyeJT. VN. ((N {is a net on}JT) A (N —y x) A
N =y§ v)) — x=y"

shows "T {is To}"
(proof)

This results make easy to check if a space is T5.

The topology which comes from a filter as in 7§ {is a filter on} |J?§ =
(?F U {0}) {is a topology} is not 75 generally. We will see in this file later
on, that the exceptions are a consequence of the spectrum.

corollary filter_T2_imp_cardi:
assumes "(FU{0}) {is To}" "F {is a filter on} JF" "xeJF"
shows "JF={x}"

(proof)

There are more separation axioms that just Ty, 177 or 15

definition
IsRegular ("_{is regularl}" 90)

363

where "T{is regular} = VA. A{is closed in}T — (Vx€|JT-A. JUeT.
JVeT. ACUAxeVAUNV=0)"

definition
isT3 ("_{is T3}" 90)
where "T{is T3} = (T{is T1}) A (T{is regular})"

definition

IsNormal ("_{is normall}" 90)

where "T{is normal} = VA. A{is closed in}T — (VB. B{is closed in}T
A ANB=0 —>

(dUeT. JVeT. ACUABCVAUNV=0))"

definition
isT4 ("_{is T4}" 90)
where "T{is T4} = (T{is T1}) A (T{is normall})"

lemma (in topology0) T4_is_T3:
assumes "T{is T4}" shows "T{is T3}"
(proof)

lemma (in topology0) T3_is_T2:
assumes "T{is T3}" shows "T{is To}"
(proof)

Regularity can be rewritten in terms of existence of certain neighboorhoods.

lemma (in topology0O) regular_imp_exist_clos_neig:
assumes "T{is regular}" and "UcT" and "xcU"
shows "dVeT. x€V A cl1(V)CU"

(proof)

lemma (in topology0) exist_clos_neig_imp_regular:
assumes "VxeJT. VUET. x€U — (JVET. x€VA cL(V)CD"
shows "T{is regular}"

(proof)

lemma (in topology0) regular_eq:
shows "T{is regular} +— (Vxe€|JT. VUET. x€U — (IVET. x€VA c1(V)CU))"

(proof)

A Hausdorff space separates compact spaces from points.

theorem (in topology0) T2_compact_point:
assumes "T{is To}" "A{is compact in}T" "x€|JT" "x¢A"
shows "JUeT. JVeT. ACU A x€V A UNV=0"

(proof)

A Hausdorff space separates compact spaces from other compact spaces.

theorem (in topology0) T2_compact_compact:
assumes "T{is T9}" "A{is compact in}T" "B{is compact in}T" "ANB=0"

364

shows "JUET. JVET. ACU A BCV A UNV=0"
(proof)

A compact Hausdorff space is normal.

corollary (in topology0) T2_compact_is_normal:
assumes "T{is Ty}" "(|JT){is compact in}T"
shows "T{is normal}" (proof)

58.2 Hereditability

A topological property is hereditary if whenever a space has it, every sub-
space also has it.

definition IsHer ("_{is hereditary}" 90)
where "P {is hereditary} = VT. T{is a topology} A P(T) — (VA€Pow(|JT).
P(T{restricted to}A))"

lemma subspace_of_subspace:
assumes "ACB""BC|JT"
shows "T{restricted to}A=(T{restricted to}B){restricted to}A"

(proof)

The separation properties Ty, 11, 1o y T3 are hereditary.

theorem regular_here:
assumes "T{is regular}" "AcPow(|JT)" shows "(T{restricted to}A){is
regular}"

(proof)

corollary here_regular:
shows "IsRegular {is hereditary}" (proof)

theorem T1_here:
assumes "T{is T;}" "A€Pow(|JT)" shows "(T{restricted to}A){is Ty}"

(proof)

corollary here_T1:
shows "isT1 {is hereditary}" (proof)

lemma here_and:
assumes "P {is hereditary}" "Q {is hereditary}"
shows "(AT. P(T) A Q(T)) {is hereditary}" (proof)

corollary here_T3:
shows "isT3 {is hereditary}" (proof)

lemma T2_here:

assumes "T{is To}" "A€Pow(|JT)" shows "(T{restricted to}A){is Ty}"
(proof)

365

corollary here_T2:
shows "isT2 {is hereditary}" (proof)

lemma TO_here:
assumes "T{is To}" "A€Pow(|JT)" shows "(T{restricted to}A){is To}"

(proof)

corollary here_TO:
shows "isTO {is hereditary}" (proof)

58.3 Spectrum and anti-properties

The spectrum of a topological property is a class of sets such that all topolo-
gies defined over that set have that property.

The spectrum of a property gives us the list of sets for which the property
doesn’t give any topological information. Being in the spectrum of a topo-
logical property is an invariant in the category of sets and function; mening
that equipollent sets are in the same spectra.

definition Spec ("_ {is in the spectrum of} _" 99)
where "Spec(K,P) = VT. ((T{is a topology} A JT=K) — P(T))"

lemma equipollent_spect:
assumes "A~B" "B {is in the spectrum of} P"
shows "A {is in the spectrum of} P"

(proof)

theorem eqpoll_iff_spec:

assumes "A~B"

shows "(B {is in the spectrum of} P) +— (A {is in the spectrum of}
P) n
(proof)

From the previous statement, we see that the spectrum could be formed
only by representative of clases of sets. If AC holds, this means that the
spectrum can be taken as a set or class of cardinal numbers.

Here is an example of the spectrum. The proof lies in the indiscrite filter {A}
that can be build for any set. In this proof, we see that without choice, there
is no way to define the sepctrum of a property with cardinals because if a
set is not comparable with any ordinal, its cardinal is defined as 0 without
the set being empty.

theorem T4_spectrum:
shows "(A {is in the spectrum of} isT4) +— A < 1"

(proof)

If the topological properties are related, then so are the spectra.

lemma P_imp_Q_spec_inv:

366

assumes "VT. T{is a topology} — (Q(T) — P(T))" "A {is in the spectrum
Of} Qu

shows "A {is in the spectrum of} P"
(proof)

Since we already now the spectrum of Ty; if we now the spectrum of Ty, it
should be easier to compute the spectrum of 17, T» and T3.

theorem TO_spectrum:
shows "(A {is in the spectrum of} isT0) «+— A < 1"

{(proof) -

theorem T1_spectrum:
shows "(A {is in the spectrum of} isT1) «— A < 1"

(proof)

theorem T2_spectrum:
shows "(A {is in the spectrum of} isT2) <— A < 1"

(proof)

theorem T3_spectrum:
shows "(A {is in the spectrum of} isT3) «— A < 1"

(proof)

theorem compact_spectrum:

shows "(A {is in the spectrum of} (AT. ((T) {is compact in}T)) +—
Finite(A)"
(proof)

It is, at least for some people, surprising that the spectrum of some properties
cannot be completely determined in ZF.

theorem compactK_spectrum:
assumes "{the axiom of}K{choice holds for subsets}(Pow(K))" "Card(K)"
shows "(A {is in the spectrum of} (AT. ((|JT){is compact of cardinal}
csucc(K){in}T))) «— (A<K)"

(proof)

theorem compactK_spectrum_reverse:

assumes "VA. (A {is in the spectrum of} (AT. (((JT){is compact of cardinal}
csucc(K){in}T))) +— (ASK)" "InfCard(K)"

shows "{the axiom of}K{choice holds for subsets}(Pow(K))"

(proof)

This last theorem states that if one of the forms of the axiom of choice re-
lated to this compactness property fails, then the spectrum will be different.
Notice that even for Lindelf spaces that will happend.

The spectrum gives us the posibility to define what an anti-property means.
A space is anti-P if the only subspaces which have the property are the ones

367

in the spectrum of P. This concept tries to put together spaces that are
completely opposite to spaces where P(T).

definition

antiProperty ("_{is anti-}_" 50)

where "T{is anti-}P = VAcPow(|JT). P(T{restricted to}A) — (4 {is
in the spectrum of} P)"

abbreviation
"ANTI(P) = AT. (T{is anti-}P)"

A first, very simple, but very useful result is the following: when the prop-
erties are related and the spectra are equal, then the anti-properties are
related in the oposite direction.

theorem (in topology0) eq_spect_rev_imp_anti:
assumes "VT. T{is a topology} — P(T) — Q(T)" "VA. (A{is in the
spectrum of}Q) — (A{is in the spectrum of}P)"
and "T{is anti-}Q"
shows "T{is anti-}P"

(proof)

If a space can be P(T) AQ(T) only in case the underlying set is in the spectrum
of P; then Q(T) —ANTI(P,T) when Q is hereditary.

theorem Q_P_imp_Spec:
assumes "VT. ((T{is a topology}AP(T)AQ(T))— ((UT){is in the spectrum
of }P))"
and "Q{is hereditary}"
shows "VT. T{is a topology} — (Q(T)—(T{is anti-}P))"
(proof)

If a topologycal space has an hereditary property, then it has its double-anti
property.

theorem (in topologyO)her_P_imp_anti2P:
assumes "P{is hereditaryl}" "P(T)"
shows "T{is anti-}ANTI(P)"

(proof)

The anti-properties are always hereditary

theorem anti_here:
shows "ANTI(P){is hereditaryl}"

(proof)

corollary (in topology0) anti_imp_anti3:
assumes "T{is anti-}P"
shows "T{is anti-}ANTI(ANTI(P))"

{proof)

In the article [5], we can find some results on anti-properties.

368

theorem (in topology0) anti_TO:
shows "(T{is anti-}isT0) <+— T={0,JT}"
(proof)

lemma indiscrete_spectrum:
shows "(A {is in the spectrum of}(AT. T={0,JT})) <+— A<1"

(proof)

theorem (in topology0) anti_indiscrete:
shows "(T{is anti-}(AT. T={0,JT})) «— T{is To}"
(proof)

The conclusion is that being T is just the opposite to being indiscrete.

Next, let’s compute the anti-T; for ¢ = 1, 2, 3 or 4. Surprisingly, they are
all the same. Meaning, that the total negation of T} is enough to negate all
of these axioms.

theorem anti_T1:

shows "(T{is anti-}isT1) <— (IsLinOrder(T,{(U,V)€Pow(|JT) xPow(|JT).
Ucvp)"
(proof)

corollary linordtop_here:
shows "(AT. IsLinOrder(T,{(U,V)€Pow(|JT) xPow(|JT). UCV})){is hereditaryl}"

(proof)

theorem (in topology0) anti_T4:

shows "(T{is anti-}isT4) <— (IsLinOrder (T,{(U,V)€Pow(|JT) xPow(|JT).
UcvH)"
(proof)

theorem (in topology0O) anti_T3:

shows "(T{is anti-}isT3) «+— (IsLinOrder (T,{(U,V)€Pow(|JT) xPow(|JT).
Ucv)"
(proof)

theorem (in topology0) anti_T2:

shows "(T{is anti-}isT2) +— (IsLinOrder (T,{(U,V)€Pow(|JT) xPow(|JT).
UcvH)"
(proof)

lemma linord_spectrum:

shows "(A{is in the spectrum of}(AT. IsLinOrder(T,{(U,V)ePow(|JT) xPow(|JT).
UCV}H))) +— AS1"
(proof)

theorem (in topology0) anti_linord:
shows "(T{is anti-}(AT. IsLinOrder(T,{(U,V)€Pow(|JT)xPow(|JT). UCV})))
+—— T{is T1}"

369

(proof)
In conclusion, 77 is also an anti-property.

