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Abstract

This is the proof document of the IsarMathLib project version 1.9.6.
IsarMathLib is a library of formalized mathematics for Isabelle2017
(ZF logic).
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1 Introduction to the IsarMathLib project

theory Introduction imports equalities

begin

This theory does not contain any formalized mathematics used in other
theories, but is an introduction to IsarMathLib project.

1.1 How to read IsarMathLib proofs - a tutorial

Isar (the Isabelle’s formal proof language) was designed to be similar to
the standard language of mathematics. Any person able to read proofs in
a typical mathematical paper should be able to read and understand Isar
proofs without having to learn a special proof language. However, Isar is
a formal proof language and as such it does contain a couple of constructs
whose meaning is hard to guess. In this tutorial we will define a notion
and prove an example theorem about that notion, explaining Isar syntax
along the way. This tutorial may also serve as a style guide for IsarMathLib
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contributors. Note that this tutorial aims to help in reading the presentation
of the Isar language that is used in IsarMathLib proof document and HTML
rendering on the FormalMath.org site, but does not teach how to write proofs
that can be verified by Isabelle. This presentation is different than the
source processed by Isabelle (the concept that the source and presentation
look different should be familiar to any LaTeX user). To learn how to write
Isar proofs one needs to study the source of this tutorial as well.

The first thing that mathematicians typically do is to define notions. In Isar
this is done with the definition keyword. In our case we define a notion of
two sets being disjoint. We will use the infix notation, i.e. the string {is

disjoint with} put between two sets to denote our notion of disjointness.
The left side of the ≡ symbol is the notion being defined, the right side
says how we define it. In Isabelle 0 is used to denote both zero (of natural
numbers) and the empty set, which is not surprising as those two things are
the same in set theory.

definition
AreDisjoint (infix "{is disjoint with}" 90) where
"A {is disjoint with} B ≡ A ∩ B = 0"

We are ready to prove a theorem. Here we show that the relation of be-
ing disjoint is symmetric. We start with one of the keywords ”theorem”,
”lemma” or ”corollary”. In Isar they are synonymous. Then we provide a
name for the theorem. In standard mathematics theorems are numbered. In
Isar we can do that too, but it is considered better to give theorems mean-
ingful names. After the ”shows” keyword we give the statement to show.
The ←→ symbol denotes the equivalence in Isabelle/ZF. Here we want to
show that ”A is disjoint with B iff and only if B is disjoint with A”. To prove
this fact we show two implications - the first one that A {is disjoint with}

B implies B {is disjoint with} A and then the converse one. Each of these
implications is formulated as a statement to be proved and then proved in a
subproof like a mini-theorem. Each subproof uses a proof block to show the
implication. Proof blocks are delimited with curly brackets in Isar. Proof
block is one of the constructs that does not exist in informal mathematics,
so it may be confusing. When reading a proof containing a proof block I sug-
gest to focus first on what is that we are proving in it. This can be done by
looking at the first line or two of the block and then at the last statement. In
our case the block starts with ”assume A {is disjoint with} B and the last
statement is ”then have B {is disjoint with} A”. It is a typical pattern
when someone needs to prove an implication: one assumes the antecedent
and then shows that the consequent follows from this assumption. Impli-
cations are denoted with the −→ symbol in Isabelle. After we prove both
implications we collect them using the ”moreover” construct. The keyword
”ultimately” indicates that what follows is the conclusion of the statements
collected with ”moreover”. The ”show” keyword is like ”have”, except that

10



it indicates that we have arrived at the claim of the theorem (or a subproof).

theorem disjointness_symmetric:

shows "A {is disjoint with} B ←→ B {is disjoint with} A"

proof -

have "A {is disjoint with} B −→ B {is disjoint with} A"

proof -

{ assume "A {is disjoint with} B"

then have "A ∩ B = 0" using AreDisjoint_def by simp

hence "B ∩ A = 0" by auto

then have "B {is disjoint with} A"

using AreDisjoint_def by simp

} thus ?thesis by simp

qed
moreover have "B {is disjoint with} A −→ A {is disjoint with} B"

proof -

{ assume "B {is disjoint with} A"

then have "B ∩ A = 0" using AreDisjoint_def by simp

hence "A ∩ B = 0" by auto

then have "A {is disjoint with} B"

using AreDisjoint_def by simp

} thus ?thesis by simp

qed
ultimately show ?thesis by blast

qed

1.2 Overview of the project

The Fol1, ZF1 and Nat_ZF_IML theory files contain some background material
that is needed for the remaining theories.

Order_ZF and Order_ZF_1a reformulate material from standard Isabelle’s
Order theory in terms of non-strict (less-or-equal) order relations. Order_ZF_1

on the other hand directly continues the Order theory file using strict order
relations (less and not equal). This is useful for translating theorems from
Metamath.

In NatOrder_ZF we prove that the usual order on natural numbers is linear.

The func1 theory provides basic facts about functions. func_ZF continues
this development with more advanced topics that relate to algebraic proper-
ties of binary operations, like lifting a binary operation to a function space,
associative, commutative and distributive operations and properties of func-
tions related to order relations. func_ZF_1 is about properties of functions
related to order relations.

The standard Isabelle’s Finite theory defines the finite powerset of a set
as a certain ”datatype” (?) with some recursive properties. IsarMathLib’s
Finite1 and Finite_ZF_1 theories develop more facts about this notion.
These two theories are obsolete now. They will be gradually replaced by
an approach based on set theory rather than tools specific to Isabelle. This
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approach is presented in Finite_ZF theory file.

In FinOrd_ZF we talk about ordered finite sets.

The EquivClass1 theory file is a reformulation of the material in the standard
Isabelle’s EquivClass theory in the spirit of ZF set theory.

FiniteSeq_ZF discusses the notion of finite sequences (a.k.a. lists).

InductiveSeq_ZF provides the definition and properties of (what is known in
basic calculus as) sequences defined by induction, i. e. by a formula of the
form a0 = x, an+1 = f(an).

Fold_ZF shows how the familiar from functional programming notion of fold
can be interpreted in set theory.

Partitions_ZF is about splitting a set into non-overlapping subsets. This is
a common trick in proofs.

Semigroup_ZF treats the expressions of the form a0 · a1 · .. · an, (i.e. products
of finite sequences), where ”·” is an associative binary operation.

CommutativeSemigroup_ZF is another take on a similar subject. This time
we consider the case when the operation is commutative and the result of
depends only on the set of elements we are summing (additively speaking),
but not the order.

The Topology_ZF series covers basics of general topology: interior, closure,
boundary, compact sets, separation axioms and continuous functions.

Group_ZF, Group_ZF_1, Group_ZF_1b and Group_ZF_2 provide basic facts of the
group theory. Group_ZF_3 considers the notion of almost homomorphisms
that is nedeed for the real numbers construction in Real_ZF.

The TopologicalGroup connects the Topology_ZF and Group_ZF series and
starts the subject of topological groups with some basic definitions and facts.

In DirectProduct_ZF we define direct product of groups and show some its
basic properties.

The OrderedGroup_ZF theory treats ordered groups. This is a suprisingly
large theory for such relatively obscure topic.

Ring_ZF defines rings. Ring_ZF_1 covers the properties of rings that are
specific to the real numbers construction in Real_ZF.

The OrderedRing_ZF theory looks at the consequences of adding a linear
order to the ring algebraic structure.

Field_ZF and OrderedField_ZF contain basic facts about (you guessed it)
fields and ordered fields.

Int_ZF_IML theory considers the integers as a monoid (multiplication) and an
abelian ordered group (addition). In Int_ZF_1 we show that integers form
a commutative ring. Int_ZF_2 contains some facts about slopes (almost
homomorphisms on integers) needed for real numbers construction, used in
Real_ZF_1.
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In the IntDiv_ZF_IML theory we translate some properties of the integer
quotient and reminder functions studied in the standard Isabelle’s IntDiv_ZF
theory to the notation used in IsarMathLib.

The Real_ZF and Real_ZF_1 theories contain the construction of real numbers
based on the paper [2] by R. D. Arthan (not Cauchy sequences, not Dedekind
sections). The heavy lifting is done mostly in Group_ZF_3, Ring_ZF_1 and
Int_ZF_2. Real_ZF contains the part of the construction that can be done
starting from generic abelian groups (rather than additive group of integers).
This allows to show that real numbers form a ring. Real_ZF_1 continues the
construction using properties specific to the integers and showing that real
numbers constructed this way form a complete ordered field.

Cardinal_ZF provides a couple of theorems about cardinals that are mostly
used for studying properties of topological properties (yes, this is kind of
meta). The main result (proven without AC) is that if two sets can be
injectively mapped into an infinite cardinal, then so can be their union.
There is also a definition of the Axiom of Choice specific for a given cardinal
(so that the choice function exists for families of sets of given cardinality).
Some properties are proven for such predicates, like that for finite families of
sets the choice function always exists (in ZF) and that the axiom of choice
for a larger cardinal implies one for a smaller cardinal.

Group_ZF_4 considers conjugate of subgroup and defines simple groups. A
nice theorem here is that endomorphisms of an abelian group form a ring.
The first isomorphism theorem (a group homomorphism h induces an iso-
morphism between the group divided by the kernel of h and the image of h)
is proven.

Turns out given a property of a topological space one can define a local ver-
sion of a property in general. This is studied in the the Topology_ZF_properties_2
theory and applied to local versions of the property of being finite or com-
pact or Hausdorff (i.e. locally finite, locally compact, locally Hausdorff).
There are a couple of nice applications, like one-point compactification that
allows to show that every locally compact Hausdorff space is regular. Also
there are some results on the interplay between hereditability of a property
and local properties.

For a given surjection f : X → Y , where X is a topological space one can
consider the weakest topology on Y which makes f continuous, let’s call it
a quotient topology generated by f . The quotient topology generated by an
equivalence relation r on X is actually a special case of this setup, where f
is the natural projection of X on the quotient X/r. The properties of these
two ways of getting new topologies are studied in Topology_ZF_8 theory.
The main result is that any quotient topology generated by a function is
homeomorphic to a topology given by an equivalence relation, so these two
approaches to quotient topologies are kind of equivalent.
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As we all know, automorphisms of a topological space form a group. This
fact is proven in Topology_ZF_9 and the automorphism groups for co-cardinal,
included-set, and excluded-set topologies are identified. For order topologies
it is shown that order isomorphisms are homeomorphisms of the topology
induced by the order. Properties preserved by continuous functions are stud-
ied and as an application it is shown for example that quotient topological
spaces of compact (or connected) spaces are compact (or connected, resp.)

The Topology_ZF_10 theory is about products of two topological spaces. It
is proven that if two spaces are T0 (or T1, T2, regular, connected) then their
product is as well.

Given a total order on a set one can define a natural topology on it gener-
ated by taking the rays and intervals as the base. The Topology_ZF_11 the-
ory studies relations between the order and various properties of generated
topology. For example one can show that if the order topology is connected,
then the order is complete (in the sense that for each set bounded from
above the set of upper bounds has a minimum). For a given cardinal κ we
can consider generalized notion of κ−separability. Turns out κ-separability
is related to (order) density of sets of cardinality κ for order topologies.

Being a topological group imposes additional structure on the topology of the
group, in particular its separation properties. In Topological_Group_ZF_1.thy

theory it is shown that if a topology is T0, then it must be T3 , and that the
topology in a topological group is always regular.

For a given normal subgroup of a topological group we can define a topology
on the quotient group in a natural way. At the end of the Topological_Group_ZF_2.thy
theory it is shown that such topology on the quotient group makes it a topo-
logical group.

The Topological_Group_ZF_3.thy theory studies the topologies on subgroups
of a topological group. A couple of nice basic properties are shown, like
that the closure of a subgroup is a subgroup, closure of a normal subgroup
is normal and, a bit more surprising (to me) property that every locally-
compact subgroup of a T0 group is closed.

In Complex_ZF we construct complex numbers starting from a complete or-
dered field (a model of real numbers). We also define the notation for writing
about complex numbers and prove that the structure of complex numbers
constructed there satisfies the axioms of complex numbers used in Meta-
math.

MMI_prelude defines the mmisar0 context in which most theorems translated
from Metamath are proven. It also contains a chapter explaining how the
translation works.

In the Metamath_interface theory we prove a theorem that the mmisar0

context is valid (can be used) in the complex0 context. All theories us-
ing the translated results will import the Metamath_interface theory. The
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Metamath_sampler theory provides some examples of using the translated
theorems in the complex0 context.

The theories MMI_logic_and_sets, MMI_Complex, MMI_Complex_1 and MMI_Complex_2

contain the theorems imported from the Metamath’s set.mm database. As
the translated proofs are rather verbose these theories are not printed in
this proof document. The full list of translated facts can be found in the
Metamath_theorems.txt file included in the IsarMathLib distribution. The
MMI_examples provides some theorems imported from Metamath that are
printed in this proof document as examples of how translated proofs look
like.

end

2 First Order Logic

theory Fol1 imports Trancl

begin

Isabelle/ZF builds on the first order logic. Almost everything one would
like to have in this area is covered in the standard Isabelle libraries. The
material in this theory provides some lemmas that are missing or allow for
a more readable proof style.

2.1 Notions and lemmas in FOL

This section contains mostly shortcuts and workarounds that allow to use
more readable coding style.

The next lemma serves as a workaround to problems with applying the
definition of transitivity (of a relation) in our coding style (any attempt to
do something like using trans_def results up Isabelle in an infinite loop).

lemma Fol1_L2: assumes
A1: "∀ x y z. 〈x, y〉 ∈ r ∧ 〈y, z〉 ∈ r −→ 〈x, z〉 ∈ r"

shows "trans(r)"

proof -

from A1 have
"∀ x y z. 〈x, y〉 ∈ r −→ 〈y, z〉 ∈ r −→ 〈x, z〉 ∈ r"

using imp_conj by blast

then show ?thesis unfolding trans_def by blast

qed

Another workaround for the problem of Isabelle simplifier looping when the
transitivity definition is used.

lemma Fol1_L3: assumes A1: "trans(r)" and A2: "〈 a,b〉 ∈ r ∧ 〈 b,c〉
∈ r"
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shows "〈 a,c〉 ∈ r"

proof -

from A1 have "∀ x y z. 〈x, y〉 ∈ r −→ 〈y, z〉 ∈ r −→ 〈x, z〉 ∈ r"

unfolding trans_def by blast

with A2 show ?thesis using imp_conj by fast

qed

There is a problem with application of the definition of asymetry for rela-
tions. The next lemma is a workaround.

lemma Fol1_L4:

assumes A1: "antisym(r)" and A2: "〈 a,b〉 ∈ r" "〈 b,a〉 ∈ r"

shows "a=b"

proof -

from A1 have "∀ x y. 〈 x,y〉 ∈ r −→ 〈 y,x〉 ∈ r −→ x=y"

unfolding antisym_def by blast

with A2 show "a=b" using imp_conj by fast

qed

The definition below implements a common idiom that states that (perhaps
under some assumptions) exactly one of given three statements is true.

definition
"Exactly_1_of_3_holds(p,q,r) ≡
(p∨q∨r) ∧ (p −→ ¬q ∧ ¬r) ∧ (q −→ ¬p ∧ ¬r) ∧ (r −→ ¬p ∧ ¬q)"

The next lemma allows to prove statements of the form Exactly_1_of_3_holds(p,q,r).

lemma Fol1_L5:

assumes "p∨q∨r"
and "p −→ ¬q ∧ ¬r"
and "q −→ ¬p ∧ ¬r"
and "r −→ ¬p ∧ ¬q"
shows "Exactly_1_of_3_holds(p,q,r)"

proof -

from assms have
"(p∨q∨r) ∧ (p −→ ¬q ∧ ¬r) ∧ (q −→ ¬p ∧ ¬r) ∧ (r −→ ¬p ∧ ¬q)"
by blast

then show "Exactly_1_of_3_holds (p,q,r)"

unfolding Exactly_1_of_3_holds_def by fast

qed

If exactly one of p, q, r holds and p is not true, then q or r.

lemma Fol1_L6:

assumes A1: "¬p" and A2: "Exactly_1_of_3_holds(p,q,r)"

shows "q∨r"
proof -

from A2 have
"(p∨q∨r) ∧ (p −→ ¬q ∧ ¬r) ∧ (q −→ ¬p ∧ ¬r) ∧ (r −→ ¬p ∧ ¬q)"
unfolding Exactly_1_of_3_holds_def by fast

hence "p ∨ q ∨ r" by blast

16



with A1 show "q ∨ r" by simp

qed

If exactly one of p, q, r holds and q is true, then r can not be true.

lemma Fol1_L7:

assumes A1: "q" and A2: "Exactly_1_of_3_holds(p,q,r)"

shows "¬r"
proof -

from A2 have
"(p∨q∨r) ∧ (p −→ ¬q ∧ ¬r) ∧ (q −→ ¬p ∧ ¬r) ∧ (r −→ ¬p ∧ ¬q)"
unfolding Exactly_1_of_3_holds_def by fast

with A1 show "¬r" by blast

qed

The next lemma demonstrates an elegant form of the Exactly_1_of_3_holds(p,q,r)
predicate. More on that at www.solcon.nl/mklooster/calc/calc-tri.html .

lemma Fol1_L8:

shows "Exactly_1_of_3_holds(p,q,r) ←→ (p←→q←→r) ∧ ¬(p∧q∧r)"
proof

assume "Exactly_1_of_3_holds(p,q,r)"

then have
"(p∨q∨r) ∧ (p −→ ¬q ∧ ¬r) ∧ (q −→ ¬p ∧ ¬r) ∧ (r −→ ¬p ∧ ¬q)"
unfolding Exactly_1_of_3_holds_def by fast

thus "(p←→q←→r) ∧ ¬(p∧q∧r)" by blast

next assume "(p←→q←→r) ∧ ¬(p∧q∧r)"
hence
"(p∨q∨r) ∧ (p −→ ¬q ∧ ¬r) ∧ (q −→ ¬p ∧ ¬r) ∧ (r −→ ¬p ∧ ¬q)"
by auto

then show "Exactly_1_of_3_holds(p,q,r)"

unfolding Exactly_1_of_3_holds_def by fast

qed

A property of the Exactly_1_of_3_holds predicate.

lemma Fol1_L8A: assumes A1: "Exactly_1_of_3_holds(p,q,r)"

shows "p ←→ ¬(q ∨ r)"

proof -

from A1 have "(p∨q∨r) ∧ (p −→ ¬q ∧ ¬r) ∧ (q −→ ¬p ∧ ¬r) ∧ (r −→
¬p ∧ ¬q)"

unfolding Exactly_1_of_3_holds_def by fast

then show "p ←→ ¬(q ∨ r)" by blast

qed

Exclusive or definition. There is one also defined in the standard Isabelle,
denoted xor, but it relates to boolean values, which are sets. Here we define
a logical functor.

definition
Xor (infixl "Xor" 66) where
"p Xor q ≡ (p∨q) ∧ ¬(p ∧ q)"
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The ”exclusive or” is the same as negation of equivalence.

lemma Fol1_L9: shows "p Xor q ←→ ¬(p←→q)"

using Xor_def by auto

Equivalence relations are symmetric.

lemma equiv_is_sym: assumes A1: "equiv(X,r)" and A2: "〈x,y〉 ∈ r"

shows "〈y,x〉 ∈ r"

proof -

from A1 have "sym(r)" using equiv_def by simp

then have "∀ x y. 〈x,y〉 ∈ r −→ 〈y,x〉 ∈ r"

unfolding sym_def by fast

with A2 show "〈y,x〉 ∈ r" by blast

qed

end

3 ZF set theory basics

theory ZF1 imports equalities

begin

Standard Isabelle distribution contains lots of facts about basic set theory.
This theory file adds some more.

3.1 Lemmas in Zermelo-Fraenkel set theory

Here we put lemmas from the set theory that we could not find in the
standard Isabelle distribution.

If one collection is contained in another, then we can say the same abot their
unions.

lemma collection_contain: assumes "A⊆B" shows "
⋃
A ⊆

⋃
B"

proof
fix x assume "x ∈

⋃
A"

then obtain X where "x∈X" and "X∈A" by auto

with assms show "x ∈
⋃
B" by auto

qed

If all sets of a nonempty collection are the same, then its union is the same.

lemma ZF1_1_L1: assumes "C 6=0" and "∀ y∈C. b(y) = A"

shows "(
⋃
y∈C. b(y)) = A" using assms by blast

The union af all values of a constant meta-function belongs to the same set
as the constant.
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lemma ZF1_1_L2: assumes A1:"C 6=0" and A2: "∀ x∈C. b(x) ∈ A"

and A3: "∀ x y. x∈C ∧ y∈C −→ b(x) = b(y)"

shows "(
⋃
x∈C. b(x))∈A"

proof -

from A1 obtain x where D1: "x∈C" by auto

with A3 have "∀ y∈C. b(y) = b(x)" by blast

with A1 have "(
⋃
y∈C. b(y)) = b(x)"

using ZF1_1_L1 by simp

with D1 A2 show ?thesis by simp

qed

If two meta-functions are the same on a cartesian product, then the subsets
defined by them are the same. I am surprised Isabelle can not handle this
automatically.

lemma ZF1_1_L4: assumes A1: "∀ x∈X.∀ y∈Y. a(x,y) = b(x,y)"

shows "{a(x,y). 〈x,y〉 ∈ X×Y} = {b(x,y). 〈x,y〉 ∈ X×Y}"
proof

show "{a(x, y). 〈x,y〉 ∈ X × Y} ⊆ {b(x, y). 〈x,y〉 ∈ X × Y}"

proof
fix z assume "z ∈ {a(x, y) . 〈x,y〉 ∈ X × Y}"

with A1 show "z ∈ {b(x,y).〈x,y〉 ∈ X×Y}" by auto

qed
show "{b(x, y). 〈x,y〉 ∈ X × Y} ⊆ {a(x, y). 〈x,y〉 ∈ X × Y}"

proof
fix z assume "z ∈ {b(x, y). 〈x,y〉 ∈ X × Y}"

with A1 show "z ∈ {a(x,y).〈x,y〉 ∈ X×Y}" by auto

qed
qed

If two meta-functions are the same on a cartesian product, then the subsets
defined by them are the same. This is similar to ZF1_1_L4, except that the
set definition varies over p∈X×Y rather than 〈 x,y〉∈X×Y.

lemma ZF1_1_L4A: assumes A1: "∀ x∈X.∀ y∈Y. a(〈 x,y〉) = b(x,y)"

shows "{a(p). p ∈ X×Y} = {b(x,y). 〈x,y〉 ∈ X×Y}"
proof
{ fix z assume "z ∈ {a(p). p∈X×Y}"

then obtain p where D1: "z=a(p)" "p∈X×Y" by auto

let ?x = "fst(p)" let ?y = "snd(p)"

from A1 D1 have "z ∈ {b(x,y). 〈x,y〉 ∈ X×Y}" by auto

} then show "{a(p). p ∈ X×Y} ⊆ {b(x,y). 〈x,y〉 ∈ X×Y}" by blast

next
{ fix z assume "z ∈ {b(x,y). 〈x,y〉 ∈ X×Y}"

then obtain x y where D1: "〈x,y〉 ∈ X×Y" "z=b(x,y)" by auto

let ?p = "〈 x,y〉"
from A1 D1 have "?p∈X×Y" "z = a(?p)" by auto

then have "z ∈ {a(p). p ∈ X×Y}" by auto

} then show "{b(x,y). 〈x,y〉 ∈ X×Y} ⊆ {a(p). p ∈ X×Y}" by blast

qed
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A lemma about inclusion in cartesian products. Included here to remember
that we need the U × V 6= ∅ assumption.

lemma prod_subset: assumes "U×V6=0" "U×V ⊆ X×Y" shows "U⊆X" and "V⊆Y"
using assms by auto

A technical lemma about sections in cartesian products.

lemma section_proj: assumes "A ⊆ X×Y" and "U×V ⊆ A" and "x ∈ U" "y

∈ V"

shows "U ⊆ {t∈X. 〈t,y〉 ∈ A}" and "V ⊆ {t∈Y. 〈x,t〉 ∈ A}"

using assms by auto

If two meta-functions are the same on a set, then they define the same set
by separation.

lemma ZF1_1_L4B: assumes "∀ x∈X. a(x) = b(x)"

shows "{a(x). x∈X} = {b(x). x∈X}"
using assms by simp

A set defined by a constant meta-function is a singleton.

lemma ZF1_1_L5: assumes "X 6=0" and "∀ x∈X. b(x) = c"

shows "{b(x). x∈X} = {c}" using assms by blast

Most of the time, auto does this job, but there are strange cases when the
next lemma is needed.

lemma subset_with_property: assumes "Y = {x∈X. b(x)}"

shows "Y ⊆ X"

using assms by auto

We can choose an element from a nonempty set.

lemma nonempty_has_element: assumes "X6=0" shows "∃ x. x∈X"
using assms by auto

In Isabelle/ZF the intersection of an empty family is empty. This is exactly
lemma Inter_0 from Isabelle’s equalities theory. We repeat this lemma
here as it is very difficult to find. This is one reason we need comments
before every theorem: so that we can search for keywords.

lemma inter_empty_empty: shows "
⋂
0 = 0" by (rule Inter_0)

If an intersection of a collection is not empty, then the collection is not
empty. We are (ab)using the fact the the intesection of empty collection is
defined to be empty.

lemma inter_nempty_nempty: assumes "
⋂
A 6= 0" shows "A 6=0"

using assms by auto

For two collections S, T of sets we define the product collection as the col-
lections of cartesian products A×B, where A ∈ S,B ∈ T .

definition
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"ProductCollection(T,S) ≡
⋃
U∈T.{U×V. V∈S}"

The union of the product collection of collections S, T is the cartesian prod-
uct of

⋃
S and

⋃
T .

lemma ZF1_1_L6: shows "
⋃

ProductCollection(S,T) =
⋃
S ×

⋃
T"

using ProductCollection_def by auto

An intersection of subsets is a subset.

lemma ZF1_1_L7: assumes A1: "I6=0" and A2: "∀ i∈I. P(i) ⊆ X"

shows "(
⋂
i∈I. P(i) ) ⊆ X"

proof -

from A1 obtain i0 where "i0 ∈ I" by auto

with A2 have "(
⋂
i∈I. P(i) ) ⊆ P(i0)" and "P(i0) ⊆ X"

by auto

thus "(
⋂
i∈I. P(i) ) ⊆ X" by auto

qed

Isabelle/ZF has a ”THE” construct that allows to define an element if there
is only one such that is satisfies given predicate. In pure ZF we can express
something similar using the indentity proven below.

lemma ZF1_1_L8: shows "
⋃

{x} = x" by auto

Some properties of singletons.

lemma ZF1_1_L9: assumes A1: "∃ ! x. x∈A ∧ ϕ(x)"
shows
"∃ a. {x∈A. ϕ(x)} = {a}"

"
⋃

{x∈A. ϕ(x)} ∈ A"

"ϕ(
⋃

{x∈A. ϕ(x)})"
proof -

from A1 show "∃ a. {x∈A. ϕ(x)} = {a}" by auto

then obtain a where I: "{x∈A. ϕ(x)} = {a}" by auto

then have "
⋃

{x∈A. ϕ(x)} = a" by auto

moreover
from I have "a ∈ {x∈A. ϕ(x)}" by simp

hence "a∈A" and "ϕ(a)" by auto

ultimately show "
⋃

{x∈A. ϕ(x)} ∈ A" and "ϕ(
⋃

{x∈A. ϕ(x)})"
by auto

qed

A simple version of ZF1_1_L9.

corollary sigleton_extract: assumes "∃ ! x. x∈A"
shows "(

⋃
A) ∈ A"

proof -

from assms have "∃ ! x. x∈A ∧ True" by simp

then have "
⋃

{x∈A. True} ∈ A" by (rule ZF1_1_L9)

thus "(
⋃

A) ∈ A" by simp

qed
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A criterion for when a set defined by comprehension is a singleton.

lemma singleton_comprehension:

assumes A1: "y∈X" and A2: "∀ x∈X. ∀ y∈X. P(x) = P(y)"

shows "(
⋃
{P(x). x∈X}) = P(y)"

proof -

let ?A = "{P(x). x∈X}"
have "∃ ! c. c ∈ ?A"

proof
from A1 show "∃ c. c ∈ ?A" by auto

next
fix a b assume "a ∈ ?A" and "b ∈ ?A"

then obtain x t where
"x ∈ X" "a = P(x)" and "t ∈ X" "b = P(t)"

by auto

with A2 show "a=b" by blast

qed
then have "(

⋃
?A) ∈ ?A" by (rule sigleton_extract)

then obtain x where "x ∈ X" and "(
⋃
?A) = P(x)"

by auto

from A1 A2 ‘x ∈ X‘ have "P(x) = P(y)"

by blast

with ‘(
⋃
?A) = P(x)‘ show "(

⋃
?A) = P(y)" by simp

qed

Adding an element of a set to that set does not change the set.

lemma set_elem_add: assumes "x∈X" shows "X ∪ {x} = X" using assms

by auto

Here we define a restriction of a collection of sets to a given set. In romantic
math this is typically denoted X ∩M and means {X ∩ A : A ∈ M}. Note
there is also restrict(f,A) defined for relations in ZF.thy.

definition
RestrictedTo (infixl "{restricted to}" 70) where
"M {restricted to} X ≡ {X ∩ A . A ∈ M}"

A lemma on a union of a restriction of a collection to a set.

lemma union_restrict:

shows "
⋃
(M {restricted to} X) = (

⋃
M) ∩ X"

using RestrictedTo_def by auto

Next we show a technical identity that is used to prove sufficiency of some
condition for a collection of sets to be a base for a topology.

lemma ZF1_1_L10: assumes A1: "∀ U∈C. ∃ A∈B. U =
⋃
A"

shows "
⋃⋃

{
⋃
{A∈B. U =

⋃
A}. U∈C} =

⋃
C"

proof
show "

⋃
(
⋃
U∈C.

⋃
{A ∈ B . U =

⋃
A}) ⊆

⋃
C" by blast

show "
⋃
C ⊆

⋃
(
⋃
U∈C.

⋃
{A ∈ B . U =

⋃
A})"

proof
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fix x assume "x ∈
⋃
C"

show "x ∈
⋃
(
⋃
U∈C.

⋃
{A ∈ B . U =

⋃
A})"

proof -

from ‘x ∈
⋃
C‘ obtain U where "U∈C ∧ x∈U" by auto

with A1 obtain A where "A∈B ∧ U =
⋃
A" by auto

from ‘U∈C ∧ x∈U‘ ‘A∈B ∧ U =
⋃
A‘ show "x∈

⋃
(
⋃
U∈C.

⋃
{A ∈ B

. U =
⋃
A})"

by auto

qed
qed

qed

Standard Isabelle uses a notion of cons(A,a) that can be thought of as
A ∪ {a}.
lemma consdef: shows "cons(a,A) = A ∪ {a}"

using cons_def by auto

If a difference between a set and a sigleton is empty, then the set is empty
or it is equal to the sigleton.

lemma singl_diff_empty: assumes "A - {x} = 0"

shows "A = 0 ∨ A = {x}"

using assms by auto

If a difference between a set and a sigleton is the set, then the only element
of the singleton is not in the set.

lemma singl_diff_eq: assumes A1: "A - {x} = A"

shows "x /∈ A"

proof -

have "x /∈ A - {x}" by auto

with A1 show "x /∈ A" by simp

qed

A basic property of sets defined by comprehension. This is one side of
standard Isabelle’s separation that is in the simp set but somehow not
always used by simp.

lemma comprehension: assumes "a ∈ {x∈X. p(x)}"

shows "a∈X" and "p(a)" using assms by auto

end

4 Natural numbers in IsarMathLib

theory Nat_ZF_IML imports Arith

begin

The ZF set theory constructs natural numbers from the empty set and the
notion of a one-element set. Namely, zero of natural numbers is defined
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as the empty set. For each natural number n the next natural number is
defined as n ∪ {n}. With this definition for every non-zero natural number
we get the identity n = {0, 1, 2, .., n− 1}. It is good to remember that when
we see an expression like f : n → X. Also, with this definition the relation
”less or equal than” becomes ”⊆” and the relation ”less than” becomes ”∈”.

4.1 Induction

The induction lemmas in the standard Isabelle’s Nat.thy file like for example
nat_induct require the induction step to be a higher order statement (the
one that uses the =⇒ sign). I found it difficult to apply from Isar, which
is perhaps more of an indication of my Isar skills than anything else. Any-
way, here we provide a first order version that is easier to reference in Isar
declarative style proofs.

The next theorem is a version of induction on natural numbers that I was
thought in school.

theorem ind_on_nat:

assumes A1: "n∈nat" and A2: "P(0)" and A3: "∀ k∈nat. P(k)−→P(succ(k))"

shows "P(n)"

proof -

note A1 A2

moreover
{ fix x

assume "x∈nat" "P(x)"

with A3 have "P(succ(x))" by simp }
ultimately show "P(n)" by (rule nat_induct)

qed

A nonzero natural number has a predecessor.

lemma Nat_ZF_1_L3: assumes A1: "n ∈ nat" and A2: "n6=0"

shows "∃ k∈nat. n = succ(k)"

proof -

from A1 have "n ∈ {0} ∪ {succ(k). k∈nat}"
using nat_unfold by simp

with A2 show ?thesis by simp

qed

What is succ, anyway?

lemma succ_explained: shows "succ(n) = n ∪ {n}"

using succ_iff by auto

Empty set is an element of every natural number which is not zero.

lemma empty_in_every_succ: assumes A1: "n ∈ nat"

shows "0 ∈ succ(n)"

proof -
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note A1

moreover have "0 ∈ succ(0)" by simp

moreover
{ fix k assume "k ∈ nat" and A2: "0 ∈ succ(k)"

then have "succ(k) ⊆ succ(succ(k))" by auto

with A2 have "0 ∈ succ(succ(k))" by auto

} then have "∀ k ∈ nat. 0 ∈ succ(k) −→ 0 ∈ succ(succ(k))"

by simp

ultimately show "0 ∈ succ(n)" by (rule ind_on_nat)

qed

If one natural number is less than another then their successors are in the
same relation.

lemma succ_ineq: assumes A1: "n ∈ nat"

shows "∀ i ∈ n. succ(i) ∈ succ(n)"

proof -

note A1

moreover have "∀ k ∈ 0. succ(k) ∈ succ(0)" by simp

moreover
{ fix k assume A2: "∀ i∈k. succ(i) ∈ succ(k)"

{ fix i assume "i ∈ succ(k)"

then have "i ∈ k ∨ i = k" by auto

moreover
{ assume "i∈k"

with A2 have "succ(i) ∈ succ(k)" by simp

hence "succ(i) ∈ succ(succ(k))" by auto }
moreover
{ assume "i = k"

then have "succ(i) ∈ succ(succ(k))" by auto }
ultimately have "succ(i) ∈ succ(succ(k))" by auto

} then have "∀ i ∈ succ(k). succ(i) ∈ succ(succ(k))"

by simp

} then have "∀ k ∈ nat.