Let’s define some anti-properties that we’ll use in the future.

definition
IsAntiComp ("_{is anti-compact}")
where "T{is anti-compact} = T{is anti-}(AT. ((JT){is compact in}T)"

definition
IsAntiLin ("_{is anti-lindeloefl}")
where "T{is anti-lindeloef} = T{is anti-}(AT. (((JT){is lindeloef in}T))"

Anti-compact spaces are also called pseudo-finite spaces in literature before
the concept of anti-property was defined.

end

59 Topology 6

theory Topology_ZF_6 imports Topology_ZF_4 Topology_ZF_2 Topology_ZF_1
begin

This theory deals with the relations between continuous functions and con-
vergence of filters. At the end of the file there some results about the building
of functions in cartesian products.

59.1 Image filter

First of all, we will define the appropriate tools to work with functions and
filters together.

We define the image filter as the collections of supersets of of images of sets
from a filter.

definition

ImageFilter ("_[_].._" 98)

where "§ {is a filter on} X = f:X—Y = f[§]..Y = {AcPow(Y). dDe{f ‘(B)
.Be§}. DCA}"

Note that in the previous definition, it is necessary to state Y as the final
set because f is also a function to every superset of its range. X can be
changed by domain(f) without any change in the definition.

lemma base_image_filter:

assumes "§ {is a filter on} X" "f:X—>Y"

shows "{f‘‘B .BcJ} {is a base filter}(f[F]..Y)" and "(f[F]..Y) {is
a filter on} Y"
(proof)

370

59.2 Continuous at a point vs. globally continuous

In this section we show that continuity of a function implies local continuity
(at a point) and that local continuity at all points implies (global) continuity.

If a function is continuous, then it is continuous at every point.

lemma cont_global_imp_continuous_x:
assumes "x€|J71" "IsContinuous(ry,79,f)" "f: (Jr1)—=WJ7r2)" "xelJT1"
shows "VUery. £(x)€U — (VeT;. x€V A £ () CUH"

(proof)
A function that is continuous at every point of its domain is continuous.

lemma ccontinuous_all_x_imp_cont_global:
assumes "Vx€elJ71. VUET,. £x€U — (FVer;. x€V A £VCUN)" "fe(r)—=WUT2)"
and
"7y {is a topologyl}"
shows "IsContinuous(7ry,72,f)"

(proof)

59.3 Continuous functions and filters

In this section we consider the relations between filters and continuity.
If the function is continuous then if the filter converges to a point the image
filter converges to the image point.

lemma (in two_top_spaces0) cont_imp_filter_conver_preserved:
assumes "§ {is a filter on} X" "f {is continuous}" "§F —r x {in} 7"
shows "(f[§]..X2) —r (£°(x)) {in} 79"

(proof)

Continuity in filter at every point of the domain implies global continuity.

lemma (in two_top_spaces0) filter_conver_preserved_imp_cont:

assumes "VxelJ7r. VF. ((F {is a filter on} X;) A (F —F x {in} 71))
— ((£[F]..X2) —p (£x) {in} 72)"

shows "f{is continuousl}"

(proof)

end

60 Topology 7

theory Topology_ZF_7 imports Topology_ZF_5
begin

60.1 Connection Properties

Another type of topological properties are the connection properties. These
properties establish if the space is formed of several pieces or just one.

371

A space is connected iff there is no clopen set other that the empty set and
the total set.

definition IsConnected ("_{is connected}" 70)
where "T {is connected} = VU. (UET A (U {is closed in}T)) — U=0VU=JT"

lemma indiscrete_connected:
shows "{0,X} {is connected}"

(proof)

The anti-property of connectedness is called total-diconnectedness.

definition IsTotDis ("_ {is totally-disconnected}" 70)
where "IsTotDis = ANTI(IsConnected)"

lemma conn_spectrum:
shows "(A{is in the spectrum of}IsConnected) <— AS1"

(proof)

The discrete space is a first example of totally-disconnected space.

lemma discrete_tot_dis:
shows "Pow(X) {is totally-disconnected}"

(proof)

An space is hyperconnected iff every two non-empty open sets meet.

definition IsHConnected ("_{is hyperconnected}"90)
where "T{is hyperconnected} =VU V. UeT A VET A UNV=0 — U=0VV=0"

Every hyperconnected space is connected.

lemma HConn_imp_Conn:
assumes "T{is hyperconnected}"
shows "T{is connected}"

(proof)

lemma Indiscrete_HConn:
shows "{0,X}{is hyperconnected}"

(proof)

A first example of an hyperconnected space but not indiscrete, is the cofinite
topology on the natural numbers.

lemma Cofinite_nat_HConn:
assumes "—(X<nat)"
shows "(CoFinite X){is hyperconnected}"

(proof)

lemma HConn_spectrum:
shows "(A{is in the spectrum of}IsHConnected) «— A<1"

(proof)

372

In the following results we will show that anti-hyperconnectedness is a sepa-
ration property between T and T;. We will show also that both implications
are proper.

First, the closure of a point in every topological space is always hypercon-
nected. This is the reason why every anti-hyperconnected space must be T7:
every singleton must be closed.

lemma (in topologyO)cl_point_imp_HConn:
assumes "xe|JT"
shows "(T{restricted to}Closure({x},T)){is hyperconnected}"

(proof)

A consequence is that every totally-disconnected space is T7.

lemma (in topology0) tot_dis_imp_T1:
assumes "T{is totally-disconnected}"
shows "T{is T;}"

(proof)

In the literature, there exists a class of spaces called sober spaces; where the
only non-empty closed hyperconnected subspaces are the closures of points
and closures of diferent singletons are different.

definition IsSober ("_{is sober}"90)

where "T{is sober} = VAcPow(|JT)-{0}. (A{is closed in}T A ((T{restricted
to}A){is hyperconnected})) — (Ix€|JT. A=Closure({x},T) A (VyelUT. A=Closure({y},T)
— y:x))"

Being sober is weaker than being anti-hyperconnected.

theorem (in topology0) anti_HConn_imp_sober:
assumes "T{is anti-}IsHConnected"
shows "T{is sober}"

(proof)

Every sober space is Tj.

lemma (in topology0) sober_imp_TO:
assumes "T{is soberl}"
shows "T{is Tg}"

(proof)

Every T5 space is anti-hyperconnected.

theorem (in topology0) T2_imp_anti_HConn:
assumes "T{is To}"
shows "T{is anti-}IsHConnected"

(proof)

Every anti-hyperconnected space is T7.

theorem anti_HConn_imp_T1:
assumes "T{is anti-}IsHConnected"

373

shows "T{is T}"
(proof)

There is at least one topological space that is 77, but not anti-hyperconnected.
This space is the cofinite topology on the natural numbers.

lemma Cofinite_not_anti_HConn:

shows "—((CoFinite nat){is anti-}IsHConnected)" and "(CoFinite nat){is
Tl}"
(proof)

The join-topology build from the cofinite topology on the natural numbers,
and the excluded set topology on the natural numbers excluding {0,1}; is
just the union of both.

lemma join_top_cofinite_excluded_set:
shows "(joinT {CoFinite nat, ExcludedSet nat {0,1}})=(CoFinite nat)U
(ExcludedSet nat {0,1})"

(proof)

The previous topology in not 75, but is anti-hyperconnected.

theorem join_Cofinite_ExclPoint_not_T2:
shows "—((joinT {CoFinite nat, ExcludedSet nat {0,1}}){is Ta})" and
"(joinT {CoFinite nat, ExcludedSet nat {0,1}}){is anti-}IsHConnected"

(proof)

Let’s show that anti-hyperconnected is in fact 77 and sober. The trick of
the proof lies in the fact that if a subset is hyperconnected, its closure is so
too (the closure of a point is then always hyperconnected because singletons
are in the spectrum); since the closure is closed, we can apply the sober
property on it.

theorem (in topology0) T1_sober_imp_anti_HConn:

assumes "T{is T;}" and "T{is sober}"
shows "T{is anti-}IsHConnected"

(proof)

theorem (in topology0) anti_HConn_iff_T1_sober:
shows "(T{is anti-}IsHConnected) +— (T{is sober}AT{is T;})"

(proof)
A space is ultraconnected iff every two non-empty closed sets meet.

definition IsUConnected ("_{is ultraconnectedl}"80)
where "T{is ultraconnected}= VA B. A{is closed in}TAB{is closed in}TAANB=0
— A=0VB=0"

Every ultraconnected space is trivially normal.

lemma (in topology0)UConn_imp_normal:
assumes "T{is ultraconnected}"
shows "T{is normall}"

374

(proof)

Every ultraconnected space is connected.

lemma UConn_imp_Conn:
assumes "T{is ultraconnected}"
shows "T{is connected}"

(proof)

lemma UConn_spectrum:
shows "(A{is in the spectrum of}IsUConnected) «+— A<1"

(proof)

This time, anti-ultraconnected is an old property.

theorem (in topology0) anti_UConn:
shows "(T{is anti-}IsUConnected) <+— T{is T1}"

(proof)

Is is natural that separation axioms and connection axioms are anti-properties
of each other; as the concepts of connectedness and separation are opposite.

To end this section, let’s try to charaterize anti-sober spaces.

lemma sober_spectrum:
shows "(A{is in the spectrum of}IsSober) <— A<1"

(proof)

theorem (in topology0)anti_sober:
shows "(T{is anti-}IsSober) +— T={0,JT}"
(proof)

end

61 Topology 8

theory Topology_ZF_8 imports Topology_ZF_6 EquivClassl
begin

This theory deals with quotient topologies.

61.1 Definition of quotient topology

Given a surjective function f: X — Y and a topology 7 in X, it is posible
to consider a special topology in Y. f is called quotient function.

definition (in topology0)
QuotientTop ("{quotient topology in}_{by}_" 80)
where "fesurj((JT,Y) =—>{quotient topology in}Y{by}f=
{UcPow(Y). £-*‘UeT}"

375

abbreviation QuotientTopTop ("{quotient topology in}_{by}_{from}_")
where "QuotientTopTop(Y,f,T) = topology0.QuotientTop(T,Y,f)"

The quotient topology is indeed a topology.

theorem (in topologyO) quotientTop_is_top:

assumes "fesurj(JT,Y)"

shows "({quotient topology in} Y {by} f) {is a topologyl}"
(proof)

The quotient function is continuous.

lemma (in topology0) quotient_func_cont:
assumes "fesurj(JT,V)"
shows "IsContinuous(T, ({quotient topology in} Y {by} £),f)"

(proof)

One of the important properties of this topology, is that a function from the
quotient space is continuous iff the composition with the quotient function
is continuous.

theorem (in two_top_spacesO) cont_quotient_top:
assumes "heésurj(J71,Y)" "g:Y—J7o" "IsContinuous(ri,72,g 0 h)"
shows "IsContinuous(({quotient topology in} Y {by} h {from} 71),72,g)"
(proof)

The underlying set of the quotient topology is Y.

lemma (in topology0) total_quo_func:

assumes "fesurj(JT,Y)"

shows "(|J ({quotient topology in}Y{by}f))=Y"
(proof)

61.2 Quotient topologies from equivalence relations

In this section we will show that the quotient topologies come from an
equivalence relation.