( (∀ i∈k. succ(i) ∈ succ(k)) −→ (∀ i ∈ succ(k). succ(i) ∈ succ(succ(k)))

)"

by simp

ultimately show "∀ i ∈ n. succ(i) ∈ succ(n)" by (rule ind_on_nat)

qed

For natural numbers if k ⊆ n the similar holds for their successors.

lemma succ_subset: assumes A1: "k ∈ nat" "n ∈ nat" and A2: "k⊆n"
shows "succ(k) ⊆ succ(n)"

proof -

from A1 have T: "Ord(k)" and "Ord(n)"

using nat_into_Ord by auto

with A2 have "succ(k) ≤ succ(n)"

using subset_imp_le by simp

then show "succ(k) ⊆ succ(n)" using le_imp_subset

by simp
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qed

For any two natural numbers one of them is contained in the other.

lemma nat_incl_total: assumes A1: "i ∈ nat" "j ∈ nat"

shows "i ⊆ j ∨ j ⊆ i"

proof -

from A1 have T: "Ord(i)" "Ord(j)"

using nat_into_Ord by auto

then have "i∈j ∨ i=j ∨ j∈i" using Ord_linear

by simp

moreover
{ assume "i∈j"

with T have "i⊆j ∨ j⊆i"
using lt_def leI le_imp_subset by simp }

moreover
{ assume "i=j"

then have "i⊆j ∨ j⊆i" by simp }
moreover
{ assume "j∈i"

with T have "i⊆j ∨ j⊆i"
using lt_def leI le_imp_subset by simp }

ultimately show "i ⊆ j ∨ j ⊆ i" by auto

qed

The set of natural numbers is the union of all successors of natural numbers.

lemma nat_union_succ: shows "nat = (
⋃
n ∈ nat. succ(n))"

proof
show "nat ⊆ (

⋃
n ∈ nat. succ(n))" by auto

next
{ fix k assume A2: "k ∈ (

⋃
n ∈ nat. succ(n))"

then obtain n where T: "n ∈ nat" and I: "k ∈ succ(n)"

by auto

then have "k ≤ n" using nat_into_Ord lt_def

by simp

with T have "k ∈ nat" using le_in_nat by simp

} then show "(
⋃
n ∈ nat. succ(n)) ⊆ nat" by auto

qed

Successors of natural numbers are subsets of the set of natural numbers.

lemma succnat_subset_nat: assumes A1: "n ∈ nat" shows "succ(n) ⊆ nat"

proof -

from A1 have "succ(n) ⊆ (
⋃
n ∈ nat. succ(n))" by auto

then show "succ(n) ⊆ nat" using nat_union_succ by simp

qed

Element of a natural number is a natural number.

lemma elem_nat_is_nat: assumes A1: "n ∈ nat" and A2: "k∈n"
shows "k < n" "k ∈ nat" "k ≤ n" "〈k,n〉 ∈ Le"
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proof -

from A1 A2 show "k < n" using nat_into_Ord lt_def by simp

with A1 show "k ∈ nat" using lt_nat_in_nat by simp

from ‘k < n‘ show "k ≤ n" using leI by simp

with A1 ‘k ∈ nat‘ show "〈k,n〉 ∈ Le" using Le_def

by simp

qed

The set of natural numbers is the union of its elements.

lemma nat_union_nat: shows "nat =
⋃

nat"

using elem_nat_is_nat by blast

A natural number is a subset of the set of natural numbers.

lemma nat_subset_nat: assumes A1: "n ∈ nat" shows "n ⊆ nat"

proof -

from A1 have "n ⊆
⋃

nat" by auto

then show "n ⊆ nat" using nat_union_nat by simp

qed

Adding a natural numbers does not decrease what we add to.

lemma add_nat_le: assumes A1: "n ∈ nat" and A2: "k ∈ nat"

shows
"n ≤ n #+ k"

"n ⊆ n #+ k"

"n ⊆ k #+ n"

proof -

from A1 A2 have "n ≤ n" "0 ≤ k" "n ∈ nat" "k ∈ nat"

using nat_le_refl nat_0_le by auto

then have "n #+ 0 ≤ n #+ k" by (rule add_le_mono)

with A1 show "n ≤ n #+ k" using add_0_right by simp

then show "n ⊆ n #+ k" using le_imp_subset by simp

then show "n ⊆ k #+ n" using add_commute by simp

qed

Result of adding an element of k is smaller than of adding k.

lemma add_lt_mono:

assumes "k ∈ nat" and "j∈k"
shows
"(n #+ j) < (n #+ k)"

"(n #+ j) ∈ (n #+ k)"

proof -

from assms have "j < k" using elem_nat_is_nat by blast

moreover note ‘k ∈ nat‘

ultimately show "(n #+ j) < (n #+ k)" "(n #+ j) ∈ (n #+ k)"

using add_lt_mono2 ltD by auto

qed

A technical lemma about a decomposition of a sum of two natural numbers:
if a number i is from m+ n then it is either from m or can be written as a
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sum of m and a number from n. The proof by induction w.r.t. to m seems
to be a bit heavy-handed, but I could not figure out how to do this directly
from results from standard Isabelle/ZF.

lemma nat_sum_decomp: assumes A1: "n ∈ nat" and A2: "m ∈ nat"

shows "∀ i ∈ m #+ n. i ∈ m ∨ (∃ j ∈ n. i = m #+ j)"

proof -

note A1

moreover from A2 have "∀ i ∈ m #+ 0. i ∈ m ∨ (∃ j ∈ 0. i = m #+ j)"

using add_0_right by simp

moreover have "∀ k∈nat.
(∀ i ∈ m #+ k. i ∈ m ∨ (∃ j ∈ k. i = m #+ j)) −→
(∀ i ∈ m #+ succ(k). i ∈ m ∨ (∃ j ∈ succ(k). i = m #+ j))"

proof -

{ fix k assume A3: "k ∈ nat"

{ assume A4: "∀ i ∈ m #+ k. i ∈ m ∨ (∃ j ∈ k. i = m #+ j)"

{ fix i assume "i ∈ m #+ succ(k)"

then have "i ∈ m #+ k ∨ i = m #+ k" using add_succ_right

by auto

moreover from A4 A3 have
"i ∈ m #+ k −→ i ∈ m ∨ (∃ j ∈ succ(k). i = m #+ j)"

by auto

ultimately have "i ∈ m ∨ (∃ j ∈ succ(k). i = m #+ j)"

by auto

} then have "∀ i ∈ m #+ succ(k). i ∈ m ∨ (∃ j ∈ succ(k). i = m #+ j)"

by simp

} then have "(∀ i ∈ m #+ k. i ∈ m ∨ (∃ j ∈ k. i = m #+ j)) −→
(∀ i ∈ m #+ succ(k). i ∈ m ∨ (∃ j ∈ succ(k). i = m #+ j))"

by simp

} then show ?thesis by simp

qed
ultimately show "∀ i ∈ m #+ n. i ∈ m ∨ (∃ j ∈ n. i = m #+ j)"

by (rule ind_on_nat)

qed

A variant of induction useful for finite sequences.

lemma fin_nat_ind: assumes A1: "n ∈ nat" and A2: "k ∈ succ(n)"

and A3: "P(0)" and A4: "∀ j∈n. P(j) −→ P(succ(j))"

shows "P(k)"

proof -

from A2 have "k ∈ n ∨ k=n" by auto

with A1 have "k ∈ nat" using elem_nat_is_nat by blast

moreover from A3 have "0 ∈ succ(n) −→ P(0)" by simp

moreover from A1 A4 have
"∀ k ∈ nat. (k ∈ succ(n) −→ P(k)) −→ (succ(k) ∈ succ(n) −→ P(succ(k)))"

using nat_into_Ord Ord_succ_mem_iff by auto

ultimately have "k ∈ succ(n) −→ P(k)"

by (rule ind_on_nat)

with A2 show "P(k)" by simp

qed
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Some properties of positive natural numbers.

lemma succ_plus: assumes "n ∈ nat" "k ∈ nat"

shows
"succ(n #+ j) ∈ nat"

"succ(n) #+ succ(j) = succ(succ(n #+ j))"

using assms by auto

4.2 Intervals

In this section we consider intervals of natural numbers i.e. sets of the form
{n+ j : j ∈ 0..k − 1}.

The interval is determined by two parameters: starting point and length.
Recall that in standard Isabelle’s Arith.thy the symbol #+ is defined as the
sum of natural numbers.

definition

"NatInterval(n,k) ≡ {n #+ j. j∈k}"

Subtracting the beginning af the interval results in a number from the length
of the interval.It may sound weird, but note that the length of such interval
is a natural number, hence a set.

lemma inter_diff_in_len:

assumes A1: "k ∈ nat" and A2: "i ∈ NatInterval(n,k)"

shows "i #- n ∈ k"

proof -

from A2 obtain j where I: "i = n #+ j" and II: "j ∈ k"

using NatInterval_def by auto

from A1 II have "j ∈ nat" using elem_nat_is_nat by blast

moreover from I have "i #- n = natify(j)" using diff_add_inverse

by simp

ultimately have "i #- n = j" by simp

with II show ?thesis by simp

qed

Intervals don’t overlap with their starting point and the union of an interval
with its starting point is the sum of the starting point and the length of the
interval.

lemma length_start_decomp: assumes A1: "n ∈ nat" "k ∈ nat"

shows
"n ∩ NatInterval(n,k) = 0"

"n ∪ NatInterval(n,k) = n #+ k"

proof -

{ fix i assume A2: "i ∈ n" and "i ∈ NatInterval(n,k)"

then obtain j where I: "i = n #+ j" and II: "j ∈ k"

using NatInterval_def by auto

from A1 have "k ∈ nat" using elem_nat_is_nat by blast
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with II have "j ∈ nat" using elem_nat_is_nat by blast

with A1 I have "n ≤ i" using add_nat_le by simp

moreover from A1 A2 have "i < n" using elem_nat_is_nat by blast

ultimately have False using le_imp_not_lt by blast

} thus "n ∩ NatInterval(n,k) = 0" by auto

from A1 have "n ⊆ n #+ k" using add_nat_le by simp

moreover
{ fix i assume "i ∈ NatInterval(n,k)"

then obtain j where III: "i = n #+ j" and IV: "j ∈ k"

using NatInterval_def by auto

with A1 have "j < k" using elem_nat_is_nat by blast

with A1 III have "i ∈ n #+ k" using add_lt_mono2 ltD

by simp }
ultimately have "n ∪ NatInterval(n,k) ⊆ n #+ k" by auto

moreover from A1 have "n #+ k ⊆ n ∪ NatInterval(n,k)"

using nat_sum_decomp NatInterval_def by auto

ultimately show "n ∪ NatInterval(n,k) = n #+ k" by auto

qed

Sme properties of three adjacent intervals.

lemma adjacent_intervals3: assumes "n ∈ nat" "k ∈ nat" "m ∈ nat"

shows
"n #+ k #+ m = (n #+ k) ∪ NatInterval(n #+ k,m)"

"n #+ k #+ m = n ∪ NatInterval(n,k #+ m)"

"n #+ k #+ m = n ∪ NatInterval(n,k) ∪ NatInterval(n #+ k,m)"

using assms add_assoc length_start_decomp by auto

end

5 Order relations - introduction

theory Order_ZF imports Fol1

begin

This theory file considers various notion related to order. We redefine the
notions of a total order, linear order and partial order to have the same
terminology as Wikipedia (I found it very consistent across different areas
of math). We also define and study the notions of intervals and bounded sets.
We show the inclusion relations between the intervals with endpoints being
in certain order. We also show that union of bounded sets are bounded.
This allows to show in Finite_ZF.thy that finite sets are bounded.

5.1 Definitions

In this section we formulate the definitions related to order relations.
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A relation r is ”total” on a set X if for all elements a, b of X we have a is
in relation with b or b is in relation with a. An example is the ≤ relation on
numbers.

definition
IsTotal (infixl "{is total on}" 65) where
"r {is total on} X ≡ (∀ a∈X.∀ b∈X. 〈 a,b〉 ∈ r ∨ 〈 b,a〉 ∈ r)"

A relation r is a partial order on X if it is reflexive on X (i.e. 〈x, x〉 for
every x ∈ X), antisymmetric (if 〈x, y〉 ∈ r and 〈y, x〉 ∈ r, then x = y) and
transitive 〈x, y〉 ∈ r and 〈y, z〉 ∈ r implies 〈x, z〉 ∈ r).
definition
"IsPartOrder(X,r) ≡ (refl(X,r) ∧ antisym(r) ∧ trans(r))"

We define a linear order as a binary relation that is antisymmetric, transitive
and total. Note that this terminology is different than the one used the
standard Order.thy file.

definition
"IsLinOrder(X,r) ≡ ( antisym(r) ∧ trans(r) ∧ (r {is total on} X))"

A set is bounded above if there is that is an upper bound for it, i.e. there
are some u such that 〈x, u〉 ∈ r for all x ∈ A. In addition, the empty set is
defined as bounded.

definition
"IsBoundedAbove(A,r) ≡ ( A=0 ∨ (∃ u. ∀ x∈A. 〈 x,u〉 ∈ r))"

We define sets bounded below analogously.

definition
"IsBoundedBelow(A,r) ≡ (A=0 ∨ (∃ l. ∀ x∈A. 〈 l,x〉 ∈ r))"

A set is bounded if it is bounded below and above.

definition
"IsBounded(A,r) ≡ (IsBoundedAbove(A,r) ∧ IsBoundedBelow(A,r))"

The notation for the definition of an interval may be mysterious for some
readers, see lemma Order_ZF_2_L1 for more intuitive notation.

definition
"Interval(r,a,b) ≡ r‘‘{a} ∩ r-‘‘{b}"

We also define the maximum (the greater of) two elemnts in the obvious
way.

definition
"GreaterOf(r,a,b) ≡ (if 〈 a,b〉 ∈ r then b else a)"

The definition a a minimum (the smaller of) two elements.

definition
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"SmallerOf(r,a,b) ≡ (if 〈 a,b〉 ∈ r then a else b)"

We say that a set has a maximum if it has an element that is not smaller
that any other one. We show that under some conditions this element of
the set is unique (if exists).

definition
"HasAmaximum(r,A) ≡ ∃ M∈A.∀ x∈A. 〈 x,M〉 ∈ r"

A similar definition what it means that a set has a minimum.

definition
"HasAminimum(r,A) ≡ ∃ m∈A.∀ x∈A. 〈 m,x〉 ∈ r"

Definition of the maximum of a set.

definition
"Maximum(r,A) ≡ THE M. M∈A ∧ (∀ x∈A. 〈 x,M〉 ∈ r)"

Definition of a minimum of a set.

definition
"Minimum(r,A) ≡ THE m. m∈A ∧ (∀ x∈A. 〈 m,x〉 ∈ r)"

The supremum of a set A is defined as the minimum of the set of upper
bounds, i.e. the set {u.∀a∈A〈a, u〉 ∈ r} =

⋂
a∈A r{a}. Recall that in Is-

abelle/ZF r-‘‘(A) denotes the inverse image of the set A by relation r (i.e.
r-‘‘(A)={x : 〈x, y〉 ∈ r for some y ∈ A}).
definition
"Supremum(r,A) ≡ Minimum(r,

⋂
a∈A. r‘‘{a})"

Infimum is defined analogously.

definition
"Infimum(r,A) ≡ Maximum(r,

⋂
a∈A. r-‘‘{a})"

We define a relation to be complete if every nonempty bounded above set
has a supremum.

definition
IsComplete ("_ {is complete}") where
"r {is complete} ≡
∀ A. IsBoundedAbove(A,r) ∧ A6=0 −→ HasAminimum(r,

⋂
a∈A. r‘‘{a})"

The essential condition to show that a total relation is reflexive.

lemma Order_ZF_1_L1: assumes "r {is total on} X" and "a∈X"
shows "〈a,a〉 ∈ r" using assms IsTotal_def by auto

A total relation is reflexive.

lemma total_is_refl:

assumes "r {is total on} X"

shows "refl(X,r)" using assms Order_ZF_1_L1 refl_def by simp
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A linear order is partial order.

lemma Order_ZF_1_L2: assumes "IsLinOrder(X,r)"

shows "IsPartOrder(X,r)"

using assms IsLinOrder_def IsPartOrder_def refl_def Order_ZF_1_L1

by auto

Partial order that is total is linear.

lemma Order_ZF_1_L3:

assumes "IsPartOrder(X,r)" and "r {is total on} X"

shows "IsLinOrder(X,r)"

using assms IsPartOrder_def IsLinOrder_def

by simp

Relation that is total on a set is total on any subset.

lemma Order_ZF_1_L4: assumes "r {is total on} X" and "A⊆X"
shows "r {is total on} A"

using assms IsTotal_def by auto

A linear relation is linear on any subset.

lemma ord_linear_subset: assumes "IsLinOrder(X,r)" and "A⊆X"
shows "IsLinOrder(A,r)"

using assms IsLinOrder_def Order_ZF_1_L4 by blast

If the relation is total, then every set is a union of those elements that are
nongreater than a given one and nonsmaller than a given one.

lemma Order_ZF_1_L5:

assumes "r {is total on} X" and "A⊆X" and "a∈X"
shows "A = {x∈A. 〈x,a〉 ∈ r} ∪ {x∈A. 〈a,x〉 ∈ r}"

using assms IsTotal_def by auto

A technical fact about reflexive relations.

lemma refl_add_point:

assumes "refl(X,r)" and "A ⊆ B ∪ {x}" and "B ⊆ X" and
"x ∈ X" and "∀ y∈B. 〈y,x〉 ∈ r"

shows "∀ a∈A. 〈a,x〉 ∈ r"

using assms refl_def by auto

5.2 Intervals

In this section we discuss intervals.

The next lemma explains the notation of the definition of an interval.

lemma Order_ZF_2_L1:

shows "x ∈ Interval(r,a,b) ←→ 〈 a,x〉 ∈ r ∧ 〈 x,b〉 ∈ r"

using Interval_def by auto
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Since there are some problems with applying the above lemma (seems that
simp and auto don’t handle equivalence very well), we split Order_ZF_2_L1

into two lemmas.

lemma Order_ZF_2_L1A: assumes "x ∈ Interval(r,a,b)"

shows "〈 a,x〉 ∈ r" "〈 x,b〉 ∈ r"

using assms Order_ZF_2_L1 by auto

Order_ZF_2_L1, implication from right to left.

lemma Order_ZF_2_L1B: assumes "〈 a,x〉 ∈ r" "〈 x,b〉 ∈ r"

shows "x ∈ Interval(r,a,b)"

using assms Order_ZF_2_L1 by simp

If the relation is reflexive, the endpoints belong to the interval.

lemma Order_ZF_2_L2: assumes "refl(X,r)"

and "a∈X" "b∈X" and "〈 a,b〉 ∈ r"

shows
"a ∈ Interval(r,a,b)"

"b ∈ Interval(r,a,b)"

using assms refl_def Order_ZF_2_L1 by auto

Under the assumptions of Order_ZF_2_L2, the interval is nonempty.

lemma Order_ZF_2_L2A: assumes "refl(X,r)"

and "a∈X" "b∈X" and "〈 a,b〉 ∈ r"

shows "Interval(r,a,b) 6= 0"

proof -

from assms have "a ∈ Interval(r,a,b)"

using Order_ZF_2_L2 by simp

then show "Interval(r,a,b) 6= 0" by auto

qed

If a, b, c, d are in this order, then [b, c] ⊆ [a, d]. We only need trasitivity for
this to be true.

lemma Order_ZF_2_L3:

assumes A1: "trans(r)" and A2:"〈 a,b〉∈r" "〈 b,c〉∈r" "〈 c,d〉∈r"
shows "Interval(r,b,c) ⊆ Interval(r,a,d)"

proof
fix x assume A3: "x ∈ Interval(r, b, c)"

note A1

moreover from A2 A3 have "〈 a,b〉 ∈ r ∧ 〈 b,x〉 ∈ r" using Order_ZF_2_L1A

by simp

ultimately have T1: "〈 a,x〉 ∈ r" by (rule Fol1_L3)

note A1

moreover from A2 A3 have "〈 x,c〉 ∈ r ∧ 〈 c,d〉 ∈ r" using Order_ZF_2_L1A

by simp

ultimately have "〈 x,d〉 ∈ r" by (rule Fol1_L3)

with T1 show "x ∈ Interval(r,a,d)" using Order_ZF_2_L1B

by simp

qed

34



For reflexive and antisymmetric relations the interval with equal endpoints
consists only of that endpoint.

lemma Order_ZF_2_L4:

assumes A1: "refl(X,r)" and A2: "antisym(r)" and A3: "a∈X"
shows "Interval(r,a,a) = {a}"

proof
from A1 A3 have "〈 a,a〉 ∈ r" using refl_def by simp

with A1 A3 show "{a} ⊆ Interval(r,a,a)" using Order_ZF_2_L2 by simp

from A2 show "Interval(r,a,a) ⊆ {a}" using Order_ZF_2_L1A Fol1_L4

by fast

qed

For transitive relations the endpoints have to be in the relation for the
interval to be nonempty.

lemma Order_ZF_2_L5: assumes A1: "trans(r)" and A2: "〈 a,b〉 /∈ r"

shows "Interval(r,a,b) = 0"

proof -

{ assume "Interval(r,a,b) 6=0" then obtain x where "x ∈ Interval(r,a,b)"

by auto

with A1 A2 have False using Order_ZF_2_L1A Fol1_L3 by fast

} thus ?thesis by auto

qed

If a relation is defined on a set, then intervals are subsets of that set.

lemma Order_ZF_2_L6: assumes A1: "r ⊆ X×X"
shows "Interval(r,a,b) ⊆ X"

using assms Interval_def by auto

5.3 Bounded sets

In this section we consider properties of bounded sets.

For reflexive relations singletons are bounded.

lemma Order_ZF_3_L1: assumes "refl(X,r)" and "a∈X"
shows "IsBounded({a},r)"

using assms refl_def IsBoundedAbove_def IsBoundedBelow_def

IsBounded_def by auto

Sets that are bounded above are contained in the domain of the relation.

lemma Order_ZF_3_L1A: assumes "r ⊆ X×X"
and "IsBoundedAbove(A,r)"

shows "A⊆X" using assms IsBoundedAbove_def by auto

Sets that are bounded below are contained in the domain of the relation.

lemma Order_ZF_3_L1B: assumes "r ⊆ X×X"
and "IsBoundedBelow(A,r)"

shows "A⊆X" using assms IsBoundedBelow_def by auto
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For a total relation, the greater of two elements, as defined above, is indeed
greater of any of the two.

lemma Order_ZF_3_L2: assumes "r {is total on} X"

and "x∈X" "y∈X"
shows
"〈x,GreaterOf(r,x,y)〉 ∈ r"

"〈y,GreaterOf(r,x,y)〉 ∈ r"

"〈SmallerOf(r,x,y),x〉 ∈ r"

"〈SmallerOf(r,x,y),y〉 ∈ r"

using assms IsTotal_def Order_ZF_1_L1 GreaterOf_def SmallerOf_def

by auto

If A is bounded above by u, B is bounded above by w, then A∪B is bounded
above by the greater of u,w.

lemma Order_ZF_3_L2B:

assumes A1: "r {is total on} X" and A2: "trans(r)"

and A3: "u∈X" "w∈X"
and A4: "∀ x∈A. 〈 x,u〉 ∈ r" "∀ x∈B. 〈 x,w〉 ∈ r"

shows "∀ x∈A∪B. 〈x,GreaterOf(r,u,w)〉 ∈ r"

proof
let ?v = "GreaterOf(r,u,w)"

from A1 A3 have T1: "〈 u,?v〉 ∈ r" and T2: "〈 w,?v〉 ∈ r"

using Order_ZF_3_L2 by auto

fix x assume A5: "x∈A∪B" show "〈x,?v〉 ∈ r"

proof -

{ assume "x∈A"
with A4 T1 have "〈 x,u〉 ∈ r ∧ 〈 u,?v〉 ∈ r" by simp

with A2 have "〈x,?v〉 ∈ r" by (rule Fol1_L3) }
moreover
{ assume "x/∈A"

with A5 A4 T2 have "〈 x,w〉 ∈ r ∧ 〈 w,?v〉 ∈ r" by simp

with A2 have "〈x,?v〉 ∈ r" by (rule Fol1_L3) }
ultimately show ?thesis by auto

qed
qed

For total and transitive relation the union of two sets bounded above is
bounded above.

lemma Order_ZF_3_L3:

assumes A1: "r {is total on} X" and A2: "trans(r)"

and A3: "IsBoundedAbove(A,r)" "IsBoundedAbove(B,r)"

and A4: "r ⊆ X×X"
shows "IsBoundedAbove(A∪B,r)"

proof -

{ assume "A=0 ∨ B=0"

with A3 have "IsBoundedAbove(A∪B,r)" by auto }
moreover
{ assume "¬ (A = 0 ∨ B = 0)"
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then have T1: "A6=0" "B 6=0" by auto

with A3 obtain u w where D1: "∀ x∈A. 〈 x,u〉 ∈ r" "∀ x∈B. 〈 x,w〉 ∈
r"

using IsBoundedAbove_def by auto

let ?U = "GreaterOf(r,u,w)"

from T1 A4 D1 have "u∈X" "w∈X" by auto

with A1 A2 D1 have "∀ x∈A∪B.〈 x,?U〉 ∈ r"

using Order_ZF_3_L2B by blast

then have "IsBoundedAbove(A∪B,r)"
using IsBoundedAbove_def by auto }

ultimately show ?thesis by auto

qed

For total and transitive relations if a set A is bounded above then A ∪ {a}
is bounded above.

lemma Order_ZF_3_L4:

assumes A1: "r {is total on} X" and A2: "trans(r)"

and A3: "IsBoundedAbove(A,r)" and A4: "a∈X" and A5: "r ⊆ X×X"
shows "IsBoundedAbove(A∪{a},r)"

proof -

from A1 have "refl(X,r)"

using total_is_refl by simp

with assms show ?thesis using
Order_ZF_3_L1 IsBounded_def Order_ZF_3_L3 by simp

qed

If A is bounded below by l, B is bounded below by m, then A∪B is bounded
below by the smaller of u,w.

lemma Order_ZF_3_L5B:

assumes A1: "r {is total on} X" and A2: "trans(r)"

and A3: "l∈X" "m∈X"
and A4: "∀ x∈A. 〈 l,x〉 ∈ r" "∀ x∈B. 〈 m,x〉 ∈ r"

shows "∀ x∈A∪B. 〈SmallerOf(r,l,m),x〉 ∈ r"

proof
let ?k = "SmallerOf(r,l,m)"

from A1 A3 have T1: "〈 ?k,l〉 ∈ r" and T2: "〈 ?k,m〉 ∈ r"

using Order_ZF_3_L2 by auto

fix x assume A5: "x∈A∪B" show "〈?k,x〉 ∈ r"

proof -

{ assume "x∈A"
with A4 T1 have "〈 ?k,l〉 ∈ r ∧ 〈 l,x〉 ∈ r" by simp

with A2 have "〈?k,x〉 ∈ r" by (rule Fol1_L3) }
moreover
{ assume "x/∈A"

with A5 A4 T2 have "〈 ?k,m〉 ∈ r ∧ 〈 m,x〉 ∈ r" by simp

with A2 have "〈?k,x〉 ∈ r" by (rule Fol1_L3) }
ultimately show ?thesis by auto

qed
qed
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For total and transitive relation the union of two sets bounded below is
bounded below.

lemma Order_ZF_3_L6:

assumes A1: "r {is total on} X" and A2: "trans(r)"

and A3: "IsBoundedBelow(A,r)" "IsBoundedBelow(B,r)"

and A4: "r ⊆ X×X"
shows "IsBoundedBelow(A∪B,r)"

proof -

{ assume "A=0 ∨ B=0"

with A3 have ?thesis by auto }
moreover
{ assume "¬ (A = 0 ∨ B = 0)"

then have T1: "A6=0" "B 6=0" by auto

with A3 obtain l m where D1: "∀ x∈A. 〈 l,x〉 ∈ r" "∀ x∈B. 〈 m,x〉 ∈
r"

using IsBoundedBelow_def by auto

let ?L = "SmallerOf(r,l,m)"

from T1 A4 D1 have T1: "l∈X" "m∈X" by auto

with A1 A2 D1 have "∀ x∈A∪B.〈 ?L,x〉 ∈ r"

using Order_ZF_3_L5B by blast

then have "IsBoundedBelow(A∪B,r)"
using IsBoundedBelow_def by auto }

ultimately show ?thesis by auto

qed

For total and transitive relations if a set A is bounded below then A ∪ {a}
is bounded below.

lemma Order_ZF_3_L7:

assumes A1: "r {is total on} X" and A2: "trans(r)"

and A3: "IsBoundedBelow(A,r)" and A4: "a∈X" and A5: "r ⊆ X×X"
shows "IsBoundedBelow(A∪{a},r)"

proof -

from A1 have "refl(X,r)"

using total_is_refl by simp

with assms show ?thesis using
Order_ZF_3_L1 IsBounded_def Order_ZF_3_L6 by simp

qed

For total and transitive relations unions of two bounded sets are bounded.

theorem Order_ZF_3_T1:

assumes "r {is total on} X" and "trans(r)"

and "IsBounded(A,r)" "IsBounded(B,r)"

and "r ⊆ X×X"
shows "IsBounded(A∪B,r)"
using assms Order_ZF_3_L3 Order_ZF_3_L6 Order_ZF_3_L7 IsBounded_def

by simp

For total and transitive relations if a set A is bounded then A ∪ {a} is
bounded.
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lemma Order_ZF_3_L8:

assumes "r {is total on} X" and "trans(r)"

and "IsBounded(A,r)" and "a∈X" and "r ⊆ X×X"
shows "IsBounded(A∪{a},r)"
using assms total_is_refl Order_ZF_3_L1 Order_ZF_3_T1 by blast

A sufficient condition for a set to be bounded below.

lemma Order_ZF_3_L9: assumes A1: "∀ a∈A. 〈l,a〉 ∈ r"

shows "IsBoundedBelow(A,r)"

proof -

from A1 have "∃ l. ∀ x∈A. 〈l,x〉 ∈ r"

by auto

then show "IsBoundedBelow(A,r)"

using IsBoundedBelow_def by simp

qed

A sufficient condition for a set to be bounded above.

lemma Order_ZF_3_L10: assumes A1: "∀ a∈A. 〈a,u〉 ∈ r"

shows "IsBoundedAbove(A,r)"

proof -

from A1 have "∃ u. ∀ x∈A. 〈x,u〉 ∈ r"

by auto

then show "IsBoundedAbove(A,r)"

using IsBoundedAbove_def by simp

qed

Intervals are bounded.

lemma Order_ZF_3_L11: shows
"IsBoundedAbove(Interval(r,a,b),r)"

"IsBoundedBelow(Interval(r,a,b),r)"

"IsBounded(Interval(r,a,b),r)"

proof -

{ fix x assume "x ∈ Interval(r,a,b)"

then have "〈 x,b〉 ∈ r" "〈 a,x〉 ∈ r"

using Order_ZF_2_L1A by auto

} then have
"∃ u. ∀ x∈Interval(r,a,b). 〈 x,u〉 ∈ r"

"∃ l. ∀ x∈Interval(r,a,b). 〈 l,x〉 ∈ r"

by auto

then show
"IsBoundedAbove(Interval(r,a,b),r)"

"IsBoundedBelow(Interval(r,a,b),r)"

"IsBounded(Interval(r,a,b),r)"

using IsBoundedAbove_def IsBoundedBelow_def IsBounded_def

by auto

qed

A subset of a set that is bounded below is bounded below.

lemma Order_ZF_3_L12: assumes A1: "IsBoundedBelow(A,r)" and A2: "B⊆A"
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shows "IsBoundedBelow(B,r)"

proof -

{ assume "A = 0"

with assms have "IsBoundedBelow(B,r)"

using IsBoundedBelow_def by auto }
moreover
{ assume "A 6= 0"

with A1 have "∃ l. ∀ x∈A. 〈l,x〉 ∈ r"

using IsBoundedBelow_def by simp

with A2 have "∃ l.∀ x∈B. 〈l,x〉 ∈ r" by auto

then have "IsBoundedBelow(B,r)" using IsBoundedBelow_def

by auto }
ultimately show "IsBoundedBelow(B,r)" by auto

qed

A subset of a set that is bounded above is bounded above.

lemma Order_ZF_3_L13: assumes A1: "IsBoundedAbove(A,r)" and A2: "B⊆A"
shows "IsBoundedAbove(B,r)"

proof -

{ assume "A = 0"

with assms have "IsBoundedAbove(B,r)"

using IsBoundedAbove_def by auto }
moreover
{ assume "A 6= 0"

with A1 have "∃ u. ∀ x∈A. 〈x,u〉 ∈ r"

using IsBoundedAbove_def by simp

with A2 have "∃ u.∀ x∈B. 〈x,u〉 ∈ r" by auto

then have "IsBoundedAbove(B,r)" using IsBoundedAbove_def

by auto }
ultimately show "IsBoundedAbove(B,r)" by auto

qed

If for every element of X we can find one in A that is greater, then the A
can not be bounded above. Works for relations that are total, transitive and
antisymmetric, (i.e. for linear order relations).

lemma Order_ZF_3_L14:

assumes A1: "r {is total on} X"

and A2: "trans(r)" and A3: "antisym(r)"

and A4: "r ⊆ X×X" and A5: "X6=0"

and A6: "∀ x∈X. ∃ a∈A. x6=a ∧ 〈x,a〉 ∈ r"

shows "¬IsBoundedAbove(A,r)"
proof -

{ from A5 A6 have I: "A 6=0" by auto

moreover assume "IsBoundedAbove(A,r)"

ultimately obtain u where II: "∀ x∈A. 〈 x,u〉 ∈ r"

using IsBounded_def IsBoundedAbove_def by auto

with A4 I have "u∈X" by auto

with A6 obtain b where "b∈A" and III: "u6=b" and "〈u,b〉 ∈ r"

by auto
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with II have "〈b,u〉 ∈ r" "〈u,b〉 ∈ r" by auto

with A3 have "b=u" by (rule Fol1_L4)

with III have False by simp

} thus "¬IsBoundedAbove(A,r)" by auto

qed

The set of elements in a set A that are nongreater than a given element is
bounded above.

lemma Order_ZF_3_L15: shows "IsBoundedAbove({x∈A. 〈x,a〉 ∈ r},r)"

using IsBoundedAbove_def by auto

If A is bounded below, then the set of elements in a set A that are nongreater
than a given element is bounded.

lemma Order_ZF_3_L16: assumes A1: "IsBoundedBelow(A,r)"

shows "IsBounded({x∈A. 〈x,a〉 ∈ r},r)"

proof -

{ assume "A=0"

then have "IsBounded({x∈A. 〈x,a〉 ∈ r},r)"

using IsBoundedBelow_def IsBoundedAbove_def IsBounded_def

by auto }
moreover
{ assume "A 6=0"

with A1 obtain l where I: "∀ x∈A. 〈l,x〉 ∈ r"

using IsBoundedBelow_def by auto

then have "∀ y∈{x∈A. 〈x,a〉 ∈ r}. 〈l,y〉 ∈ r" by simp

then have "IsBoundedBelow({x∈A. 〈x,a〉 ∈ r},r)"

by (rule Order_ZF_3_L9)

then have "IsBounded({x∈A. 〈x,a〉 ∈ r},r)"

using Order_ZF_3_L15 IsBounded_def by simp }
ultimately show ?thesis by blast

qed

end

6 More on order relations

theory Order_ZF_1 imports Order ZF1

begin

In Order_ZF we define some notions related to order relations based on the
nonstrict orders (≤ type). Some people however prefer to talk about these
notions in terms of the strict order relation (< type). This is the case for the
standard Isabelle Order.thy and also for Metamath. In this theory file we
repeat some developments from Order_ZF using the strict order relation as
a basis.This is mostly useful for Metamath translation, but is also of some
general interest. The names of theorems are copied from Metamath.
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6.1 Definitions and basic properties

In this section we introduce some definitions taken from Metamath and
relate them to the ones used by the standard Isabelle Order.thy.

The next definition is the strict version of the linear order. What we write
as R Orders A is written ROrdA in Metamath.

definition
StrictOrder (infix "Orders" 65) where
"R Orders A ≡ ∀ x y z. (x∈A ∧ y∈A ∧ z∈A) −→
(〈x,y〉 ∈ R ←→ ¬(x=y ∨ 〈y,x〉 ∈ R)) ∧
(〈x,y〉 ∈ R ∧ 〈y,z〉 ∈ R −→ 〈x,z〉 ∈ R)"

The definition of supremum for a (strict) linear order.

definition
"Sup(B,A,R) ≡⋃

{x ∈ A. (∀ y∈B. 〈x,y〉 /∈ R) ∧
(∀ y∈A. 〈y,x〉 ∈ R −→ (∃ z∈B. 〈y,z〉 ∈ R))}"

Definition of infimum for a linear order. It is defined in terms of supremum.

definition
"Infim(B,A,R) ≡ Sup(B,A,converse(R))"

If relation R orders a set A, (in Metamath sense) then R is irreflexive,
transitive and linear therefore is a total order on A (in Isabelle sense).

lemma orders_imp_tot_ord: assumes A1: "R Orders A"

shows
"irrefl(A,R)"

"trans[A](R)"

"part_ord(A,R)"

"linear(A,R)"

"tot_ord(A,R)"

proof -

from A1 have I:

"∀ x y z. (x∈A ∧ y∈A ∧ z∈A) −→
(〈x,y〉 ∈ R ←→ ¬(x=y ∨ 〈y,x〉 ∈ R)) ∧
(〈x,y〉 ∈ R ∧ 〈y,z〉 ∈ R −→ 〈x,z〉 ∈ R)"

unfolding StrictOrder_def by simp

then have "∀ x∈A. 〈x,x〉 /∈ R" by blast

then show "irrefl(A,R)" using irrefl_def by simp

moreover
from I have
"∀ x∈A. ∀ y∈A. ∀ z∈A. 〈x,y〉 ∈ R −→ 〈y,z〉 ∈ R −→ 〈x,z〉 ∈ R"

by blast

then show "trans[A](R)" unfolding trans_on_def by blast

ultimately show "part_ord(A,R)" using part_ord_def

by simp

moreover
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from I have
"∀ x∈A. ∀ y∈A. 〈x,y〉 ∈ R ∨ x=y ∨ 〈y,x〉 ∈ R"

by blast

then show "linear(A,R)" unfolding linear_def by blast

ultimately show "tot_ord(A,R)" using tot_ord_def

by simp

qed

A converse of orders_imp_tot_ord. Together with that theorem this shows
that Metamath’s notion of an order relation is equivalent to Isabelles tot_ord
predicate.

lemma tot_ord_imp_orders: assumes A1: "tot_ord(A,R)"

shows "R Orders A"

proof -

from A1 have
I: "linear(A,R)" and
II: "irrefl(A,R)" and
III: "trans[A](R)" and
IV: "part_ord(A,R)"

using tot_ord_def part_ord_def by auto

from IV have "asym(R ∩ A×A)"
using part_ord_Imp_asym by simp

then have V: "∀ x y. 〈x,y〉 ∈ (R ∩ A×A) −→ ¬(〈y,x〉 ∈ (R ∩ A×A))"
unfolding asym_def by blast

from I have VI: "∀ x∈A. ∀ y∈A. 〈x,y〉 ∈ R ∨ x=y ∨ 〈y,x〉 ∈ R"

unfolding linear_def by blast

from III have VII:

"∀ x∈A. ∀ y∈A. ∀ z∈A. 〈x,y〉 ∈ R −→ 〈y,z〉 ∈ R −→ 〈x,z〉 ∈ R"

unfolding trans_on_def by blast

{ fix x y z

assume T: "x∈A" "y∈A" "z∈A"
have "〈x,y〉 ∈ R ←→ ¬(x=y ∨ 〈y,x〉 ∈ R)"

proof
assume A2: "〈x,y〉 ∈ R"

with V T have "¬(〈y,x〉 ∈ R)" by blast

moreover from II T A2 have "x6=y" using irrefl_def

by auto

ultimately show "¬(x=y ∨ 〈y,x〉 ∈ R)" by simp

next assume "¬(x=y ∨ 〈y,x〉 ∈ R)"

with VI T show "〈x,y〉 ∈ R" by auto

qed
moreover from VII T have
"〈x,y〉 ∈ R ∧ 〈y,z〉 ∈ R −→ 〈x,z〉 ∈ R"

by blast

ultimately have "(〈x,y〉 ∈ R ←→ ¬(x=y ∨ 〈y,x〉 ∈ R)) ∧
(〈x,y〉 ∈ R ∧ 〈y,z〉 ∈ R −→ 〈x,z〉 ∈ R)"

by simp

} then have "∀ x y z. (x∈A ∧ y∈A ∧ z∈A) −→
(〈x,y〉 ∈ R ←→ ¬(x=y ∨ 〈y,x〉 ∈ R)) ∧
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(〈x,y〉 ∈ R ∧ 〈y,z〉 ∈ R −→ 〈x,z〉 ∈ R)"

by auto

then show "R Orders A" using StrictOrder_def by simp

qed

6.2 Properties of (strict) total orders

In this section we discuss the properties of strict order relations. This con-
tinues the development contained in the standard Isabelle’s Order.thy with
a view towards using the theorems translated from Metamath.