First, some lemmas for relations.

lemma quotient_proj_fun:
shows "{(b,r‘‘{b}). beA}:A—A//x" (proof)

lemma quotient_proj_surj:
shows "{(b,r‘‘{b}). beA}esurj(A,A//r)"
(proof)

lemma preim_equi_proj:
assumes "UCA//r" "equiv(A,r)"
shows "{(b,r‘{b}). beA}-‘‘U=JU"
(proof)

376

Now we define what a quotient topology from an equivalence relation is:

definition (in topology0)

EquivQuo ("{quotient by}_" 70)

where "equiv(|JT,r)=— ({quotient by}r)={quotient topology in}(JT)//r{by}{(b,r‘‘{b}).
belJT}H"

abbreviation
EquivQuoTop ("_{quotient by}_" 60)
where "EquivQuoTop(T,r)=topology0.EquivQuo(T,r)"

First, another description of the topology (more intuitive):

theorem (in topology0) quotient_equiv_rel:

assumes "equiv(JT,r)"

shows "({quotient by}r)={UcPow((UT)//r). |JUET}"
(proof)

We apply previous results to this topology.

theorem (in topology0) total_quo_equi:
assumes "equiv(|JT,r)"
shows "|J ({quotient by}r)=(JT)//r"
{proof)

theorem (in topology0) equiv_quo_is_top:
assumes "equiv(|JT,r)"
shows "({quotient by}r){is a topologyl}"
{proof)

MAIN RESULT: All quotient topologies arise from an equivalence relation
given by the quotient function f : X — Y. This means that any quotient
topology is homeomorphic to a topology given by an equivalence relation
quotient.

theorem (in topology0) equiv_quotient_top:

assumes "fesurj(JT,Y)"

defines "r={(x,y)elJTx|JT. £¢(x)=f‘(y)}"

defines "g={(y,f-‘‘{y}). yey}"

shows "equiv(|JT,r)" and "IsAhomeomorphism(({quotient topology in}Y{by}f), ({quotient
by}r),g)"
(proof)

lemma product_equiv_rel_fun:
shows "{((b,c),(r ‘{b},r‘{c})). (b,c)eUTxUTr: UTxUD—=WUUD//rxUT)//)"
(proof)

lemma(in topology0) prod_equiv_rel_surj:
shows "{((b,c),(r ‘{b},r ‘{c})). (b,c)elJTx|JT}:surj (| (ProductTopology(T,T)), ((JT)//rx ([
(proof)

lemma(in topology0) product_quo_fun:

377

assumes "equiv(|JT,r)"

shows "IsContinuous(ProductTopology(T,T),ProductTopology({quotient by}r, ({quotient
by}r)),{{({(b,c),{r ‘{b},r ‘{c})). (b,c)eJTxUTH"
(proof)

The product of quotient topologies is a quotient topology given that the
quotient map is open. This isn’t true in general.

theorem (in topology0) prod_quotient:

assumes "equiv(|JT,r)" "VAET. {(b,r‘‘{b}). belJT}‘‘Ac({quotient byltr)"

shows " (ProductTopology({quotient by}r,{quotient byl}r)) = ({quotient
topology in}(((JT)//t)x ((UT)//r)){by}({{(b,c),(r ‘{b},r {c})). (b,c)elUTxJTH) {from} (Prods
(proof)

end

62 Topology 9

theory Topology_ZF_9
imports Topology_ZF_2 Group_ZF_2 Topology_ZF_7 Topology_ZF_8
begin

62.1 Group of homeomorphisms

This theory file deals with the fact the set homeomorphisms of a topological
space into itself forms a group.
First, we define the set of homeomorphisms.

definition
"HomeoG(T) = {f:(JT—{JT. IsAhomeomorphism(T,T,f)}"

The homeomorphisms are closed by composition.

lemma (in topology0) homeo_composition:
assumes "fcHomeoG(T)""gcHomeoG(T)"
shows "Composition(|JT) ‘(f, g)EHomeoG(T)"

(proof)

The identity function is a homeomorphism.

lemma (in topology0O) homeo_id:
shows "id(|JT) €HomeoG(T)"
(proof)

The homeomorphisms form a monoid and its neutral element is the identity.

theorem (in topology0) homeo_submonoid:
shows "IsAmonoid(HomeoG(T),restrict(Composition(|JT) ,HomeoG(T) xHomeoG(T)))"

"TheNeutralElement (HomeoG(T) ,restrict (Composition(|JT) ,HomeoG(T) xHomeoG(T)))=1id (| JT)"
(proof)

378

The homeomorphisms form a group, with the composition.

theorem (in topology0O) homeo_group:
shows "IsAgroup(HomeoG(T) ,restrict(Composition(|JT),HomeoG(T) xHomeoG(T)))"

(proof)

62.2 Examples computed

As a first example, we show that the group of homeomorphisms of the co-
cardinal topology is the group of bijective functions.

theorem homeo_cocardinal:
assumes "InfCard(Q)"
shows "HomeoG(CoCardinal X Q)=bij(X,X)"

(proof)

The group of homeomorphism of the excluded set is a direct product of the
bijections on X \ T and the bijections on X N T

theorem homeo_excluded:
shows "HomeoG(ExcludedSet X T)={febij(X,X). £ ‘(X-T)=(X-T)}"
(proof)

We now give some lemmas that will help us compute HomeoG(IncludedSet X
.

lemma cont_in_cont_ex:

assumes "IsContinuous(IncludedSet X T,IncludedSet X T,f)" "f:X—X"
IITCX"

shows "IsContinuous(ExcludedSet X T,ExcludedSet X T,f)"
(proof)

lemma cont_ex_cont_in:

assumes "IsContinuous(ExcludedSet X T,ExcludedSet X T,f)" "f:X—X"
|ITgXI|

shows "IsContinuous(IncludedSet X T,IncludedSet X T,f)"
(proof)

The previous lemmas imply that the group of homeomorphisms of the in-
cluded set topology is the same as the one of the excluded set topology.

lemma homeo_included:

assumes "TCX"

shows "HomeoG(IncludedSet X T)={f € bij(X, X) . £ ‘¢ X -T) =X -
TH"
(proof)

Finally, let’s compute part of the group of homeomorphisms of an order
topology.

lemma homeo_order:
assumes "IsLinOrder(X,r)""3dx y. x#yAxeXAyeX"
shows "ord_iso(X,r,X,r)CHomeoG(OrdTopology X r)"

379

(proof)

This last example shows that order isomorphic sets give homeomorphic topo-
logical spaces.

62.3 Properties preserved by functions

The continuous image of a connected space is connected.

theorem (in two_top_spaces0) cont_image_conn:
assumes "IsContinuous(7y,79,f)" "fesurj(X;,X9)" "71{is connectedl}"
shows "79{is connected}"

(proof)

Every continuous function from a space which has some property P and a
space which has the property anti(P), given that this property is preserved
by continuous functions, if follows that the range of the function is in the
spectrum. Applied to connectedness, it follows that continuous functions
from a connected space to a totally-disconnected one are constant.

corollary (in two_top_spaces0) cont_conn_tot_disc:

assumes "IsContinuous(7y,72,f)" "7;{is connected}" "79{is totally-disconnectedl}"
llf :X1_>x2u nxl;éon

shows "Jq€Xy. VweX;. £(w)=q"
(proof)

The continuous image of a compact space is compact.

theorem (in two_top_spaces0) cont_image_com:
assumes "IsContinuous(7y,72,f)" "fesurj(X;,Xs)" "X;{is compact of cardinall}K{in}r;"
shows "Xo{is compact of cardinal}K{inl}rs"

(proof)

As it happends to connected spaces, a continuous function from a compact
space to an anti-compact space has finite range.

corollary (in two_top_spaces0) cont_comp_anti_comp:

assumes "IsContinuous(7y,72,f)" "X;{is compact in}7;" "7o{is anti-compact}"
|If :Xl%xQ n lel#oll

shows "Finite(range(f))" and "range(f)#0"
(proof)

As a consequence, it follows that quotient topological spaces of compact
(connected) spaces are compact (connected).

corollary (in topology0) compQuot:
assumes " (| JT){is compact in}T" "equiv(|JT,r)"
shows "(|JT)//r{is compact in}({quotient by}r)"
(proof)

corollary (in topology0) ConnQuot:

380

assumes "T{is connected}" "equiv(|JT,r)"
shows "({quotient by}r){is connected}"

(proof)

end

63 Topology 10

theory Topology_ZF_10
imports Topology_ZF_7
begin

This file deals with properties of product spaces. We only consider product
of two spaces, and most of this proofs, can be used to prove the results in
product of a finite number of spaces.

63.1 Closure and closed sets in product space

The closure of a product, is the product of the closures.

lemma cl_product:
assumes "T{is a topology}" "S{is a topology}" "AC|JT" "BClJS"
shows "Closure(AXxB,ProductTopology(T,S))=Closure(A,T)xClosure(B,S)"
(proof)

The product of closed sets, is closed in the product topology.

corollary closed_product:

assumes "T{is a topology}" "S{is a topology}" "A{is closed in}T""B{is
closed in}S"

shows "(AxB) {is closed in}ProductTopology(T,S)"

(proof)

63.2 Separation properties in product space

The product of Ty spaces is Tjp.

theorem TO_product:
assumes "T{is a topology}""S{is a topology}""T{is To}""S{is To}"
shows "ProductTopology(T,S){is To}"

(proof)

The product of T spaces is T7.

theorem T1_product:
assumes "T{is a topology}""S{is a topology}""T{is Ty}""S{is T;}"
shows "ProductTopology(T,S){is T;}"

(proof)

The product of T spaces is Tb.

381

theorem T2_product:
assumes "T{is a topology}""S{is a topology}""T{is Ty}""S{is T}"
shows "ProductTopology(T,S){is Ty}"

(proof)

The product of regular spaces is regular.

theorem regular_product:

assumes "T{is a topology}" "S{is a topology}" "T{is regularl}" "S{is
regular}"

shows "ProductTopology(T,S){is regular}"

(proof)

63.3 Connection properties in product space

First, we prove that the projection functions are open.

lemma projection_open:
assumes "T{is a topology}""S{is a topology}""BeProductTopology(T,S)"
shows "{yelJT. JIxelJs. (y,x)eB}eT"

(proof)

lemma projection_open2:
assumes "T{is a topology}""S{is a topologyl}""B&ProductTopology(T,S)"
shows "{yelJsS. IxeJT. (x,y)eB}es"

(proof)

The product of connected spaces is connected.

theorem compact_product:

assumes "T{is a topology}""S{is a topology}""T{is connected}""S{is
connected}"

shows "ProductTopology(T,S){is connected}"

(proof)

end

64 Topology 11

theory Topology_ZF_11 imports Topology_ZF_7 Finite_ZF_1

begin

This file deals with order topologies. The order topology is already defined
in Topology_ZF_examples_1.thy.

64.1 Order topologies

We will assume most of the time that the ordered set has more than one
point. It is natural to think that the topological properties can be translated

382

to properties of the order; since every order rises one and only one topology
in a set.

64.2 Separation properties
Order topologies have a lot of separation properties.

Every order topology is Hausdorff.

theorem order_top_T2:
assumes "IsLinOrder(X,r)" "3Ix y. x#yAxeXAyeX"
shows "(OrdTopology X r){is Ta}"

(proof)

Every order topology is Ty, but the proof needs lots of machinery. At the
end of the file, we will prove that every order topology is normal; sooner or
later.

64.3 Connectedness properties

Connectedness is related to two properties of orders: completeness and den-
sity

Some order-dense properties:

definition
IsDenseSub ("_ {is dense in}_{with respect to}_") where
"A {is dense in}X{with respect to}r =
VxeX. VyeX. (x,y)er A x#y — (zeA-{x,y}. (x,z)erA(z,y)er)"

definition
IsDenseUnp ("_ {is not-properly dense in}_{with respect to}_") where
"A {is not-properly dense in}X{with respect to}r =
VxeX. VyeX. (x,y)er A x#y — (Jz€A. (x,z)erA(z,y)ET)"

definition
IsWeaklyDenseSub ("_ {is weakly dense in}_{with respect to}_") where
"A {is weakly dense in}X{with respect to}r =
VxeX. VyeX. (x,y)er A x£y — ((zeA-{x,y}. (x,z)erA(z,y)€r)V IntervalX(X,r,x,y)=0)"

definition
IsDense ("_ {is dense with respect to}_") where
"X {is dense with respect to}r =
VxeX. VyeX. (x,y)er A x#y — (FzeX-{x,y}. (x,z)erA(z,y)er)"

lemma dense_sub:
shows "(X {is dense with respect to}r) <— (X {is dense in}X{with respect
totr)"

(proof)

383

lemma not_prop_dense_sub:
shows "(A {is dense in}X{with respect to}r) — (A {is not-properly
dense in}X{with respect tol}r)"

(proof)

In densely ordered sets, intervals are infinite.

theorem dense_order_inf_intervals:

assumes "IsLinOrder(X,r)" "IntervalX(X, r, b, c)#0""beX""ceX" "X{is
dense with respect toltr"

shows "—Finite(IntervalX(X, r, b, c))"

(proof)

Left rays are infinite.

theorem dense_order_inf_ lrays:

assumes "IsLinOrder(X,r)" "LeftRayX(X,r,c)#0""ceX" "X{is dense with
respect tol}r"

shows "—Finite(LeftRayX(X,r,c))"

(proof)
Right rays are infinite.

theorem dense_order_inf_rrays:

assumes "IsLinOrder(X,r)" "RightRayX(X,r,b)#0""beX" "X{is dense with
respect tol}r"

shows "—Finite(RightRayX(X,r,b))"

(proof)

The whole space in a densely ordered set is infinite.

corollary dense_order_infinite:
assumes "IsLinOrder(X,r)" "X{is dense with respect to}r"
"Ix y. xFyAxEXAyeX"
shows "—(X<nat)"

(proof)

If an order topology is connected, then the order is complete. It is equivalent
to assume that » C X x X or prove that »r N X x X is complete.

theorem conn_imp_complete:
assumes "IsLinOrder(X,r)" "dx y. xF#yAxeXAyeX" "rCXxX"
"(OrdTopology X r){is connectedl}"
shows "r{is complete}"

(proof)

If an order topology is connected, then the order is dense.

theorem conn_imp_dense:
assumes "IsLinOrder(X,r)" "dx y. xF#yAxeXAyeX"
"(OrdTopology X r){is connectedl}"
shows "X {is dense with respect to}r"

(proof)

384

Actually a connected order topology is one that comes from a dense and
complete order.

First a lemma. In a complete ordered set, every non-empty set bounded
from below has a maximum lower bound.
lemma complete_order_bounded_below:

assumes "r{is complete}" "IsBoundedBelow(A,r)" "A#0" "rCXxX"
shows "HasAmaximum(r,()c€A. r-¢‘{c}H)"

(proof)

theorem comp_dense_imp_conn:
assumes "IsLinOrder(X,r)" "dx y. x#yAxeXAyeX" "rCXxX"
"X {is dense with respect to}r" "r{is completel}"
shows " (0OrdTopology X r){is connected}"

(proof)

64.4 Numerability axioms

A k-separable order topology is in relation with order density.

If an order topology has a subset A which is topologically dense, then that
subset is weakly order-dense in X.
lemma dense_top_imp_Wdense_ord:

assumes "IsLinOrder(X,r)" "Closure(A,OrdTopology X r)=X" "ACX" "JIx

y.x #yAx €XANyeX"
shows "A{is weakly dense in}X{with respect to}r"

(proof)

Conversely, a weakly order-dense set is topologically dense if it is also con-
sidered that: if there is a maximum or a minimum elements whose singletons
are open, this points have to be in A. In conclusion, weakly order-density is
a property closed to topological density.

Another way to see this: Consider a weakly order-dense set A:

e If X has a maximum and a minimum and {min,max} is open: A is
topologically dense in X \ {min, max}, where min is the minimum in
X and maz is the maximum in X.

e If X has a maximum, {max} is open and X has no minimum or {min}
isn’t open: A is topologically dense in X \ {max}, where maz is the
maximum in X.

e If X has a minimum, {min} is open and X has no maximum or {maz}
isn’t open A is topologically dense in X \ {min}, where min is the
minimum in X.

e If X has no minimum or maximum, or {min, max} has no proper open
sets: A is topologically dense in X.

385

lemma Wdense_ord_imp_dense_top:
assumes "IsLinOrder(X,r)" "A{is weakly dense in}X{with respect to}tr"
"ACX" "IJx y. x #FyAx €X ANy €EX"
"HasAminimum(r,X) —{Minimum(r,X)}<€ (0rdTopology X r) —Minimum(r,X)€A"
"HasAmaximum(r,X) —{Maximum(r,X)}€ (0rdTopology X r) —Maximum(r,X)€A"
shows "Closure(A,OrdTopology X r)=X"

(proof)

The conclusion is that an order topology is x-separable iff there is a set A
with cardinality strictly less than x which is weakly-dense in X.

theorem separable_imp_wdense:
assumes " (OrdTopology X r){is separable of cardinal}Q" "dx y. x # y
ANxeXANyeX"
"IsLinOrder(X,r)"
shows "JAcPow(X). A<Q A (A{is weakly dense in}X{with respect tol}r)"

(proof)

theorem wdense_imp_separable:
assumes "dx y. x # y A x € X Ay € X" "(A{is weakly dense in}X{with
respect tol}r)"
"IsLinOrder (X,r)" "A<Q" "InfCard(Q)" "ACX"
shows "(0OrdTopology X r){is separable of cardinal}Q"

(proof)
end

65 Topological groups - introduction

theory TopologicalGroup_ZF imports Topology_ZF_3 Group_ZF_1 Semigroup_ZF
begin

This theory is about the first subject of algebraic topology: topological
groups.

65.1 Topological group: definition and notation

Topological group is a group that is a topological space at the same time.
This means that a topological group is a triple of sets, say (G, f,T) such
that T is a topology on G, f is a group operation on GG and both f and the
operation of taking inverse in GG are continuous. Since IsarMathLib defines
topology without using the carrier, (see Topology_ZF), in our setup we just
use |JT instead of G and say that the pair of sets (|J T, f) is a group. This
way our definition of being a topological group is a statement about two
sets: the topology T and the group operation f on G = |JT. Since the
domain of the group operation is G x GG, the pair of topologies in which f is

386

supposed to be continuous is 7" and the product topology on G' x G (which
we will call 7 below).

This way we arrive at the following definition of a predicate that states that
pair of sets is a topological group.

definition
"IsAtopologicalGroup(T,f) = (T {is a topology}) A IsAgroup(UJT,f) A
IsContinuous (ProductTopology(T,T),T,f) A
IsContinuous(T,T,GroupInv(|JT,£))"

We will inherit notation from the topology0 locale. That locale assumes
that T is a topology. For convenience we will denote G = |J7 and 7 to be
the product topology on G x GG. To that we add some notation specific to
groups. We will use additive notation for the group operation, even though
we don’t assume that the group is abelian. The notation g+ A will mean the
left translation of the set A by element g, i.e. g+ A = {g + ala € A}. The
group operation G induces a natural operation on the subsets of G defined
as (A, B) — {z +y|z € A,y € B}. Such operation has been considered in
func_ZF and called f "lifted to subsets of” G. We will denote the value of
such operation on sets A, B as A + B. The set of neighoorhoods of zero
(denoted Ny) is the collection of (not necessarily open) sets whose interior
contains the neutral element of the group.

locale topgroup = topologyO +

fixes G
defines G_def [simpl: "G = JT"

fixes prodtop ("7")
defines prodtop_def [simpl: "7 = ProductTopology(T,T)"

fixes f

assumes Ggroup: "IsAgroup(G,f)"

assumes fcon: "IsContinuous(r,T,f)"

assumes inv_cont: "IsContinuous(T,T,GroupInv(G,f))"

fixes grop (infixl "+" 90)
defines grop_def [simpl: "x+y = £(x,y)"

fixes grinv ("- _" 89)
defines grinv_def [simpl: "(-x) = GroupInv(G,f)‘(x)"

fixes grsub (infixl "-" 90)
defines grsub_def [simp]: "x-y = x+(-y)"

387

fixes setinv ("- _" 72)
defines setninv_def [simp]l: "-A = GroupInv(G,f)‘‘(A)"

fixes ltrans (infix "+" 73)
defines ltrans_def [simp]: "x + A = LeftTranslation(G,f,x)‘‘(A)"

fixes rtrans (infix "+" 73)
defines rtrans_def [simp]: "A + x = RightTranslation(G,f,x)‘‘(A)"

fixes setadd (infixl "+" 71)
defines setadd_def [simpl: "A+B = (f {lifted to subsets of} G) ‘(A,B)"

fixes gzero ("0")
defines gzero_def [simp]: "O = TheNeutralElement (G,f)"

fixes zerohoods ("A{")
defines zerohoods_def [simpl: "Ng = {A € Pow(G). 0 € int(A)}"

fixes listsum ("> _" 70)
defines listsum_def[simp]l: "> k = Fold1l(f,k)"

The first lemma states that we indeeed talk about topological group in the
context of topgroup locale.

lemma (in topgroup) topGroup: shows "IsAtopologicalGroup(T,f)"

{proof)

If a pair of sets (7', f) forms a topological group, then all theorems proven
in the topgroup context are valid as applied to (T, f).

lemma topGroupLocale: assumes "IsAtopologicalGroup(T,f)"
shows "topgroup(T,f)"
{proof)

We can use the group0 locale in the context of topgroup.

lemma (in topgroup) groupO_valid_in_tgroup: shows "groupO(G,f)"

(proof)

We can use semigr0 locale in the context of topgroup.

lemma (in topgroup) semigrO_valid_in_tgroup: shows "semigr0(G,f)"
{proof)

We can use the prod_top_spaces0 locale in the context of topgroup.

lemma (in topgroup) prod_top_spacesO_valid: shows "prod_top_spacesO(T,T,T)"
{proof)

Negative of a group element is in group.

lemma (in topgroup) neg_in_tgroup: assumes "geG" shows "(-g) € G"

(proof)

388

Zero is in the group.

lemma (in topgroup) zero_in_tgroup: shows "0&G"
(proof)

Of course the product topology is a topology (on G x G).

lemma (in topgroup) prod_top_on_G:
shows "7 {is a topology}" and "|J7 = GXG"

(proof)

Let’s recall that f is a binary operation on G in this context.

lemma (in topgroup) topgroup_f_binop: shows "f : GXG — G"
{proof)

A subgroup of a topological group is a topological group with relative topol-
ogy and restricted operation. Relative topology is the same as T {restricted
to} H which is defined to be {V N H : V € T} in ZF1 theory.

lemma (in topgroup) top_subgroup: assumes Al: "IsAsubgroup(H,f)"
shows "IsAtopologicalGroup(T {restricted to} H,restrict(f,HxH))"

(proof)

65.2 Interval arithmetic, translations and inverse of set

In this section we list some properties of operations of translating a set and
reflecting it around the neutral element of the group. Many of the results are
proven in other theories, here we just collect them and rewrite in notation
specific to the topgroup context.