A relation orders a set iff the converse relation orders a set. Going one
way we can use the the lemma tot_od_converse from the standard Isabelle’s
Order.thy.The other way is a bit more complicated (note that in Isabelle for
converse(converse(r)) = r one needs r to consist of ordered pairs, which
does not follow from the StrictOrder definition above).

lemma cnvso: shows "R Orders A ←→ converse(R) Orders A"

proof
let ?r = "converse(R)"

assume "R Orders A"

then have "tot_ord(A,?r)" using orders_imp_tot_ord tot_ord_converse

by simp

then show "?r Orders A" using tot_ord_imp_orders

by simp

next
let ?r = "converse(R)"

assume "?r Orders A"

then have A2: "∀ x y z. (x∈A ∧ y∈A ∧ z∈A) −→
(〈x,y〉 ∈ ?r ←→ ¬(x=y ∨ 〈y,x〉 ∈ ?r)) ∧
(〈x,y〉 ∈ ?r ∧ 〈y,z〉 ∈ ?r −→ 〈x,z〉 ∈ ?r)"

using StrictOrder_def by simp

{ fix x y z

assume "x∈A ∧ y∈A ∧ z∈A"
with A2 have
I: "〈y,x〉 ∈ ?r ←→ ¬(x=y ∨ 〈x,y〉 ∈ ?r)" and
II: "〈y,x〉 ∈ ?r ∧ 〈z,y〉 ∈ ?r −→ 〈z,x〉 ∈ ?r"

by auto

from I have "〈x,y〉 ∈ R ←→ ¬(x=y ∨ 〈y,x〉 ∈ R)"

by auto

moreover from II have "〈x,y〉 ∈ R ∧ 〈y,z〉 ∈ R −→ 〈x,z〉 ∈ R"

by auto

ultimately have "(〈x,y〉 ∈ R ←→ ¬(x=y ∨ 〈y,x〉 ∈ R)) ∧
(〈x,y〉 ∈ R ∧ 〈y,z〉 ∈ R −→ 〈x,z〉 ∈ R)" by simp

} then have "∀ x y z. (x∈A ∧ y∈A ∧ z∈A) −→
(〈x,y〉 ∈ R ←→ ¬(x=y ∨ 〈y,x〉 ∈ R)) ∧
(〈x,y〉 ∈ R ∧ 〈y,z〉 ∈ R −→ 〈x,z〉 ∈ R)"

by auto

then show "R Orders A" using StrictOrder_def by simp
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qed

Supremum is unique, if it exists.

lemma supeu: assumes A1: "R Orders A" and A2: "x∈A" and
A3: "∀ y∈B. 〈x,y〉 /∈ R" and A4: "∀ y∈A. 〈y,x〉 ∈ R −→ ( ∃ z∈B. 〈y,z〉 ∈

R)"

shows
"∃ !x. x∈A∧(∀ y∈B. 〈x,y〉 /∈ R) ∧ (∀ y∈A. 〈y,x〉 ∈ R −→ ( ∃ z∈B. 〈y,z〉 ∈

R))"

proof
from A2 A3 A4 show
"∃ x. x∈A∧(∀ y∈B. 〈x,y〉 /∈ R) ∧ (∀ y∈A. 〈y,x〉 ∈ R −→ ( ∃ z∈B. 〈y,z〉

∈ R))"

by auto

next fix x1 x2
assume A5:

"x1 ∈ A ∧ (∀ y∈B. 〈x1,y〉 /∈ R) ∧ (∀ y∈A. 〈y,x1〉 ∈ R −→ ( ∃ z∈B. 〈y,z〉
∈ R))"

"x2 ∈ A ∧ (∀ y∈B. 〈x2,y〉 /∈ R) ∧ (∀ y∈A. 〈y,x2〉 ∈ R −→ ( ∃ z∈B. 〈y,z〉
∈ R))"

from A1 have "linear(A,R)" using orders_imp_tot_ord tot_ord_def

by simp

then have "∀ x∈A. ∀ y∈A. 〈x,y〉 ∈ R ∨ x=y ∨ 〈y,x〉 ∈ R"

unfolding linear_def by blast

with A5 have "〈x1,x2〉 ∈ R ∨ x1=x2 ∨ 〈x2,x1〉 ∈ R" by blast

moreover
{ assume "〈x1,x2〉 ∈ R"

with A5 obtain z where "z∈B" and "〈x1,z〉 ∈ R" by auto

with A5 have False by auto }
moreover
{ assume "〈x2,x1〉 ∈ R"

with A5 obtain z where "z∈B" and "〈x2,z〉 ∈ R" by auto

with A5 have False by auto }
ultimately show "x1 = x2" by auto

qed

Supremum has expected properties if it exists.

lemma sup_props: assumes A1: "R Orders A" and
A2: "∃ x∈A. (∀ y∈B. 〈x,y〉 /∈ R) ∧ (∀ y∈A. 〈y,x〉 ∈ R −→ ( ∃ z∈B. 〈y,z〉

∈ R))"

shows
"Sup(B,A,R) ∈ A"

"∀ y∈B. 〈Sup(B,A,R),y〉 /∈ R"

"∀ y∈A. 〈y,Sup(B,A,R)〉 ∈ R −→ ( ∃ z∈B. 〈y,z〉 ∈ R )"

proof -

let ?S = "{x∈A. (∀ y∈B. 〈x,y〉 /∈ R) ∧ (∀ y∈A. 〈y,x〉 ∈ R −→ ( ∃ z∈B. 〈y,z〉
∈ R ) ) }"

from A2 obtain x where
"x∈A" and "(∀ y∈B. 〈x,y〉 /∈ R)" and "∀ y∈A. 〈y,x〉 ∈ R −→ ( ∃ z∈B.
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〈y,z〉 ∈ R)"

by auto

with A1 have I:

"∃ !x. x∈A∧(∀ y∈B. 〈x,y〉 /∈ R) ∧ (∀ y∈A. 〈y,x〉 ∈ R −→ ( ∃ z∈B. 〈y,z〉
∈ R))"

using supeu by simp

then have "(
⋃
?S ) ∈ A" by (rule ZF1_1_L9)

then show "Sup(B,A,R) ∈ A" using Sup_def by simp

from I have II:

"(∀ y∈B. 〈
⋃
?S ,y〉 /∈ R) ∧ (∀ y∈A. 〈y,

⋃
?S〉 ∈ R −→ ( ∃ z∈B. 〈y,z〉 ∈

R))"

by (rule ZF1_1_L9)

hence "∀ y∈B. 〈
⋃
?S,y〉 /∈ R" by blast

moreover have III: "(
⋃
?S) = Sup(B,A,R)" using Sup_def by simp

ultimately show "∀ y∈B. 〈Sup(B,A,R),y〉 /∈ R" by simp

from II have IV: "∀ y∈A. 〈y,
⋃
?S〉 ∈ R −→ ( ∃ z∈B. 〈y,z〉 ∈ R)"

by blast

{ fix y assume A3: "y∈A" and "〈y,Sup(B,A,R)〉 ∈ R"

with III have "〈y,
⋃
?S〉 ∈ R" by simp

with IV A3 have "∃ z∈B. 〈y,z〉 ∈ R" by blast

} thus "∀ y∈A. 〈y,Sup(B,A,R)〉 ∈ R −→ ( ∃ z∈B. 〈y,z〉 ∈ R )"

by simp

qed

Elements greater or equal than any element of B are greater or equal than
supremum of B.

lemma supnub: assumes A1: "R Orders A" and A2:

"∃ x∈A. (∀ y∈B. 〈x,y〉 /∈ R) ∧ (∀ y∈A. 〈y,x〉 ∈ R −→ ( ∃ z∈B. 〈y,z〉 ∈ R))"

and A3: "c ∈ A" and A4: "∀ z∈B. 〈c,z〉 /∈ R"

shows "〈c, Sup(B,A,R)〉 /∈ R"

proof -

from A1 A2 have
"∀ y∈A. 〈y,Sup(B,A,R)〉 ∈ R −→ ( ∃ z∈B. 〈y,z〉 ∈ R )"

by (rule sup_props)

with A3 A4 show "〈c, Sup(B,A,R)〉 /∈ R" by auto

qed

end

7 Even more on order relations

theory Order_ZF_1a imports Order_ZF

begin

This theory is a continuation of Order_ZF and talks about maximuma and
minimum of a set, supremum and infimum and strict (not reflexive) versions
of order relations.
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7.1 Maximum and minimum of a set

In this section we show that maximum and minimum are unique if they
exist. We also show that union of sets that have maxima (minima) has a
maximum (minimum). We also show that singletons have maximum and
minimum. All this allows to show (in Finite_ZF) that every finite set has
well-defined maximum and minimum.

For antisymmetric relations maximum of a set is unique if it exists.

lemma Order_ZF_4_L1: assumes A1: "antisym(r)" and A2: "HasAmaximum(r,A)"

shows "∃ !M. M∈A ∧ (∀ x∈A. 〈 x,M〉 ∈ r)"

proof
from A2 show "∃ M. M ∈ A ∧ (∀ x∈A. 〈x, M〉 ∈ r)"

using HasAmaximum_def by auto

fix M1 M2 assume
A2: "M1 ∈ A ∧ (∀ x∈A. 〈x, M1〉 ∈ r)" "M2 ∈ A ∧ (∀ x∈A. 〈x, M2〉 ∈ r)"

then have "〈M1,M2〉 ∈ r" "〈M2,M1〉 ∈ r" by auto

with A1 show "M1=M2" by (rule Fol1_L4)

qed

For antisymmetric relations minimum of a set is unique if it exists.

lemma Order_ZF_4_L2: assumes A1: "antisym(r)" and A2: "HasAminimum(r,A)"

shows "∃ !m. m∈A ∧ (∀ x∈A. 〈 m,x〉 ∈ r)"

proof
from A2 show "∃ m. m ∈ A ∧ (∀ x∈A. 〈m, x〉 ∈ r)"

using HasAminimum_def by auto

fix m1 m2 assume
A2: "m1 ∈ A ∧ (∀ x∈A. 〈m1, x〉 ∈ r)" "m2 ∈ A ∧ (∀ x∈A. 〈m2, x〉 ∈ r)"

then have "〈m1,m2〉 ∈ r" "〈m2,m1〉 ∈ r" by auto

with A1 show "m1=m2" by (rule Fol1_L4)

qed

Maximum of a set has desired properties.

lemma Order_ZF_4_L3: assumes A1: "antisym(r)" and A2: "HasAmaximum(r,A)"

shows "Maximum(r,A) ∈ A" "∀ x∈A. 〈x,Maximum(r,A)〉 ∈ r"

proof -

let ?Max = "THE M. M∈A ∧ (∀ x∈A. 〈 x,M〉 ∈ r)"

from A1 A2 have "∃ !M. M∈A ∧ (∀ x∈A. 〈 x,M〉 ∈ r)"

by (rule Order_ZF_4_L1)

then have "?Max ∈ A ∧ (∀ x∈A. 〈 x,?Max〉 ∈ r)"

by (rule theI)

then show "Maximum(r,A) ∈ A" "∀ x∈A. 〈x,Maximum(r,A)〉 ∈ r"

using Maximum_def by auto

qed

Minimum of a set has desired properties.

lemma Order_ZF_4_L4: assumes A1: "antisym(r)" and A2: "HasAminimum(r,A)"

shows "Minimum(r,A) ∈ A" "∀ x∈A. 〈Minimum(r,A),x〉 ∈ r"
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proof -

let ?Min = "THE m. m∈A ∧ (∀ x∈A. 〈 m,x〉 ∈ r)"

from A1 A2 have "∃ !m. m∈A ∧ (∀ x∈A. 〈 m,x〉 ∈ r)"

by (rule Order_ZF_4_L2)

then have "?Min ∈ A ∧ (∀ x∈A. 〈 ?Min,x〉 ∈ r)"

by (rule theI)

then show "Minimum(r,A) ∈ A" "∀ x∈A. 〈Minimum(r,A),x〉 ∈ r"

using Minimum_def by auto

qed

For total and transitive relations a union a of two sets that have maxima
has a maximum.

lemma Order_ZF_4_L5:

assumes A1: "r {is total on} (A∪B)" and A2: "trans(r)"

and A3: "HasAmaximum(r,A)" "HasAmaximum(r,B)"

shows "HasAmaximum(r,A∪B)"
proof -

from A3 obtain M K where
D1: "M∈A ∧ (∀ x∈A. 〈 x,M〉 ∈ r)" "K∈B ∧ (∀ x∈B. 〈 x,K〉 ∈ r)"

using HasAmaximum_def by auto

let ?L = "GreaterOf(r,M,K)"

from D1 have T1: "M ∈ A∪B" "K ∈ A∪B"
"∀ x∈A. 〈 x,M〉 ∈ r" "∀ x∈B. 〈 x,K〉 ∈ r"

by auto

with A1 A2 have "∀ x∈A∪B.〈 x,?L〉 ∈ r" by (rule Order_ZF_3_L2B)

moreover from T1 have "?L ∈ A∪B" using GreaterOf_def IsTotal_def

by simp

ultimately show "HasAmaximum(r,A∪B)" using HasAmaximum_def by auto

qed

For total and transitive relations A union a of two sets that have minima
has a minimum.

lemma Order_ZF_4_L6:

assumes A1: "r {is total on} (A∪B)" and A2: "trans(r)"

and A3: "HasAminimum(r,A)" "HasAminimum(r,B)"

shows "HasAminimum(r,A∪B)"
proof -

from A3 obtain m k where
D1: "m∈A ∧ (∀ x∈A. 〈 m,x〉 ∈ r)" "k∈B ∧ (∀ x∈B. 〈 k,x〉 ∈ r)"

using HasAminimum_def by auto

let ?l = "SmallerOf(r,m,k)"

from D1 have T1: "m ∈ A∪B" "k ∈ A∪B"
"∀ x∈A. 〈 m,x〉 ∈ r" "∀ x∈B. 〈 k,x〉 ∈ r"

by auto

with A1 A2 have "∀ x∈A∪B.〈 ?l,x〉 ∈ r" by (rule Order_ZF_3_L5B)

moreover from T1 have "?l ∈ A∪B" using SmallerOf_def IsTotal_def

by simp

ultimately show "HasAminimum(r,A∪B)" using HasAminimum_def by auto

qed
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Set that has a maximum is bounded above.

lemma Order_ZF_4_L7:

assumes "HasAmaximum(r,A)"

shows "IsBoundedAbove(A,r)"

using assms HasAmaximum_def IsBoundedAbove_def by auto

Set that has a minimum is bounded below.

lemma Order_ZF_4_L8A:

assumes "HasAminimum(r,A)"

shows "IsBoundedBelow(A,r)"

using assms HasAminimum_def IsBoundedBelow_def by auto

For reflexive relations singletons have a minimum and maximum.

lemma Order_ZF_4_L8: assumes "refl(X,r)" and "a∈X"
shows "HasAmaximum(r,{a})" "HasAminimum(r,{a})"

using assms refl_def HasAmaximum_def HasAminimum_def by auto

For total and transitive relations if we add an element to a set that has a
maximum, the set still has a maximum.

lemma Order_ZF_4_L9:

assumes A1: "r {is total on} X" and A2: "trans(r)"

and A3: "A⊆X" and A4: "a∈X" and A5: "HasAmaximum(r,A)"

shows "HasAmaximum(r,A∪{a})"
proof -

from A3 A4 have "A∪{a} ⊆ X" by auto

with A1 have "r {is total on} (A∪{a})"
using Order_ZF_1_L4 by blast

moreover from A1 A2 A4 A5 have
"trans(r)" "HasAmaximum(r,A)" by auto

moreover from A1 A4 have "HasAmaximum(r,{a})"

using total_is_refl Order_ZF_4_L8 by blast

ultimately show "HasAmaximum(r,A∪{a})" by (rule Order_ZF_4_L5)

qed

For total and transitive relations if we add an element to a set that has a
minimum, the set still has a minimum.

lemma Order_ZF_4_L10:

assumes A1: "r {is total on} X" and A2: "trans(r)"

and A3: "A⊆X" and A4: "a∈X" and A5: "HasAminimum(r,A)"

shows "HasAminimum(r,A∪{a})"
proof -

from A3 A4 have "A∪{a} ⊆ X" by auto

with A1 have "r {is total on} (A∪{a})"
using Order_ZF_1_L4 by blast

moreover from A1 A2 A4 A5 have
"trans(r)" "HasAminimum(r,A)" by auto

moreover from A1 A4 have "HasAminimum(r,{a})"

using total_is_refl Order_ZF_4_L8 by blast
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ultimately show "HasAminimum(r,A∪{a})" by (rule Order_ZF_4_L6)

qed

If the order relation has a property that every nonempty bounded set attains
a minimum (for example integers are like that), then every nonempty set
bounded below attains a minimum.

lemma Order_ZF_4_L11:

assumes A1: "r {is total on} X" and
A2: "trans(r)" and
A3: "r ⊆ X×X" and
A4: "∀ A. IsBounded(A,r) ∧ A6=0 −→ HasAminimum(r,A)" and
A5: "B6=0" and A6: "IsBoundedBelow(B,r)"

shows "HasAminimum(r,B)"

proof -

from A5 obtain b where T: "b∈B" by auto

let ?L = "{x∈B. 〈x,b〉 ∈ r}"

from A3 A6 T have T1: "b∈X" using Order_ZF_3_L1B by blast

with A1 T have T2: "b ∈ ?L"

using total_is_refl refl_def by simp

then have "?L 6= 0" by auto

moreover have "IsBounded(?L,r)"

proof -

have "?L ⊆ B" by auto

with A6 have "IsBoundedBelow(?L,r)"

using Order_ZF_3_L12 by simp

moreover have "IsBoundedAbove(?L,r)"

by (rule Order_ZF_3_L15)

ultimately have "IsBoundedAbove(?L,r) ∧ IsBoundedBelow(?L,r)"

by blast

then show "IsBounded(?L,r)" using IsBounded_def

by simp

qed
ultimately have "IsBounded(?L,r) ∧ ?L 6= 0" by blast

with A4 have "HasAminimum(r,?L)" by simp

then obtain m where I: "m∈?L" and II: "∀ x∈?L. 〈 m,x〉 ∈ r"

using HasAminimum_def by auto

then have III: "〈m,b〉 ∈ r" by simp

from I have "m∈B" by simp

moreover have "∀ x∈B. 〈m,x〉 ∈ r"

proof
fix x assume A7: "x∈B"
from A3 A6 have "B⊆X" using Order_ZF_3_L1B by blast

with A1 A7 T1 have "x ∈ ?L ∪ {x∈B. 〈b,x〉 ∈ r}"

using Order_ZF_1_L5 by simp

then have "x∈?L ∨ 〈b,x〉 ∈ r" by auto

moreover
{ assume "x∈?L"

with II have "〈m,x〉 ∈ r" by simp }
moreover
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{ assume "〈b,x〉 ∈ r"

with A2 III have "trans(r)" and "〈m,b〉 ∈ r ∧ 〈b,x〉 ∈ r"

by auto

then have "〈m,x〉 ∈ r" by (rule Fol1_L3) }
ultimately show "〈m,x〉 ∈ r" by auto

qed
ultimately show "HasAminimum(r,B)" using HasAminimum_def

by auto

qed

A dual to Order_ZF_4_L11: If the order relation has a property that every
nonempty bounded set attains a maximum (for example integers are like
that), then every nonempty set bounded above attains a maximum.

lemma Order_ZF_4_L11A:

assumes A1: "r {is total on} X" and
A2: "trans(r)" and
A3: "r ⊆ X×X" and
A4: "∀ A. IsBounded(A,r) ∧ A6=0 −→ HasAmaximum(r,A)" and
A5: "B6=0" and A6: "IsBoundedAbove(B,r)"

shows "HasAmaximum(r,B)"

proof -

from A5 obtain b where T: "b∈B" by auto

let ?U = "{x∈B. 〈b,x〉 ∈ r}"

from A3 A6 T have T1: "b∈X" using Order_ZF_3_L1A by blast

with A1 T have T2: "b ∈ ?U"

using total_is_refl refl_def by simp

then have "?U 6= 0" by auto

moreover have "IsBounded(?U,r)"

proof -

have "?U ⊆ B" by auto

with A6 have "IsBoundedAbove(?U,r)"

using Order_ZF_3_L13 by blast

moreover have "IsBoundedBelow(?U,r)"

using IsBoundedBelow_def by auto

ultimately have "IsBoundedAbove(?U,r) ∧ IsBoundedBelow(?U,r)"

by blast

then show "IsBounded(?U,r)" using IsBounded_def

by simp

qed
ultimately have "IsBounded(?U,r) ∧ ?U 6= 0" by blast

with A4 have "HasAmaximum(r,?U)" by simp

then obtain m where I: "m∈?U" and II: "∀ x∈?U. 〈x,m〉 ∈ r"

using HasAmaximum_def by auto

then have III: "〈b,m〉 ∈ r" by simp

from I have "m∈B" by simp

moreover have "∀ x∈B. 〈x,m〉 ∈ r"

proof
fix x assume A7: "x∈B"
from A3 A6 have "B⊆X" using Order_ZF_3_L1A by blast
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with A1 A7 T1 have "x ∈ {x∈B. 〈x,b〉 ∈ r} ∪ ?U"

using Order_ZF_1_L5 by simp

then have "x∈?U ∨ 〈x,b〉 ∈ r" by auto

moreover
{ assume "x∈?U"

with II have "〈x,m〉 ∈ r" by simp }
moreover
{ assume "〈x,b〉 ∈ r"

with A2 III have "trans(r)" and "〈x,b〉 ∈ r ∧ 〈b,m〉 ∈ r"

by auto

then have "〈x,m〉 ∈ r" by (rule Fol1_L3) }
ultimately show "〈x,m〉 ∈ r" by auto

qed
ultimately show "HasAmaximum(r,B)" using HasAmaximum_def

by auto

qed

If a set has a minimum and L is less or equal than all elements of the set,
then L is less or equal than the minimum.

lemma Order_ZF_4_L12:

assumes "antisym(r)" and "HasAminimum(r,A)" and "∀ a∈A. 〈L,a〉 ∈ r"

shows "〈L,Minimum(r,A)〉 ∈ r"

using assms Order_ZF_4_L4 by simp

If a set has a maximum and all its elements are less or equal than M , then
the maximum of the set is less or equal than M .

lemma Order_ZF_4_L13:

assumes "antisym(r)" and "HasAmaximum(r,A)" and "∀ a∈A. 〈a,M〉 ∈ r"

shows "〈Maximum(r,A),M〉 ∈ r"

using assms Order_ZF_4_L3 by simp

If an element belongs to a set and is greater or equal than all elements of
that set, then it is the maximum of that set.

lemma Order_ZF_4_L14:

assumes A1: "antisym(r)" and A2: "M ∈ A" and
A3: "∀ a∈A. 〈a,M〉 ∈ r"

shows "Maximum(r,A) = M"

proof -

from A2 A3 have I: "HasAmaximum(r,A)" using HasAmaximum_def

by auto

with A1 have "∃ !M. M∈A ∧ (∀ x∈A. 〈x,M〉 ∈ r)"

using Order_ZF_4_L1 by simp

moreover from A2 A3 have "M∈A ∧ (∀ x∈A. 〈x,M〉 ∈ r)" by simp

moreover from A1 I have
"Maximum(r,A) ∈ A ∧ (∀ x∈A. 〈x,Maximum(r,A)〉 ∈ r)"

using Order_ZF_4_L3 by simp

ultimately show "Maximum(r,A) = M" by auto

qed
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If an element belongs to a set and is less or equal than all elements of that
set, then it is the minimum of that set.

lemma Order_ZF_4_L15:

assumes A1: "antisym(r)" and A2: "m ∈ A" and
A3: "∀ a∈A. 〈m,a〉 ∈ r"

shows "Minimum(r,A) = m"

proof -

from A2 A3 have I: "HasAminimum(r,A)" using HasAminimum_def

by auto

with A1 have "∃ !m. m∈A ∧ (∀ x∈A. 〈m,x〉 ∈ r)"

using Order_ZF_4_L2 by simp

moreover from A2 A3 have "m∈A ∧ (∀ x∈A. 〈m,x〉 ∈ r)" by simp

moreover from A1 I have
"Minimum(r,A) ∈ A ∧ (∀ x∈A. 〈Minimum(r,A),x〉 ∈ r)"

using Order_ZF_4_L4 by simp

ultimately show "Minimum(r,A) = m" by auto

qed

If a set does not have a maximum, then for any its element we can find one
that is (strictly) greater.

lemma Order_ZF_4_L16:

assumes A1: "antisym(r)" and A2: "r {is total on} X" and
A3: "A⊆X" and
A4: "¬HasAmaximum(r,A)" and
A5: "x∈A"
shows "∃ y∈A. 〈x,y〉 ∈ r ∧ y6=x"

proof -

{ assume A6: "∀ y∈A. 〈x,y〉 /∈ r ∨ y=x"

have "∀ y∈A. 〈y,x〉 ∈ r"

proof
fix y assume A7: "y∈A"
with A6 have "〈x,y〉 /∈ r ∨ y=x" by simp

with A2 A3 A5 A7 show "〈y,x〉 ∈ r"

using IsTotal_def Order_ZF_1_L1 by auto

qed
with A5 have "∃ x∈A.∀ y∈A. 〈y,x〉 ∈ r"

by auto

with A4 have False using HasAmaximum_def by simp

} then show "∃ y∈A. 〈x,y〉 ∈ r ∧ y6=x" by auto

qed

7.2 Supremum and Infimum

In this section we consider the notions of supremum and infimum a set.

Elements of the set of upper bounds are indeed upper bounds. Isabelle also
thinks it is obvious.

lemma Order_ZF_5_L1: assumes "u ∈ (
⋂
a∈A. r‘‘{a})" and "a∈A"
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shows "〈a,u〉 ∈ r"

using assms by auto

Elements of the set of lower bounds are indeed lower bounds. Isabelle also
thinks it is obvious.

lemma Order_ZF_5_L2: assumes "l ∈ (
⋂
a∈A. r-‘‘{a})" and "a∈A"

shows "〈l,a〉 ∈ r"

using assms by auto

If the set of upper bounds has a minimum, then the supremum is less or equal
than any upper bound. We can probably do away with the assumption that
A is not empty, (ab)using the fact that intersection over an empty family is
defined in Isabelle to be empty.

lemma Order_ZF_5_L3: assumes A1: "antisym(r)" and A2: "A6=0" and
A3: "HasAminimum(r,

⋂
a∈A. r‘‘{a})" and

A4: "∀ a∈A. 〈a,u〉 ∈ r"

shows "〈Supremum(r,A),u〉 ∈ r"

proof -

let ?U = "
⋂
a∈A. r‘‘{a}"

from A4 have "∀ a∈A. u ∈ r‘‘{a}" using image_singleton_iff

by simp

with A2 have "u∈?U" by auto

with A1 A3 show "〈Supremum(r,A),u〉 ∈ r"

using Order_ZF_4_L4 Supremum_def by simp

qed

Infimum is greater or equal than any lower bound.

lemma Order_ZF_5_L4: assumes A1: "antisym(r)" and A2: "A6=0" and
A3: "HasAmaximum(r,

⋂
a∈A. r-‘‘{a})" and

A4: "∀ a∈A. 〈l,a〉 ∈ r"

shows "〈l,Infimum(r,A)〉 ∈ r"

proof -

let ?L = "
⋂
a∈A. r-‘‘{a}"

from A4 have "∀ a∈A. l ∈ r-‘‘{a}" using vimage_singleton_iff

by simp

with A2 have "l∈?L" by auto

with A1 A3 show "〈l,Infimum(r,A)〉 ∈ r"

using Order_ZF_4_L3 Infimum_def by simp

qed

If z is an upper bound for A and is greater or equal than any other upper
bound, then z is the supremum of A.

lemma Order_ZF_5_L5: assumes A1: "antisym(r)" and A2: "A6=0" and
A3: "∀ x∈A. 〈x,z〉 ∈ r" and
A4: "∀ y. (∀ x∈A. 〈x,y〉 ∈ r) −→ 〈z,y〉 ∈ r"

shows
"HasAminimum(r,

⋂
a∈A. r‘‘{a})"

"z = Supremum(r,A)"
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proof -

let ?B = "
⋂
a∈A. r‘‘{a}"

from A2 A3 A4 have I: "z ∈ ?B" "∀ y∈?B. 〈z,y〉 ∈ r"

by auto

then show "HasAminimum(r,
⋂
a∈A. r‘‘{a})"

using HasAminimum_def by auto

from A1 I show "z = Supremum(r,A)"

using Order_ZF_4_L15 Supremum_def by simp

qed

If a set has a maximum, then the maximum is the supremum.

lemma Order_ZF_5_L6:

assumes A1: "antisym(r)" and A2: "A6=0" and
A3: "HasAmaximum(r,A)"

shows
"HasAminimum(r,

⋂
a∈A. r‘‘{a})"

"Maximum(r,A) = Supremum(r,A)"

proof -

let ?M = "Maximum(r,A)"

from A1 A3 have I: "?M ∈ A" and II: "∀ x∈A. 〈x,?M〉 ∈ r"

using Order_ZF_4_L3 by auto

from I have III: "∀ y. (∀ x∈A. 〈x,y〉 ∈ r) −→ 〈?M,y〉 ∈ r"

by simp

with A1 A2 II show "HasAminimum(r,
⋂
a∈A. r‘‘{a})"

by (rule Order_ZF_5_L5)

from A1 A2 II III show "?M = Supremum(r,A)"

by (rule Order_ZF_5_L5)

qed

Properties of supremum of a set for complete relations.

lemma Order_ZF_5_L7:

assumes A1: "r ⊆ X×X" and A2: "antisym(r)" and
A3: "r {is complete}" and
A4: "A⊆X" "A6=0" and A5: "∃ x∈X. ∀ y∈A. 〈y,x〉 ∈ r"

shows
"Supremum(r,A) ∈ X"

"∀ x∈A. 〈x,Supremum(r,A)〉 ∈ r"

proof -

from A5 have "IsBoundedAbove(A,r)" using IsBoundedAbove_def

by auto

with A3 A4 have "HasAminimum(r,
⋂
a∈A. r‘‘{a})"

using IsComplete_def by simp

with A2 have "Minimum(r,
⋂
a∈A. r‘‘{a}) ∈ (

⋂
a∈A. r‘‘{a} )"

using Order_ZF_4_L4 by simp

moreover have "Minimum(r,
⋂
a∈A. r‘‘{a}) = Supremum(r,A)"

using Supremum_def by simp

ultimately have I: "Supremum(r,A) ∈ (
⋂
a∈A. r‘‘{a} )"

by simp

moreover from A4 obtain a where "a∈A" by auto
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ultimately have "〈a,Supremum(r,A)〉 ∈ r" using Order_ZF_5_L1

by simp

with A1 show "Supremum(r,A) ∈ X" by auto

from I show "∀ x∈A. 〈x,Supremum(r,A)〉 ∈ r" using Order_ZF_5_L1

by simp

qed

If the relation is a linear order then for any element y smaller than the
supremum of a set we can find one element of the set that is greater than y.

lemma Order_ZF_5_L8:

assumes A1: "r ⊆ X×X" and A2: "IsLinOrder(X,r)" and
A3: "r {is complete}" and
A4: "A⊆X" "A6=0" and A5: "∃ x∈X. ∀ y∈A. 〈y,x〉 ∈ r" and
A6: "〈y,Supremum(r,A)〉 ∈ r" "y 6= Supremum(r,A)"

shows "∃ z∈A. 〈y,z〉 ∈ r ∧ y 6= z"

proof -

from A2 have
I: "antisym(r)" and
II: "trans(r)" and
III: "r {is total on} X"

using IsLinOrder_def by auto

from A1 A6 have T1: "y∈X" by auto

{ assume A7: "∀ z ∈ A. 〈y,z〉 /∈ r ∨ y=z"

from A4 I have "antisym(r)" and "A 6=0" by auto

moreover have "∀ x∈A. 〈x,y〉 ∈ r"

proof
fix x assume A8: "x∈A"
with A4 have T2: "x∈X" by auto

from A7 A8 have "〈y,x〉 /∈ r ∨ y=x" by simp

with III T1 T2 show "〈x,y〉 ∈ r"

using IsTotal_def total_is_refl refl_def by auto

qed
moreover have "∀ u. (∀ x∈A. 〈x,u〉 ∈ r) −→ 〈y,u〉 ∈ r"

proof-
{ fix u assume A9: "∀ x∈A. 〈x,u〉 ∈ r"

from A4 A5 have "IsBoundedAbove(A,r)" and "A 6=0"

using IsBoundedAbove_def by auto

with A3 A4 A6 I A9 have
"〈y,Supremum(r,A)〉 ∈ r ∧ 〈Supremum(r,A),u〉 ∈ r"

using IsComplete_def Order_ZF_5_L3 by simp

with II have "〈y,u〉 ∈ r" by (rule Fol1_L3)

} then show "∀ u. (∀ x∈A. 〈x,u〉 ∈ r) −→ 〈y,u〉 ∈ r"

by simp

qed
ultimately have "y = Supremum(r,A)"

by (rule Order_ZF_5_L5)

with A6 have False by simp

} then show "∃ z∈A. 〈y,z〉 ∈ r ∧ y 6= z" by auto

qed
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7.3 Strict versions of order relations

One of the problems with translating formalized mathematics from Meta-
math to IsarMathLib is that Metamath uses strict orders (of the < type)
while in IsarMathLib we mostly use nonstrict orders (of the ≤ type). This
doesn’t really make any difference, but is annoying as we have to prove
many theorems twice. In this section we prove some theorems to make it
easier to translate the statements about strict orders to statements about
the corresponding non-strict order and vice versa.