Different ways of looking at adding sets.

lemma (in topgroup) interval_add: assumes "ACG" "BCG" shows
"A+B C G" and "A+B = f£¢‘(AXB)" "A+B = (UXGA. x+B)"

(proof)

Right and left translations are continuous.

lemma (in topgroup) trans_cont: assumes "gcG" shows
"IsContinuous(T,T,RightTranslation(G,f,g))" and
"IsContinuous(T,T,LeftTranslation(G,f,g))"

(proof)

Left and right translations of an open set are open.

lemma (in topgroup) open_tr_open: assumes "geG" and "VeT"
shows "g+V € T" and "V+g € T"

(proof)

Right and left translations are homeomorphisms.

lemma (in topgroup) tr_homeo: assumes "geG" shows
"IsAhomeomorphism(T,T,RightTranslation(G,f,g))" and

389

"IsAhomeomorphism(T,T,LeftTranslation(G,f,g))"
(proof)
Translations preserve interior.

lemma (in topgroup) trans_interior: assumes Al: "geG" and A2: "ACG"

shows "g + int(A) = int(g+A)"

(proof)

Inverse of an open set is open.

lemma (in topgroup) open_inv_open: assumes "VET" shows "(-V) € T"
{proof)

Inverse is a homeomorphism.

lemma (in topgroup) inv_homeo: shows "IsAhomeomorphism(T,T,GroupInv(G,f))"
{proof)

Taking negative preserves interior.

lemma (in topgroup) int_inv_inv_int: assumes "A C G"
shows "int(-A) = -(int(A))"

(proof)

65.3 Neighborhoods of zero

Zero neighborhoods are (not necessarily open) sets whose interior contains
the neutral element of the group. In the topgroup locale the collection of
neighboorhoods of zero is denoted Ny.

The whole space is a neighborhood of zero.

lemma (in topgroup) zneigh_not_empty: shows "G € A"

(proof)

Any element belongs to the interior of any neighboorhood of zero translated
by that element.
lemma (in topgroup) elem_in_int_trans:

assumes Al: "geG" and A2: "H € A"

shows "g € int(g+H)"

(proof)

Negative of a neighborhood of zero is a neighborhood of zero.

lemma (in topgroup) neg_neigh neigh: assumes "H € ANj"
shows "(-H) € Ny"
(proof)

Translating an open set by a negative of a point that belongs to it makes it
a neighboorhood of zero.

lemma (in topgroup) open_trans_neigh: assumes Al: "UcT" and "geU"
shows "(-g)+U € A"
(proof)

390

65.4 Closure in topological groups

This section is devoted to a characterization of closure in topological groups.

Closure of a set is contained in the sum of the set and any neighboorhood
of zero.
lemma (in topgroup) cl_contains_zneigh:

assumes Al: "ACG" and A2: "H € Nj"
shows "cl(A) C A+H"

(proof)

The next theorem provides a characterization of closure in topological groups
in terms of neighborhoods of zero.
theorem (in topgroup) cl_topgroup:
assumes "ACG" shows "cl(A) = ((HEN,. A+H)"
(proof)

65.5 Sums of sequences of elements and subsets

In this section we consider properties of the function G" — G, x = (xg, 1, ..., Tn—1) —
Z?:_()l x;. We will model the cartesian product G™ by the space of sequences

n — G, where n = {0,1,...,n — 1]} is a natural number. This space is
equipped with a natural product topology defined in Topology_ZF_3.

Let’s recall first that the sum of elements of a group is an element of the
group.
lemma (in topgroup) sum_list_in_group:

assumes "n € nat" and "x: succ(n)—G"
shows "(>"x) € G"

(proof)

In this context x+y is the same as the value of the group operation on the
elements x and y. Normally we shouldn’t need to state this a s separate
lemma.

lemma (in topgroup) grop_defl: shows "f‘(x,y) = x+y" (proof)

Another theorem from Semigroup_ZF theory that is useful to have in the
additive notation.
lemma (in topgroup) shorter_set_add:
assumes "n € nat" and "x: succ(succ(n))—G"
shows "(>"x) = (O Init(x)) + (x¢(succ(n)))"
(proof)

Sum is a continuous function in the product topology.

theorem (in topgroup) sum_continuous: assumes "n € nat"
shows "IsContinuous(SeqProductTopology(succ(n),T),T,{(x,) x).xEsucc(n)—GH)"

(proof)
end

391

66 Properties in topology 2

theory Topology_ZF_properties_2 imports Topology_ZF_7 Topology_ZF_1b
Finite_ZF_1 Topology_ZF_11

begin

66.1 Local properties.

This theory file deals with local topological properties; and applies local
compactness to the one point compactification.

We will say that a topological space is locally @Qterm”P” iff every point
has a neighbourhood basis of subsets that have the property @Qterm”P” as
subspaces.

definition

IsLocally ("_{is locally}_" 90)

where "T{is a topology} — T{is locally}P = (Vx€JT. VbeT. x€b —
(dcePow(b). x€Interior(c,T) A P(c,T)))"

66.2 First examples

Our first examples deal with the locally finite property. Finiteness is a
property of sets, and hence it is preserved by homeomorphisms; which are
in particular bijective.

The discrete topology is locally finite.

lemma discrete_locally_finite:
shows "Pow(A){is locally}(MA.(AB. Finite(A)))"

(proof)
The included set topology is locally finite when the set is finite.

lemma included_finite_locally_finite:
assumes "Finite(A)" and "ACX"
shows "(IncludedSet X A){is locally}(MA.(AB. Finite(A)))"

(proof)

66.3 Local compactness

definition
IsLocallyComp ("_{is locally-compactl}" 70)
where "T{is locally-compact}=T{is locally}(AB. AT. B{is compact in}T)"

We center ourselves in local compactness, because it is a very important tool
in topological groups and compactifications.

If a subset is compact of some cardinal for a topological space, it is compact
of the same cardinal in the subspace topology.

392

lemma compact_imp_compact_subspace:
assumes "A{is compact of cardinal}K{in}T" "ACB"
shows "A{is compact of cardinal}X{in}(T{restricted to}B)" (proof)

The converse of the previous result is not always true. For compactness, it
holds because the axiom of finite choice always holds.

lemma compact_subspace_imp_compact:
assumes "A{is compact in}(T{restricted to}B)" "ACB"
shows "A{is compact in}T" (proof)

If the axiom of choice holds for some cardinal, then we can drop the compact
sets of that cardial are compact of the same cardinal as subspaces of every
superspace.

lemma Kcompact_subspace_imp_Kcompact:

assumes "A{is compact of cardinal}Q{in}(T{restricted to}B)" "ACB" "({the
axiom of} Q {choice holds})"

shows "A{is compact of cardinal}Q{in}T"

(proof)

Every set, with the cofinite topology is compact.

lemma cofinite_compact:
shows "X {is compact in}(CoFinite X)" (proof)

A corollary is then that the cofinite topology is locally compact; since every
subspace of a cofinite space is cofinite.

corollary cofinite_locally_compact:
shows "(CoFinite X){is locally-compactl}"

(proof)

In every locally compact space, by definition, every point has a compact
neighbourhood.

theorem (in topology0) locally_compact_exist_compact_neig:
assumes "T{is locally-compact}"
shows "Vxe|JT. JAcPow(|JT). A{is compact in}T A xE€int(A)"

(proof)

In Hausdorff spaces, the previous result is an equivalence.

theorem (in topologyO) exist_compact_neig_T2_imp_locally_compact:
assumes "Vxe|JT. JAcPow(|JT). x€int(A) A A{is compact in}T" "T{is
To}"
shows "T{is locally-compact}"

(proof)

66.4 Compactification by one point

Given a topological space, we can always add one point to the space and get
a new compact topology; as we will check in this section.

393

definition

OPCompactification ("{one-point compactification of}_" 90)

where "{one-point compactification of}T=TU{{JTIUJ((JT)-K). Ke{BePou(|JT).
B{is compact in}T A B{is closed in}T}}"

Firstly, we check that what we defined is indeed a topology.

theorem (in topologyO) op_comp_is_top:
shows "({one-point compactification of}T){is a topology}" (proof)

The original topology is an open subspace of the new topology.

theorem (in topology0) open_subspace:
shows " JT€{one-point compactification of}T" and "({one-point compactification
of}T){restricted to}JT=T"

(proof)

We added only one new point to the space.

lemma (in topologyO) op_compact_total:
shows "|J ({one-point compactification of}T)={JTIU(JT)"

(proof)

The one point compactification, gives indeed a compact topological space.

theorem (in topology0) compact_op:
shows "({{JTIJ(UT)){is compact in}({one-point compactification of}T)"

{(proof)

The one point compactification is Hausdorff iff the original space is also
Hausdorff and locally compact.

lemma (in topology0) op_compact_T2_1:
assumes "({one-point compactification of}T){is To}"
shows "T{is Ty}"

(proof)

lemma (in topology0) op_compact_T2_2:
assumes "({one-point compactification of}T){is To}"
shows "T{is locally-compact}"

(proof)

lemma (in topology0) op_compact_T2_3:
assumes "T{is locally-compact}" "T{is To}"
shows "({one-point compactification of}T){is Ty}"

(proof)

In conclusion, every locally compact Hausdorff topological space is regular;
since this property is hereditary.

corollary (in topology0) locally_compact_T2_imp_regular:
assumes "T{is locally-compact}" "T{is Ty}"
shows "T{is regular}"

394

(proof)

This last corollary has an explanation: In Hausdorff spaces, compact sets
are closed and regular spaces are exactly the ”locally closed spaces” (those
which have a neighbourhood basis of closed sets). So the neighbourhood
basis of compact sets also works as the neighbourhood basis of closed sets
we needed to find.

definition
IsLocallyClosed ("_{is locally-closed}")
where "T{is locally-closed} = T{is locally}(AB TT. B{is closed in}TT)"

lemma (in topology0) regular_locally_closed:
shows "T{is regular} <— (T{is locally-closed})"

(proof)

66.5 Hereditary properties and local properties

In this section, we prove a relation between a property and its local property
for hereditary properties. Then we apply it to locally-Hausdorff or locally-
T5. We also prove the relation between locally-T5 and another property that
appeared when considering anti-properties, the anti-hyperconnectness.

If a property is hereditary in open sets, then local properties are equivalent
to find just one open neighbourhood with that property instead of a whole
local basis.

lemma (in topology0) her_P_is_loc_P:

assumes "VTT. VB€Pow(|JTT). VAETT. TT{is a topology}AP(B,TT) —
P(BNA,TT)"

shows "(T{is locally}P) +— (VxelJT. FAET. x€AAP(A,T))"
(proof)

definition

IsLocallyT2 ("_{is locally-T9}" 70)

where "T{is locally-To}=T{is locally}(AB. AT. (T{restricted tol}B){is
ToH"

Since T5 is an hereditary property, we can apply the previous lemma.

corollary (in topology0) loc_T2:

shows "(T{is locally-Ts}) <— (Vxe|JT. JA€T. xcAA(T{restricted to}A){is
ToH"
(proof)

First, we prove that a locally-T5 space is anti-hyperconnected.

Before starting, let’s prove that an open subspace of an hyperconnected
space is hyperconnected.

395

lemma (in topology0) open_subspace_hyperconn:
assumes "T{is hyperconnected}" "UcT"
shows "(T{restricted to}U){is hyperconnectedl}"

(proof)

lemma (in topology0) locally_T2_is_antiHConn:
assumes "T{is locally-Ty}"
shows "T{is anti-}IsHConnected"

(proof)

Now we find a counter-example for: Every anti-hyperconnected space is
locally-Hausdorff.

The example we are going to consider is the following. Put in X an anti-
hyperconnected topology, where an infinite number of points don’t have
finite sets as neighbourhoods. Then add a new point to the set, p ¢ X.
Consider the open sets on X U p as the anti-hyperconnected topology and
the open sets that contain p are pU A where X \ A is finite.

This construction equals the one-point compactification iff X is anti-compact;
i.e., the only compact sets are the finite ones. In general this topology is
contained in the one-point compactification topology, making it compact
too.

It is easy to check that any open set containing p meets infinite other non-
empty open set. The question is if such a topology exists.
theorem (in topology0) COF_comp_is_top:

assumes "T{is T;}""—(|JT<nat)"

shows "((({one-point compactification of}(CoFinite (|JT)))-{{UJT}IHUD
{is a topologyl}"
(proof)

The previous construction preserves anti-hyperconnectedness.

theorem (in topology0) COF_comp_antiHConn:

assumes "T{is anti-}IsHConnected" "—(|JT~<nat)"

shows "((({one-point compactification of}(CoFinite (|JT)))-{{UT}IHUD
{is anti-}IsHConnected"

(proof)

The previous construction, applied to a densely ordered topology, gives the
desired counterexample. What happends is that every neighbourhood of | JT
is dense; because there are no finite open sets, and hence meets every non-
empty open set. In conclusion, |JT cannot be separated from other points
by disjoint open sets.

Every open set that contains |JT is dense, when considering the order topol-
ogy in a densely ordered set with more than two points.

theorem neigh_infPoint_dense:

396

fixes T X r
defines T_def:"T = (OrdTopology X r)"
assumes "IsLinOrder(X,r)" "X{is dense with respect to}r"
"Ix y. x#yAxeXAyeX" "Ue(({one-point compactification of}(CoFinite
Unn-H{YUtrpur" "Yrteu"
"Ve (({one-point compactification of}(CoFinite (|JT)))-{{{JT}I}HUT"
"V?AO"
shows "UNV#0"
(proof)

A densely ordered set with more than one point gives an order topology.
Applying the previous construction to this topology we get a non locally-
Hausdorff space.

theorem OPComp_cofinite_dense_order_not_loc_T2:

fixes T X r

defines T_def:"T = (OrdTopology X r)"

assumes "IsLinOrder(X,r)" "X{is dense with respect to}r"

"Ix y. xFyAxEXAyeX"

shows "—((({one-point compactification of}(CoFinite (|JT)))-{{UTIIUT){is
locally-To})"
(proof)

This topology, from the previous result, gives a counter-example for anti-
hyperconnected implies locally-T5.

theorem antiHConn_not_imp_loc_T2:

fixes T X r

defines T_def:"T = (OrdTopology X r)"

assumes "IsLinOrder(X,r)" "X{is dense with respect to}r"

"Ix y. xFyAxeXAyeX"

shows "—((({one-point compactification of}(CoFinite (|JT)))-{{JT}}IUT){is
locally-To})"

and "(({one-point compactification of}(CoFinite (|JT)))-{{UT}}IUT){is
anti-}IsHConnected"

(proof)

Let’s prove that T5 spaces are locally-T5, but that there are locally-T5 spaces
which aren’t T5. In conclusion 75 = locally -T5 = anti-hyperconnected; all
implications proper.

theorem (in topology0) T2_imp_loc_T2:

assumes "T{is Ty}"
shows "T{is locally-Tol}"

(proof)

If there is a closed singleton, then we can consider a topology that makes
this point doble.

theorem (in topology0O) doble_point_top:
assumes "{m}{is closed in}T"
shows "(T U{(U-{oH)U{UTIUW. (U,W)e{VET. meV}xT}) {is a topology}"

397

(proof)

The previous topology is defined over a set with one more point.

lemma (in topology0) union_doublepoint_top:

assumes "{m}{is closed in}T"

shows "{J (TU{(U-{aP)U{UTIWW. (U,W)e{VET. meVIxTH=JT u{YJT}"
(proof)

In this topology, the previous topological space is an open subspace.

theorem (in topology0) open_subspace_double_point:

assumes "{m}{is closed in}T"

shows " (TU{(U-{m})U{JTIUW. (U,W)e{VET. meV}xT}){restricted to}|JT=T"
and "UYTe(TU{U-{mP)U{YJTIUW. (U,W)e{VET. meVIxTH)"
(proof)

The previous topology construction applied to a T non-discrite space topol-
ogy, gives a counter-example to: Every locally-T5 space is T5.

If there is a singleton which is not open, but closed; then the construction
on that point is not T5.

theorem (in topology0) loc_T2_imp_T2_counter_1:

assumes "{m}¢T" "{m}{is closed in}T"

shows "= ((TU{(U-{mP)U{YJTIUW. (U,W)e{VET. meV}IxT}) {is To})"
(proof)

This topology is locally-T5.

theorem (in topology0) loc_T2_imp_T2_counter_2:

assumes "{m}¢T" "me|JT" "T{is To}"

shows " (TU{(U-{n})U{YJTIUW. (U,W)e{VET. meV}xT}) {is locally-Ty}"
(proof)

There can be considered many more local properties, which; as happens with
locally-T5; can distinguish between spaces other properties cannot.

end

67 Topological groups 1

theory TopologicalGroup_ZF_1 imports TopologicalGroup_ZF Topology_ZF_properties_2
begin

This theory deals with some topological properties of topological groups.

67.1 Separation properties of topological groups

The topological groups have very specific properties. For instance, G is Ty
iff it is Ts.

398

theorem (in topgroup) cl_point:
assumes "xeG"
shows "cl1({x}) = ((NHEN. x+H)"
(proof)

We prove the equivalence between Ty and T3 first.

theorem (in topgroup) neu_closed_imp_T1:
assumes "{0}{is closed in}T"
shows "T{is T{}"

(proof)

theorem (in topgroup) TO_imp_neu_closed:
assumes "T{is Tg}"
shows "{0}{is closed in}T"

(proof)

67.2 Existence of nice neighbourhoods.

theorem (in topgroup) exists_sym_zerohood:
assumes "UEN "
shows "3VeN,. (VCUA (-)=V)"

(proof)

theorem (in topgroup) exists_procls_zerohood:
assumes "UEN "
shows "3VeN,. (VCUA (V+)CU A (-V)=V)"
(proof)

lemma (in topgroup) exist_basehoods_closed:
assumes "UEN "
shows "JVeN. cl(V)Cu"

(proof)

67.3 Rest of separation axioms

theorem (in topgroup) T1_imp_T2:
assumes "T{is T}"
shows "T{is To}"

(proof)

Here follow some auxiliary lemmas.

lemma (in topgroup) trans_closure:
assumes "xeG" "ACG"
shows "cl(x+A)=x+cl(A)"

(proof)

lemma (in topgroup) trans_interior2: assumes Al: "geG" and A2:

399

IIACGII

shows "int(A)+g = int(A+g)"
(proof)

lemma (in topgroup) trans_closure2:
assumes "xeG" "ACG"
shows "cl(A+x)=cl(A)+x"

(proof)

lemma (in topgroup) trans_subset:
assumes "AC((-x)+B)""xeG""ACG""BCG"
shows "x+ACB"

(proof)

Every topological group is regular, and hence T5. The proof is in the next
section, since it uses local properties.

67.4 Local properties

In a topological group, all local properties depend only on the neighbour-
hoods of the neutral element; when considering topological properties. The
next result of regularity, will use this idea, since translations preserve closed
sets.

lemma (in topgroup) local_iff_neutral:

assumes "VUETNN. INENy. NCUA P(N,T)" "VNEPow(G). VxeG. P(N,T)
— P(x+N,T)"

shows "T{is locally}P"

(proof)

lemma (in topgroup) trans_closed:
assumes "A{is closed in}T""x€G"
shows "(x+A){is closed in}T"

(proof)

As it is written in the previous section, every topological group is regular.

theorem (in topgroup) topgroup_reg:
shows "T{is regular}"
(proof)

The promised corollary follows:

corollary (in topgroup) T2_imp_T3:
assumes "T{is To}"
shows "T{is T3}" (proof)

end

400

68 Topological groups 2

theory TopologicalGroup_ZF_2 imports Topology_ZF_8 TopologicalGroup_ZF
Group_ZF_2
begin

This theory deals with quotient topological groups.

68.1 Quotients of topological groups

The quotient topology given by the quotient group equivalent relation, has
an open quotient map.

theorem (in topgroup) quotient_map_topgroup_open:
assumes "IsAsubgroup(H,f)" "AE€T"
defines "r = QuotientGroupRel(G,f,H)"
shows "{(b,r‘‘{b}). be| T} ‘Ac(T{quotient by}r)"
(proof)

A quotient of a topological group is just a quotient group with an appropiate
topology that makes product and inverse continuous.

theorem (in topgroup) quotient_top_group_F_cont:

assumes "IsAnormalSubgroup(G,f,H)"

defines "r = QuotientGroupRel(G,f,H)"

defines "F = QuotientGroupOp(G,f,H)"

shows "IsContinuous(ProductTopology(T{quotient by}r,T{quotient byl}r),T{quotient
by}r,F)"
(proof)

lemma (in group0) Group_ZF_2_4_L8:
assumes "IsAnormalSubgroup(G,P,H)"
defines "r = QuotientGroupRel(G,P,H)"
and "F = QuotientGroupOp(G,P,H)"
shows "GroupInv(G//r,F):G//r—G//r"
(proof)

theorem (in topgroup) quotient_top_group_INV_cont:
assumes "IsAnormalSubgroup(G,f,H)"
defines "r = QuotientGroupRel(G,f,H)"
defines "F = QuotientGroupOp(G,f,H)"
shows "IsContinuous(T{quotient by}r,T{quotient by}r,GroupInv(G//r,F))"

(proof)

Finally we can prove that quotient groups of topological groups are topo-
logical groups.
theorem (in topgroup) quotient_top_group:

assumes "IsAnormalSubgroup(G,f,H)"

defines "r = QuotientGroupRel(G,f,H)"
defines "F = QuotientGroupOp(G,f,H)"

401

shows "IsAtopologicalGroup({quotient by}r,F)"
(proof)

end

69 Topological groups 3

theory TopologicalGroup_ZF_3 imports Topology_ZF_10 TopologicalGroup_ZF_2
TopologicalGroup_ZF_1
Group_ZF_4

begin

This theory deals with topological properties of subgroups, quotient groups
and relations between group theorical properties and topological properties.

69.1 Subgroups topologies

The closure of a subgroup is a subgroup.

theorem (in topgroup) closure_subgroup:
assumes "IsAsubgroup(H,f)"
shows "IsAsubgroup(cl(H),f)"

(proof)

The closure of a normal subgroup is normal.

theorem (in topgroup) normal_subg:
assumes "IsAnormalSubgroup(G,f,H)"
shows "IsAnormalSubgroup(G,f,cl(H))"

(proof)

Every open subgroup is also closed.

theorem (in topgroup) open_subgroup_closed:
assumes "IsAsubgroup(H,f)" "HeT"
shows "H{is closed in}T"

(proof)
Any subgroup with non-empty interior is open.

theorem (in topgroup) clopen_or_emptylInt:
assumes "IsAsubgroup(H,f)" "int(H)#0"
shows "HeT"

(proof)

In conclusion, a subgroup is either open or has empty interior.

corollary (in topgroup) emptyInterior_xor_op:
assumes "IsAsubgroup(H,f)"
shows "(int(H)=0) Xor (HET)"

402

(proof)

Then no connected topological groups has proper subgroups with non-empty
interior.

corollary (in topgroup) connected_emptyInterior:
assumes "IsAsubgroup(H,f)" "T{is connected}"
shows " (int(H)=0) Xor (H=G)"

(proof)

Every locally-compact subgroup of a T group is closed.

theorem (in topgroup) loc_compact_TO_closed:

assumes "IsAsubgroup(H,f)" "(T{restricted to}H){is locally-compactl}"
"T{is To}"

shows "H{is closed inl}T"
(proof)

We can always consider a factor group which is 75.

theorem (in topgroup) factor_haus:
shows "(T{quotient by}QuotientGroupRel(G,f,cl1({0}))){is To}"
(proof)

end

70 Metamath introduction

theory MMI_prelude imports Order_ZF_1
begin

Metamath’s set.mm features a large (over 8000) collection of theorems proven
in the ZFC set theory. This theory is part of an attempt to translate those
theorems to Isar so that they are available for Isabelle/ZF users. A to-
tal of about 1200 assertions have been translated, 600 of that with proofs
(the rest was proven automatically by Isabelle). The translation was done
with the support of the mmisar tool, whose source is included in the Is-
arMathLib distributions prior to version 1.6.4. The translation tool was
doing about 99 percent of work involved, with the rest mostly related to the
difference between Isabelle/ZF and Metamath metalogics. Metamath uses
Tarski-Megill metalogic that does not have a notion of bound variables (see
http://planetx.cc.vt.edu/AsteroidMeta/Distinctors_vs_binders for details
and discussion). The translation project is closed now as I decided that it
was too boring and tedious even with the support of mmisar software. Also,
the translated proofs are not as readable as native Isar proofs which goes
against IsarMathLib philosophy.