We define a strict version of a relation by removing the y = x line from the
relation.

definition
"StrictVersion(r) ≡ r - {〈x,x〉. x ∈ domain(r)}"

A reformulation of the definition of a strict version of an order.

lemma def_of_strict_ver: shows
"〈x,y〉 ∈ StrictVersion(r) ←→ 〈x,y〉 ∈ r ∧ x6=y"

using StrictVersion_def domain_def by auto

The next lemma is about the strict version of an antisymmetric relation.

lemma strict_of_antisym:

assumes A1: "antisym(r)" and A2: "〈a,b〉 ∈ StrictVersion(r)"

shows "〈b,a〉 /∈ StrictVersion(r)"

proof -

{ assume A3: "〈b,a〉 ∈ StrictVersion(r)"

with A2 have "〈a,b〉 ∈ r" and "〈b,a〉 ∈ r"

using def_of_strict_ver by auto

with A1 have "a=b" by (rule Fol1_L4)

with A2 have False using def_of_strict_ver

by simp

} then show "〈b,a〉 /∈ StrictVersion(r)" by auto

qed

The strict version of totality.

lemma strict_of_tot:

assumes "r {is total on} X" and "a∈X" "b∈X" "a6=b"

shows "〈a,b〉 ∈ StrictVersion(r) ∨ 〈b,a〉 ∈ StrictVersion(r)"

using assms IsTotal_def def_of_strict_ver by auto

A trichotomy law for the strict version of a total and antisymmetric relation.
It is kind of interesting that one does not need the full linear order for this.

lemma strict_ans_tot_trich:

assumes A1: "antisym(r)" and A2: "r {is total on} X"

and A3: "a∈X" "b∈X"
and A4: "s = StrictVersion(r)"

shows "Exactly_1_of_3_holds(〈a,b〉 ∈ s, a=b,〈b,a〉 ∈ s)"
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proof -

let ?p = "〈a,b〉 ∈ s"

let ?q = "a=b"

let ?r = "〈b,a〉 ∈ s"

from A2 A3 A4 have "?p ∨ ?q ∨ ?r"

using strict_of_tot by auto

moreover from A1 A4 have "?p −→ ¬?q ∧ ¬?r"
using def_of_strict_ver strict_of_antisym by simp

moreover from A4 have "?q −→ ¬?p ∧ ¬?r"
using def_of_strict_ver by simp

moreover from A1 A4 have "?r −→ ¬?p ∧ ¬?q"
using def_of_strict_ver strict_of_antisym by auto

ultimately show "Exactly_1_of_3_holds(?p, ?q, ?r)"

by (rule Fol1_L5)

qed

A trichotomy law for linear order. This is a special case of strict_ans_tot_trich.

corollary strict_lin_trich: assumes A1: "IsLinOrder(X,r)" and
A2: "a∈X" "b∈X" and
A3: "s = StrictVersion(r)"

shows "Exactly_1_of_3_holds(〈a,b〉 ∈ s, a=b,〈b,a〉 ∈ s)"

using assms IsLinOrder_def strict_ans_tot_trich by auto

For an antisymmetric relation if a pair is in relation then the reversed pair
is not in the strict version of the relation.

lemma geq_impl_not_less:

assumes A1: "antisym(r)" and A2: "〈a,b〉 ∈ r"

shows "〈b,a〉 /∈ StrictVersion(r)"

proof -

{ assume A3: "〈b,a〉 ∈ StrictVersion(r)"

with A2 have "〈a,b〉 ∈ StrictVersion(r)"

using def_of_strict_ver by auto

with A1 A3 have False using strict_of_antisym

by blast

} then show "〈b,a〉 /∈ StrictVersion(r)" by auto

qed

If an antisymmetric relation is transitive, then the strict version is also
transitive, an explicit version strict_of_transB below.

lemma strict_of_transA:

assumes A1: "trans(r)" and A2: "antisym(r)" and
A3: "s= StrictVersion(r)" and A4: "〈a,b〉 ∈ s" "〈b,c〉 ∈ s"

shows "〈a,c〉 ∈ s"

proof -

from A3 A4 have I: "〈a,b〉 ∈ r ∧ 〈b,c〉 ∈ r"

using def_of_strict_ver by simp

with A1 have "〈a,c〉 ∈ r" by (rule Fol1_L3)

moreover
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{ assume "a=c"

with I have "〈a,b〉 ∈ r" and "〈b,a〉 ∈ r" by auto

with A2 have "a=b" by (rule Fol1_L4)

with A3 A4 have False using def_of_strict_ver by simp

} then have "a6=c" by auto

ultimately have "〈a,c〉 ∈ StrictVersion(r)"

using def_of_strict_ver by simp

with A3 show ?thesis by simp

qed

If an antisymmetric relation is transitive, then the strict version is also
transitive.

lemma strict_of_transB:

assumes A1: "trans(r)" and A2: "antisym(r)"

shows "trans(StrictVersion(r))"

proof -

let ?s = "StrictVersion(r)"

from A1 A2 have
"∀ x y z. 〈x, y〉 ∈ ?s ∧ 〈y, z〉 ∈ ?s −→ 〈x, z〉 ∈ ?s"

using strict_of_transA by blast

then show "trans(StrictVersion(r))" by (rule Fol1_L2)

qed

The next lemma provides a condition that is satisfied by the strict version
of a relation if the original relation is a complete linear order.

lemma strict_of_compl:

assumes A1: "r ⊆ X×X" and A2: "IsLinOrder(X,r)" and
A3: "r {is complete}" and
A4: "A⊆X" "A6=0" and A5: "s = StrictVersion(r)" and
A6: "∃ u∈X. ∀ y∈A. 〈y,u〉 ∈ s"

shows
"∃ x∈X. ( ∀ y∈A. 〈x,y〉 /∈ s ) ∧ (∀ y∈X. 〈y,x〉 ∈ s −→ (∃ z∈A. 〈y,z〉 ∈ s))"

proof -

let ?x = "Supremum(r,A)"

from A2 have I: "antisym(r)" using IsLinOrder_def

by simp

moreover from A5 A6 have "∃ u∈X. ∀ y∈A. 〈y,u〉 ∈ r"

using def_of_strict_ver by auto

moreover note A1 A3 A4

ultimately have II: "?x ∈ X" "∀ y∈A. 〈y,?x〉 ∈ r"

using Order_ZF_5_L7 by auto

then have III: "∃ x∈X. ∀ y∈A. 〈y,x〉 ∈ r" by auto

from A5 I II have "?x ∈ X" "∀ y∈A. 〈?x,y〉 /∈ s"

using geq_impl_not_less by auto

moreover from A1 A2 A3 A4 A5 III have
"∀ y∈X. 〈y,?x〉 ∈ s −→ (∃ z∈A. 〈y,z〉 ∈ s)"

using def_of_strict_ver Order_ZF_5_L8 by simp

ultimately show
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"∃ x∈X. ( ∀ y∈A. 〈x,y〉 /∈ s ) ∧ (∀ y∈X. 〈y,x〉 ∈ s −→ (∃ z∈A. 〈y,z〉 ∈
s))"

by auto

qed

Strict version of a relation on a set is a relation on that set.

lemma strict_ver_rel: assumes A1: "r ⊆ A×A"
shows "StrictVersion(r) ⊆ A×A"
using assms StrictVersion_def by auto

end

8 Order on natural numbers

theory NatOrder_ZF imports Nat_ZF_IML Order_ZF

begin

This theory proves that ≤ is a linear order on N. ≤ is defined in Isabelle’s
Nat theory, and linear order is defined in Order_ZF theory. Contributed by
Seo Sanghyeon.

8.1 Order on natural numbers

This is the only section in this theory.

To prove that ≤ is a total order, we use a result on ordinals.

lemma NatOrder_ZF_1_L1:

assumes "a∈nat" and "b∈nat"
shows "a ≤ b ∨ b ≤ a"

proof -

from assms have I: "Ord(a) ∧ Ord(b)"

using nat_into_Ord by auto

then have "a ∈ b ∨ a = b ∨ b ∈ a"

using Ord_linear by simp

with I have "a < b ∨ a = b ∨ b < a"

using ltI by auto

with I show "a ≤ b ∨ b ≤ a"

using le_iff by auto

qed

≤ is antisymmetric, transitive, total, and linear. Proofs by rewrite using
definitions.

lemma NatOrder_ZF_1_L2:

shows
"antisym(Le)"

"trans(Le)"
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"Le {is total on} nat"

"IsLinOrder(nat,Le)"

proof -

show "antisym(Le)"

using antisym_def Le_def le_anti_sym by auto

moreover show "trans(Le)"

using trans_def Le_def le_trans by blast

moreover show "Le {is total on} nat"

using IsTotal_def Le_def NatOrder_ZF_1_L1 by simp

ultimately show "IsLinOrder(nat,Le)"

using IsLinOrder_def by simp

qed

The order on natural numbers is linear on every natural number. Recall
that each natural number is a subset of the set of all natural numbers (as
well as a member).

lemma natord_lin_on_each_nat:

assumes A1: "n ∈ nat" shows "IsLinOrder(n,Le)"

proof -

from A1 have "n ⊆ nat" using nat_subset_nat

by simp

then show ?thesis using NatOrder_ZF_1_L2 ord_linear_subset

by blast

qed

end

9 Functions - introduction

theory func1 imports func Fol1 ZF1

begin

This theory covers basic properties of function spaces. A set of functions
with domain X and values in the set Y is denoted in Isabelle as X → Y . It
just happens that the colon ”:” is a synonym of the set membership symbol
∈ in Isabelle/ZF so we can write f : X → Y instead of f ∈ X → Y . This is
the only case that we use the colon instead of the regular set membership
symbol.

9.1 Properties of functions, function spaces and (inverse) im-
ages.

Functions in ZF are sets of pairs. This means that if f : X → Y then
f ⊆ X×Y . This section is mostly about consequences of this understanding
of the notion of function.
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We define the notion of function that preserves a collection here. Given two
collection of sets a function preserves the collections if the inverse image
of sets in one collection belongs to the second one. This notion does not
have a name in romantic math. It is used to define continuous functions
in Topology_ZF_2 theory. We define it here so that we can use it for other
purposes, like defining measurable functions. Recall that f-‘‘(A) means the
inverse image of the set A.

definition
"PresColl(f,S,T) ≡ ∀ A∈T. f-‘‘(A)∈S"

A definition that allows to get the first factor of the domain of a binary
function f : X × Y → Z.

definition
"fstdom(f) ≡ domain(domain(f))"

If a function maps A into another set, then A is the domain of the function.

lemma func1_1_L1: assumes "f:A→C" shows "domain(f) = A"

using assms domain_of_fun by simp

Standard Isabelle defines a function(f) predicate. the next lemma shows
that our function satisfy that predicate. It is a special version of Isabelle’s
fun_is_function.

lemma fun_is_fun: assumes "f:X→Y" shows "function(f)"

using assms fun_is_function by simp

A lemma explains what fstdom is for.

lemma fstdomdef: assumes A1: "f: X×Y → Z" and A2: "Y6=0"

shows "fstdom(f) = X"

proof -

from A1 have "domain(f) = X×Y" using func1_1_L1

by simp

with A2 show "fstdom(f) = X" unfolding fstdom_def by auto

qed

A first-order version of Pi_type.

lemma func1_1_L1A: assumes A1: "f:X→Y" and A2: "∀ x∈X. f‘(x) ∈ Z"

shows "f:X→Z"

proof -

{ fix x assume "x∈X"
with A2 have "f‘(x) ∈ Z" by simp }

with A1 show "f:X→Z" by (rule Pi_type)

qed

A variant of func1_1_L1A.

lemma func1_1_L1B: assumes A1: "f:X→Y" and A2: "Y⊆Z"
shows "f:X→Z"
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proof -

from A1 A2 have "∀ x∈X. f‘(x) ∈ Z"

using apply_funtype by auto

with A1 show "f:X→Z" using func1_1_L1A by blast

qed

There is a value for each argument.

lemma func1_1_L2: assumes A1: "f:X→Y" "x∈X"
shows "∃ y∈Y. 〈x,y〉 ∈ f"

proof-
from A1 have "f‘(x) ∈ Y" using apply_type by simp

moreover from A1 have "〈 x,f‘(x)〉∈ f" using apply_Pair by simp

ultimately show ?thesis by auto

qed

The inverse image is the image of converse. True for relations as well.

lemma vimage_converse: shows "r-‘‘(A) = converse(r)‘‘(A)"

using vimage_iff image_iff converse_iff by auto

The image is the inverse image of converse.

lemma image_converse: shows "converse(r)-‘‘(A) = r‘‘(A)"

using vimage_iff image_iff converse_iff by auto

The inverse image by a composition is the composition of inverse images.

lemma vimage_comp: shows "(r O s)-‘‘(A) = s-‘‘(r-‘‘(A))"

using vimage_converse converse_comp image_comp image_converse by simp

A version of vimage_comp for three functions.

lemma vimage_comp3: shows "(r O s O t)-‘‘(A) = t-‘‘(s-‘‘(r-‘‘(A)))"

using vimage_comp by simp

Inverse image of any set is contained in the domain.

lemma func1_1_L3: assumes A1: "f:X→Y" shows "f-‘‘(D) ⊆ X"

proof-
have "∀ x. x∈f-‘‘(D) −→ x ∈ domain(f)"

using vimage_iff domain_iff by auto

with A1 have "∀ x. (x ∈ f-‘‘(D)) −→ (x∈X)" using func1_1_L1 by simp

then show ?thesis by auto

qed

The inverse image of the range is the domain.

lemma func1_1_L4: assumes "f:X→Y" shows "f-‘‘(Y) = X"

using assms func1_1_L3 func1_1_L2 vimage_iff by blast

The arguments belongs to the domain and values to the range.

lemma func1_1_L5:

assumes A1: "〈 x,y〉 ∈ f" and A2: "f:X→Y"
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shows "x∈X ∧ y∈Y"
proof

from A1 A2 show "x∈X" using apply_iff by simp

with A2 have "f‘(x)∈ Y" using apply_type by simp

with A1 A2 show "y∈Y" using apply_iff by simp

qed

Function is a subset of cartesian product.

lemma fun_subset_prod: assumes A1: "f:X→Y" shows "f ⊆ X×Y"
proof

fix p assume "p ∈ f"

with A1 have "∃ x∈X. p = 〈x, f‘(x)〉"
using Pi_memberD by simp

then obtain x where I: "p = 〈x, f‘(x)〉"
by auto

with A1 ‘p ∈ f‘ have "x∈X ∧ f‘(x) ∈ Y"

using func1_1_L5 by blast

with I show "p ∈ X×Y" by auto

qed

The (argument, value) pair belongs to the graph of the function.

lemma func1_1_L5A:

assumes A1: "f:X→Y" "x∈X" "y = f‘(x)"

shows "〈x,y〉 ∈ f" "y ∈ range(f)"

proof -

from A1 show "〈x,y〉 ∈ f" using apply_Pair by simp

then show "y ∈ range(f)" using rangeI by simp

qed

The next theorem illustrates the meaning of the concept of function in ZF.

theorem fun_is_set_of_pairs: assumes A1: "f:X→Y"

shows "f = {〈x, f‘(x)〉. x ∈ X}"

proof
from A1 show "{〈x, f‘(x)〉. x ∈ X} ⊆ f" using func1_1_L5A

by auto

next
{ fix p assume "p ∈ f"

with A1 have "p ∈ X×Y" using fun_subset_prod

by auto

with A1 ‘p ∈ f‘ have "p ∈ {〈x, f‘(x)〉. x ∈ X}"

using apply_equality by auto

} thus "f ⊆ {〈x, f‘(x)〉. x ∈ X}" by auto

qed

The range of function thet maps X into Y is contained in Y .

lemma func1_1_L5B:

assumes A1: "f:X→Y" shows "range(f) ⊆ Y"

proof
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fix y assume "y ∈ range(f)"

then obtain x where "〈 x,y〉 ∈ f"

using range_def converse_def domain_def by auto

with A1 show "y∈Y" using func1_1_L5 by blast

qed

The image of any set is contained in the range.

lemma func1_1_L6: assumes A1: "f:X→Y"

shows "f‘‘(B) ⊆ range(f)" and "f‘‘(B) ⊆ Y"

proof -

show "f‘‘(B) ⊆ range(f)" using image_iff rangeI by auto

with A1 show "f‘‘(B) ⊆ Y" using func1_1_L5B by blast

qed

The inverse image of any set is contained in the domain.

lemma func1_1_L6A: assumes A1: "f:X→Y" shows "f-‘‘(A)⊆X"
proof

fix x

assume A2: "x∈f-‘‘(A)" then obtain y where "〈 x,y〉 ∈ f"

using vimage_iff by auto

with A1 show "x∈X" using func1_1_L5 by fast

qed

Image of a greater set is greater.

lemma func1_1_L8: assumes A1: "A⊆B" shows "f‘‘(A)⊆ f‘‘(B)"

using assms image_Un by auto

A set is contained in the the inverse image of its image. There is similar
theorem in equalities.thy (function_image_vimage) which shows that the
image of inverse image of a set is contained in the set.

lemma func1_1_L9: assumes A1: "f:X→Y" and A2: "A⊆X"
shows "A ⊆ f-‘‘(f‘‘(A))"

proof -

from A1 A2 have "∀ x∈A. 〈 x,f‘(x)〉 ∈ f" using apply_Pair by auto

then show ?thesis using image_iff by auto

qed

The inverse image of the image of the domain is the domain.

lemma inv_im_dom: assumes A1: "f:X→Y" shows "f-‘‘(f‘‘(X)) = X"

proof
from A1 show "f-‘‘(f‘‘(X)) ⊆ X" using func1_1_L3 by simp

from A1 show "X ⊆ f-‘‘(f‘‘(X))" using func1_1_L9 by simp

qed

A technical lemma needed to make the func1_1_L11 proof more clear.

lemma func1_1_L10:

assumes A1: "f ⊆ X×Y" and A2: "∃ !y. (y∈Y ∧ 〈x,y〉 ∈ f)"
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shows "∃ !y. 〈x,y〉 ∈ f"

proof
from A2 show "∃ y. 〈x, y〉 ∈ f" by auto

fix y n assume "〈x,y〉 ∈ f" and "〈x,n〉 ∈ f"

with A1 A2 show "y=n" by auto

qed

If f ⊆ X × Y and for every x ∈ X there is exactly one y ∈ Y such that
(x, y) ∈ f then f maps X to Y .

lemma func1_1_L11:

assumes "f ⊆ X×Y" and "∀ x∈X. ∃ !y. y∈Y ∧ 〈x,y〉 ∈ f"

shows "f: X→Y" using assms func1_1_L10 Pi_iff_old by simp

A set defined by a lambda-type expression is a fuction. There is a similar
lemma in func.thy, but I had problems with lambda expressions syntax so I
could not apply it. This lemma is a workaround for this. Besides, lambda
expressions are not readable.

lemma func1_1_L11A: assumes A1: "∀ x∈X. b(x) ∈ Y"

shows "{〈 x,y〉 ∈ X×Y. b(x) = y} : X→Y"

proof -

let ?f = "{〈 x,y〉 ∈ X×Y. b(x) = y}"

have "?f ⊆ X×Y" by auto

moreover have "∀ x∈X. ∃ !y. y∈Y ∧ 〈 x,y〉 ∈ ?f"

proof
fix x assume A2: "x∈X"
show "∃ !y. y∈Y ∧ 〈x, y〉 ∈ {〈x,y〉 ∈ X×Y . b(x) = y}"

proof
from A2 A1 show
"∃ y. y∈Y ∧ 〈x, y〉 ∈ {〈x,y〉 ∈ X×Y . b(x) = y}"

by simp

next
fix y y1

assume "y∈Y ∧ 〈x, y〉 ∈ {〈x,y〉 ∈ X×Y . b(x) = y}"

and "y1∈Y ∧ 〈x, y1〉 ∈ {〈x,y〉 ∈ X×Y . b(x) = y}"

then show "y = y1" by simp

qed
qed
ultimately show "{〈 x,y〉 ∈ X×Y. b(x) = y} : X→Y"

using func1_1_L11 by simp

qed

The next lemma will replace func1_1_L11A one day.

lemma ZF_fun_from_total: assumes A1: "∀ x∈X. b(x) ∈ Y"

shows "{〈x,b(x)〉. x∈X} : X→Y"

proof -

let ?f = "{〈x,b(x)〉. x∈X}"
{ fix x assume A2: "x∈X"

have "∃ !y. y∈Y ∧ 〈x, y〉 ∈ ?f"
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proof
from A1 A2 show "∃ y. y∈Y ∧ 〈x, y〉 ∈ ?f"

by simp

next fix y y1 assume "y∈Y ∧ 〈x, y〉 ∈ ?f"

and "y1∈Y ∧ 〈x, y1〉 ∈ ?f"

then show "y = y1" by simp

qed
} then have "∀ x∈X. ∃ !y. y∈Y ∧ 〈 x,y〉 ∈ ?f"

by simp

moreover from A1 have "?f ⊆ X×Y" by auto

ultimately show ?thesis using func1_1_L11

by simp

qed

The value of a function defined by a meta-function is this meta-function.

lemma func1_1_L11B:

assumes A1: "f:X→Y" "x∈X"
and A2: "f = {〈 x,y〉 ∈ X×Y. b(x) = y}"

shows "f‘(x) = b(x)"

proof -

from A1 have "〈 x,f‘(x)〉 ∈ f" using apply_iff by simp

with A2 show ?thesis by simp

qed

The next lemma will replace func1_1_L11B one day.

lemma ZF_fun_from_tot_val:

assumes A1: "f:X→Y" "x∈X"
and A2: "f = {〈x,b(x)〉. x∈X}"
shows "f‘(x) = b(x)"

proof -

from A1 have "〈 x,f‘(x)〉 ∈ f" using apply_iff by simp

with A2 show ?thesis by simp

qed

Identical meaning as ZF_fun_from_tot_val, but phrased a bit differently.

lemma ZF_fun_from_tot_val0:

assumes "f:X→Y" and "f = {〈x,b(x)〉. x∈X}"
shows "∀ x∈X. f‘(x) = b(x)"

using assms ZF_fun_from_tot_val by simp

Another way of expressing that lambda expression is a function.

lemma lam_is_fun_range: assumes "f={〈x,g(x)〉. x∈X}"
shows "f:X→range(f)"

proof -

have "∀ x∈X. g(x) ∈ range({〈x,g(x)〉. x∈X})" unfolding range_def

by auto

then have "{〈x,g(x)〉. x∈X} : X→range({〈x,g(x)〉. x∈X})"
by (rule ZF_fun_from_total)
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with assms show ?thesis by auto

qed

Yet another way of expressing value of a function.

lemma ZF_fun_from_tot_val1:

assumes "x∈X" shows "{〈x,b(x)〉. x∈X}‘(x)=b(x)"
proof -

let ?f = "{〈x,b(x)〉. x∈X}"
have "?f:X→range(?f)" using lam_is_fun_range by simp

with assms show ?thesis using ZF_fun_from_tot_val0 by simp

qed

We can extend a function by specifying its values on a set disjoint with the
domain.

lemma func1_1_L11C: assumes A1: "f:X→Y" and A2: "∀ x∈A. b(x)∈B"
and A3: "X∩A = 0" and Dg: "g = f ∪ {〈x,b(x)〉. x∈A}"
shows
"g : X∪A → Y∪B"
"∀ x∈X. g‘(x) = f‘(x)"

"∀ x∈A. g‘(x) = b(x)"

proof -

let ?h = "{〈x,b(x)〉. x∈A}"
from A1 A2 A3 have
I: "f:X→Y" "?h : A→B" "X∩A = 0"

using ZF_fun_from_total by auto

then have "f∪?h : X∪A → Y∪B"
by (rule fun_disjoint_Un)

with Dg show "g : X∪A → Y∪B" by simp

{ fix x assume A4: "x∈A"
with A1 A3 have "(f∪?h)‘(x) = ?h‘(x)"

using func1_1_L1 fun_disjoint_apply2

by blast

moreover from I A4 have "?h‘(x) = b(x)"

using ZF_fun_from_tot_val by simp

ultimately have "(f∪?h)‘(x) = b(x)"

by simp

} with Dg show "∀ x∈A. g‘(x) = b(x)" by simp

{ fix x assume A5: "x∈X"
with A3 I have "x /∈ domain(?h)"

using func1_1_L1 by auto

then have "(f∪?h)‘(x) = f‘(x)"

using fun_disjoint_apply1 by simp

} with Dg show "∀ x∈X. g‘(x) = f‘(x)" by simp

qed

We can extend a function by specifying its value at a point that does not
belong to the domain.

lemma func1_1_L11D: assumes A1: "f:X→Y" and A2: "a/∈X"
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and Dg: "g = f ∪ {〈a,b〉}"
shows
"g : X∪{a} → Y∪{b}"
"∀ x∈X. g‘(x) = f‘(x)"

"g‘(a) = b"

proof -

let ?h = "{〈a,b〉}"
from A1 A2 Dg have I:

"f:X→Y" "∀ x∈{a}. b∈{b}" "X∩{a} = 0" "g = f ∪ {〈x,b〉. x∈{a}}"
by auto

then show "g : X∪{a} → Y∪{b}"
by (rule func1_1_L11C)

from I show "∀ x∈X. g‘(x) = f‘(x)"

by (rule func1_1_L11C)

from I have "∀ x∈{a}. g‘(x) = b"

by (rule func1_1_L11C)

then show "g‘(a) = b" by auto

qed

A technical lemma about extending a function both by defining on a set
disjoint with the domain and on a point that does not belong to any of
those sets.

lemma func1_1_L11E:

assumes A1: "f:X→Y" and
A2: "∀ x∈A. b(x)∈B" and
A3: "X∩A = 0" and A4: "a/∈ X∪A"
and Dg: "g = f ∪ {〈x,b(x)〉. x∈A} ∪ {〈a,c〉}"
shows
"g : X∪A∪{a} → Y∪B∪{c}"
"∀ x∈X. g‘(x) = f‘(x)"

"∀ x∈A. g‘(x) = b(x)"

"g‘(a) = c"

proof -

let ?h = "f ∪ {〈x,b(x)〉. x∈A}"
from assms show "g : X∪A∪{a} → Y∪B∪{c}"

using func1_1_L11C func1_1_L11D by simp

from A1 A2 A3 have I:

"f:X→Y" "∀ x∈A. b(x)∈B" "X∩A = 0" "?h = f ∪ {〈x,b(x)〉. x∈A}"
by auto

from assms have
II: "?h : X∪A → Y∪B" "a/∈ X∪A" "g = ?h ∪ {〈a,c〉}"
using func1_1_L11C by auto

then have III: "∀ x∈X∪A. g‘(x) = ?h‘(x)" by (rule func1_1_L11D)

moreover from I have "∀ x∈X. ?h‘(x) = f‘(x)"

by (rule func1_1_L11C)

ultimately show "∀ x∈X. g‘(x) = f‘(x)" by simp

from I have "∀ x∈A. ?h‘(x) = b(x)" by (rule func1_1_L11C)

with III show "∀ x∈A. g‘(x) = b(x)" by simp

from II show "g‘(a) = c" by (rule func1_1_L11D)
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qed

A way of defining a function on a union of two possibly overlapping sets. We
decompose the union into two differences and the intersection and define a
function separately on each part.

lemma fun_union_overlap: assumes "∀ x∈A∩B. h(x) ∈ Y" "∀ x∈A-B. f(x)

∈ Y" "∀ x∈B-A. g(x) ∈ Y"

shows "{〈x,if x∈A-B then f(x) else if x∈B-A then g(x) else h(x)〉. x

∈ A∪B}: A∪B → Y"

proof -

let ?F = "{〈x,if x∈A-B then f(x) else if x∈B-A then g(x) else h(x)〉.
x ∈ A∩B}"

from assms have "∀ x∈A∪B. (if x∈A-B then f(x) else if x∈B-A then g(x)

else h(x)) ∈ Y"

by auto

then show ?thesis by (rule ZF_fun_from_total)

qed

Inverse image of intersection is the intersection of inverse images.

lemma invim_inter_inter_invim: assumes "f:X→Y"

shows "f-‘‘(A∩B) = f-‘‘(A) ∩ f-‘‘(B)"

using assms fun_is_fun function_vimage_Int by simp

The inverse image of an intersection of a nonempty collection of sets is the
intersection of the inverse images. This generalizes invim_inter_inter_invim
which is proven for the case of two sets.

lemma func1_1_L12:

assumes A1: "B ⊆ Pow(Y)" and A2: "B6=0" and A3: "f:X→Y"

shows "f-‘‘(
⋂
B) = (

⋂
U∈B. f-‘‘(U))"

proof
from A2 show "f-‘‘(

⋂
B) ⊆ (

⋂
U∈B. f-‘‘(U))" by blast

show "(
⋂
U∈B. f-‘‘(U)) ⊆ f-‘‘(

⋂
B)"

proof
fix x assume A4: "x ∈ (

⋂
U∈B. f-‘‘(U))"

from A3 have "∀ U∈B. f-‘‘(U) ⊆ X" using func1_1_L6A by simp

with A4 have "∀ U∈B. x∈X" by auto

with A2 have "x∈X" by auto

with A3 have "∃ !y. 〈 x,y〉 ∈ f" using Pi_iff_old by simp

with A2 A4 show "x ∈ f-‘‘(
⋂
B)" using vimage_iff by blast

qed
qed

The inverse image of a set does not change when we intersect the set with
the image of the domain.

lemma inv_im_inter_im: assumes "f:X→Y"

shows "f-‘‘(A ∩ f‘‘(X)) = f-‘‘(A)"

using assms invim_inter_inter_invim inv_im_dom func1_1_L6A

by blast
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If the inverse image of a set is not empty, then the set is not empty. Proof
by contradiction.

lemma func1_1_L13: assumes A1:"f-‘‘(A) 6= 0" shows "A 6=0"

using assms by auto

If the image of a set is not empty, then the set is not empty. Proof by
contradiction.

lemma func1_1_L13A: assumes A1: "f‘‘(A)6=0" shows "A6=0"

using assms by auto

What is the inverse image of a singleton?

lemma func1_1_L14: assumes "f∈X→Y"

shows "f-‘‘({y}) = {x∈X. f‘(x) = y}"

using assms func1_1_L6A vimage_singleton_iff apply_iff by auto

A lemma that can be used instead fun_extension_iff to show that two
functions are equal

lemma func_eq: assumes "f: X→Y" "g: X→Z"

and "∀ x∈X. f‘(x) = g‘(x)"

shows "f = g" using assms fun_extension_iff by simp

Function defined on a singleton is a single pair.

lemma func_singleton_pair: assumes A1: "f : {a}→X"

shows "f = {〈a, f‘(a)〉}"
proof -

let ?g = "{〈a, f‘(a)〉}"
note A1

moreover have "?g : {a} → {f‘(a)}" using singleton_fun by simp

moreover have "∀ x ∈ {a}. f‘(x) = ?g‘(x)" using singleton_apply

by simp

ultimately show "f = ?g" by (rule func_eq)

qed

A single pair is a function on a singleton. This is similar to singleton_fun

from standard Isabelle/ZF.

lemma pair_func_singleton: assumes A1: "y ∈ Y"

shows "{〈x,y〉} : {x} → Y"

proof -

have "{〈x,y〉} : {x} → {y}" using singleton_fun by simp

moreover from A1 have "{y} ⊆ Y" by simp

ultimately show "{〈x,y〉} : {x} → Y"

by (rule func1_1_L1B)

qed

The value of a pair on the first element is the second one.

lemma pair_val: shows "{〈x,y〉}‘(x) = y"

using singleton_fun apply_equality by simp
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A more familiar definition of inverse image.

lemma func1_1_L15: assumes A1: "f:X→Y"

shows "f-‘‘(A) = {x∈X. f‘(x) ∈ A}"

proof -

have "f-‘‘(A) = (
⋃
y∈A . f-‘‘{y})"

by (rule vimage_eq_UN)

with A1 show ?thesis using func1_1_L14 by auto

qed

A more familiar definition of image.

lemma func_imagedef: assumes A1: "f:X→Y" and A2: "A⊆X"
shows "f‘‘(A) = {f‘(x). x ∈ A}"

proof
from A1 show "f‘‘(A) ⊆ {f‘(x). x ∈ A}"

using image_iff apply_iff by auto

show "{f‘(x). x ∈ A} ⊆ f‘‘(A)"

proof
fix y assume "y ∈ {f‘(x). x ∈ A}"

then obtain x where "x∈A" and "y = f‘(x)"

by auto

with A1 A2 have "〈x,y〉 ∈ f" using apply_iff by force

with A1 A2 ‘x∈A‘ show "y ∈ f‘‘(A)" using image_iff by auto

qed
qed

The image of a set contained in domain under identity is the same set.

lemma image_id_same: assumes "A⊆X" shows "id(X)‘‘(A) = A"

using assms id_type id_conv by auto

The inverse image of a set contained in domain under identity is the same
set.

lemma vimage_id_same: assumes "A⊆X" shows "id(X)-‘‘(A) = A"

using assms id_type id_conv by auto

What is the image of a singleton?

lemma singleton_image:

assumes "f∈X→Y" and "x∈X"
shows "f‘‘{x} = {f‘(x)}"

using assms func_imagedef by auto

If an element of the domain of a function belongs to a set, then its value
belongs to the imgage of that set.

lemma func1_1_L15D: assumes "f:X→Y" "x∈A" "A⊆X"
shows "f‘(x) ∈ f‘‘(A)"

using assms func_imagedef by auto

Range is the image of the domain. Isabelle/ZF defines range(f) as domain(converse(f)),
and that’s why we have something to prove here.
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lemma range_image_domain:

assumes A1: "f:X→Y" shows "f‘‘(X) = range(f)"

proof
show "f‘‘(X) ⊆ range(f)" using image_def by auto

{ fix y assume "y ∈ range(f)"

then obtain x where "〈y,x〉 ∈ converse(f)" by auto

with A1 have "x∈X" using func1_1_L5 by blast

with A1 have "f‘(x) ∈ f‘‘(X)" using func_imagedef

by auto

with A1 ‘〈y,x〉 ∈ converse(f)‘ have "y ∈ f‘‘(X)"

using apply_equality by auto

} then show "range(f) ⊆ f‘‘(X)" by auto

qed

The difference of images is contained in the image of difference.

lemma diff_image_diff: assumes A1: "f: X→Y" and A2: "A⊆X"
shows "f‘‘(X) - f‘‘(A) ⊆ f‘‘(X-A)"

proof
fix y assume "y ∈ f‘‘(X) - f‘‘(A)"

hence "y ∈ f‘‘(X)" and I: "y /∈ f‘‘(A)" by auto

with A1 obtain x where "x∈X" and II: "y = f‘(x)"

using func_imagedef by auto

with A1 A2 I have "x/∈A"
using func1_1_L15D by auto

with ‘x∈X‘ have "x ∈ X-A" "X-A ⊆ X" by auto

with A1 II show "y ∈ f‘‘(X-A)"

using func1_1_L15D by simp

qed

The image of an intersection is contained in the intersection of the images.

lemma image_of_Inter: assumes A1: "f:X→Y" and
A2: "I6=0" and A3: "∀ i∈I. P(i) ⊆ X"

shows "f‘‘(
⋂
i∈I. P(i)) ⊆ (

⋂
i∈I. f‘‘(P(i)) )"

proof
fix y assume A4: "y ∈ f‘‘(

⋂
i∈I. P(i))"

from A1 A2 A3 have "f‘‘(
⋂
i∈I. P(i)) = {f‘(x). x ∈ (

⋂
i∈I. P(i) )}"

using ZF1_1_L7 func_imagedef by simp

with A4 obtain x where "x ∈ (
⋂
i∈I. P(i) )" and "y = f‘(x)"

by auto

with A1 A2 A3 show "y ∈ (
⋂
i∈I. f‘‘(P(i)) )" using func_imagedef

by auto

qed

The image of union is the union of images.

lemma image_of_Union: assumes A1: "f:X→Y" and A2: "∀ A∈M. A⊆X"
shows "f‘‘(

⋃
M) =

⋃
{f‘‘(A). A∈M}"

proof
from A2 have "

⋃
M ⊆ X" by auto

{ fix y assume "y ∈ f‘‘(
⋃
M)"
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with A1 ‘
⋃
M ⊆ X‘ obtain x where "x∈

⋃
M" and I: "y = f‘(x)"

using func_imagedef by auto

then obtain A where "A∈M" and "x∈A" by auto

with assms I have "y ∈
⋃
{f‘‘(A). A∈M}" using func_imagedef by auto

} thus "f‘‘(
⋃
M) ⊆

⋃
{f‘‘(A). A∈M}" by auto

{ fix y assume "y ∈
⋃
{f‘‘(A). A∈M}"

then obtain A where "A∈M" and "y ∈ f‘‘(A)" by auto

with assms ‘
⋃
M ⊆ X‘ have "y ∈ f‘‘(

⋃
M)" using func_imagedef by auto

} thus "
⋃
{f‘‘(A). A∈M} ⊆ f‘‘(

⋃
M)" by auto

qed

The image of a nonempty subset of domain is nonempty.

lemma func1_1_L15A:

assumes A1: "f: X→Y" and A2: "A⊆X" and A3: "A6=0"

shows "f‘‘(A) 6= 0"

proof -

from A3 obtain x where "x∈A" by auto

with A1 A2 have "f‘(x) ∈ f‘‘(A)"

using func_imagedef by auto

then show "f‘‘(A) 6= 0" by auto

qed

The next lemma allows to prove statements about the values in the domain
of a function given a statement about values in the range.

lemma func1_1_L15B:

assumes "f:X→Y" and "A⊆X" and "∀ y∈f‘‘(A). P(y)"

shows "∀ x∈A. P(f‘(x))"

using assms func_imagedef by simp

An image of an image is the image of a composition.

lemma func1_1_L15C: assumes A1: "f:X→Y" and A2: "g:Y→Z"

and A3: "A⊆X"
shows
"g‘‘(f‘‘(A)) = {g‘(f‘(x)). x∈A}"
"g‘‘(f‘‘(A)) = (g O f)‘‘(A)"

proof -

from A1 A3 have "{f‘(x). x∈A} ⊆ Y"

using apply_funtype by auto

with A2 have "g‘‘{f‘(x). x∈A} = {g‘(f‘(x)). x∈A}"
using func_imagedef by auto

with A1 A3 show I: "g‘‘(f‘‘(A)) = {g‘(f‘(x)). x∈A}"
using func_imagedef by simp

from A1 A3 have "∀ x∈A. (g O f)‘(x) = g‘(f‘(x))"

using comp_fun_apply by auto

with I have "g‘‘(f‘‘(A)) = {(g O f)‘(x). x∈A}"
by simp

moreover from A1 A2 A3 have "(g O f)‘‘(A) = {(g O f)‘(x). x∈A}"
using comp_fun func_imagedef by blast

ultimately show "g‘‘(f‘‘(A)) = (g O f)‘‘(A)"
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by simp

qed

What is the image of a set defined by a meta-fuction?

lemma func1_1_L17:

assumes A1: "f ∈ X→Y" and A2: "∀ x∈A. b(x) ∈ X"

shows "f‘‘({b(x). x∈A}) = {f‘(b(x)). x∈A}"
proof -

from A2 have "{b(x). x∈A} ⊆ X" by auto

with A1 show ?thesis using func_imagedef by auto

qed

What are the values of composition of three functions?

lemma func1_1_L18: assumes A1: "f:A→B" "g:B→C" "h:C→D"

and A2: "x∈A"
shows
"(h O g O f)‘(x) ∈ D"

"(h O g O f)‘(x) = h‘(g‘(f‘(x)))"

proof -

from A1 have "(h O g O f) : A→D"

using comp_fun by blast

with A2 show "(h O g O f)‘(x) ∈ D" using apply_funtype

by simp

from A1 A2 have "(h O g O f)‘(x) = h‘( (g O f)‘(x))"

using comp_fun comp_fun_apply by blast

with A1 A2 show "(h O g O f)‘(x) = h‘(g‘(f‘(x)))"

using comp_fun_apply by simp

qed

A composition of functions is a function. This is a slight generalization of
standard Isabelle’s comp_fun

lemma comp_fun_subset:

assumes A1: "g:A→B" and A2: "f:C→D" and A3: "B ⊆ C"

shows "f O g : A → D"

proof -

from A1 A3 have "g:A→C" by (rule func1_1_L1B)

with A2 show "f O g : A → D" using comp_fun by simp

qed

This lemma supersedes the lemma comp_eq_id_iff in Isabelle/ZF. Con-
tributed by Victor Porton.

lemma comp_eq_id_iff1: assumes A1: "g: B→A" and A2: "f: A→C"

shows "(∀ y∈B. f‘(g‘(y)) = y) ←→ f O g = id(B)"

proof -

from assms have "f O g: B→C" and "id(B): B→B"

using comp_fun id_type by auto

then have "(∀ y∈B. (f O g)‘y = id(B)‘(y)) ←→ f O g = id(B)"

by (rule fun_extension_iff)
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moreover from A1 have
"∀ y∈B. (f O g)‘y = f‘(g‘y)" and "∀ y∈B. id(B)‘(y) = y"

by auto

ultimately show "(∀ y∈B. f‘(g‘y) = y) ←→ f O g = id(B)" by simp

qed

A lemma about a value of a function that is a union of some collection of
functions.

lemma fun_Union_apply: assumes A1: "
⋃
F : X→Y" and

A2: "f∈F" and A3: "f:A→B" and A4: "x∈A"
shows "(

⋃
F)‘(x) = f‘(x)"

proof -

from A3 A4 have "〈x, f‘(x)〉 ∈ f" using apply_Pair

by simp

with A2 have "〈x, f‘(x)〉 ∈
⋃
F" by auto

with A1 show "(
⋃
F)‘(x) = f‘(x)" using apply_equality

by simp

qed

9.2 Functions restricted to a set

Standard Isabelle/ZF defines the notion restrict(f,A) of to mean a function
(or relation) f restricted to a set. This means that if f is a function defined
on X and A is a subset of X then restrict(f,A) is a function whith the
same values as f , but whose domain is A.