403

70.1 Importing from Metamath - how is it done

We are interested in importing the theorems about complex numbers that
start from the ”recnt” theorem on. This is done mostly automatically by
the mmisar tool that is included in the IsarMathLib distributions prior to
version 1.6.4. The tool works as follows:

First it reads the list of (Metamath) names of theorems that are already
imported to IsarMathlib ("known theorems”) and the list of theorems that
are intended to be imported in this session ("new theorems”). The new
theorems are consecutive theorems about complex numbers as they appear
in the Metamath database. Then mmisar creates a ” Metamath script” that
contains Metamath commands that open a log file and put the statements
and proofs of the new theorems in that file in a readable format. The tool
writes this script to a disk file and executes metamath with standard input
redirected from that file. Then the log file is read and its contents converted
to the Isar format. In Metamath, the proofs of theorems about complex
numbers depend only on 28 axioms of complex numbers and some basic
logic and set theory theorems. The tool finds which of these dependencies
are not known yet and repeats the process of getting their statements from
Metamath as with the new theorems. As a result of this process mmisar
creates files new_theorems.thy, new_deps.thy and new_known_theorems.txt.
The file new_theorems.thy contains the theorems (with proofs) imported
from Metamath in this session. These theorems are added (by hand) to the
current MMI_Complex_ZF_x.thy file. The file new_deps.thy contains the state-
ments of new dependencies with generic proofs ”by auto”. These are added
to the MMI_logic_and_sets.thy. Most of the dependencies can be proven au-
tomatically by Isabelle. However, some manual work has to be done for the
dependencies that Isabelle can not prove by itself and to correct problems
related to the fact that Metamath uses a metalogic based on distinct vari-
able constraints (Tarski-Megill metalogic), rather than an explicit notion of
free and bound variables.

The old list of known theorems is replaced by the new list and mmisar is
ready to convert the next batch of new theorems. Of course this rarely works
in practice without tweaking the mmisar source files every time a new batch
is processed.

70.2 The context for Metamath theorems
We list the Metamth’s axioms of complex numbers and define notation here.

The next definition is what Metamath X € V is translated to. I am not
sure why it works, probably because Isabelle does a type inference and the

” 2

=" sign indicates that both sides are sets.

definition

404

IsASet :: "i=>o" ("_ isASet" [90] 90) where

IsASet_def[simp]: "X isASet = X = X"

The next locale sets up the context to which Metamath theorems about
complex numbers are imported. It assumes the axioms of complex numbers
and defines the notation used for complex numbers.

One of the problems with importing theorems from Metamath is that Meta-
math allows direct infix notation for binary operations so that the notation
afb is allowed where f is a function (that is, a set of pairs). To my knowl-
edge, Isar allows only notation f ‘(a,b) with a possibility of defining a syntax
say a + b to mean the same as £ “(a,b) (please correct me if I am wrong here).
This is why we have two objects for addition: one called caddset that repre-
sents the binary function, and the second one called ca which defines the a
+ b notation for caddset‘(a,b). The same applies to multiplication of real
numbers.

Another difficulty is that Metamath allows to define sets with syntax {z|p}
where p is some formula that (usually) depends on x. Isabelle allows the set
comprehension like this only as a subset of another set i.e. {z € A.p(z)}.
This forces us to have a sligtly different definition of (complex) natural num-
bers, requiring explicitly that natural numbers is a subset of reals. Because
of that, the proofs of Metamath theorems that reference the definition di-
rectly can not be imported.

locale MMIsar0 =
fixes real ("IR")
fixes complex ("C")
fixes one ("1")
fixes zero ("O")
fixes iunit ("i")
fixes caddset ("+")
fixes cmulset ("-")
fixes lessrrel ("<g")

fixes ca (infixl "+" 69)
defines ca_def: "a + b = +‘(a,b)"
fixes cm (infixl "-" 71)

defines cm_def: "a - b = -‘(a,b)"

fixes sub (infixl "-" 69)

defines sub_def: "a-b = {x€ C. b+x=a}"
fixes cneg ("-_" 95)

defines cneg_def: "- a =0 - a"

fixes cdiv (infixl "/" 70)

defines cdiv_def: "a /b= {x€ C. b -x=a}"
fixes cpnf ("4o0")

defines cpnf_def: "4o00 = C"

fixes cmnf ("—o0")

405

defines cmnf_def: "—oo = {C}"

fixes cxr ("IR*")

defines cxr_def: "R* = R U {+o0,—oco}"

fixes cxn ("IN")

defines cxn_def: "IN = (| {N € Pow(R). 1 € N A (Vn. neN — n+l €
)}

fixes lessr (infix "<g" 68)

defines lessr_def: "a <g b = (a,b) € <g"

fixes cltrrset ("<")

defines cltrrset_def:

"< = (<g N RxR) U {{—00,400)} U

(Rx{4+00}) U ({—c0}xR)"

fixes cltrr (infix "<" 68)

defines cltrr_def: "a < b = (a,b) € <"

fixes convcltrr (infix ">" 68)

defines convcltrr_def: "a > b = (a,b) € converse(<)"

fixes 1sq (infix "<" 68)

defines 1lsq_def: "a < b = = (b < a)"

fixes two ("2")

defines two_def: "2 = 1+1"

fixes three ("3")

defines three_def: "3 = 2+1"

fixes four ("4")

defines four_def: "4 = 3+1"

fixes five ("5")

defines five_def: "5 = 4+1"

fixes six ("6")

defines six_def: "6 = 5+1"

fixes seven ("7")

defines seven_def: "7 = 6+1"

fixes eight ("8")

defines eight_def: "8 = 7+1"

fixes nine ("9")

defines nine_def: "9 = 8+1"

assumes MMI_pre_axlttri:

"Ae RABeR — (A <g B+ —(A=B V B <g A))"

assumes MMI_pre_axlttrn:
"AeEeRABERACER — ((A<gBAB<pOC — A< C)"
assumes MMI_pre_axltadd:

"AeRABeRACeR — (A <g B — C+A <g C+B)"
assumes MMI_pre_axmulgtO:
"AeRABeR — (0 <gAANO<gB— 0 <p AB)"
assumes MMI_pre_axsup:

"ACRAAF#OA (Ix€R. VyeA. y <g x) —

(3x€eR. (VyeA. = (x <g ¥)) AN (WVyeR. (y <g x — (Fz€A. y <g z))N"
assumes MMI_axresscn: "R C C"

assumes MMI_axlneO: "1 # 0"

assumes MMI_axcnex: "C isASet"

406

assumes MMI_axaddopr: "+ : (€C x C) — C"

assumes MMI_axmulopr: "- : (C x C) — C"

assumes MMI_axmulcom: "A € C ABe€ C — A -B =B - A"
assumes MMI_axaddcl: "A € C ABe C — A +B e C"
assumes MMI_axmulcl: "A ¢ C ABe C — A -B e C"

assumes MMI_axdistr:

"L e CABeCANCeC — AB+C =AB + AC"
assumes MMI_axaddcom: "A € C ABe€ C — A + B =B + A"
assumes MMI_axaddass:

"Ae CABelCANCelC —A+B+C=A+((B+O0O"
assumes MMI_axmulass:

"We CABeCANCelC —A-B-C=A-@B-0C"
assumes MMI_axlre: "1 € R"

assumes MMI_axi2ml: "i - i+ 1 = O"

assumes MMI_ax0id: "A € C — A + 0 = A"

assumes MMI_axicn: "i € C"

assumes MMI_axnegex: "A € C — (I xe€ C. (A+x) =0)"
assumes MMI_axrecex: "A € C AA #0 — (I xe€ C. A -x=1)"
assumes MMI_axlid: "A € C — A - 1 = A"

assumes MMI_axaddrcl: "A € R AB€ R — A +B € R"

assumes MMI_axmulrcl: "A € R AB&€ R — A -B e R"

assumes MMI_axrnegex: "A €e R — (d x € R. A +x=0)"
assumes MMI_axrrecex: "A € RAA #0 — (I xe€R. A-x=1)"

end

71 Metamath interface

theory Metamath_Interface imports Complex_ZF MMI_prelude
begin

This theory contains some lemmas that make it possible to use the theorems
translated from Metamath in a the complex0 context.

71.1 MMisar0 and complex0 contexts.

In the section we show a lemma that the assumptions in complex0 context
imply the assumptions of the MMIsar0 context. The Metamath_sampler theory
provides examples how this lemma can be used.

The next lemma states that we can use the theorems proven in the MMIsar0
context in the complex0 context. Unfortunately we have to use low level
Isabelle methods "rule” and ”unfold” in the proof, simp and blast fail on
the order axioms.

lemma (in complex0) MMIsar_valid:

407

shows "MMIsarO(R,C,1,0,i,CplxAdd(R,A),CplxMul(R,A,M),
StrictVersion(CplxROrder(R,A,r)))"
(proof)

end

72 Metamath sampler

theory Metamath_Sampler imports Metamath_Interface MMI_Complex_ZF_2
begin

The theorems translated from Metamath reside in the MMI_Complex_ZF, MMI_Complex_ZF_1
and MMI_Complex_ZF_2 theories. The proofs of these theorems are very ver-
bose and for this reason the theories are not shown in the proof document
or the FormaMath.org site. This theory file contains some examples of the-
orems translated from Metamath and formulated in the complex0O context.
This serves two purposes: to give an overview of the material covered in the
translated theorems and to provide examples of how to take a translated
theorem (proven in the MMIsar0 context) and transfer it to the complex0 con-
text. The typical procedure for moving a theorem from MMIsarO to complex0
is as follows: First we define certain aliases that map names defined in the
complex0 to their corresponding names in the MMIsar0 context. This makes
it easy to copy and paste the statement of the theorem as displayed with
ProofGeneral. Then we run the Isabelle from ProofGeneral up to the theo-
rem we want to move. When the theorem is verified ProofGeneral displays
the statement in the raw set theory notation, stripped from any notation
defined in the MMIsarO locale. This is what we copy to the proof in the
complex0 locale. After that we just can write "then have 7thesis by simp”
and the simplifier translates the raw set theory notation to the one used in
complexO.

72.1 Extended reals and order

In this sectin we import a couple of theorems about the extended real line
and the linear order on it.