What is the inverse image of a set under a restricted fuction?

lemma func1_2_L1: assumes A1: "f:X→Y" and A2: "B⊆X"
shows "restrict(f,B)-‘‘(A) = f-‘‘(A) ∩ B"

proof -

let ?g = "restrict(f,B)"

from A1 A2 have "?g:B→Y"

using restrict_type2 by simp

with A2 A1 show "?g-‘‘(A) = f-‘‘(A) ∩ B"

using func1_1_L15 restrict_if by auto

qed

A criterion for when one function is a restriction of another. The lemma
below provides a result useful in the actual proof of the criterion and appli-
cations.

lemma func1_2_L2:

assumes A1: "f:X→Y" and A2: "g ∈ A→Z"

and A3: "A⊆X" and A4: "f ∩ A×Z = g"

shows "∀ x∈A. g‘(x) = f‘(x)"

proof
fix x assume "x∈A"
with A2 have "〈 x,g‘(x)〉 ∈ g" using apply_Pair by simp

with A4 A1 show "g‘(x) = f‘(x)" using apply_iff by auto
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qed

Here is the actual criterion.

lemma func1_2_L3:

assumes A1: "f:X→Y" and A2: "g:A→Z"

and A3: "A⊆X" and A4: "f ∩ A×Z = g"

shows "g = restrict(f,A)"

proof
from A4 show "g ⊆ restrict(f, A)" using restrict_iff by auto

show "restrict(f, A) ⊆ g"

proof
fix z assume A5:"z ∈ restrict(f,A)"

then obtain x y where D1:"z∈f ∧ x∈A ∧ z = 〈x,y〉"
using restrict_iff by auto

with A1 have "y = f‘(x)" using apply_iff by auto

with A1 A2 A3 A4 D1 have "y = g‘(x)" using func1_2_L2 by simp

with A2 D1 show "z∈g" using apply_Pair by simp

qed
qed

Which function space a restricted function belongs to?

lemma func1_2_L4:

assumes A1: "f:X→Y" and A2: "A⊆X" and A3: "∀ x∈A. f‘(x) ∈ Z"

shows "restrict(f,A) : A→Z"

proof -

let ?g = "restrict(f,A)"

from A1 A2 have "?g : A→Y"

using restrict_type2 by simp

moreover {
fix x assume "x∈A"
with A1 A3 have "?g‘(x) ∈ Z" using restrict by simp}

ultimately show ?thesis by (rule Pi_type)

qed

A simpler case of func1_2_L4, where the range of the original and restricted
function are the same.

corollary restrict_fun: assumes A1: "f:X→Y" and A2: "A⊆X"
shows "restrict(f,A) : A → Y"

proof -

from assms have "∀ x∈A. f‘(x) ∈ Y" using apply_funtype

by auto

with assms show ?thesis using func1_2_L4 by simp

qed

A composition of two functions is the same as composition with a restriction.

lemma comp_restrict:

assumes A1: "f : A→B" and A2: "g : X → C" and A3: "B⊆X"
shows "g O f = restrict(g,B) O f"
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proof -

from assms have "g O f : A → C" using comp_fun_subset

by simp

moreover from assms have "restrict(g,B) O f : A → C"

using restrict_fun comp_fun by simp

moreover from A1 have
"∀ x∈A. (g O f)‘(x) = (restrict(g,B) O f)‘(x)"

using comp_fun_apply apply_funtype restrict

by simp

ultimately show "g O f = restrict(g,B) O f"

by (rule func_eq)

qed

A way to look at restriction. Contributed by Victor Porton.

lemma right_comp_id_any: shows "r O id(C) = restrict(r,C)"

unfolding restrict_def by auto

9.3 Constant functions

Constant functions are trivial, but still we need to prove some properties to
shorten proofs.

We define constant(= c) functions on a setX in a natural way as ConstantFunction(X, c).

definition
"ConstantFunction(X,c) ≡ X×{c}"

Constant function belongs to the function space.

lemma func1_3_L1:

assumes A1: "c∈Y" shows "ConstantFunction(X,c) : X→Y"

proof -

from A1 have "X×{c} = {〈 x,y〉 ∈ X×Y. c = y}"

by auto

with A1 show ?thesis using func1_1_L11A ConstantFunction_def

by simp

qed

Constant function is equal to the constant on its domain.

lemma func1_3_L2: assumes A1: "x∈X"
shows "ConstantFunction(X,c)‘(x) = c"

proof -

have "ConstantFunction(X,c) ∈ X→{c}"

using func1_3_L1 by simp

moreover from A1 have "〈 x,c〉 ∈ ConstantFunction(X,c)"

using ConstantFunction_def by simp

ultimately show ?thesis using apply_iff by simp

qed
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9.4 Injections, surjections, bijections etc.

In this section we prove the properties of the spaces of injections, surjections
and bijections that we can’t find in the standard Isabelle’s Perm.thy.

For injections the image a difference of two sets is the difference of images

lemma inj_image_dif:

assumes A1: "f ∈ inj(A,B)" and A2: "C ⊆ A"

shows "f‘‘(A-C) = f‘‘(A) - f‘‘(C)"

proof
show "f‘‘(A - C) ⊆ f‘‘(A) - f‘‘(C)"

proof
fix y assume A3: "y ∈ f‘‘(A - C)"

from A1 have "f:A→B" using inj_def by simp

moreover have "A-C ⊆ A" by auto

ultimately have "f‘‘(A-C) = {f‘(x). x ∈ A-C}"

using func_imagedef by simp

with A3 obtain x where I: "f‘(x) = y" and "x ∈ A-C"

by auto

hence "x∈A" by auto

with ‘f:A→B‘ I have "y ∈ f‘‘(A)"

using func_imagedef by auto

moreover have "y /∈ f‘‘(C)"

proof -

{ assume "y ∈ f‘‘(C)"

with A2 ‘f:A→B‘ obtain x0
where II: "f‘(x0) = y" and "x0 ∈ C"

using func_imagedef by auto

with A1 A2 I ‘x∈A‘ have
"f ∈ inj(A,B)" "f‘(x) = f‘(x0)" "x∈A" "x0 ∈ A"

by auto

then have "x = x0" by (rule inj_apply_equality)

with ‘x ∈ A-C‘ ‘x0 ∈ C‘ have False by simp

} thus ?thesis by auto

qed
ultimately show "y ∈ f‘‘(A) - f‘‘(C)" by simp

qed
from A1 A2 show "f‘‘(A) - f‘‘(C) ⊆ f‘‘(A-C)"

using inj_def diff_image_diff by auto

qed

For injections the image of intersection is the intersection of images.

lemma inj_image_inter: assumes A1: "f ∈ inj(X,Y)" and A2: "A⊆X" "B⊆X"
shows "f‘‘(A∩B) = f‘‘(A) ∩ f‘‘(B)"

proof
show "f‘‘(A∩B) ⊆ f‘‘(A) ∩ f‘‘(B)" using image_Int_subset by simp

{ from A1 have "f:X→Y" using inj_def by simp

fix y assume "y ∈ f‘‘(A) ∩ f‘‘(B)"

then have "y ∈ f‘‘(A)" and "y ∈ f‘‘(B)" by auto
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with A2 ‘f:X→Y‘ obtain xA xB where
"xA ∈ A" "xB ∈ B" and I: "y = f‘(xA)" "y = f‘(xB)"

using func_imagedef by auto

with A2 have "xA ∈ X" "xB ∈ X" and " f‘(xA) = f‘(xB)" by auto

with A1 have "xA = xB" using inj_def by auto

with ‘xA ∈ A‘ ‘xB ∈ B‘ have "f‘(xA) ∈ {f‘(x). x ∈ A∩B}" by auto

moreover from A2 ‘f:X→Y‘ have "f‘‘(A∩B) = {f‘(x). x ∈ A∩B}"
using func_imagedef by blast

ultimately have "f‘(xA) ∈ f‘‘(A∩B)" by simp

with I have "y ∈ f‘‘(A∩B)" by simp

} thus "f‘‘(A) ∩ f‘‘(B) ⊆ f‘‘(A ∩ B)" by auto

qed

For surjection from A to B the image of the domain is B.

lemma surj_range_image_domain: assumes A1: "f ∈ surj(A,B)"

shows "f‘‘(A) = B"

proof -

from A1 have "f‘‘(A) = range(f)"

using surj_def range_image_domain by auto

with A1 show "f‘‘(A) = B" using surj_range

by simp

qed

For injections the inverse image of an image is the same set.

lemma inj_vimage_image: assumes "f ∈ inj(X,Y)" and "A⊆X"
shows "f-‘‘(f‘‘(A)) = A"

proof -

have "f-‘‘(f‘‘(A)) = (converse(f) O f)‘‘(A)"

using vimage_converse image_comp by simp

with assms show ?thesis using left_comp_inverse image_id_same

by simp

qed

For surjections the image of an inverse image is the same set.

lemma surj_image_vimage: assumes A1: "f ∈ surj(X,Y)" and A2: "A⊆Y"
shows "f‘‘(f-‘‘(A)) = A"

proof -

have "f‘‘(f-‘‘(A)) = (f O converse(f))‘‘(A)"

using vimage_converse image_comp by simp

with assms show ?thesis using right_comp_inverse image_id_same

by simp

qed

A lemma about how a surjection maps collections of subsets in domain and
rangge.

lemma surj_subsets: assumes A1: "f ∈ surj(X,Y)" and A2: "B ⊆ Pow(Y)"

shows "{ f‘‘(U). U ∈ {f-‘‘(V). V∈B} } = B"
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proof
{ fix W assume "W ∈ { f‘‘(U). U ∈ {f-‘‘(V). V∈B} }"

then obtain U where I: "U ∈ {f-‘‘(V). V∈B}" and II: "W = f‘‘(U)"

by auto

then obtain V where "V∈B" and "U = f-‘‘(V)" by auto

with II have "W = f‘‘(f-‘‘(V))" by simp

moreover from assms ‘V∈B‘ have "f ∈ surj(X,Y)" and "V⊆Y" by auto

ultimately have "W=V" using surj_image_vimage by simp

with ‘V∈B‘ have "W ∈ B" by simp

} thus "{ f‘‘(U). U ∈ {f-‘‘(V). V∈B} } ⊆ B" by auto

{ fix W assume "W∈B"
let ?U = "f-‘‘(W)"

from ‘W∈B‘ have "?U ∈ {f-‘‘(V). V∈B}" by auto

moreover from A1 A2 ‘W∈B‘ have "W = f‘‘(?U)" using surj_image_vimage

by auto

ultimately have "W ∈ { f‘‘(U). U ∈ {f-‘‘(V). V∈B} }" by auto

} thus "B ⊆ { f‘‘(U). U ∈ {f-‘‘(V). V∈B} }" by auto

qed

Restriction of an bijection to a set without a point is a a bijection.

lemma bij_restrict_rem:

assumes A1: "f ∈ bij(A,B)" and A2: "a∈A"
shows "restrict(f, A-{a}) ∈ bij(A-{a}, B-{f‘(a)})"

proof -

let ?C = "A-{a}"

from A1 have "f ∈ inj(A,B)" "?C ⊆ A"

using bij_def by auto

then have "restrict(f,?C) ∈ bij(?C, f‘‘(?C))"

using restrict_bij by simp

moreover have "f‘‘(?C) = B-{f‘(a)}"

proof -

from A2 ‘f ∈ inj(A,B)‘ have "f‘‘(?C) = f‘‘(A) - f‘‘{a}"

using inj_image_dif by simp

moreover from A1 have "f‘‘(A) = B"

using bij_def surj_range_image_domain by auto

moreover from A1 A2 have "f‘‘{a} = {f‘(a)}"

using bij_is_fun singleton_image by blast

ultimately show "f‘‘(?C) = B-{f‘(a)}" by simp

qed
ultimately show ?thesis by simp

qed

The domain of a bijection between X and Y is X.

lemma domain_of_bij:

assumes A1: "f ∈ bij(X,Y)" shows "domain(f) = X"

proof -

from A1 have "f:X→Y" using bij_is_fun by simp

then show "domain(f) = X" using func1_1_L1 by simp
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qed

The value of the inverse of an injection on a point of the image of a set
belongs to that set.

lemma inj_inv_back_in_set:

assumes A1: "f ∈ inj(A,B)" and A2: "C⊆A" and A3: "y ∈ f‘‘(C)"

shows
"converse(f)‘(y) ∈ C"

"f‘(converse(f)‘(y)) = y"

proof -

from A1 have I: "f:A→B" using inj_is_fun by simp

with A2 A3 obtain x where II: "x∈C" "y = f‘(x)"

using func_imagedef by auto

with A1 A2 show "converse(f)‘(y) ∈ C" using left_inverse

by auto

from A1 A2 I II show "f‘(converse(f)‘(y)) = y"

using func1_1_L5A right_inverse by auto

qed

For injections if a value at a point belongs to the image of a set, then the
point belongs to the set.

lemma inj_point_of_image:

assumes A1: "f ∈ inj(A,B)" and A2: "C⊆A" and
A3: "x∈A" and A4: "f‘(x) ∈ f‘‘(C)"

shows "x ∈ C"

proof -

from A1 A2 A4 have "converse(f)‘(f‘(x)) ∈ C"

using inj_inv_back_in_set by simp

moreover from A1 A3 have "converse(f)‘(f‘(x)) = x"

using left_inverse_eq by simp

ultimately show "x ∈ C" by simp

qed

For injections the image of intersection is the intersection of images.

lemma inj_image_of_Inter: assumes A1: "f ∈ inj(A,B)" and
A2: "I6=0" and A3: "∀ i∈I. P(i) ⊆ A"

shows "f‘‘(
⋂
i∈I. P(i)) = (

⋂
i∈I. f‘‘(P(i)) )"

proof
from A1 A2 A3 show "f‘‘(

⋂
i∈I. P(i)) ⊆ (

⋂
i∈I. f‘‘(P(i)) )"

using inj_is_fun image_of_Inter by auto

from A1 A2 A3 have "f:A→B" and "(
⋂
i∈I. P(i) ) ⊆ A"

using inj_is_fun ZF1_1_L7 by auto

then have I: "f‘‘(
⋂
i∈I. P(i)) = { f‘(x). x ∈ (

⋂
i∈I. P(i) ) }"

using func_imagedef by simp

{ fix y assume A4: "y ∈ (
⋂
i∈I. f‘‘(P(i)) )"

let ?x = "converse(f)‘(y)"

from A2 obtain i0 where "i0 ∈ I" by auto

with A1 A4 have II: "y ∈ range(f)" using inj_is_fun func1_1_L6
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by auto

with A1 have III: "f‘(?x) = y" using right_inverse by simp

from A1 II have IV: "?x ∈ A" using inj_converse_fun apply_funtype

by blast

{ fix i assume "i∈I"
with A3 A4 III have "P(i) ⊆ A" and "f‘(?x) ∈ f‘‘(P(i))"

by auto

with A1 IV have "?x ∈ P(i)" using inj_point_of_image

by blast

} then have "∀ i∈I. ?x ∈ P(i)" by simp

with A2 I have "f‘(?x) ∈ f‘‘(
⋂
i∈I. P(i) )"

by auto

with III have "y ∈ f‘‘(
⋂
i∈I. P(i) )" by simp

} then show "(
⋂
i∈I. f‘‘(P(i)) ) ⊆ f‘‘(

⋂
i∈I. P(i) )"

by auto

qed

An injection is injective onto its range. Suggested by Victor Porton.

lemma inj_inj_range: assumes "f ∈ inj(A,B)"

shows "f ∈ inj(A,range(f))"

using assms inj_def range_of_fun by auto

An injection is a bijection on its range. Suggested by Victor Porton.

lemma inj_bij_range: assumes "f ∈ inj(A,B)"

shows "f ∈ bij(A,range(f))"

proof -

from assms have "f ∈ surj(A,range(f))" using inj_def fun_is_surj

by auto

with assms show ?thesis using inj_inj_range bij_def by simp

qed

A lemma about extending a surjection by one point.

lemma surj_extend_point:

assumes A1: "f ∈ surj(X,Y)" and A2: "a/∈X" and
A3: "g = f ∪ {〈a,b〉}"
shows "g ∈ surj(X∪{a},Y∪{b})"

proof -

from A1 A2 A3 have "g : X∪{a} → Y∪{b}"
using surj_def func1_1_L11D by simp

moreover have "∀ y ∈ Y∪{b}. ∃ x ∈ X∪{a}. y = g‘(x)"

proof
fix y assume "y ∈ Y ∪ {b}"

then have "y ∈ Y ∨ y = b" by auto

moreover
{ assume "y ∈ Y"

with A1 obtain x where "x∈X" and "y = f‘(x)"

using surj_def by auto

with A1 A2 A3 have "x ∈ X∪{a}" and "y = g‘(x)"

83



using surj_def func1_1_L11D by auto

then have "∃ x ∈ X∪{a}. y = g‘(x)" by auto }
moreover
{ assume "y = b"

with A1 A2 A3 have "y = g‘(a)"

using surj_def func1_1_L11D by auto

then have "∃ x ∈ X∪{a}. y = g‘(x)" by auto }
ultimately show "∃ x ∈ X∪{a}. y = g‘(x)"

by auto

qed
ultimately show "g ∈ surj(X∪{a},Y∪{b})"

using surj_def by auto

qed

A lemma about extending an injection by one point. Essentially the same
as standard Isabelle’s inj_extend.

lemma inj_extend_point: assumes "f ∈ inj(X,Y)" "a/∈X" "b/∈Y"
shows "(f ∪ {〈a,b〉}) ∈ inj(X∪{a},Y∪{b})"

proof -

from assms have "cons(〈a,b〉,f) ∈ inj(cons(a, X), cons(b, Y))"

using assms inj_extend by simp

moreover have "cons(〈a,b〉,f) = f ∪ {〈a,b〉}" and
"cons(a, X) = X∪{a}" and "cons(b, Y) = Y∪{b}"
by auto

ultimately show ?thesis by simp

qed

A lemma about extending a bijection by one point.

lemma bij_extend_point: assumes "f ∈ bij(X,Y)" "a/∈X" "b/∈Y"
shows "(f ∪ {〈a,b〉}) ∈ bij(X∪{a},Y∪{b})"
using assms surj_extend_point inj_extend_point bij_def

by simp

A quite general form of the a−1b = 1 implies a = b law.

lemma comp_inv_id_eq:

assumes A1: "converse(b) O a = id(A)" and
A2: "a ⊆ A×B" "b ∈ surj(A,B)"

shows "a = b"

proof -

from A1 have "(b O converse(b)) O a = b O id(A)"

using comp_assoc by simp

with A2 have "id(B) O a = b O id(A)"

using right_comp_inverse by simp

moreover
from A2 have "a ⊆ A×B" and "b ⊆ A×B"

using surj_def fun_subset_prod

by auto

then have "id(B) O a = a" and "b O id(A) = b"

using left_comp_id right_comp_id by auto
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ultimately show "a = b" by simp

qed

A special case of comp_inv_id_eq - the a−1b = 1 implies a = b law for
bijections.

lemma comp_inv_id_eq_bij:

assumes A1: "a ∈ bij(A,B)" "b ∈ bij(A,B)" and
A2: "converse(b) O a = id(A)"

shows "a = b"

proof -

from A1 have "a ⊆ A×B" and "b ∈ surj(A,B)"

using bij_def surj_def fun_subset_prod

by auto

with A2 show "a = b" by (rule comp_inv_id_eq)

qed

Converse of a converse of a bijection the same bijection. This is a special
case of converse_converse from standard Isabelle’s equalities theory where
it is proved for relations.

lemma bij_converse_converse: assumes "a ∈ bij(A,B)"

shows "converse(converse(a)) = a"

proof -

from assms have "a ⊆ A×B" using bij_def surj_def fun_subset_prod by
simp

then show ?thesis using converse_converse by simp

qed

If a composition of bijections is identity, then one is the inverse of the other.

lemma comp_id_conv: assumes A1: "a ∈ bij(A,B)" "b ∈ bij(B,A)" and
A2: "b O a = id(A)"

shows "a = converse(b)" and "b = converse(a)"

proof -

from A1 have "a ∈ bij(A,B)" and "converse(b) ∈ bij(A,B)" using bij_converse_bij

by auto

moreover from assms have "converse(converse(b)) O a = id(A)"

using bij_converse_converse by simp

ultimately show "a = converse(b)" by (rule comp_inv_id_eq_bij)

with assms show "b = converse(a)" using bij_converse_converse by simp

qed

A version of comp_id_conv with weaker assumptions.

lemma comp_conv_id: assumes A1: "a ∈ bij(A,B)" and A2: "b:B→A" and
A3: "∀ x∈A. b‘(a‘(x)) = x"

shows "b ∈ bij(B,A)" and "a = converse(b)" and "b = converse(a)"

proof -

have "b ∈ surj(B,A)"

proof -
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have "∀ x∈A. ∃ y∈B. b‘(y) = x"

proof -

{ fix x assume "x∈A"
let ?y = "a‘(x)"

from A1 A3 ‘x∈A‘ have "?y∈B" and "b‘(?y) = x"

using bij_def inj_def apply_funtype by auto

hence "∃ y∈B. b‘(y) = x" by auto

} thus ?thesis by simp

qed
with A2 show "b ∈ surj(B,A)" using surj_def by simp

qed
moreover have "b ∈ inj(B,A)"

proof -

have "∀ w∈B.∀ y∈B. b‘(w) = b‘(y) −→ w=y"

proof -

{ fix w y assume "w∈B" "y∈B" and I: "b‘(w) = b‘(y)"

from A1 have "a ∈ surj(A,B)" unfolding bij_def by simp

with ‘w∈B‘ obtain xw where "xw ∈ A" and II: "a‘(xw) = w"

using surj_def by auto

with I have "b‘(a‘(xw)) = b‘(y)" by simp

moreover from ‘a ∈ surj(A,B)‘ ‘y∈B‘ obtain xy where
"xy ∈ A" and III: "a‘(xy) = y"

using surj_def by auto

moreover from A3 ‘xw ∈ A‘ ‘xy ∈ A‘ have "b‘(a‘(xw)) = xw"

and "b‘(a‘(xy)) = xy"

by auto

ultimately have "xw = xy" by simp

with II III have "w=y" by simp

} thus ?thesis by auto

qed
with A2 show "b ∈ inj(B,A)" using inj_def by auto

qed
ultimately show "b ∈ bij(B,A)" using bij_def by simp

from assms have "b O a = id(A)" using bij_def inj_def comp_eq_id_iff1

by auto

with A1 ‘b ∈ bij(B,A)‘ show "a = converse(b)" and "b = converse(a)"

using comp_id_conv by auto

qed

For a surjection the union if images of singletons is the whole range.

lemma surj_singleton_image: assumes A1: "f ∈ surj(X,Y)"

shows "(
⋃
x∈X. {f‘(x)}) = Y"

proof
from A1 show "(

⋃
x∈X. {f‘(x)}) ⊆ Y"

using surj_def apply_funtype by auto

next
{ fix y assume "y ∈ Y"

with A1 have "y ∈ (
⋃
x∈X. {f‘(x)})"

using surj_def by auto
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} then show "Y ⊆ (
⋃
x∈X. {f‘(x)})" by auto

qed

9.5 Functions of two variables

In this section we consider functions whose domain is a cartesian product
of two sets. Such functions are called functions of two variables (although
really in ZF all functions admit only one argument). For every function of
two variables we can define families of functions of one variable by fixing the
other variable. This section establishes basic definitions and results for this
concept.

We can create functions of two variables by combining functions of one
variable.

lemma cart_prod_fun: assumes "f1:X1→Y1" "f2:X2→Y2" and
"g = {〈p,〈f1‘(fst(p)),f2‘(snd(p))〉〉. p ∈ X1×X2}"
shows "g: X1×X2 → Y1×Y2" using assms apply_funtype ZF_fun_from_total

by simp

A reformulation of cart_prod_fun above in a sligtly different notation.

lemma prod_fun:

assumes "f:X1→X2" "g:X3→X4"

shows "{〈〈x,y〉,〈f‘x,g‘y〉〉. 〈x,y〉∈X1×X3}:X1×X3→X2×X4"
proof -

have "{〈〈x,y〉,〈f‘x,g‘y〉〉. 〈x,y〉∈X1×X3} = {〈p,〈f‘(fst(p)),g‘(snd(p))〉〉.
p ∈ X1×X3}"

by auto

with assms show ?thesis using cart_prod_fun by simp

qed

Product of two surjections is a surjection.

theorem prod_functions_surj:

assumes "f∈surj(A,B)" "g∈surj(C,D)"
shows "{〈〈a1,a2〉,〈f‘a1,g‘a2〉〉.〈a1,a2〉∈A×C} ∈ surj(A×C,B×D)"

proof -

let ?h = "{〈〈x, y〉, f‘(x), g‘(y)〉 . 〈x,y〉 ∈ A × C}"

from assms have fun: "f:A→B""g:C→D" unfolding surj_def by auto

then have pfun: "?h : A × C → B × D" using prod_fun by auto

{
fix b assume "b∈B×D"
then obtain b1 b2 where "b=〈b1,b2〉" "b1∈B" "b2∈D" by auto

with assms obtain a1 a2 where "f‘(a1)=b1" "g‘(a2)=b2" "a1∈A" "a2∈C"

unfolding surj_def by blast

hence "〈〈a1,a2〉,〈b1,b2〉〉 ∈ ?h" by auto

with pfun have "?h‘〈a1,a2〉=〈b1,b2〉" using apply_equality by auto

with ‘b=〈b1,b2〉‘ ‘a1∈A‘ ‘a2∈C‘ have "∃ a∈A×C. ?h‘(a)=b"

by auto
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} hence "∀ b∈B×D. ∃ a∈A×C. ?h‘(a) = b" by auto

with pfun show ?thesis unfolding surj_def by auto

qed

For a function of two variables created from functions of one variable as in
cart_prod_fun above, the inverse image of a cartesian product of sets is the
cartesian product of inverse images.

lemma cart_prod_fun_vimage: assumes "f1:X1→Y1" "f2:X2→Y2" and
"g = {〈p,〈f1‘(fst(p)),f2‘(snd(p))〉〉. p ∈ X1×X2}"
shows "g-‘‘(A1×A2) = f1-‘‘(A1) × f2-‘‘(A2)"

proof -

from assms have "g: X1×X2 → Y1×Y2" using cart_prod_fun

by simp

then have "g-‘‘(A1×A2) = {p ∈ X1×X2. g‘(p) ∈ A1×A2}" using func1_1_L15

by simp

with assms ‘g: X1×X2 → Y1×Y2‘ show "g-‘‘(A1×A2) = f1-‘‘(A1) × f2-‘‘(A2)"

using ZF_fun_from_tot_val func1_1_L15 by auto

qed

For a function of two variables defined on X × Y , if we fix an x ∈ X we
obtain a function on Y . Note that if domain(f) is X × Y , range(domain(f))
extracts Y from X × Y .

definition
"Fix1stVar(f,x) ≡ {〈y,f‘〈x,y〉〉. y ∈ range(domain(f))}"

For every y ∈ Y we can fix the second variable in a binary function f :
X × Y → Z to get a function on X.

definition
"Fix2ndVar(f,y) ≡ {〈x,f‘〈x,y〉〉. x ∈ domain(domain(f))}"

We defined Fix1stVar and Fix2ndVar so that the domain of the function is
not listed in the arguments, but is recovered from the function. The next
lemma is a technical fact that makes it easier to use this definition.

lemma fix_var_fun_domain: assumes A1: "f : X×Y → Z"

shows
"x∈X −→ Fix1stVar(f,x) = {〈y,f‘〈x,y〉〉. y ∈ Y}"

"y∈Y −→ Fix2ndVar(f,y) = {〈x,f‘〈x,y〉〉. x ∈ X}"

proof -

from A1 have I: "domain(f) = X×Y" using func1_1_L1 by simp

{ assume "x∈X"
with I have "range(domain(f)) = Y" by auto

then have "Fix1stVar(f,x) = {〈y,f‘〈x,y〉〉. y ∈ Y}"

using Fix1stVar_def by simp

} then show "x∈X −→ Fix1stVar(f,x) = {〈y,f‘〈x,y〉〉. y ∈ Y}"

by simp
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{ assume "y∈Y"
with I have "domain(domain(f)) = X" by auto

then have "Fix2ndVar(f,y) = {〈x,f‘〈x,y〉〉. x ∈ X}"

using Fix2ndVar_def by simp

} then show "y∈Y −→ Fix2ndVar(f,y) = {〈x,f‘〈x,y〉〉. x ∈ X}"

by simp

qed

If we fix the first variable, we get a function of the second variable.

lemma fix_1st_var_fun: assumes A1: "f : X×Y → Z" and A2: "x∈X"
shows "Fix1stVar(f,x) : Y → Z"

proof -

from A1 A2 have "∀ y∈Y. f‘〈x,y〉 ∈ Z"

using apply_funtype by simp

then have "{〈y,f‘〈x,y〉〉. y ∈ Y} : Y → Z"

using ZF_fun_from_total by simp

with A1 A2 show "Fix1stVar(f,x) : Y → Z"

using fix_var_fun_domain by simp

qed

If we fix the second variable, we get a function of the first variable.

lemma fix_2nd_var_fun: assumes A1: "f : X×Y → Z" and A2: "y∈Y"
shows "Fix2ndVar(f,y) : X → Z"

proof -

from A1 A2 have "∀ x∈X. f‘〈x,y〉 ∈ Z"

using apply_funtype by simp

then have "{〈x,f‘〈x,y〉〉. x ∈ X} : X → Z"

using ZF_fun_from_total by simp

with A1 A2 show "Fix2ndVar(f,y) : X → Z"

using fix_var_fun_domain by simp

qed

What is the value of Fix1stVar(f,x) at y ∈ Y and the value of Fix2ndVar(f,y)
at x ∈ X”?

lemma fix_var_val:

assumes A1: "f : X×Y → Z" and A2: "x∈X" "y∈Y"
shows
"Fix1stVar(f,x)‘(y) = f‘〈x,y〉"
"Fix2ndVar(f,y)‘(x) = f‘〈x,y〉"

proof -

let ?f1 = "{〈y,f‘〈x,y〉〉. y ∈ Y}"

let ?f2 = "{〈x,f‘〈x,y〉〉. x ∈ X}"

from A1 A2 have I:

"Fix1stVar(f,x) = ?f1"

"Fix2ndVar(f,y) = ?f2"

using fix_var_fun_domain by auto

moreover from A1 A2 have
"Fix1stVar(f,x) : Y → Z"

"Fix2ndVar(f,y) : X → Z"
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using fix_1st_var_fun fix_2nd_var_fun by auto

ultimately have "?f1 : Y → Z" and "?f2 : X → Z"

by auto

with A2 have "?f1‘(y) = f‘〈x,y〉" and "?f2‘(x) = f‘〈x,y〉"
using ZF_fun_from_tot_val by auto

with I show
"Fix1stVar(f,x)‘(y) = f‘〈x,y〉"
"Fix2ndVar(f,y)‘(x) = f‘〈x,y〉"
by auto

qed

Fixing the second variable commutes with restrictig the domain.

lemma fix_2nd_var_restr_comm:

assumes A1: "f : X×Y → Z" and A2: "y∈Y" and A3: "X1 ⊆ X"

shows "Fix2ndVar(restrict(f,X1×Y),y) = restrict(Fix2ndVar(f,y),X1)"

proof -

let ?g = "Fix2ndVar(restrict(f,X1×Y),y)"
let ?h = "restrict(Fix2ndVar(f,y),X1)"

from A3 have I: "X1×Y ⊆ X×Y" by auto

with A1 have II: "restrict(f,X1×Y) : X1×Y → Z"

using restrict_type2 by simp

with A2 have "?g : X1 → Z"

using fix_2nd_var_fun by simp

moreover
from A1 A2 have III: "Fix2ndVar(f,y) : X → Z"

using fix_2nd_var_fun by simp

with A3 have "?h : X1 → Z"

using restrict_type2 by simp

moreover
{ fix z assume A4: "z ∈ X1"

with A2 I II have "?g‘(z) = f‘〈z,y〉"
using restrict fix_var_val by simp

also from A1 A2 A3 A4 have "f‘〈z,y〉 = ?h‘(z)"

using restrict fix_var_val by auto

finally have "?g‘(z) = ?h‘(z)" by simp

} then have "∀ z ∈ X1. ?g‘(z) = ?h‘(z)" by simp

ultimately show "?g = ?h" by (rule func_eq)

qed

The next lemma expresses the inverse image of a set by function with fixed
first variable in terms of the original function.

lemma fix_1st_var_vimage:

assumes A1: "f : X×Y → Z" and A2: "x∈X"
shows "Fix1stVar(f,x)-‘‘(A) = {y∈Y. 〈x,y〉 ∈ f-‘‘(A)}"

proof -

from assms have "Fix1stVar(f,x)-‘‘(A) = {y∈Y. Fix1stVar(f,x)‘(y) ∈
A}"

using fix_1st_var_fun func1_1_L15 by blast

with assms show ?thesis using fix_var_val func1_1_L15 by auto
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qed

The next lemma expresses the inverse image of a set by function with fixed
second variable in terms of the original function.

lemma fix_2nd_var_vimage:

assumes A1: "f : X×Y → Z" and A2: "y∈Y"
shows "Fix2ndVar(f,y)-‘‘(A) = {x∈X. 〈x,y〉 ∈ f-‘‘(A)}"

proof -

from assms have I: "Fix2ndVar(f,y)-‘‘(A) = {x∈X. Fix2ndVar(f,y)‘(x)

∈ A}"

using fix_2nd_var_fun func1_1_L15 by blast

with assms show ?thesis using fix_var_val func1_1_L15 by auto

qed

end

10 Binary operations

theory func_ZF imports func1

begin

In this theory we consider properties of functions that are binary operations,
that is they map X ×X into X.

10.1 Lifting operations to a function space

It happens quite often that we have a binary operation on some set and
we need a similar operation that is defined for functions on that set. For
example once we know how to add real numbers we also know how to add
real-valued functions: for f, g : X → R we define (f + g)(x) = f(x) + g(x).
Note that formally the + means something different on the left hand side of
this equality than on the right hand side. This section aims at formalizing
this process. We will call it ”lifting to a function space”, if you have a
suggestion for a better name, please let me know.

Since we are writing in generic set notation, the definition below is a bit
complicated. Here it what it says: Given a set X and another set f (that
represents a binary function on X) we are defining f lifted to function space
overX as the binary function (a set of pairs) on the space F = X → range(f)
such that the value of this function on pair 〈a, b〉 of functions on X is another
function c on X with values defined by c(x) = f〈a(x), b(x)〉.
definition
Lift2FcnSpce (infix "{lifted to function space over}" 65) where
"f {lifted to function space over} X ≡
{〈 p,{〈x,f‘〈fst(p)‘(x),snd(p)‘(x)〉〉. x ∈ X}〉.
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p ∈ (X→range(f))×(X→range(f))}"

The result of the lift belongs to the function space.

lemma func_ZF_1_L1:

assumes A1: "f : Y×Y→Y"

and A2: "p ∈(X→range(f))×(X→range(f))"

shows
"{〈x,f‘〈fst(p)‘(x),snd(p)‘(x)〉〉. x ∈ X} : X→range(f)"

proof -

have "∀ x∈X. f‘〈fst(p)‘(x),snd(p)‘(x)〉 ∈ range(f)"

proof
fix x assume "x∈X"
let ?p = "〈fst(p)‘(x),snd(p)‘(x)〉"
from A2 ‘x∈X‘ have

"fst(p)‘(x) ∈ range(f)" "snd(p)‘(x) ∈ range(f)"

using apply_type by auto

with A1 have "?p ∈ Y×Y"
using func1_1_L5B by blast

with A1 have "〈?p, f‘(?p)〉 ∈ f"

using apply_Pair by simp

with A1 show
"f‘(?p) ∈ range(f)"

using rangeI by simp

qed
then show ?thesis using ZF_fun_from_total by simp

qed

The values of the lift are defined by the value of the liftee in a natural way.

lemma func_ZF_1_L2:

assumes A1: "f : Y×Y→Y"

and A2: "p ∈ (X→range(f))×(X→range(f))" and A3: "x∈X"
and A4: "P = {〈x,f‘〈fst(p)‘(x),snd(p)‘(x)〉〉. x ∈ X}"

shows "P‘(x) = f‘〈fst(p)‘(x),snd(p)‘(x)〉"
proof -

from A1 A2 have
"{〈x,f‘〈fst(p)‘(x),snd(p)‘(x)〉〉. x ∈ X} : X → range(f)"

using func_ZF_1_L1 by simp

with A4 have "P : X → range(f)" by simp

with A3 A4 show "P‘(x) = f‘〈fst(p)‘(x),snd(p)‘(x)〉"
using ZF_fun_from_tot_val by simp

qed

Function lifted to a function space results in function space operator.

theorem func_ZF_1_L3:

assumes "f : Y×Y→Y"

and "F = f {lifted to function space over} X"

shows "F : (X→range(f))×(X→range(f))→(X→range(f))"

using assms Lift2FcnSpce_def func_ZF_1_L1 ZF_fun_from_total

by simp
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The values of the lift are defined by the values of the liftee in the natural
way.

theorem func_ZF_1_L4:

assumes A1: "f : Y×Y→Y"

and A2: "F = f {lifted to function space over} X"

and A3: "s:X→range(f)" "r:X→range(f)"

and A4: "x∈X"
shows "(F‘〈s,r〉)‘(x) = f‘〈s‘(x),r‘(x)〉"

proof -

let ?p = "〈s,r〉"
let ?P = "{〈x,f‘〈fst(?p)‘(x),snd(?p)‘(x)〉〉. x ∈ X}"

from A1 A3 A4 have
"f : Y×Y→Y" "?p ∈ (X→range(f))×(X→range(f))"

"x∈X" "?P = {〈x,f‘〈fst(?p)‘(x),snd(?p)‘(x)〉〉. x ∈ X}"

by auto

then have "?P‘(x) = f‘〈fst(?p)‘(x),snd(?p)‘(x)〉"
by (rule func_ZF_1_L2)

hence "?P‘(x) = f‘〈s‘(x),r‘(x)〉" by auto

moreover have "?P = F‘〈s,r〉"
proof -

from A1 A2 have "F : (X→range(f))×(X→range(f))→(X→range(f))"

using func_ZF_1_L3 by simp

moreover from A3 have "?p ∈ (X→range(f))×(X→range(f))"

by auto

moreover from A2 have
"F = {〈p,{〈x,f‘〈fst(p)‘(x),snd(p)‘(x)〉〉. x ∈ X}〉.
p ∈ (X→range(f))×(X→range(f))}"

using Lift2FcnSpce_def by simp

ultimately show ?thesis using ZF_fun_from_tot_val

by simp

qed
ultimately show "(F‘〈s,r〉)‘(x) = f‘〈s‘(x),r‘(x)〉" by auto

qed

10.2 Associative and commutative operations

In this section we define associative and commutative operations and prove
that they remain such when we lift them to a function space.

Typically we say that a binary operation ”·” on a set G is ”associative” if
(x · y) · z = x · (y · z) for all x, y, z ∈ G. Our actual definition below does
not use the multiplicative notation so that we can apply it equally to the
additive notation + or whatever infix symbol we may want to use. Instead,
we use the generic set theory notation and write P 〈x, y〉 to denote the value
of the operation P on a pair 〈x, y〉 ∈ G×G.

definition
IsAssociative (infix "{is associative on}" 65) where
"P {is associative on} G ≡ P : G×G→G ∧
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(∀ x ∈ G. ∀ y ∈ G. ∀ z ∈ G.

( P‘(〈P‘(〈x,y〉),z〉) = P‘( 〈x,P‘(〈y,z〉)〉 )))"

A binary function f : X ×X → Y is commutative if f〈x, y〉 = f〈y, x〉. Note
that in the definition of associativity above we talk about binary ”operation”
and here we say use the term binary ”function”. This is not set in stone,
but usually the word ”operation” is used when the range is a factor of
the domain, while the word ”function” allows the range to be a completely
unrelated set.

definition
IsCommutative (infix "{is commutative on}" 65) where
"f {is commutative on} G ≡ ∀ x∈G. ∀ y∈G. f‘〈x,y〉 = f‘〈y,x〉"

The lift of a commutative function is commutative.

lemma func_ZF_2_L1:

assumes A1: "f : G×G→G"

and A2: "F = f {lifted to function space over} X"

and A3: "s : X→range(f)" "r : X→range(f)"

and A4: "f {is commutative on} G"

shows "F‘〈s,r〉 = F‘〈r,s〉"
proof -

from A1 A2 have
"F : (X→range(f))×(X→range(f))→(X→range(f))"

using func_ZF_1_L3 by simp

with A3 have
"F‘〈s,r〉 : X→range(f)" and "F‘〈r,s〉 : X→range(f)"

using apply_type by auto

moreover have
"∀ x∈X. (F‘〈s,r〉)‘(x) = (F‘〈r,s〉)‘(x)"

proof
fix x assume "x∈X"
from A1 have "range(f)⊆G"

using func1_1_L5B by simp

with A3 ‘x∈X‘ have "s‘(x) ∈ G" and "r‘(x) ∈ G"

using apply_type by auto

with A1 A2 A3 A4 ‘x∈X‘ show
"(F‘〈s,r〉)‘(x) = (F‘〈r,s〉)‘(x)"
using func_ZF_1_L4 IsCommutative_def by simp

qed
ultimately show ?thesis using fun_extension_iff

by simp

qed

The lift of a commutative function is commutative on the function space.

lemma func_ZF_2_L2:

assumes "f : G×G→G"

and "f {is commutative on} G"

and "F = f {lifted to function space over} X"
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shows "F {is commutative on} (X→range(f))"

using assms IsCommutative_def func_ZF_2_L1 by simp

The lift of an associative function is associative.

lemma func_ZF_2_L3:

assumes A2: "F = f {lifted to function space over} X"

and A3: "s : X→range(f)" "r : X→range(f)" "q : X→range(f)"

and A4: "f {is associative on} G"

shows "F‘〈F‘〈s,r〉,q〉 = F‘〈s,F‘〈r,q〉〉"
proof -

from A4 A2 have
"F : (X→range(f))×(X→range(f))→(X→range(f))"

using IsAssociative_def func_ZF_1_L3 by auto

with A3 have I:

"F‘〈s,r〉 : X→range(f)"

"F‘〈r,q〉 : X→range(f)"

"F‘〈F‘〈s,r〉,q〉 : X→range(f)"

"F‘〈s,F‘〈r,q〉〉: X→range(f)"

using apply_type by auto

moreover have
"∀ x∈X. (F‘〈F‘〈s,r〉,q〉)‘(x) = (F‘〈s,F‘〈r,q〉〉)‘(x)"

proof
fix x assume "x∈X"
from A4 have "f:G×G→G"

using IsAssociative_def by simp

then have "range(f)⊆G"
using func1_1_L5B by simp

with A3 ‘x∈X‘ have
"s‘(x) ∈ G" "r‘(x) ∈ G" "q‘(x) ∈ G"

using apply_type by auto

with A2 I A3 A4 ‘x∈X‘ ‘f:G×G→G‘ show
"(F‘〈F‘〈s,r〉,q〉)‘(x) = (F‘〈s,F‘〈r,q〉〉)‘(x)"
using func_ZF_1_L4 IsAssociative_def by simp

qed
ultimately show ?thesis using fun_extension_iff

by simp

qed

The lift of an associative function is associative on the function space.

lemma func_ZF_2_L4:

assumes A1: "f {is associative on} G"

and A2: "F = f {lifted to function space over} X"

shows "F {is associative on} (X→range(f))"

proof -

from A1 A2 have
"F : (X→range(f))×(X→range(f))→(X→range(f))"

using IsAssociative_def func_ZF_1_L3 by auto

moreover from A1 A2 have
"∀ s ∈ X→range(f). ∀ r ∈ X→range(f). ∀ q ∈ X→range(f).
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F‘〈F‘〈s,r〉,q〉 = F‘〈s,F‘〈r,q〉〉"
using func_ZF_2_L3 by simp

ultimately show ?thesis using IsAssociative_def

by simp

qed

10.3 Restricting operations

In this section we consider conditions under which restriction of the opera-
tion to a set inherits properties like commutativity and associativity.

The commutativity is inherited when restricting a function to a set.

lemma func_ZF_4_L1:

assumes A1: "f:X×X→Y" and A2: "A⊆X"
and A3: "f {is commutative on} X"

shows "restrict(f,A×A) {is commutative on} A"

proof -

{ fix x y assume "x∈A" and "y∈A"
with A2 have "x∈X" and "y∈X" by auto

with A3 ‘x∈A‘ ‘y∈A‘ have
"restrict(f,A×A)‘〈x,y〉 = restrict(f,A×A)‘〈y,x〉"
using IsCommutative_def restrict_if by simp }

then show ?thesis using IsCommutative_def by simp

qed

Next we define what it means that a set is closed with respect to an opera-
tion.

definition
IsOpClosed (infix "{is closed under}" 65) where
"A {is closed under} f ≡ ∀ x∈A. ∀ y∈A. f‘〈x,y〉 ∈ A"

Associative operation restricted to a set that is closed with resp. to this
operation is associative.

lemma func_ZF_4_L2:assumes A1: "f {is associative on} X"

and A2: "A⊆X" and A3: "A {is closed under} f"

and A4: "x∈A" "y∈A" "z∈A"
and A5: "g = restrict(f,A×A)"
shows "g‘〈g‘〈x,y〉,z〉 = g‘〈x,g‘〈y,z〉〉"

proof -

from A4 A2 have I: "x∈X" "y∈X" "z∈X"
by auto

from A3 A4 A5 have
"g‘〈g‘〈x,y〉,z〉 = f‘〈f‘〈x,y〉,z〉"
"g‘〈x,g‘〈y,z〉〉 = f‘〈x,f‘〈y,z〉〉"
using IsOpClosed_def restrict_if by auto

moreover from A1 I have
"f‘〈f‘〈x,y〉,z〉 = f‘〈x,f‘〈y,z〉〉"
using IsAssociative_def by simp

96



ultimately show ?thesis by simp

qed

An associative operation restricted to a set that is closed with resp. to this
operation is associative on the set.

lemma func_ZF_4_L3: assumes A1: "f {is associative on} X"

and A2: "A⊆X" and A3: "A {is closed under} f"

shows "restrict(f,A×A) {is associative on} A"

proof -

let ?g = "restrict(f,A×A)"
from A1 have "f:X×X→X"

using IsAssociative_def by simp

moreover from A2 have "A×A ⊆ X×X" by auto

moreover from A3 have "∀ p ∈ A×A. ?g‘(p) ∈ A"

using IsOpClosed_def restrict_if by auto

ultimately have "?g : A×A→A"

using func1_2_L4 by simp

moreover from A1 A2 A3 have
"∀ x ∈ A. ∀ y ∈ A. ∀ z ∈ A.

?g‘〈?g‘〈x,y〉,z〉 = ?g‘〈 x,?g‘〈y,z〉〉"
using func_ZF_4_L2 by simp

ultimately show ?thesis

using IsAssociative_def by simp

qed

The essential condition to show that if a set A is closed with respect to an
operation, then it is closed under this operation restricted to any superset
of A.

lemma func_ZF_4_L4: assumes "A {is closed under} f"

and "A⊆B" and "x∈A" "y∈A" and "g = restrict(f,B×B)"
shows "g‘〈x,y〉 ∈ A"

using assms IsOpClosed_def restrict by auto

If a set A is closed under an operation, then it is closed under this operation
restricted to any superset of A.

lemma func_ZF_4_L5:

assumes A1: "A {is closed under} f"

and A2: "A⊆B"
shows "A {is closed under} restrict(f,B×B)"

proof -

let ?g = "restrict(f,B×B)"
from A1 A2 have "∀ x∈A. ∀ y∈A. ?g‘〈x,y〉 ∈ A"

using func_ZF_4_L4 by simp

then show ?thesis using IsOpClosed_def by simp

qed

The essential condition to show that intersection of sets that are closed with
respect to an operation is closed with respect to the operation.
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lemma func_ZF_4_L6:

assumes "A {is closed under} f"

and "B {is closed under} f"

and "x ∈ A∩B" "y∈ A∩B"
shows "f‘〈x,y〉 ∈ A∩B" using assms IsOpClosed_def by auto

Intersection of sets that are closed with respect to an operation is closed
under the operation.

lemma func_ZF_4_L7:

assumes "A {is closed under} f"

"B {is closed under} f"

shows "A∩B {is closed under} f"

using assms IsOpClosed_def by simp

10.4 Compositions

For any set X we can consider a binary operation on the set of functions f :
X → X defined by C(f, g) = f ◦ g. Composition of functions (or relations)
is defined in the standard Isabelle distribution as a higher order function
and denoted with the letter O. In this section we consider the corresponding
two-argument ZF-function (binary operation), that is a subset of ((X →
X)× (X → X))× (X → X).

We define the notion of composition on the set X as the binary operation
on the function space X → X that takes two functions and creates the their
composition.

definition
"Composition(X) ≡
{〈p,fst(p) O snd(p)〉. p ∈ (X→X)×(X→X)}"

Composition operation is a function that maps (X → X) × (X → X) into
X → X.

lemma func_ZF_5_L1: shows "Composition(X) : (X→X)×(X→X)→(X→X)"

using comp_fun Composition_def ZF_fun_from_total by simp

The value of the composition operation is the composition of arguments.

lemma func_ZF_5_L2: assumes "f:X→X" and "g:X→X"

shows "Composition(X)‘〈f,g〉 = f O g"

proof -

from assms have
"Composition(X) : (X→X)×(X→X)→(X→X)"

"〈f,g〉 ∈ (X→X)×(X→X)"

"Composition(X) = {〈p,fst(p) O snd(p)〉. p ∈ (X→X)×(X→X)}"

using func_ZF_5_L1 Composition_def by auto

then show "Composition(X)‘〈f,g〉 = f O g"

using ZF_fun_from_tot_val by auto

qed
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What is the value of a composition on an argument?

lemma func_ZF_5_L3: assumes "f:X→X" and "g:X→X" and "x∈X"
shows "(Composition(X)‘〈f,g〉)‘(x) = f‘(g‘(x))"

using assms func_ZF_5_L2 comp_fun_apply by simp

The essential condition to show that composition is associative.

lemma func_ZF_5_L4: assumes A1: "f:X→X" "g:X→X" "h:X→X"

and A2: "C = Composition(X)"

shows "C‘〈C‘〈f,g〉,h〉 = C‘〈 f,C‘〈g,h〉〉"
proof -

from A2 have "C : ((X→X)×(X→X))→(X→X)"

using func_ZF_5_L1 by simp

with A1 have I:

"C‘〈f,g〉 : X→X"

"C‘〈g,h〉 : X→X"

"C‘〈C‘〈f,g〉,h〉 : X→X"

"C‘〈 f,C‘〈g,h〉〉 : X→X"

using apply_funtype by auto

moreover have
"∀ x ∈ X. C‘〈C‘〈f,g〉,h〉‘(x) = C‘〈f,C‘〈g,h〉〉‘(x)"

proof
fix x assume "x∈X"
with A1 A2 I have
"C‘〈C‘〈f,g〉,h〉 ‘ (x) = f‘(g‘(h‘(x)))"

"C‘〈 f,C‘〈g,h〉〉‘(x) = f‘(g‘(h‘(x)))"

using func_ZF_5_L3 apply_funtype by auto

then show "C‘〈C‘〈f,g〉,h〉‘(x) = C‘〈 f,C‘〈g,h〉〉‘(x)"
by simp

qed
ultimately show ?thesis using fun_extension_iff by simp

qed

Composition is an associative operation on X → X (the space of functions
that map X into itself).

lemma func_ZF_5_L5: shows "Composition(X) {is associative on} (X→X)"

proof -

let ?C = "Composition(X)"

have "∀ f∈X→X. ∀ g∈X→X. ∀ h∈X→X.

?C‘〈?C‘〈f,g〉,h〉 = ?C‘〈f,?C‘〈g,h〉〉"
using func_ZF_5_L4 by simp

then show ?thesis using func_ZF_5_L1 IsAssociative_def

by simp

qed

10.5 Identity function

In this section we show some additional facts about the identity function
defined in the standard Isabelle’s Perm theory.
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A function that maps every point to itself is the identity on its domain.

lemma indentity_fun: assumes A1: "f:X→Y" and A2:"∀ x∈X. f‘(x)=x"

shows "f = id(X)"

proof -

from assms have "f:X→Y" and "id(X):X→X" and "∀ x∈X. f‘(x) = id(X)‘(x)"

using id_type id_conv by auto

then show ?thesis by (rule func_eq)

qed

Composing a function with identity does not change the function.

lemma func_ZF_6_L1A: assumes A1: "f : X→X"

shows "Composition(X)‘〈f,id(X)〉 = f"

"Composition(X)‘〈id(X),f〉 = f"

proof -

have "Composition(X) : (X→X)×(X→X)→(X→X)"

using func_ZF_5_L1 by simp

with A1 have "Composition(X)‘〈id(X),f〉 : X→X"

"Composition(X)‘〈f,id(X)〉 : X→X"

using id_type apply_funtype by auto

moreover note A1

moreover from A1 have
"∀ x∈X. (Composition(X)‘〈id(X),f〉)‘(x) = f‘(x)"

"∀ x∈X. (Composition(X)‘〈f,id(X)〉)‘(x) = f‘(x)"

using id_type func_ZF_5_L3 apply_funtype id_conv

by auto

ultimately show "Composition(X)‘〈id(X),f〉 = f"

"Composition(X)‘〈f,id(X)〉 = f"

using fun_extension_iff by auto

qed

An intuitively clear, but surprsingly nontrivial fact:identity is the only func-
tion from a singleton to itself.

lemma singleton_fun_id: shows "({x} → {x}) = {id({x})}"

proof
show "{id({x})} ⊆ ({x} → {x})"

using id_def by simp

{ let ?g = "id({x})"

fix f assume "f : {x} → {x}"

then have "f : {x} → {x}" and "?g : {x} → {x}"

using id_def by auto

moreover from ‘f : {x} → {x}‘ have "∀ x ∈ {x}. f‘(x) = ?g‘(x)"

using apply_funtype id_def by auto

ultimately have "f = ?g" by (rule func_eq)

} then show "({x} → {x}) ⊆ {id({x})}" by auto

qed

Another trivial fact: identity is the only bijection of a singleton with itself.

lemma single_bij_id: shows "bij({x},{x}) = {id({x})}"
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proof
show "{id({x})} ⊆ bij({x},{x})" using id_bij

by simp

{ fix f assume "f ∈ bij({x},{x})"

then have "f : {x} → {x}" using bij_is_fun

by simp

then have "f ∈ {id({x})}" using singleton_fun_id

by simp

} then show "bij({x},{x}) ⊆ {id({x})}" by auto

qed

A kind of induction for the identity: if a function f is the identity on a set
with a fixpoint of f removed, then it is the indentity on the whole set.

lemma id_fixpoint_rem: assumes A1: "f:X→X" and
A2: "p∈X" and A3: "f‘(p) = p" and
A4: "restrict(f, X-{p}) = id(X-{p})"

shows "f = id(X)"

proof -

from A1 have "f: X→X" and "id(X) : X→X"

using id_def by auto

moreover
{ fix x assume "x∈X"
{ assume "x ∈ X-{p}"

then have "f‘(x) = restrict(f, X-{p})‘(x)"

using restrict by simp

with A4 ‘x ∈ X-{p}‘ have "f‘(x) = x"

using id_def by simp }
with A2 A3 ‘x∈X‘ have "f‘(x) = x" by auto

} then have "∀ x∈X. f‘(x) = id(X)‘(x)"

using id_def by simp

ultimately show "f = id(X)" by (rule func_eq)

qed

10.6 Lifting to subsets

Suppose we have a binary operation f : X ×X → X written additively as
f〈x, y〉 = x+ y. Such operation naturally defines another binary operation
on the subsets of X that satisfies A+B = {x+ y : x ∈ A, y ∈ B}. This new
operation which we will call ”f lifted to subsets” inherits many properties of
f , such as associativity, commutativity and existence of the neutral element.
This notion is useful for considering interval arithmetics.

The next definition describes the notion of a binary operation lifted to sub-
sets. It is written in a way that might be a bit unexpected, but really it is the
same as the intuitive definition, but shorter. In the definition we take a pair
p ∈ Pow(X) × Pow(X), say p = 〈A,B〉, where A,B ⊆ X. Then we assign
this pair of sets the set {f〈x, y〉 : x ∈ A, y ∈ B} = {f(x′) : x′ ∈ A×B} The
set on the right hand side is the same as the image of A×B under f . In the
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definition we don’t use A and B symbols, but write fst(p) and snd(p), resp.
Recall that in Isabelle/ZF fst(p) and snd(p) denote the first and second
components of an ordered pair p. See the lemma lift_subsets_explained

for a more intuitive notation.

definition
Lift2Subsets (infix "{lifted to subsets of}" 65) where
"f {lifted to subsets of} X ≡
{〈p, f‘‘(fst(p)×snd(p))〉. p ∈ Pow(X)×Pow(X)}"

The lift to subsets defines a binary operation on the subsets.

lemma lift_subsets_binop: assumes A1: "f : X × X → Y"

shows "(f {lifted to subsets of} X) : Pow(X) × Pow(X) → Pow(Y)"

proof -

let ?F = "{〈p, f‘‘(fst(p)×snd(p))〉. p ∈ Pow(X)×Pow(X)}"
from A1 have "∀ p ∈ Pow(X) × Pow(X). f‘‘(fst(p)×snd(p)) ∈ Pow(Y)"

using func1_1_L6 by simp

then have "?F : Pow(X) × Pow(X) → Pow(Y)"

by (rule ZF_fun_from_total)

then show ?thesis unfolding Lift2Subsets_def by simp

qed

The definition of the lift to subsets rewritten in a more intuitive notation.
We would like to write the last assertion as F‘〈A,B〉 = {f‘〈x,y〉. x ∈ A, y

∈ B}, but Isabelle/ZF does not allow such syntax.

lemma lift_subsets_explained: assumes A1: "f : X×X → Y"

and A2: "A ⊆ X" "B ⊆ X" and A3: "F = f {lifted to subsets of} X"

shows
"F‘〈A,B〉 ⊆ Y" and
"F‘〈A,B〉 = f‘‘(A×B)"
"F‘〈A,B〉 = {f‘(p). p ∈ A×B}"
"F‘〈A,B〉 = {f‘〈x,y〉 . 〈x,y〉 ∈ A×B}"

proof -

let ?p = "〈A,B〉"
from assms have

I: "F : Pow(X) × Pow(X) → Pow(Y)" and "?p ∈ Pow(X) × Pow(X)"

using lift_subsets_binop by auto

moreover from A3 have "F = {〈p, f‘‘(fst(p)×snd(p))〉. p ∈ Pow(X)×Pow(X)}"
unfolding Lift2Subsets_def by simp

ultimately show "F‘〈A,B〉 = f‘‘(A×B)"
using ZF_fun_from_tot_val by auto

also
from A1 A2 have "A×B ⊆ X×X" by auto

with A1 have "f‘‘(A×B) = {f‘(p). p ∈ A×B}"
by (rule func_imagedef)

finally show "F‘〈A,B〉 = {f‘(p) . p ∈ A×B}" by simp

also
have "∀ x∈A. ∀ y ∈ B. f‘〈x,y〉 = f‘〈x,y〉" by simp

then have "{f‘(p). p ∈ A×B} = {f‘〈x,y〉. 〈x,y〉 ∈ A×B}"
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by (rule ZF1_1_L4A)

finally show "F‘〈A,B〉 = {f‘〈x,y〉 . 〈x,y〉 ∈ A×B}"
by simp

from A2 I show "F‘〈A,B〉 ⊆ Y" using apply_funtype by blast

qed

A sufficient condition for a point to belong to a result of lifting to subsets.

lemma lift_subset_suff: assumes A1: "f : X × X → Y" and
A2: "A ⊆ X" "B ⊆ X" and A3: "x∈A" "y∈B" and
A4: "F = f {lifted to subsets of} X"

shows "f‘〈x,y〉 ∈ F‘〈A,B〉"
proof -

from A3 have "f‘〈x,y〉 ∈ {f‘(p) . p ∈ A×B}" by auto

moreover from A1 A2 A4 have "{f‘(p). p ∈ A×B} = F‘〈A,B〉 "

using lift_subsets_explained by simp

ultimately show "f‘〈x,y〉 ∈ F‘〈A,B〉" by simp

qed

A kind of converse of lift_subset_apply, providing a necessary condition
for a point to be in the result of lifting to subsets.

lemma lift_subset_nec: assumes A1: "f : X × X → Y" and
A2: "A ⊆ X" "B ⊆ X" and
A3: "F = f {lifted to subsets of} X" and
A4: "z ∈ F‘〈A,B〉"
shows "∃ x y. x∈A ∧ y∈B ∧ z = f‘〈x,y〉"

proof -

from A1 A2 A3 have "F‘〈A,B〉 = {f‘(p). p ∈ A×B}"
using lift_subsets_explained by simp

with A4 show ?thesis by auto

qed

Lifting to subsets inherits commutativity.

lemma lift_subset_comm: assumes A1: "f : X × X → Y" and
A2: "f {is commutative on} X" and
A3: "F = f {lifted to subsets of} X"

shows "F {is commutative on} Pow(X)"

proof -

have "∀ A ∈ Pow(X). ∀ B ∈ Pow(X). F‘〈A,B〉 = F‘〈B,A〉"
proof -

{ fix A assume "A ∈ Pow(X)"

fix B assume "B ∈ Pow(X)"

have "F‘〈A,B〉 = F‘〈B,A〉"
proof -

have "∀ z ∈ F‘〈A,B〉. z ∈ F‘〈B,A〉"
proof

fix z assume I: "z ∈ F‘〈A,B〉"
with A1 A3 ‘A ∈ Pow(X)‘ ‘B ∈ Pow(X)‘ have
"∃ x y. x∈A ∧ y∈B ∧ z = f‘〈x,y〉"
using lift_subset_nec by simp
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then obtain x y where "x∈A" and "y∈B" and "z = f‘〈x,y〉"
by auto

with A2 ‘A ∈ Pow(X)‘ ‘B ∈ Pow(X)‘ have "z = f‘〈y,x〉"
using IsCommutative_def by auto

with A1 A3 I ‘A ∈ Pow(X)‘ ‘B ∈ Pow(X)‘ ‘x∈A‘ ‘y∈B‘
show "z ∈ F‘〈B,A〉" using lift_subset_suff by simp

qed
moreover have "∀ z ∈ F‘〈B,A〉. z ∈ F‘〈A,B〉"
proof

fix z assume I: "z ∈ F‘〈B,A〉"
with A1 A3 ‘A ∈ Pow(X)‘ ‘B ∈ Pow(X)‘ have
"∃ x y. x∈B ∧ y∈A ∧ z = f‘〈x,y〉"
using lift_subset_nec by simp

then obtain x y where "x∈B" and "y∈A" and "z = f‘〈x,y〉"
by auto

with A2 ‘A ∈ Pow(X)‘ ‘B ∈ Pow(X)‘ have "z = f‘〈y,x〉"
using IsCommutative_def by auto

with A1 A3 I ‘A ∈ Pow(X)‘ ‘B ∈ Pow(X)‘ ‘x∈B‘ ‘y∈A‘
show "z ∈ F‘〈A,B〉" using lift_subset_suff by simp

qed
ultimately show "F‘〈A,B〉 = F‘〈B,A〉" by auto

qed
} thus ?thesis by auto

qed
then show "F {is commutative on} Pow(X)"

unfolding IsCommutative_def by auto

qed

Lifting to subsets inherits associativity. To show that F 〈〈A,B〉C〉 = F 〈A,F 〈B,C〉〉
we prove two inclusions and the proof of the second inclusion is very similar
to the proof of the first one.

lemma lift_subset_assoc: assumes A1: "f : X × X → X" and
A2: "f {is associative on} X" and
A3: "F = f {lifted to subsets of} X"

shows "F {is associative on} Pow(X)"

proof -

from A1 A3 have "F : Pow(X)×Pow(X) → Pow(X)"

using lift_subsets_binop by simp

moreover have "∀ A ∈ Pow(X).∀ B ∈ Pow(X). ∀ C ∈ Pow(X).

F‘〈F‘〈A,B〉,C〉 = F‘〈A,F‘〈B,C〉〉"
proof -

{ fix A B C

assume "A ∈ Pow(X)" "B ∈ Pow(X)" "C ∈ Pow(X)"

have "F‘〈F‘〈A,B〉,C〉 ⊆ F‘〈A,F‘〈B,C〉〉"
proof

fix z assume I: "z ∈ F‘〈F‘〈A,B〉,C〉"
from A1 A3 ‘A ∈ Pow(X)‘ ‘B ∈ Pow(X)‘

have "F‘〈A,B〉 ∈ Pow(X)"

using lift_subsets_binop apply_funtype by blast
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with A1 A3 ‘C ∈ Pow(X)‘ I have
"∃ x y. x ∈ F‘〈A,B〉 ∧ y ∈ C ∧ z = f‘〈x,y〉"
using lift_subset_nec by simp

then obtain x y where
II: "x ∈ F‘〈A,B〉" and "y ∈ C" and III: "z = f‘〈x,y〉"
by auto

from A1 A3 ‘A ∈ Pow(X)‘ ‘B ∈ Pow(X)‘ II have
"∃ s t. s ∈ A ∧ t ∈ B ∧ x = f‘〈s,t〉"
using lift_subset_nec by auto

then obtain s t where "s∈A" and "t∈B" and "x = f‘〈s,t〉"
by auto

with A2 ‘A ∈ Pow(X)‘ ‘B ∈ Pow(X)‘ ‘C ∈ Pow(X)‘ III

‘s∈A‘ ‘t∈B‘ ‘y∈C‘ have IV: "z = f‘〈s, f‘〈t,y〉〉"
using IsAssociative_def by blast

from A1 A3 ‘B ∈ Pow(X)‘ ‘C ∈ Pow(X)‘ ‘t∈B‘ ‘y∈C‘
have "f‘〈t,y〉 ∈ F‘〈B,C〉" using lift_subset_suff by simp

moreover from A1 A3 ‘B ∈ Pow(X)‘ ‘C ∈ Pow(X)‘

have "F‘〈B,C〉 ⊆ X" using lift_subsets_binop apply_funtype

by blast

moreover note A1 A3 ‘A ∈ Pow(X)‘ ‘s∈A‘ IV

ultimately show "z ∈ F‘〈A,F‘〈B,C〉〉"
using lift_subset_suff by simp

qed
moreover have "F‘〈A,F‘〈B,C〉〉 ⊆ F‘〈F‘〈A,B〉,C〉"
proof

fix z assume I: "z ∈ F‘〈A,F‘〈B,C〉〉"
from A1 A3 ‘B ∈ Pow(X)‘ ‘C ∈ Pow(X)‘

have "F‘〈B,C〉 ∈ Pow(X)"

using lift_subsets_binop apply_funtype by blast

with A1 A3 ‘A ∈ Pow(X)‘ I have
"∃ x y. x ∈ A ∧ y ∈ F‘〈B,C〉 ∧ z = f‘〈x,y〉"
using lift_subset_nec by simp

then obtain x y where
"x ∈ A" and II: "y ∈ F‘〈B,C〉" and III: "z = f‘〈x,y〉"
by auto

from A1 A3 ‘B ∈ Pow(X)‘ ‘C ∈ Pow(X)‘ II have
"∃ s t. s ∈ B ∧ t ∈ C ∧ y = f‘〈s,t〉"
using lift_subset_nec by auto

then obtain s t where "s∈B" and "t∈C" and "y = f‘〈s,t〉"
by auto

with III have "z = f‘〈x,f‘〈s,t〉〉" by simp

moreover from A2 ‘A ∈ Pow(X)‘ ‘B ∈ Pow(X)‘ ‘C ∈ Pow(X)‘

‘x∈A‘ ‘s∈B‘ ‘t∈C‘ have "f‘〈f‘〈x,s〉,t〉 = f‘〈x,f‘〈s,t〉〉"
using IsAssociative_def by blast

ultimately have IV: "z = f‘〈f‘〈x,s〉,t〉" by simp

from A1 A3 ‘A ∈ Pow(X)‘ ‘B ∈ Pow(X)‘ ‘x∈A‘ ‘s∈B‘
have "f‘〈x,s〉 ∈ F‘〈A,B〉" using lift_subset_suff by simp

moreover from A1 A3 ‘A ∈ Pow(X)‘ ‘B ∈ Pow(X)‘

have "F‘〈A,B〉 ⊆ X" using lift_subsets_binop apply_funtype
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by blast

moreover note A1 A3 ‘C ∈ Pow(X)‘ ‘t∈C‘ IV

ultimately show "z ∈ F‘〈F‘〈A,B〉,C〉"
using lift_subset_suff by simp

qed
ultimately have "F‘〈F‘〈A,B〉,C〉 = F‘〈A,F‘〈B,C〉〉" by auto

} thus ?thesis by auto

qed
ultimately show ?thesis unfolding IsAssociative_def

by auto

qed

10.7 Distributive operations

In this section we deal with pairs of operations such that one is distributive
with respect to the other, that is a·(b+c) = a·b+a·c and (b+c)·a = b·a+c·a.
We show that this property is preserved under restriction to a set closed
with respect to both operations. In EquivClass1 theory we show that this
property is preserved by projections to the quotient space if both operations
are congruent with respect to the equivalence relation.