Metamath uses the set of real numbers extended with +00 and —oco. The
+oo and —oo symbols are defined quite arbitrarily as C and {C}, respec-
tively. The next lemma that corresponds to Metamath’s renfdisj states
that 400 and —oo are not elements of R.

lemma (in complex0) renfdisj: shows "R N {+oco,—oc0} = 0"
(proof)

408

The order relation used most often in Metamath is defined on the set of
complex reals extended with 400 and —co. The next lemma allows to use
Metamath’s xrltso that states that the < relations is a strict linear order on
the extended set.

lemma (in complex0) xrltso: shows "< Orders R*"
(proof)

Metamath defines the usual < and < ordering relations for the extended
real line, including +o00 and —oo.

lemma (in complex0) xrrebndt: assumes Al: "x € R*"
shows "x € R +— (—00 < x A x < 400)"

(proof)
A quite involved inequality.

lemma (in complex0) 1lt2mul2divt:
assumes Al: "a € R" "o € R" "c € R" "d € R" and
A2: "0 < B" "O < 4d"
shows "a'b < ¢c:d «— a/d < c/b"

(proof)

A real number is smaller than its half iff it is positive.

lemma (in complex0) halfpos: assumes Al: "a € R"
shows "0 < a <— a/2 < a"

(proof)

One more inequality.

lemma (in complex0) ledivplt:
assumes Al: "a € R" "p € R" and
A2: "0 < a" "0 < b"
shows "(a/(b + 1))b < a"

(proof)

72.2 Natural real numbers

In standard mathematics natural numbers are treated as a subset of real
numbers. From the set theory point of view however those are quite differ-
ent objects. In this section we talk about ”real natural” numbers i.e. the
conterpart of natural numbers that is a subset of the reals.

Two ways of saying that there are no natural numbers between n and n+ 1.

lemma (in complex0) no_nats_between:
assumes Al: "'n € IN" "k € IN"
shows
"n<k <— n < k+1"
"n<k<¢+—n+1Kk"

(proof)

409

Metamath has some very complicated and general version of induction on
(complex) natural numbers that I can’t even understand. As an exercise I
derived a more standard version that is imported to the complex0 context
below.

lemma (in complex0) cplx_nat_ind: assumes Al: "¢ (1)" and
A2: "Wk € N. (k) — ¥ (k+1)" and

A3: "n € IN"
shows "¢ (n)"
(proof)

Some simple arithmetics.

lemma (in complex0) arith: shows

"2+ 2 = 4"

"2.2 = 4"

"3.2 = 6"

"3.3 = 9"
(proof)

72.3 Infimum and supremum in real numbers

Real numbers form a complete ordered field. Here we import a couple of
Metamath theorems about supremu and infimum.

If a set S has a smallest element, then the infimum of .S belongs to it.

lemma (in complex0) lbinfmcl: assumes Al: "S C R" and
A2: "JxeS. VyeS. x < y"
shows "Infim(S,R,<) € s"

(proof)
Supremum of any subset of reals that is bounded above is real.

lemma (in complex0) sup_is_real:
assumes "A C R " and "A # 0" and "Jdx€R. VyeA. y < x"
shows "Sup(A,R,<) € R"

(proof)

If a real number is smaller that the supremum of A, then we can find an
element of A greater than it.

lemma (in complex0) suprlub:
assumes "A CR" and "A # 0" and "Jx€R. VyeA. y < x"
and "B € R" and "B < Sup(A,R,<)"
shows "dze€A. B < z"

(proof)

Something a bit more interesting: infimum of a set that is bounded below is
real and equal to the minus supremum of the set flipped around zero.

lemma (in complex0) infmsup:
assumes "A C R" and "A # 0" and "dxc€lR. VyeA. x < y"

410

shows

"Infim(A,IR,<) € R"

"Infim(A,R,<) = (-Sup({z € R. (-z) € A },R,<))"
{proof)

end

References

[1] N. A’Campo. A natural construction for the real numbers. 2003.
[2] R. D. Arthan. The Eudoxus Real Numbers. 2004.
[3] R. Street at al. The Efficient Real Numbers. 2003.

[4] Strecker G.E. Herrlich H. When is N lindel6f? Comment. Math. Univ.
Carolinae, 1997.

[5] L. L. Reilly and M. K. Vamanamurthy. Some topological anti-properties.
Illinois J. Math., 24:382—-389, 1980.

411

	Introduction to the IsarMathLib project
	How to read IsarMathLib proofs - a tutorial
	Overview of the project

	First Order Logic
	Notions and lemmas in FOL

	ZF set theory basics
	Lemmas in Zermelo-Fraenkel set theory

	Natural numbers in IsarMathLib
	Induction
	Intervals

	Order relations - introduction
	Definitions
	Intervals
	Bounded sets

	More on order relations
	Definitions and basic properties
	Properties of (strict) total orders

	Even more on order relations
	Maximum and minimum of a set
	Supremum and Infimum
	Strict versions of order relations

	Order on natural numbers
	Order on natural numbers

	Functions - introduction
	Properties of functions, function spaces and (inverse) images.
	Functions restricted to a set
	Constant functions
	Injections, surjections, bijections etc.
	Functions of two variables

	Binary operations
	Lifting operations to a function space
	Associative and commutative operations
	Restricting operations
	Compositions
	Identity function
	Lifting to subsets
	Distributive operations

	More on functions
	Functions and order
	Projections in cartesian products
	Induced relations and order isomorphisms

	Finite sets - introduction
	Definition and basic properties of finite powerset

	Finite sets
	Finite powerset
	Finite range functions

	Finite sets 1
	Finite vs. bounded sets

	Finite sets and order relations
	Finite vs. bounded sets
	Order isomorphisms of finite sets

	Equivalence relations
	Congruent functions and projections on the quotient
	Projecting commutative, associative and distributive operations.
	Saturated sets

	Finite sequences
	Lists as finite sequences
	Lists and cartesian products

	Inductive sequences
	Sequences defined by induction
	Images of inductive sequences
	Subsets generated by a binary operation
	Inductive sequences with changing generating function

	Folding in ZF
	Folding in ZF

	Partitions of sets
	Bisections
	Partitions

	Enumerations
	Enumerations: definition and notation
	Properties of enumerations

	Semigroups
	Products of sequences of semigroup elements
	Products over sets of indices
	Commutative semigroups

	Commutative Semigroups
	Sum of a function over a set

	Monoids
	Definition and basic properties

	Groups - introduction
	Definition and basic properties of groups
	Subgroups

	Groups 1
	Translations
	Odd functions

	Groups - and alternative definition
	An alternative definition of group

	Abelian Group
	Rearrangement formulae

	Groups 2
	Lifting groups to function spaces
	Equivalence relations on groups
	Normal subgroups and quotient groups
	Function spaces as monoids

	Groups 3
	Group valued finite range functions
	Almost homomorphisms
	The classes of almost homomorphisms
	Compositions of almost homomorphisms
	Shifting almost homomorphisms

	Direct product
	Definition
	Associative and commutative operations

	Ordered groups - introduction
	Ordered groups
	Inequalities
	The set of positive elements
	Intervals and bounded sets

	More on ordered groups
	Absolute value and the triangle inequality
	Maximum absolute value of a set
	Alternative definitions
	Odd Extensions
	Functions with infinite limits

	Rings - introduction
	Definition and basic properties
	Rearrangement lemmas

	More on rings
	The ring of classes of almost homomorphisms

	Ordered rings
	Definition and notation
	Absolute value for ordered rings
	Positivity in ordered rings

	Cardinal numbers
	Some new ideas on cardinals
	Main result on cardinals (without the Axiom of Choice)
	Choice axioms

	Groups 4
	Conjugation of subgroups
	Finite groups
	Subgroups generated by sets
	Homomorphisms
	First isomorphism theorem

	Fields - introduction
	Definition and basic properties
	Equations and identities
	1/0=0

	Ordered fields
	Definition and basic properties
	Inequalities
	Definition of real numbers

	Integers - introduction
	Addition and multiplication as ZF-functions.
	Integers as an ordered group
	Induction on integers.
	Bounded vs. finite subsets of integers

	Integers 1
	Integers as a ring
	Rearrangement lemmas
	Integers as an ordered ring
	Maximum and minimum of a set of integers
	The set of nonnegative integers
	Functions with infinite limits
	Miscelaneous

	Division on integers
	Quotient and reminder

	Integers 2
	Slopes
	Composing slopes

	Integers 3
	Positive slopes
	Inverting slopes
	Completeness

	Construction real numbers - the generic part
	The definition of real numbers

	Construction of real numbers
	Definitions and notation
	Multiplication of real numbers
	The order on reals
	Inverting reals
	Completeness

	Complex numbers
	From complete ordered fields to complex numbers
	Axioms of complex numbers

	Topology - introduction
	Basic definitions and properties
	Interior of a set
	Closed sets, closure, boundary.

	Topology 1
	Separation axioms.
	Bases and subbases.
	Product topology

	Topology 1b
	Compact sets are closed - no need for AC

	Topology 2
	Continuous functions.
	Homeomorphisms
	Topologies induced by mappings
	Partial functions and continuity
	Product topology and continuity
	Pasting lemma

	Topology 3
	The base of the product topology
	Finite product of topologies

	Topology 4
	Nets
	Filters
	Relation between nets and filters

	Topology - examples
	CoCardinal Topology of a set X
	CoCardinal topology is a topology.
	Total set, Closed sets, Interior, Closure and Boundary
	Special cases and subspaces
	Excluded Set Topology
	Excluded set topology is a topology.
	Total set, Closed sets, Interior, Closure and Boundary
	Special cases and subspaces
	Included Set Topology
	Included set topology is a topology.
	Total set, Closed sets, Interior, Closure and Boundary
	Special cases and subspaces

	More examples in topology
	New ideas using a base for a topology
	The topology of a base
	Dual Base for Closed Sets
	Partition topology
	Partition topology is a topology.
	Total set, Closed sets, Interior, Closure and Boundary
	Special cases and subspaces
	Order topologies
	Order topology is a topology
	Total set
	Right order and Left order topologies.
	Right and Left Order topologies are topologies
	Total set

	Union of Topologies

	Properties in Topology
	Properties of compactness
	Properties of numerability
	Relations between numerability properties and choice principles
	Relation between numerability and compactness

	Topology 5
	Some results for separation axioms
	Hereditability
	Spectrum and anti-properties

	Topology 6
	Image filter
	Continuous at a point vs. globally continuous
	Continuous functions and filters

	Topology 7
	Connection Properties

	Topology 8
	Definition of quotient topology
	Quotient topologies from equivalence relations

	Topology 9
	Group of homeomorphisms
	Examples computed
	Properties preserved by functions

	Topology 10
	Closure and closed sets in product space
	Separation properties in product space
	Connection properties in product space

	Topology 11
	Order topologies
	Separation properties
	Connectedness properties
	Numerability axioms

	Topological groups - introduction
	Topological group: definition and notation
	Interval arithmetic, translations and inverse of set
	Neighborhoods of zero
	Closure in topological groups
	Sums of sequences of elements and subsets

	Properties in topology 2
	Local properties.
	First examples
	Local compactness
	Compactification by one point
	Hereditary properties and local properties

	Topological groups 1
	Separation properties of topological groups
	Existence of nice neighbourhoods.
	Rest of separation axioms
	Local properties

	Topological groups 2
	Quotients of topological groups

	Topological groups 3
	Subgroups topologies

	Metamath introduction
	Importing from Metamath - how is it done
	The context for Metamath theorems

	Metamath interface
	MMisar0 and complex0 contexts.

	Metamath sampler
	Extended reals and order
	Natural real numbers
	Infimum and supremum in real numbers