We define distributivity as a statement about three sets. The first set is the
set on which the operations act. The second set is the additive operation (a
ZF function) and the third is the multiplicative operation.

definition
"IsDistributive(X,A,M) ≡ (∀ a∈X.∀ b∈X.∀ c∈X.
M‘〈a,A‘〈b,c〉〉 = A‘〈M‘〈a,b〉,M‘〈a,c〉〉 ∧
M‘〈A‘〈b,c〉,a〉 = A‘〈M‘〈b,a〉,M‘〈c,a〉 〉)"

The essential condition to show that distributivity is preserved by restric-
tions to sets that are closed with respect to both operations.

lemma func_ZF_7_L1:

assumes A1: "IsDistributive(X,A,M)"

and A2: "Y⊆X"
and A3: "Y {is closed under} A" "Y {is closed under} M"

and A4: "Ar = restrict(A,Y×Y)" "Mr = restrict(M,Y×Y)"
and A5: "a∈Y" "b∈Y" "c∈Y"
shows "Mr‘〈 a,Ar‘〈b,c〉 〉 = Ar‘〈 Mr‘〈a,b〉,Mr‘〈a,c〉 〉 ∧
Mr‘〈 Ar‘〈b,c〉,a 〉 = Ar‘〈 Mr‘〈b,a〉, Mr‘〈c,a〉 〉"

proof -

from A3 A5 have "A‘〈b,c〉 ∈ Y" "M‘〈a,b〉 ∈ Y" "M‘〈a,c〉 ∈ Y"

"M‘〈b,a〉 ∈ Y" "M‘〈c,a〉 ∈ Y" using IsOpClosed_def by auto

with A5 A4 have
"Ar‘〈b,c〉 ∈ Y" "Mr‘〈a,b〉 ∈ Y" "Mr‘〈a,c〉 ∈ Y"

"Mr‘〈b,a〉 ∈ Y" "Mr‘〈c,a〉 ∈ Y"

using restrict by auto

with A1 A2 A4 A5 show ?thesis

using restrict IsDistributive_def by auto
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qed

Distributivity is preserved by restrictions to sets that are closed with respect
to both operations.

lemma func_ZF_7_L2:

assumes "IsDistributive(X,A,M)"

and "Y⊆X"
and "Y {is closed under} A"

"Y {is closed under} M"

and "Ar = restrict(A,Y×Y)" "Mr = restrict(M,Y×Y)"
shows "IsDistributive(Y,Ar,Mr)"

proof -

from assms have "∀ a∈Y.∀ b∈Y.∀ c∈Y.
Mr‘〈 a,Ar‘〈b,c〉 〉 = Ar‘〈 Mr‘〈a,b〉,Mr‘〈a,c〉 〉 ∧
Mr‘〈 Ar‘〈b,c〉,a 〉 = Ar‘〈 Mr‘〈b,a〉,Mr‘〈c,a〉〉"
using func_ZF_7_L1 by simp

then show ?thesis using IsDistributive_def by simp

qed

end

11 More on functions

theory func_ZF_1 imports Order Order_ZF_1a func_ZF

begin

In this theory we consider some properties of functions related to order
relations

11.1 Functions and order

This section deals with functions between ordered sets.

If every value of a function on a set is bounded below by a constant, then
the image of the set is bounded below.

lemma func_ZF_8_L1:

assumes "f:X→Y" and "A⊆X" and "∀ x∈A. 〈L,f‘(x)〉 ∈ r"

shows "IsBoundedBelow(f‘‘(A),r)"

proof -

from assms have "∀ y ∈ f‘‘(A). 〈L,y〉 ∈ r"

using func_imagedef by simp

then show "IsBoundedBelow(f‘‘(A),r)"

by (rule Order_ZF_3_L9)

qed
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If every value of a function on a set is bounded above by a constant, then
the image of the set is bounded above.

lemma func_ZF_8_L2:

assumes "f:X→Y" and "A⊆X" and "∀ x∈A. 〈f‘(x),U〉 ∈ r"

shows "IsBoundedAbove(f‘‘(A),r)"

proof -

from assms have "∀ y ∈ f‘‘(A). 〈y,U〉 ∈ r"

using func_imagedef by simp

then show "IsBoundedAbove(f‘‘(A),r)"

by (rule Order_ZF_3_L10)

qed

Identity is an order isomorphism.

lemma id_ord_iso: shows "id(X) ∈ ord_iso(X,r,X,r)"

using id_bij id_def ord_iso_def by simp

Identity is the only order automorphism of a singleton.

lemma id_ord_auto_singleton:

shows "ord_iso({x},r,{x},r) = {id({x})}"

using id_ord_iso ord_iso_def single_bij_id

by auto

The image of a maximum by an order isomorphism is a maximum. Note
that from the fact the r is antisymmetric and f is an order isomorphism
between (A, r) and (B,R) we can not conclude that R is antisymmetric (we
can only show that R ∩ (B ×B) is).

lemma max_image_ord_iso:

assumes A1: "antisym(r)" and A2: "antisym(R)" and
A3: "f ∈ ord_iso(A,r,B,R)" and
A4: "HasAmaximum(r,A)"

shows "HasAmaximum(R,B)" and "Maximum(R,B) = f‘(Maximum(r,A))"

proof -

let ?M = "Maximum(r,A)"

from A1 A4 have "?M ∈ A" using Order_ZF_4_L3 by simp

from A3 have "f:A→B" using ord_iso_def bij_is_fun

by simp

with ‘?M ∈ A‘ have I: "f‘(?M) ∈ B"

using apply_funtype by simp

{ fix y assume "y ∈ B"

let ?x = "converse(f)‘(y)"

from A3 have "converse(f) ∈ ord_iso(B,R,A,r)"

using ord_iso_sym by simp

then have "converse(f): B → A"

using ord_iso_def bij_is_fun by simp

with ‘y ∈ B‘ have "?x ∈ A"

by simp

with A1 A3 A4 ‘?x ∈ A‘ ‘?M ∈ A‘ have "〈f‘(?x), f‘(?M)〉 ∈ R"

using Order_ZF_4_L3 ord_iso_apply by simp
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with A3 ‘y ∈ B‘ have "〈y, f‘(?M)〉 ∈ R"

using right_inverse_bij ord_iso_def by auto

} then have II: "∀ y ∈ B. 〈y, f‘(?M)〉 ∈ R" by simp

with A2 I show "Maximum(R,B) = f‘(?M)"

by (rule Order_ZF_4_L14)

from I II show "HasAmaximum(R,B)"

using HasAmaximum_def by auto

qed

Maximum is a fixpoint of order automorphism.

lemma max_auto_fixpoint:

assumes "antisym(r)" and "f ∈ ord_iso(A,r,A,r)"

and "HasAmaximum(r,A)"

shows "Maximum(r,A) = f‘(Maximum(r,A))"

using assms max_image_ord_iso by blast

If two sets are order isomorphic and we remove x and f(x), respectively,
from the sets, then they are still order isomorphic.

lemma ord_iso_rem_point:

assumes A1: "f ∈ ord_iso(A,r,B,R)" and A2: "a ∈ A"

shows "restrict(f,A-{a}) ∈ ord_iso(A-{a},r,B-{f‘(a)},R)"

proof -

let ?f0 = "restrict(f,A-{a})"

have "A-{a} ⊆ A" by auto

with A1 have "?f0 ∈ ord_iso(A-{a},r,f‘‘(A-{a}),R)"

using ord_iso_restrict_image by simp

moreover
from A1 have "f ∈ inj(A,B)"

using ord_iso_def bij_def by simp

with A2 have "f‘‘(A-{a}) = f‘‘(A) - f‘‘{a}"

using inj_image_dif by simp

moreover from A1 have "f‘‘(A) = B"

using ord_iso_def bij_def surj_range_image_domain

by auto

moreover
from A1 have "f: A→B"

using ord_iso_def bij_is_fun by simp

with A2 have "f‘‘{a} = {f‘(a)}"

using singleton_image by simp

ultimately show ?thesis by simp

qed

If two sets are order isomorphic and we remove maxima from the sets, then
they are still order isomorphic.

corollary ord_iso_rem_max:

assumes A1: "antisym(r)" and "f ∈ ord_iso(A,r,B,R)" and
A4: "HasAmaximum(r,A)" and A5: "M = Maximum(r,A)"

shows "restrict(f,A-{M}) ∈ ord_iso(A-{M}, r, B-{f‘(M)},R)"
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using assms Order_ZF_4_L3 ord_iso_rem_point by simp

Lemma about extending order isomorphisms by adding one point to the
domain.

lemma ord_iso_extend: assumes A1: "f ∈ ord_iso(A,r,B,R)" and
A2: "MA /∈ A" "MB /∈ B" and
A3: "∀ a∈A. 〈a, MA〉 ∈ r" "∀ b∈B. 〈b, MB〉 ∈ R" and
A4: "antisym(r)" "antisym(R)" and
A5: "〈MA,MA〉 ∈ r ←→ 〈MB,MB〉 ∈ R"

shows "f ∪ {〈 MA,MB〉} ∈ ord_iso(A∪{MA} ,r,B∪{MB} ,R)"

proof -

let ?g = "f ∪ {〈 MA,MB〉}"
from A1 A2 have

"?g : A∪{MA} → B∪{MB}" and
I: "∀ x∈A. ?g‘(x) = f‘(x)" and II: "?g‘(MA) = MB"

using ord_iso_def bij_def inj_def func1_1_L11D

by auto

from A1 A2 have "?g ∈ bij(A∪{MA},B∪{MB}) "

using ord_iso_def bij_extend_point by simp

moreover have "∀ x ∈ A∪{MA}. ∀ y ∈ A∪{MA}.
〈x,y〉 ∈ r ←→ 〈?g‘(x), ?g‘(y)〉 ∈ R"

proof -

{ fix x y

assume "x ∈ A∪{MA}" and "y ∈ A∪{MA}"
then have "x∈A ∧ y ∈ A ∨ x∈A ∧ y = MA ∨

x = MA ∧ y ∈ A ∨ x = MA ∧ y = MA"

by auto

moreover
{ assume "x∈A ∧ y ∈ A"

with A1 I have "〈x,y〉 ∈ r ←→ 〈?g‘(x), ?g‘(y)〉 ∈ R"

using ord_iso_def by simp }
moreover
{ assume "x∈A ∧ y = MA"

with A1 A3 I II have "〈x,y〉 ∈ r ←→ 〈?g‘(x), ?g‘(y)〉 ∈ R"

using ord_iso_def bij_def inj_def apply_funtype

by auto }
moreover
{ assume "x = MA ∧ y ∈ A"

with A2 A3 A4 have "〈x,y〉 /∈ r"

using antisym_def by auto

moreover
{ assume A6: "〈?g‘(x), ?g‘(y)〉 ∈ R"

from A1 I II ‘x = MA ∧ y ∈ A‘ have
III: "?g‘(y) ∈ B" "?g‘(x) = MB"

using ord_iso_def bij_def inj_def apply_funtype

by auto

with A3 have "〈?g‘(y), ?g‘(x)〉 ∈ R" by simp

with A4 A6 have "?g‘(y) = ?g‘(x)" using antisym_def

by auto
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with A2 III have False by simp

} hence "〈?g‘(x), ?g‘(y)〉 /∈ R" by auto

ultimately have "〈x,y〉 ∈ r ←→ 〈?g‘(x), ?g‘(y)〉 ∈ R"

by simp }
moreover
{ assume "x = MA ∧ y = MA"

with A5 II have "〈x,y〉 ∈ r ←→ 〈?g‘(x), ?g‘(y)〉 ∈ R"

by simp }
ultimately have "〈x,y〉 ∈ r ←→ 〈?g‘(x), ?g‘(y)〉 ∈ R"

by auto

} thus ?thesis by auto

qed
ultimately show ?thesis using ord_iso_def

by simp

qed

A kind of converse to ord_iso_rem_max: if two linearly ordered sets sets are
order isomorphic after removing the maxima, then they are order isomor-
phic.

lemma rem_max_ord_iso:

assumes A1: "IsLinOrder(X,r)" "IsLinOrder(Y,R)" and
A2: "HasAmaximum(r,X)" "HasAmaximum(R,Y)"

"ord_iso(X - {Maximum(r,X)},r,Y - {Maximum(R,Y)},R) 6= 0"

shows "ord_iso(X,r,Y,R) 6= 0"

proof -

let ?MA = "Maximum(r,X)"

let ?A = "X - {?MA}"

let ?MB = "Maximum(R,Y)"

let ?B = "Y - {?MB}"

from A2 obtain f where "f ∈ ord_iso(?A,r,?B,R)"

by auto

moreover have "?MA /∈ ?A" and "?MB /∈ ?B"

by auto

moreover from A1 A2 have
"∀ a∈?A. 〈a,?MA〉 ∈ r" and "∀ b∈?B. 〈b,?MB〉 ∈ R"

using IsLinOrder_def Order_ZF_4_L3 by auto

moreover from A1 have "antisym(r)" and "antisym(R)"

using IsLinOrder_def by auto

moreover from A1 A2 have "〈?MA,?MA〉 ∈ r ←→ 〈?MB,?MB〉 ∈ R"

using IsLinOrder_def Order_ZF_4_L3 IsLinOrder_def

total_is_refl refl_def by auto

ultimately have
"f ∪ {〈 ?MA,?MB〉} ∈ ord_iso(?A∪{?MA} ,r,?B∪{?MB} ,R)"

by (rule ord_iso_extend)

moreover from A1 A2 have
"?A∪{?MA} = X" and "?B∪{?MB} = Y"

using IsLinOrder_def Order_ZF_4_L3 by auto

ultimately show "ord_iso(X,r,Y,R) 6= 0"

using ord_iso_extend by auto
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qed

11.2 Projections in cartesian products

In this section we consider maps arising naturally in cartesian products.

There is a natural bijection etween X = Y ×{y} (a ”slice”) and Y . We will
call this the SliceProjection(Y×{y}). This is really the ZF equivalent of
the meta-function fst(x).

definition
"SliceProjection(X) ≡ {〈p,fst(p)〉. p ∈ X }"

A slice projection is a bijection between X × {y} and X.

lemma slice_proj_bij: shows
"SliceProjection(X×{y}): X×{y} → X"

"domain(SliceProjection(X×{y})) = X×{y}"
"∀ p∈X×{y}. SliceProjection(X×{y})‘(p) = fst(p)"

"SliceProjection(X×{y}) ∈ bij(X×{y},X)"
proof -

let ?P = "SliceProjection(X×{y})"
have "∀ p ∈ X×{y}. fst(p) ∈ X" by simp

moreover from this have
"{〈p,fst(p)〉. p ∈ X×{y} } : X×{y} → X"

by (rule ZF_fun_from_total)

ultimately show
I: "?P: X×{y} → X" and II: "∀ p∈X×{y}. ?P‘(p) = fst(p)"

using ZF_fun_from_tot_val SliceProjection_def by auto

hence
"∀ a ∈ X×{y}. ∀ b ∈ X×{y}. ?P‘(a) = ?P‘(b) −→ a=b"

by auto

with I have "?P ∈ inj(X×{y},X)" using inj_def

by simp

moreover from II have "∀ x∈X. ∃ p∈X×{y}. ?P‘(p) = x"

by simp

with I have "?P ∈ surj(X×{y},X)" using surj_def

by simp

ultimately show "?P ∈ bij(X×{y},X)"
using bij_def by simp

from I show "domain(SliceProjection(X×{y})) = X×{y}"
using func1_1_L1 by simp

qed

11.3 Induced relations and order isomorphisms

When we have two sets X,Y , function f : X → Y and a relation R on
Y we can define a relation r on X by saying that x r y if and only if
f(x) R f(y). This is especially interesting when f is a bijection as all
reasonable properties of R are inherited by r. This section treats mostly
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the case when R is an order relation and f is a bijection. The standard
Isabelle’s Order theory defines the notion of a space of order isomorphisms
between two sets relative to a relation. We expand that material proving
that order isomrphisms preserve interesting properties of the relation.

We call the relation created by a relation on Y and a mapping f : X → Y
the InducedRelation(f,R).

definition
"InducedRelation(f,R) ≡
{p ∈ domain(f)×domain(f). 〈f‘(fst(p)),f‘(snd(p))〉 ∈ R}"

A reformulation of the definition of the relation induced by a function.

lemma def_of_ind_relA:

assumes "〈x,y〉 ∈ InducedRelation(f,R)"

shows "〈f‘(x),f‘(y)〉 ∈ R"

using assms InducedRelation_def by simp

A reformulation of the definition of the relation induced by a function, kind
of converse of def_of_ind_relA.

lemma def_of_ind_relB: assumes "f:A→B" and
"x∈A" "y∈A" and "〈f‘(x),f‘(y)〉 ∈ R"

shows "〈x,y〉 ∈ InducedRelation(f,R)"

using assms func1_1_L1 InducedRelation_def by simp

A property of order isomorphisms that is missing from standard Isabelle’s
Order.thy.

lemma ord_iso_apply_conv:

assumes "f ∈ ord_iso(A,r,B,R)" and
"〈f‘(x),f‘(y)〉 ∈ R" and "x∈A" "y∈A"
shows "〈x,y〉 ∈ r"

using assms ord_iso_def by simp

The next lemma tells us where the induced relation is defined

lemma ind_rel_domain:

assumes "R ⊆ B×B" and "f:A→B"

shows "InducedRelation(f,R) ⊆ A×A"
using assms func1_1_L1 InducedRelation_def

by auto

A bijection is an order homomorphisms between a relation and the induced
one.

lemma bij_is_ord_iso: assumes A1: "f ∈ bij(A,B)"

shows "f ∈ ord_iso(A,InducedRelation(f,R),B,R)"

proof -

let ?r = "InducedRelation(f,R)"

{ fix x y assume A2: "x∈A" "y∈A"
have "〈x,y〉 ∈ ?r ←→ 〈f‘(x),f‘(y)〉 ∈ R"
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proof
assume "〈x,y〉 ∈ ?r" then show "〈f‘(x),f‘(y)〉 ∈ R"

using def_of_ind_relA by simp

next assume "〈f‘(x),f‘(y)〉 ∈ R"

with A1 A2 show "〈x,y〉 ∈ ?r"

using bij_is_fun def_of_ind_relB by blast

qed }
with A1 show "f ∈ ord_iso(A,InducedRelation(f,R),B,R)"

using ord_isoI by simp

qed

An order isomoprhism preserves antisymmetry.

lemma ord_iso_pres_antsym: assumes A1: "f ∈ ord_iso(A,r,B,R)" and
A2: "r ⊆ A×A" and A3: "antisym(R)"

shows "antisym(r)"

proof -

{ fix x y

assume A4: "〈x,y〉 ∈ r" "〈y,x〉 ∈ r"

from A1 have "f ∈ inj(A,B)"

using ord_iso_is_bij bij_is_inj by simp

moreover
from A1 A2 A4 have
"〈f‘(x), f‘(y)〉 ∈ R" and "〈f‘(y), f‘(x)〉 ∈ R"

using ord_iso_apply by auto

with A3 have "f‘(x) = f‘(y)" by (rule Fol1_L4)

moreover from A2 A4 have "x∈A" "y∈A" by auto

ultimately have "x=y" by (rule inj_apply_equality)

} then have "∀ x y. 〈x,y〉 ∈ r ∧ 〈y,x〉 ∈ r −→ x=y" by auto

then show "antisym(r)" using imp_conj antisym_def

by simp

qed

Order isomoprhisms preserve transitivity.

lemma ord_iso_pres_trans: assumes A1: "f ∈ ord_iso(A,r,B,R)" and
A2: "r ⊆ A×A" and A3: "trans(R)"

shows "trans(r)"

proof -

{ fix x y z

assume A4: "〈x, y〉 ∈ r" "〈y, z〉 ∈ r"

note A1

moreover
from A1 A2 A4 have
"〈f‘(x), f‘(y)〉 ∈ R ∧ 〈f‘(y), f‘(z)〉 ∈ R"

using ord_iso_apply by auto

with A3 have "〈f‘(x),f‘(z)〉 ∈ R" by (rule Fol1_L3)

moreover from A2 A4 have "x∈A" "z∈A" by auto

ultimately have "〈x, z〉 ∈ r" using ord_iso_apply_conv

by simp

} then have "∀ x y z. 〈x, y〉 ∈ r ∧ 〈y, z〉 ∈ r −→ 〈x, z〉 ∈ r"
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by blast

then show "trans(r)" by (rule Fol1_L2)

qed

Order isomorphisms preserve totality.

lemma ord_iso_pres_tot: assumes A1: "f ∈ ord_iso(A,r,B,R)" and
A2: "r ⊆ A×A" and A3: "R {is total on} B"

shows "r {is total on} A"

proof -

{ fix x y

assume "x∈A" "y∈A" "〈x,y〉 /∈ r"

with A1 have "〈f‘(x),f‘(y)〉 /∈ R" using ord_iso_apply_conv

by auto

moreover
from A1 have "f:A→B" using ord_iso_is_bij bij_is_fun

by simp

with A3 ‘x∈A‘ ‘y∈A‘ have
"〈f‘(x),f‘(y)〉 ∈ R ∨ 〈f‘(y),f‘(x)〉 ∈ R"

using apply_funtype IsTotal_def by simp

ultimately have "〈f‘(y),f‘(x)〉 ∈ R" by simp

with A1 ‘x∈A‘ ‘y∈A‘ have "〈y,x〉 ∈ r"

using ord_iso_apply_conv by simp

} then have "∀ x∈A. ∀ y∈A. 〈x,y〉 ∈ r ∨ 〈y,x〉 ∈ r"

by blast

then show "r {is total on} A" using IsTotal_def

by simp

qed

Order isomorphisms preserve linearity.

lemma ord_iso_pres_lin: assumes "f ∈ ord_iso(A,r,B,R)" and
"r ⊆ A×A" and "IsLinOrder(B,R)"

shows "IsLinOrder(A,r)"

using assms ord_iso_pres_antsym ord_iso_pres_trans ord_iso_pres_tot

IsLinOrder_def by simp

If a relation is a linear order, then the relation induced on another set by a
bijection is also a linear order.

lemma ind_rel_pres_lin:

assumes A1: "f ∈ bij(A,B)" and A2: "IsLinOrder(B,R)"

shows "IsLinOrder(A,InducedRelation(f,R))"

proof -

let ?r = "InducedRelation(f,R)"

from A1 have "f ∈ ord_iso(A,?r,B,R)" and "?r ⊆ A×A"
using bij_is_ord_iso domain_of_bij InducedRelation_def

by auto

with A2 show "IsLinOrder(A,?r)" using ord_iso_pres_lin

by simp

qed
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The image by an order isomorphism of a bounded above and nonempty set
is bounded above.

lemma ord_iso_pres_bound_above:

assumes A1: "f ∈ ord_iso(A,r,B,R)" and A2: "r ⊆ A×A" and
A3: "IsBoundedAbove(C,r)" "C6=0"

shows "IsBoundedAbove(f‘‘(C),R)" "f‘‘(C) 6= 0"

proof -

from A3 obtain u where I: "∀ x∈C. 〈x,u〉 ∈ r"

using IsBoundedAbove_def by auto

from A1 have "f:A→B" using ord_iso_is_bij bij_is_fun

by simp

from A2 A3 have "C⊆A" using Order_ZF_3_L1A by blast

from A3 obtain x where "x∈C" by auto

with A2 I have "u∈A" by auto

{ fix y assume "y ∈ f‘‘(C)"

with ‘f:A→B‘ ‘C⊆A‘ obtain x where "x∈C" and "y = f‘(x)"

using func_imagedef by auto

with A1 I ‘C⊆A‘ ‘u∈A‘ have "〈y,f‘(u)〉 ∈ R"

using ord_iso_apply by auto

} then have "∀ y ∈ f‘‘(C). 〈y,f‘(u)〉 ∈ R" by simp

then show "IsBoundedAbove(f‘‘(C),R)" by (rule Order_ZF_3_L10)

from A3 ‘f:A→B‘ ‘C⊆A‘ show "f‘‘(C) 6= 0" using func1_1_L15A

by simp

qed

Order isomorphisms preserve the property of having a minimum.

lemma ord_iso_pres_has_min:

assumes A1: "f ∈ ord_iso(A,r,B,R)" and A2: "r ⊆ A×A" and
A3: "C⊆A" and A4: "HasAminimum(R,f‘‘(C))"

shows "HasAminimum(r,C)"

proof -

from A4 obtain m where
I: "m ∈ f‘‘(C)" and II: "∀ y ∈ f‘‘(C). 〈m,y〉 ∈ R"

using HasAminimum_def by auto

let ?k = "converse(f)‘(m)"

from A1 have "f:A→B" using ord_iso_is_bij bij_is_fun

by simp

from A1 have "f ∈ inj(A,B)" using ord_iso_is_bij bij_is_inj

by simp

with A3 I have "?k ∈ C" and III: "f‘(?k) = m"

using inj_inv_back_in_set by auto

moreover
{ fix x assume A5: "x∈C"

with A3 II ‘f:A→B‘ ‘?k ∈ C‘ III have
"?k ∈ A" "x∈A" "〈f‘(?k),f‘(x)〉 ∈ R"

using func_imagedef by auto

with A1 have "〈?k,x〉 ∈ r" using ord_iso_apply_conv

by simp

} then have "∀ x∈C. 〈?k,x〉 ∈ r" by simp
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ultimately show "HasAminimum(r,C)" using HasAminimum_def by auto

qed

Order isomorhisms preserve the images of relations. In other words taking
the image of a point by a relation commutes with the function.

lemma ord_iso_pres_rel_image:

assumes A1: "f ∈ ord_iso(A,r,B,R)" and
A2: "r ⊆ A×A" "R ⊆ B×B" and
A3: "a∈A"
shows "f‘‘(r‘‘{a}) = R‘‘{f‘(a)}"

proof
from A1 have "f:A→B" using ord_iso_is_bij bij_is_fun

by simp

moreover from A2 A3 have I: "r‘‘{a} ⊆ A" by auto

ultimately have I: "f‘‘(r‘‘{a}) = {f‘(x). x ∈ r‘‘{a} }"

using func_imagedef by simp

{ fix y assume A4: "y ∈ f‘‘(r‘‘{a})"

with I obtain x where
"x ∈ r‘‘{a}" and II: "y = f‘(x)"

by auto

with A1 A2 have "〈f‘(a),f‘(x)〉 ∈ R" using ord_iso_apply

by auto

with II have "y ∈ R‘‘{f‘(a)}" by auto

} then show "f‘‘(r‘‘{a}) ⊆ R‘‘{f‘(a)}" by auto

{ fix y assume A5: "y ∈ R‘‘{f‘(a)}"

let ?x = "converse(f)‘(y)"

from A2 A5 have
"〈f‘(a),y〉 ∈ R" "f‘(a) ∈ B" and IV: "y∈B"
by auto

with A1 have III: "〈converse(f)‘(f‘(a)),?x〉 ∈ r"

using ord_iso_converse by simp

moreover from A1 A3 have "converse(f)‘(f‘(a)) = a"

using ord_iso_is_bij left_inverse_bij by blast

ultimately have "f‘(?x) ∈ {f‘(x). x ∈ r‘‘{a} }"

by auto

moreover from A1 IV have "f‘(?x) = y"

using ord_iso_is_bij right_inverse_bij by blast

moreover from A1 I have "f‘‘(r‘‘{a}) = {f‘(x). x ∈ r‘‘{a} }"

using ord_iso_is_bij bij_is_fun func_imagedef by blast

ultimately have "y ∈ f‘‘(r‘‘{a})" by simp

} then show "R‘‘{f‘(a)} ⊆ f‘‘(r‘‘{a})" by auto

qed

Order isomorphisms preserve collections of upper bounds.

lemma ord_iso_pres_up_bounds:

assumes A1: "f ∈ ord_iso(A,r,B,R)" and
A2: "r ⊆ A×A" "R ⊆ B×B" and
A3: "C⊆A"
shows "{f‘‘(r‘‘{a}). a∈C} = {R‘‘{b}. b ∈ f‘‘(C)}"
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proof
from A1 have "f:A→B"

using ord_iso_is_bij bij_is_fun by simp

{ fix Y assume "Y ∈ {f‘‘(r‘‘{a}). a∈C}"
then obtain a where "a∈C" and I: "Y = f‘‘(r‘‘{a})"

by auto

from A3 ‘a∈C‘ have "a∈A" by auto

with A1 A2 have "f‘‘(r‘‘{a}) = R‘‘{f‘(a)}"

using ord_iso_pres_rel_image by simp

moreover from A3 ‘f:A→B‘ ‘a∈C‘ have "f‘(a) ∈ f‘‘(C)"

using func_imagedef by auto

ultimately have "f‘‘(r‘‘{a}) ∈ { R‘‘{b}. b ∈ f‘‘(C) }"

by auto

with I have "Y ∈ { R‘‘{b}. b ∈ f‘‘(C) }" by simp

} then show "{f‘‘(r‘‘{a}). a∈C} ⊆ {R‘‘{b}. b ∈ f‘‘(C)}"

by blast

{ fix Y assume "Y ∈ {R‘‘{b}. b ∈ f‘‘(C)}"

then obtain b where "b ∈ f‘‘(C)" and II: "Y = R‘‘{b}"

by auto

with A3 ‘f:A→B‘ obtain a where "a∈C" and "b = f‘(a)"

using func_imagedef by auto

with A3 II have "a∈A" and "Y = R‘‘{f‘(a)}" by auto

with A1 A2 have "Y = f‘‘(r‘‘{a})"

using ord_iso_pres_rel_image by simp

with ‘a∈C‘ have "Y ∈ {f‘‘(r‘‘{a}). a∈C}" by auto

} then show "{R‘‘{b}. b ∈ f‘‘(C)} ⊆ {f‘‘(r‘‘{a}). a∈C}"
by auto

qed

The image of the set of upper bounds is the set of upper bounds of the
image.

lemma ord_iso_pres_min_up_bounds:

assumes A1: "f ∈ ord_iso(A,r,B,R)" and A2: "r ⊆ A×A" "R ⊆ B×B"
and
A3: "C⊆A" and A4: "C6=0"

shows "f‘‘(
⋂
a∈C. r‘‘{a}) = (

⋂
b∈f‘‘(C). R‘‘{b})"

proof -

from A1 have "f ∈ inj(A,B)"

using ord_iso_is_bij bij_is_inj by simp

moreover note A4

moreover from A2 A3 have "∀ a∈C. r‘‘{a} ⊆ A" by auto

ultimately have
"f‘‘(

⋂
a∈C. r‘‘{a}) = (

⋂
a∈C. f‘‘(r‘‘{a}) )"

using inj_image_of_Inter by simp

also from A1 A2 A3 have
"(
⋂
a∈C. f‘‘(r‘‘{a}) ) = (

⋂
b∈f‘‘(C). R‘‘{b} )"

using ord_iso_pres_up_bounds by simp

finally show "f‘‘(
⋂
a∈C. r‘‘{a}) = (

⋂
b∈f‘‘(C). R‘‘{b})"

by simp
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qed

Order isomorphisms preserve completeness.

lemma ord_iso_pres_compl:

assumes A1: "f ∈ ord_iso(A,r,B,R)" and
A2: "r ⊆ A×A" "R ⊆ B×B" and A3: "R {is complete}"

shows "r {is complete}"

proof -

{ fix C

assume A4: "IsBoundedAbove(C,r)" "C6=0"

with A1 A2 A3 have
"HasAminimum(R,

⋂
b ∈ f‘‘(C). R‘‘{b})"

using ord_iso_pres_bound_above IsComplete_def

by simp

moreover
from A2 ‘IsBoundedAbove(C,r)‘ have I: "C ⊆ A" using Order_ZF_3_L1A

by blast

with A1 A2 ‘C 6=0‘ have "f‘‘(
⋂
a∈C. r‘‘{a}) = (

⋂
b∈f‘‘(C). R‘‘{b})"

using ord_iso_pres_min_up_bounds by simp

ultimately have "HasAminimum(R,f‘‘(
⋂
a∈C. r‘‘{a}))"

by simp

moreover
from A2 have "∀ a∈C. r‘‘{a} ⊆ A"

by auto

with ‘C 6=0‘ have "(
⋂
a∈C. r‘‘{a} ) ⊆ A" using ZF1_1_L7

by simp

moreover note A1 A2

ultimately have "HasAminimum(r,
⋂
a∈C. r‘‘{a} )"

using ord_iso_pres_has_min by simp

} then show "r {is complete}" using IsComplete_def

by simp

qed

If the original relation is complete, then the induced one is complete.

lemma ind_rel_pres_compl: assumes A1: "f ∈ bij(A,B)"

and A2: "R ⊆ B×B" and A3: "R {is complete}"

shows "InducedRelation(f,R) {is complete}"

proof -

let ?r = "InducedRelation(f,R)"

from A1 have "f ∈ ord_iso(A,?r,B,R)"

using bij_is_ord_iso by simp

moreover from A1 A2 have "?r ⊆ A×A"
using bij_is_fun ind_rel_domain by simp

moreover note A2 A3

ultimately show "?r {is complete}"

using ord_iso_pres_compl by simp

qed
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end

12 Finite sets - introduction

theory Finite_ZF imports ZF1 Nat_ZF_IML Cardinal

begin

Standard Isabelle Finite.thy contains a very useful notion of finite powerset:
the set of finite subsets of a given set. The definition, however, is specific
to Isabelle and based on the notion of ”datatype”, obviously not something
that belongs to ZF set theory. This theory file devolopes the notion of
finite powerset similarly as in Finite.thy, but based on standard library’s
Cardinal.thy. This theory file is intended to replace IsarMathLib’s Finite1

and Finite_ZF_1 theories that are currently derived from the ”datatype”
approach.

12.1 Definition and basic properties of finite powerset

The goal of this section is to prove an induction theorem about finite pow-
ersets: if the empty set has some property and this property is preserved
by adding a single element of a set, then this property is true for all finite
subsets of this set.

We defined the finite powerset FinPow(X) as those elements of the powerset
that are finite.

definition
"FinPow(X) ≡ {A ∈ Pow(X). Finite(A)}"

The cardinality of an element of finite powerset is a natural number.

lemma card_fin_is_nat: assumes "A ∈ FinPow(X)"

shows "|A| ∈ nat" and "A ≈ |A|"

using assms FinPow_def Finite_def cardinal_cong nat_into_Card

Card_cardinal_eq by auto

A reformulation of card_fin_is_nat: for a finit set A there is a bijection
between |A| and A.

lemma fin_bij_card: assumes A1: "A ∈ FinPow(X)"

shows "∃ b. b ∈ bij(|A|, A)"

proof -

from A1 have "|A| ≈ A" using card_fin_is_nat eqpoll_sym

by blast

then show ?thesis using eqpoll_def by auto

qed

If a set has the same number of elements as n ∈ N, then its cardinality is n.
Recall that in set theory a natural number n is a set that has n elements.
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lemma card_card: assumes "A ≈ n" and "n ∈ nat"

shows "|A| = n"

using assms cardinal_cong nat_into_Card Card_cardinal_eq

by auto

If we add a point to a finite set, the cardinality increases by one. To under-
stand the second assertion |A∪{a}| = |A| ∪ {|A|} recall that the cardinality
|A| of A is a natural number and for natural numbers we have n+1 = n∪{n}.
lemma card_fin_add_one: assumes A1: "A ∈ FinPow(X)" and A2: "a ∈ X-A"

shows
"|A ∪ {a}| = succ( |A| )"

"|A ∪ {a}| = |A| ∪ {|A|}"

proof -

from A1 A2 have "cons(a,A) ≈ cons( |A|, |A| )"

using card_fin_is_nat mem_not_refl cons_eqpoll_cong

by auto

moreover have "cons(a,A) = A ∪ {a}" by (rule consdef)

moreover have "cons( |A|, |A| ) = |A| ∪ {|A|}"

by (rule consdef)

ultimately have "A∪{a} ≈ succ( |A| )" using succ_explained

by simp

with A1 show
"|A ∪ {a}| = succ( |A| )" and "|A ∪ {a}| = |A| ∪ {|A|}"

using card_fin_is_nat card_card by auto

qed

We can decompose the finite powerset into collection of sets of the same
natural cardinalities.

lemma finpow_decomp:

shows "FinPow(X) = (
⋃
n ∈ nat. {A ∈ Pow(X). A ≈ n})"

using Finite_def FinPow_def by auto

Finite powerset is the union of sets of cardinality bounded by natural num-
bers.

lemma finpow_union_card_nat:

shows "FinPow(X) = (
⋃
n ∈ nat. {A ∈ Pow(X). A . n})"

proof -

have "FinPow(X) ⊆ (
⋃
n ∈ nat. {A ∈ Pow(X). A . n})"

using finpow_decomp FinPow_def eqpoll_imp_lepoll

by auto

moreover have
"(
⋃
n ∈ nat. {A ∈ Pow(X). A . n}) ⊆ FinPow(X)"

using lepoll_nat_imp_Finite FinPow_def by auto

ultimately show ?thesis by auto

qed

A different form of finpow_union_card_nat (see above) - a subset that has
not more elements than a given natural number is in the finite powerset.
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lemma lepoll_nat_in_finpow:

assumes "n ∈ nat" "A ⊆ X" "A . n"

shows "A ∈ FinPow(X)"

using assms finpow_union_card_nat by auto

Natural numbers are finite subsets of the set of natural numbers.

lemma nat_finpow_nat: assumes "n ∈ nat" shows "n ∈ FinPow(nat)"

using assms nat_into_Finite nat_subset_nat FinPow_def

by simp

A finite subset is a finite subset of itself.

lemma fin_finpow_self: assumes "A ∈ FinPow(X)" shows "A ∈ FinPow(A)"

using assms FinPow_def by auto

If we remove an element and put it back we get the set back.

lemma rem_add_eq: assumes "a∈A" shows "(A-{a}) ∪ {a} = A"

using assms by auto

Induction for finite powerset. This is smilar to the standard Isabelle’s
Fin_induct.

theorem FinPow_induct: assumes A1: "P(0)" and
A2: "∀ A ∈ FinPow(X). P(A) −→ (∀ a∈X. P(A ∪ {a}))" and
A3: "B ∈ FinPow(X)"

shows "P(B)"

proof -

{ fix n assume "n ∈ nat"

moreover from A1 have I: "∀ B∈Pow(X). B . 0 −→ P(B)"

using lepoll_0_is_0 by auto

moreover have "∀ k ∈ nat.

(∀ B ∈ Pow(X). (B . k −→ P(B))) −→
(∀ B ∈ Pow(X). (B . succ(k) −→ P(B)))"

proof -

{ fix k assume A4: "k ∈ nat"

assume A5: "∀ B ∈ Pow(X). (B . k −→ P(B))"

fix B assume A6: "B ∈ Pow(X)" "B . succ(k)"

have "P(B)"

proof -

have "B = 0 −→ P(B)"

proof -

{ assume "B = 0"

then have "B . 0" using lepoll_0_iff

by simp

with I A6 have "P(B)" by simp

} thus "B = 0 −→ P(B)" by simp

qed
moreover have "B 6=0 −→ P(B)"

proof -

{ assume "B 6= 0"
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then obtain a where II: "a∈B" by auto

let ?A = "B - {a}"

from A6 II have "?A ⊆ X" and "?A . k"

using Diff_sing_lepoll by auto

with A4 A5 have "?A ∈ FinPow(X)" and "P(?A)"

using lepoll_nat_in_finpow finpow_decomp

by auto

with A2 A6 II have " P(?A ∪ {a})"

by auto

moreover from II have "?A ∪ {a} = B"

by auto

ultimately have "P(B)" by simp

} thus "B 6=0 −→ P(B)" by simp

qed
ultimately show "P(B)" by auto

qed
} thus ?thesis by blast

qed
ultimately have "∀ B ∈ Pow(X). (B . n −→ P(B))"

by (rule ind_on_nat)

} then have "∀ n ∈ nat. ∀ B ∈ Pow(X). (B . n −→ P(B))"

by auto

with A3 show "P(B)" using finpow_union_card_nat

by auto

qed

A subset of a finites subset is a finite subset.

lemma subset_finpow: assumes "A ∈ FinPow(X)" and "B ⊆ A"

shows "B ∈ FinPow(X)"

using assms FinPow_def subset_Finite by auto

If we subtract anything from a finite set, the resulting set is finite.

lemma diff_finpow:

assumes "A ∈ FinPow(X)" shows "A-B ∈ FinPow(X)"

using assms subset_finpow by blast

If we remove a point from a finites subset, we get a finite subset.

corollary fin_rem_point_fin: assumes "A ∈ FinPow(X)"

shows "A - {a} ∈ FinPow(X)"

using assms diff_finpow by simp

Cardinality of a nonempty finite set is a successsor of some natural number.

lemma card_non_empty_succ:

assumes A1: "A ∈ FinPow(X)" and A2: "A 6= 0"

shows "∃ n ∈ nat. |A| = succ(n)"

proof -

from A2 obtain a where "a ∈ A" by auto

let ?B = "A - {a}"
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from A1 ‘a ∈ A‘ have
"?B ∈ FinPow(X)" and "a ∈ X - ?B"

using FinPow_def fin_rem_point_fin by auto

then have "|?B ∪ {a}| = succ( |?B| )"

using card_fin_add_one by auto

moreover from ‘a ∈ A‘ ‘?B ∈ FinPow(X)‘ have
"A = ?B ∪ {a}" and "|?B| ∈ nat"

using card_fin_is_nat by auto

ultimately show "∃ n ∈ nat. |A| = succ(n)" by auto

qed

Nonempty set has non-zero cardinality. This is probably true without the
assumption that the set is finite, but I couldn’t derive it from standard
Isabelle theorems.

lemma card_non_empty_non_zero:

assumes "A ∈ FinPow(X)" and "A 6= 0"

shows "|A| 6= 0"

proof -

from assms obtain n where "|A| = succ(n)"

using card_non_empty_succ by auto

then show "|A| 6= 0" using succ_not_0

by simp

qed

Another variation on the induction theme: If we can show something holds
for the empty set and if it holds for all finite sets with at most k elements
then it holds for all finite sets with at most k + 1 elements, the it holds for
all finite sets.

theorem FinPow_card_ind: assumes A1: "P(0)" and
A2: "∀ k∈nat.
(∀ A ∈ FinPow(X). A . k −→ P(A)) −→
(∀ A ∈ FinPow(X). A . succ(k) −→ P(A))"

and A3: "A ∈ FinPow(X)" shows "P(A)"

proof -

from A3 have "|A| ∈ nat" and "A ∈ FinPow(X)" and "A . |A|"

using card_fin_is_nat eqpoll_imp_lepoll by auto

moreover have "∀ n ∈ nat. (∀ A ∈ FinPow(X).

A . n −→ P(A))"

proof
fix n assume "n ∈ nat"

moreover from A1 have "∀ A ∈ FinPow(X). A . 0 −→ P(A)"

using lepoll_0_is_0 by auto

moreover note A2

ultimately show
"∀ A ∈ FinPow(X). A . n −→ P(A)"

by (rule ind_on_nat)

qed
ultimately show "P(A)" by simp
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qed

Another type of induction (or, maybe recursion). The induction step we try
to find a point in the set that if we remove it, the fact that the property
holds for the smaller set implies that the property holds for the whole set.

lemma FinPow_ind_rem_one: assumes A1: "P(0)" and
A2: "∀ A ∈ FinPow(X). A 6= 0 −→ (∃ a∈A. P(A-{a}) −→ P(A))"

and A3: "B ∈ FinPow(X)"

shows "P(B)"

proof -

note A1

moreover have "∀ k∈nat.
(∀ B ∈ FinPow(X). B . k −→ P(B)) −→
(∀ C ∈ FinPow(X). C . succ(k) −→ P(C))"

proof -

{ fix k assume "k ∈ nat"

assume A4: "∀ B ∈ FinPow(X). B . k −→ P(B)"

have "∀ C ∈ FinPow(X). C . succ(k) −→ P(C)"

proof -

{ fix C assume "C ∈ FinPow(X)"

assume "C . succ(k)"

note A1

moreover
{ assume "C 6= 0"

with A2 ‘C ∈ FinPow(X)‘ obtain a where
"a∈C" and "P(C-{a}) −→ P(C)"

by auto

with A4 ‘C ∈ FinPow(X)‘ ‘C . succ(k)‘

have "P(C)" using Diff_sing_lepoll fin_rem_point_fin

by simp }
ultimately have "P(C)" by auto

} thus ?thesis by simp

qed
} thus ?thesis by blast

qed
moreover note A3

ultimately show "P(B)" by (rule FinPow_card_ind)

qed

Yet another induction theorem. This is similar, but slightly more compli-
cated than FinPow_ind_rem_one. The difference is in the treatment of the
empty set to allow to show properties that are not true for empty set.

lemma FinPow_rem_ind: assumes A1: "∀ A ∈ FinPow(X).

A = 0 ∨ (∃ a∈A. A = {a} ∨ P(A-{a}) −→ P(A))"

and A2: "A ∈ FinPow(X)" and A3: "A6=0"

shows "P(A)"

proof -

have "0 = 0 ∨ P(0)" by simp

moreover have
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"∀ k∈nat.
(∀ B ∈ FinPow(X). B . k −→ (B=0 ∨ P(B))) −→
(∀ A ∈ FinPow(X). A . succ(k) −→ (A=0 ∨ P(A)))"

proof -

{ fix k assume "k ∈ nat"

assume A4: "∀ B ∈ FinPow(X). B . k −→ (B=0 ∨ P(B))"

have "∀ A ∈ FinPow(X). A . succ(k) −→ (A=0 ∨ P(A))"

proof -

{ fix A assume "A ∈ FinPow(X)"

assume "A . succ(k)" "A6=0"

from A1 ‘A ∈ FinPow(X)‘ ‘A6=0‘ obtain a

where "a∈A" and "A = {a} ∨ P(A-{a}) −→ P(A)"

by auto

let ?B = "A-{a}"

from A4 ‘A ∈ FinPow(X)‘ ‘A . succ(k)‘ ‘a∈A‘
have "?B = 0 ∨ P(?B)"

using Diff_sing_lepoll fin_rem_point_fin

by simp

with ‘a∈A‘ ‘A = {a} ∨ P(A-{a}) −→ P(A)‘

have "P(A)" by auto

} thus ?thesis by auto

qed
} thus ?thesis by blast

qed
moreover note A2

ultimately have "A=0 ∨ P(A)" by (rule FinPow_card_ind)

with A3 show "P(A)" by simp

qed

If a family of sets is closed with respect to taking intersections of two sets
then it is closed with respect to taking intersections of any nonempty finite
collection.

lemma inter_two_inter_fin:

assumes A1: "∀ V∈T. ∀ W∈T. V ∩ W ∈ T" and
A2: "N 6= 0" and A3: "N ∈ FinPow(T)"

shows "(
⋂
N ∈ T)"

proof -

have "0 = 0 ∨ (
⋂
0 ∈ T)" by simp

moreover have "∀ M ∈ FinPow(T). (M = 0 ∨
⋂
M ∈ T) −→

(∀ W ∈ T. M∪{W} = 0 ∨
⋂
(M ∪ {W}) ∈ T)"

proof -

{ fix M assume "M ∈ FinPow(T)"

assume A4: "M = 0 ∨
⋂
M ∈ T"

{ assume "M = 0"

hence "∀ W ∈ T. M∪{W} = 0 ∨
⋂
(M ∪ {W}) ∈ T"

by auto }
moreover
{ assume "M 6= 0"

with A4 have "
⋂
M ∈ T" by simp

126



{ fix W assume "W ∈ T"

from ‘M 6= 0‘ have "
⋂
(M ∪ {W}) = (

⋂
M) ∩ W"

by auto

with A1 ‘
⋂
M ∈ T‘ ‘W ∈ T‘ have "

⋂
(M ∪ {W}) ∈ T"

by simp

} hence "∀ W ∈ T. M∪{W} = 0 ∨
⋂
(M ∪ {W}) ∈ T"

by simp }
ultimately have "∀ W ∈ T. M∪{W} = 0 ∨

⋂
(M ∪ {W}) ∈ T"

by blast

} thus ?thesis by simp

qed
moreover note ‘N ∈ FinPow(T)‘

ultimately have "N = 0 ∨ (
⋂
N ∈ T)"

by (rule FinPow_induct)

with A2 show "(
⋂
N ∈ T)" by simp

qed

If a family of sets contains the empty set and is closed with respect to taking
unions of two sets then it is closed with respect to taking unions of any finite
collection.

lemma union_two_union_fin:

assumes A1: "0 ∈ C" and A2: "∀ A∈C. ∀ B∈C. A∪B ∈ C" and
A3: "N ∈ FinPow(C)"

shows "
⋃
N ∈ C"

proof -

from ‘0 ∈ C‘ have "
⋃
0 ∈ C" by simp

moreover have "∀ M ∈ FinPow(C).
⋃
M ∈ C −→ (∀ A∈C.

⋃
(M ∪ {A}) ∈ C)"

proof -

{ fix M assume "M ∈ FinPow(C)"

assume "
⋃
M ∈ C"

fix A assume "A∈C"
have "

⋃
(M ∪ {A}) = (

⋃
M) ∪ A" by auto

with A2 ‘
⋃
M ∈ C‘ ‘A∈C‘ have "

⋃
(M ∪ {A}) ∈ C"

by simp

} thus ?thesis by simp

qed
moreover note ‘N ∈ FinPow(C)‘

ultimately show "
⋃
N ∈ C" by (rule FinPow_induct)

qed

Empty set is in finite power set.

lemma empty_in_finpow: shows "0 ∈ FinPow(X)"

using FinPow_def by simp

Singleton is in the finite powerset.

lemma singleton_in_finpow: assumes "x ∈ X"

shows "{x} ∈ FinPow(X)" using assms FinPow_def by simp

Union of two finite subsets is a finite subset.
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lemma union_finpow: assumes "A ∈ FinPow(X)" and "B ∈ FinPow(X)"

shows "A ∪ B ∈ FinPow(X)"

using assms FinPow_def by auto

Union of finite number of finite sets is finite.

lemma fin_union_finpow: assumes "M ∈ FinPow(FinPow(X))"

shows "
⋃
M ∈ FinPow(X)"

using assms empty_in_finpow union_finpow union_two_union_fin

by simp

If a set is finite after removing one element, then it is finite.

lemma rem_point_fin_fin:

assumes A1: "x ∈ X" and A2: "A - {x} ∈ FinPow(X)"

shows "A ∈ FinPow(X)"

proof -

from assms have "(A - {x}) ∪ {x} ∈ FinPow(X)"

using singleton_in_finpow union_finpow by simp

moreover have "A ⊆ (A - {x}) ∪ {x}" by auto

ultimately show "A ∈ FinPow(X)"

using FinPow_def subset_Finite by auto

qed

An image of a finite set is finite.

lemma fin_image_fin: assumes "∀ V∈B. K(V)∈C" and "N ∈ FinPow(B)"

shows "{K(V). V∈N} ∈ FinPow(C)"

proof -

have "{K(V). V∈0} ∈ FinPow(C)" using FinPow_def

by auto

moreover have "∀ A ∈ FinPow(B).

{K(V). V∈A} ∈ FinPow(C) −→ (∀ a∈B. {K(V). V ∈ (A ∪ {a})} ∈ FinPow(C))"

proof -

{ fix A assume "A ∈ FinPow(B)"

assume "{K(V). V∈A} ∈ FinPow(C)"

fix a assume "a∈B"
have "{K(V). V ∈ (A ∪ {a})} ∈ FinPow(C)"

proof -

have "{K(V). V ∈ (A ∪ {a})} = {K(V). V∈A} ∪ {K(a)}"

by auto

moreover note ‘{K(V). V∈A} ∈ FinPow(C)‘

moreover from ‘∀ V∈B. K(V) ∈ C‘ ‘a∈B‘ have "{K(a)} ∈ FinPow(C)"

using singleton_in_finpow by simp

ultimately show ?thesis using union_finpow by simp

qed
} thus ?thesis by simp

qed
moreover note ‘N ∈ FinPow(B)‘

ultimately show "{K(V). V∈N} ∈ FinPow(C)"

by (rule FinPow_induct)

qed
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Union of a finite indexed family of finite sets is finite.

lemma union_fin_list_fin:

assumes A1: "n ∈ nat" and A2: "∀ k ∈ n. N(k) ∈ FinPow(X)"

shows
"{N(k). k ∈ n} ∈ FinPow(FinPow(X))" and "(

⋃
k ∈ n. N(k)) ∈ FinPow(X)"

proof -

from A1 have "n ∈ FinPow(n)"

using nat_finpow_nat fin_finpow_self by auto

with A2 show "{N(k). k ∈ n} ∈ FinPow(FinPow(X))"

by (rule fin_image_fin)

then show "(
⋃
k ∈ n. N(k)) ∈ FinPow(X)"

using fin_union_finpow by simp

qed

end

13 Finite sets

theory Finite1 imports Finite func1 ZF1

begin

This theory extends Isabelle standard Finite theory. It is obsolete and
should not be used for new development. Use the Finite_ZF instead.

13.1 Finite powerset

In this section we consider various properties of Fin datatype (even though
there are no datatypes in ZF set theory).

In Topology_ZF theory we consider induced topology that is obtained by
taking a subset of a topological space. To show that a topology restricted
to a subset is also a topology on that subset we may need a fact that if T is
a collection of sets and A is a set then every finite collection {Vi} is of the
form Vi = Ui ∩ A, where {Ui} is a finite subcollection of T . This is one of
those trivial facts that require suprisingly long formal proof. Actually, the
need for this fact is avoided by requiring intersection two open sets to be
open (rather than intersection of a finite number of open sets). Still, the fact
is left here as an example of a proof by induction. We will use Fin_induct

lemma from Finite.thy. First we define a property of finite sets that we want
to show.

definition
"Prfin(T,A,M) ≡ ( (M = 0) | (∃ N∈ Fin(T). ∀ V∈ M. ∃ U∈ N. (V = U∩A)))"

Now we show the main induction step in a separate lemma. This will make
the proof of the theorem FinRestr below look short and nice. The premises
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of the ind_step lemma are those needed by the main induction step in lemma
Fin_induct (see standard Isabelle’s Finite.thy).

lemma ind_step: assumes A: "∀ V∈ TA. ∃ U∈T. V=U∩A"
and A1: "W∈TA" and A2: "M∈ Fin(TA)"

and A3: "W/∈M" and A4: "Prfin(T,A,M)"

shows "Prfin(T,A,cons(W,M))"

proof -

{ assume A7: "M=0" have "Prfin(T, A, cons(W, M))"

proof-
from A1 A obtain U where A5: "U∈T" and A6: "W=U∩A" by fast

let ?N = "{U}"

from A5 have T1: "?N ∈ Fin(T)" by simp

from A7 A6 have T2: "∀ V∈ cons(W,M). ∃ U∈?N. V=U∩A" by simp

from A7 T1 T2 show "Prfin(T, A, cons(W, M))"

using Prfin_def by auto

qed }
moreover
{ assume A8:"M6=0" have "Prfin(T, A, cons(W, M))"

proof-
from A1 A obtain U where A5: "U∈T" and A6:"W=U∩A" by fast

from A8 A4 obtain N0

where A9: "N0∈ Fin(T)" and A10: "∀ V∈ M. ∃ U0∈ N0. (V = U0∩A)"
using Prfin_def by auto

let ?N = "cons(U,N0)"

from A5 A9 have "?N ∈ Fin(T)" by simp

moreover from A10 A6 have "∀ V∈ cons(W,M). ∃ U∈?N. V=U∩A" by simp

ultimately have "∃ N∈ Fin(T).∀ V∈ cons(W,M). ∃ U∈N. V=U∩A" by
auto

with A8 show "Prfin(T, A, cons(W, M))"

using Prfin_def by simp

qed }
ultimately show ?thesis by auto

qed

Now we are ready to prove the statement we need.

theorem FinRestr0: assumes A: "∀ V ∈ TA. ∃ U∈ T. V=U∩A"
shows "∀ M∈ Fin(TA). Prfin(T,A,M)"

proof -

{ fix M

assume "M ∈ Fin(TA)"

moreover have "Prfin(T,A,0)" using Prfin_def by simp

moreover
{ fix W M assume "W∈TA" "M∈ Fin(TA)" "W/∈M" "Prfin(T,A,M)"

with A have "Prfin(T,A,cons(W,M))" by (rule ind_step) }
ultimately have "Prfin(T,A,M)" by (rule Fin_induct)

} thus ?thesis by simp

qed

This is a different form of the above theorem:
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theorem ZF1FinRestr:

assumes A1:"M∈ Fin(TA)" and A2: "M6=0"

and A3: "∀ V∈ TA. ∃ U∈ T. V=U∩A"
shows "∃ N∈ Fin(T). (∀ V∈ M. ∃ U∈ N. (V = U∩A)) ∧ N 6=0"

proof -

from A3 A1 have "Prfin(T,A,M)" using FinRestr0 by blast

then have "∃ N∈ Fin(T). ∀ V∈ M. ∃ U∈ N. (V = U∩A)"
using A2 Prfin_def by simp

then obtain N where
D1:"N∈ Fin(T) ∧ (∀ V∈ M. ∃ U∈ N. (V = U∩A))" by auto

with A2 have "N6=0" by auto

with D1 show ?thesis by auto

qed

Purely technical lemma used in Topology_ZF_1 to show that if a topology is
T2, then it is T1.

lemma Finite1_L2:

assumes A:"∃ U V. (U∈T ∧ V∈T ∧ x∈U ∧ y∈V ∧ U∩V=0)"
shows "∃ U∈T. (x∈U ∧ y/∈U)"

proof -

from A obtain U V where D1:"U∈T ∧ V∈T ∧ x∈U ∧ y∈V ∧ U∩V=0" by auto

with D1 show ?thesis by auto

qed

A collection closed with respect to taking a union of two sets is closed under
taking finite unions. Proof by induction with the induction step formulated
in a separate lemma.

lemma Finite1_L3_IndStep:

assumes A1:"∀ A B. ((A∈C ∧ B∈C) −→ A∪B∈C)"
and A2: "A∈C" and A3: "N∈Fin(C)" and A4:"A/∈N" and A5:"

⋃
N ∈ C"

shows "
⋃
cons(A,N) ∈ C"

proof -

have "
⋃

cons(A,N) = A∪
⋃
N" by blast

with A1 A2 A5 show ?thesis by simp

qed

The lemma: a collection closed with respect to taking a union of two sets is
closed under taking finite unions.

lemma Finite1_L3:

assumes A1: "0 ∈ C" and A2: "∀ A B. ((A∈C ∧ B∈C) −→ A∪B∈C)" and

A3: "N∈ Fin(C)"

shows "
⋃
N∈C"

proof -

note A3

moreover from A1 have "
⋃
0 ∈ C" by simp

moreover
{ fix A N
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assume "A∈C" "N∈Fin(C)" "A/∈N" "
⋃
N ∈ C"

with A2 have "
⋃
cons(A,N) ∈ C" by (rule Finite1_L3_IndStep) }

ultimately show "
⋃
N∈ C" by (rule Fin_induct)

qed

A collection closed with respect to taking a intersection of two sets is closed
under taking finite intersections. Proof by induction with the induction
step formulated in a separate lemma. This is sligltly more involved than
the union case in Finite1_L3, because the intersection of empty collection
is undefined (or should be treated as such). To simplify notation we define
the property to be proven for finite sets as a separate notion.

definition
"IntPr(T,N) ≡ (N = 0 |

⋂
N ∈ T)"

The induction step.

lemma Finite1_L4_IndStep:

assumes A1: "∀ A B. ((A∈T ∧ B∈T) −→ A∩B∈T)"
and A2: "A∈T" and A3:"N∈Fin(T)" and A4:"A/∈N" and A5:"IntPr(T,N)"

shows "IntPr(T,cons(A,N))"

proof -

{ assume A6: "N=0"

with A2 have "IntPr(T,cons(A,N))"

using IntPr_def by simp }
moreover
{ assume A7: "N6=0" have "IntPr(T, cons(A, N))"

proof -

from A7 A5 A2 A1 have "
⋂
N ∩ A ∈ T" using IntPr_def by simp

moreover from A7 have "
⋂
cons(A, N) =

⋂
N ∩ A" by auto

ultimately show "IntPr(T, cons(A, N))" using IntPr_def by simp

qed }
ultimately show ?thesis by auto

qed

The lemma.

lemma Finite1_L4:

assumes A1: "∀ A B. A∈T ∧ B∈T −→ A∩B ∈ T"

and A2: "N∈Fin(T)"
shows "IntPr(T,N)"

proof -

note A2

moreover have "IntPr(T,0)" using IntPr_def by simp

moreover
{ fix A N

assume "A∈T" "N∈Fin(T)" "A/∈N" "IntPr(T,N)"

with A1 have "IntPr(T,cons(A,N))" by (rule Finite1_L4_IndStep) }
ultimately show "IntPr(T,N)" by (rule Fin_induct)

qed
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Next is a restatement of the above lemma that does not depend on the IntPr
meta-function.

lemma Finite1_L5:

assumes A1: "∀ A B. ((A∈T ∧ B∈T) −→ A∩B∈T)"
and A2: "N6=0" and A3: "N∈Fin(T)"
shows "

⋂
N ∈ T"

proof -

from A1 A3 have "IntPr(T,N)" using Finite1_L4 by simp

with A2 show ?thesis using IntPr_def by simp

qed

The images of finite subsets by a meta-function are finite. For example in
topology if we have a finite collection of sets, then closing each of them
results in a finite collection of closed sets. This is a very useful lemma with
many unexpected applications. The proof is by induction. The next lemma
is the induction step.

lemma fin_image_fin_IndStep:

assumes "∀ V∈B. K(V)∈C"
and "U∈B" and "N∈Fin(B)" and "U/∈N" and "{K(V). V∈N}∈Fin(C)"
shows "{K(V). V∈cons(U,N)} ∈ Fin(C)"

using assms by simp

The lemma:

lemma fin_image_fin:

assumes A1: "∀ V∈B. K(V)∈C" and A2: "N∈Fin(B)"
shows "{K(V). V∈N} ∈ Fin(C)"

proof -

note A2

moreover have "{K(V). V∈0} ∈ Fin(C)" by simp

moreover
{ fix U N

assume "U∈B" "N∈Fin(B)" "U/∈N" "{K(V). V∈N}∈Fin(C)"
with A1 have "{K(V). V∈cons(U,N)} ∈ Fin(C)"

by (rule fin_image_fin_IndStep) }
ultimately show ?thesis by (rule Fin_induct)

qed

The image of a finite set is finite.

lemma Finite1_L6A: assumes A1: "f:X→Y" and A2: "N ∈ Fin(X)"

shows "f‘‘(N) ∈ Fin(Y)"

proof -

from A1 have "∀ x∈X. f‘(x) ∈ Y"

using apply_type by simp

moreover note A2

ultimately have "{f‘(x). x∈N} ∈ Fin(Y)"

by (rule fin_image_fin)

with A1 A2 show ?thesis

using FinD func_imagedef by simp
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qed

If the set defined by a meta-function is finite, then every set defined by a
composition of this meta function with another one is finite.

lemma Finite1_L6B:

assumes A1: "∀ x∈X. a(x) ∈ Y" and A2: "{b(y).y∈Y} ∈ Fin(Z)"

shows "{b(a(x)).x∈X} ∈ Fin(Z)"

proof -

from A1 have "{b(a(x)).x∈X} ⊆ {b(y).y∈Y}" by auto

with A2 show ?thesis using Fin_subset_lemma by blast

qed

If the set defined by a meta-function is finite, then every set defined by a
composition of this meta function with another one is finite.

lemma Finite1_L6C:

assumes A1: "∀ y∈Y. b(y) ∈ Z" and A2: "{a(x). x∈X} ∈ Fin(Y)"

shows "{b(a(x)).x∈X} ∈ Fin(Z)"

proof -

let ?N = "{a(x). x∈X}"
from A1 A2 have "{b(y). y ∈ ?N} ∈ Fin(Z)"

by (rule fin_image_fin)

moreover have "{b(a(x)). x∈X} = {b(y). y∈ ?N}"

by auto

ultimately show ?thesis by simp

qed

If an intersection of a collection is not empty, then the collection is not
empty. We are (ab)using the fact the the intesection of empty collection is
defined to be empty and prove by contradiction. Should be in ZF1.thy

lemma Finite1_L9: assumes A1:"
⋂
A 6= 0" shows "A 6=0"

proof -

{ assume A2: "¬ A 6= 0"

with A1 have False by simp

} thus ?thesis by auto

qed

Cartesian product of finite sets is finite.

lemma Finite1_L12: assumes A1: "A ∈ Fin(A)" and A2: "B ∈ Fin(B)"

shows "A×B ∈ Fin(A×B)"
proof -

have T1:"∀ a∈A. ∀ b∈B. {〈 a,b〉} ∈ Fin(A×B)" by simp

have "∀ a∈A. {{〈 a,b〉}. b ∈ B} ∈ Fin(Fin(A×B))"
proof

fix a assume A3: "a ∈ A"

with T1 have "∀ b∈B. {〈 a,b〉} ∈ Fin(A×B)"
by simp

moreover note A2

ultimately show "{{〈 a,b〉}. b ∈ B} ∈ Fin(Fin(A×B))"
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by (rule fin_image_fin)

qed
then have "∀ a∈A.

⋃
{{〈 a,b〉}. b ∈ B} ∈ Fin(A×B)"

using Fin_UnionI by simp

moreover have
"∀ a∈A.

⋃
{{〈 a,b〉}. b ∈ B} = {a}× B" by blast

ultimately have "∀ a∈A. {a}× B ∈ Fin(A×B)" by simp

moreover note A1

ultimately have "{{a}× B. a∈A} ∈ Fin(Fin(A×B))"
by (rule fin_image_fin)

then have "
⋃
{{a}× B. a∈A} ∈ Fin(A×B)"

using Fin_UnionI by simp

moreover have "
⋃
{{a}× B. a∈A} = A×B" by blast

ultimately show ?thesis by simp

qed

We define the characterisic meta-function that is the identity on a set and
assigns a default value everywhere else.

definition
"Characteristic(A,default,x) ≡ (if x∈A then x else default)"

A finite subset is a finite subset of itself.

lemma Finite1_L13:

assumes A1:"A ∈ Fin(X)" shows "A ∈ Fin(A)"

proof -

{ assume "A=0" hence "A ∈ Fin(A)" by simp }
moreover
{ assume A2: "A6=0" then obtain c where D1:"c∈A"

by auto

then have "∀ x∈X. Characteristic(A,c,x) ∈ A"

using Characteristic_def by simp

moreover note A1

ultimately have
"{Characteristic(A,c,x). x∈A} ∈ Fin(A)"

by (rule fin_image_fin)

moreover from D1 have
"{Characteristic(A,c,x). x∈A} = A"

using Characteristic_def by simp

ultimately have "A ∈ Fin(A)" by simp }
ultimately show ?thesis by blast

qed

Cartesian product of finite subsets is a finite subset of cartesian product.

lemma Finite1_L14: assumes A1: "A ∈ Fin(X)" "B ∈ Fin(Y)"

shows "A×B ∈ Fin(X×Y)"
proof -

from A1 have "A×B ⊆ X×Y" using FinD by auto

then have "Fin(A×B) ⊆ Fin(X×Y)" using Fin_mono by simp

moreover from A1 have "A×B ∈ Fin(A×B)"
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using Finite1_L13 Finite1_L12 by simp

ultimately show ?thesis by auto

qed

The next lemma is needed in the Group_ZF_3 theory in a couple of places.

lemma Finite1_L15:

assumes A1: "{b(x). x∈A} ∈ Fin(B)" "{c(x). x∈A} ∈ Fin(C)"

and A2: "f : B×C→E"

shows "{f‘〈 b(x),c(x)〉. x∈A} ∈ Fin(E)"

proof -

from A1 have "{b(x). x∈A}×{c(x). x∈A} ∈ Fin(B×C)"
using Finite1_L14 by simp

moreover have
"{〈 b(x),c(x)〉. x∈A} ⊆ {b(x). x∈A}×{c(x). x∈A}"
by blast

ultimately have T0: "{〈 b(x),c(x)〉. x∈A} ∈ Fin(B×C)"
by (rule Fin_subset_lemma)

with A2 have T1: "f‘‘{〈 b(x),c(x)〉. x∈A} ∈ Fin(E)"

using Finite1_L6A by auto

from T0 have "∀ x∈A. 〈 b(x),c(x)〉 ∈ B×C"
using FinD by auto

with A2 have
"f‘‘{〈 b(x),c(x)〉. x∈A} = {f‘〈 b(x),c(x)〉. x∈A}"
using func1_1_L17 by simp

with T1 show ?thesis by simp

qed

Singletons are in the finite powerset.

lemma Finite1_L16: assumes "x∈X" shows "{x} ∈ Fin(X)"

using assms emptyI consI by simp

A special case of Finite1_L15 where the second set is a singleton. Group_ZF_3

theory this corresponds to the situation where we multiply by a constant.

lemma Finite1_L16AA: assumes "{b(x). x∈A} ∈ Fin(B)"

and "c∈C" and "f : B×C→E"

shows "{f‘〈 b(x),c〉. x∈A} ∈ Fin(E)"

proof -

from assms have
"∀ y∈B. f‘〈y,c〉 ∈ E"

"{b(x). x∈A} ∈ Fin(B)"

using apply_funtype by auto

then show ?thesis by (rule Finite1_L6C)

qed

First order version of the induction for the finite powerset.

lemma Finite1_L16B: assumes A1: "P(0)" and A2: "B∈Fin(X)"
and A3: "∀ A∈Fin(X).∀ x∈X. x/∈A ∧ P(A)−→P(A∪{x})"
shows "P(B)"
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proof -

note ‘B∈Fin(X)‘ and ‘P(0)‘

moreover
{ fix A x

assume "x ∈ X" "A ∈ Fin(X)" "x /∈ A" "P(A)"

moreover have "cons(x,A) = A∪{x}" by auto

moreover note A3

ultimately have "P(cons(x,A))" by simp }
ultimately show "P(B)" by (rule Fin_induct)

qed

13.2 Finite range functions

In this section we define functions f : X → Y , with the property that
f(X) is a finite subset of Y . Such functions play a important role in the
construction of real numbers in the Real_ZF series.

Definition of finite range functions.

definition
"FinRangeFunctions(X,Y) ≡ {f:X→Y. f‘‘(X) ∈ Fin(Y)}"

Constant functions have finite range.

lemma Finite1_L17: assumes "c∈Y" and "X6=0"

shows "ConstantFunction(X,c) ∈ FinRangeFunctions(X,Y)"

using assms func1_3_L1 func_imagedef func1_3_L2 Finite1_L16

FinRangeFunctions_def by simp

Finite range functions have finite range.

lemma Finite1_L18: assumes "f ∈ FinRangeFunctions(X,Y)"

shows "{f‘(x). x∈X} ∈ Fin(Y)"

using assms FinRangeFunctions_def func_imagedef by simp

An alternative form of the definition of finite range functions.

lemma Finite1_L19: assumes "f:X→Y"

and "{f‘(x). x∈X} ∈ Fin(Y)"

shows "f ∈ FinRangeFunctions(X,Y)"

using assms func_imagedef FinRangeFunctions_def by simp

A composition of a finite range function with another function is a finite
range function.

lemma Finite1_L20: assumes A1:"f ∈ FinRangeFunctions(X,Y)"

and A2: "g : Y→Z"

shows "g O f ∈ FinRangeFunctions(X,Z)"

proof -

from A1 A2 have "g‘‘{f‘(x). x∈X} ∈ Fin(Z)"

using Finite1_L18 Finite1_L6A

by simp
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with A1 A2 have "{(g O f)‘(x). x∈X} ∈ Fin(Z)"

using FinRangeFunctions_def apply_funtype

func1_1_L17 comp_fun_apply by auto

with A1 A2 show ?thesis using
FinRangeFunctions_def comp_fun Finite1_L19

by auto

qed

Image of any subset of the domain of a finite range function is finite.

lemma Finite1_L21:

assumes "f ∈ FinRangeFunctions(X,Y)" and "A⊆X"
shows "f‘‘(A) ∈ Fin(Y)"

proof -

from assms have "f‘‘(X) ∈ Fin(Y)" "f‘‘(A) ⊆ f‘‘(X)"

using FinRangeFunctions_def func1_1_L8

by auto

then show "f‘‘(A) ∈ Fin(Y)" using Fin_subset_lemma

by blast

qed

end

14 Finite sets 1

theory Finite_ZF_1 imports Finite1 Order_ZF_1a

begin

This theory is based on Finite1 theory and is obsolete. It contains properties
of finite sets related to order relations. See the FinOrd theory for a better
approach.

14.1 Finite vs. bounded sets

The goal of this section is to show that finite sets are bounded and have
maxima and minima.

Finite set has a maximum - induction step.

lemma Finite_ZF_1_1_L1:

assumes A1: "r {is total on} X" and A2: "trans(r)"

and A3: "A∈Fin(X)" and A4: "x∈X" and A5: "A=0 ∨ HasAmaximum(r,A)"

shows "A∪{x} = 0 ∨ HasAmaximum(r,A∪{x})"
proof -

{ assume "A=0" then have T1: "A∪{x} = {x}" by simp

from A1 have "refl(X,r)" using total_is_refl by simp

with T1 A4 have "A∪{x} = 0 ∨ HasAmaximum(r,A∪{x})"
using Order_ZF_4_L8 by simp }
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moreover
{ assume "A 6=0"

with A1 A2 A3 A4 A5 have "A∪{x} = 0 ∨ HasAmaximum(r,A∪{x})"
using FinD Order_ZF_4_L9 by simp }

ultimately show ?thesis by blast

qed

For total and transitive relations finite set has a maximum.

theorem Finite_ZF_1_1_T1A:

assumes A1: "r {is total on} X" and A2: "trans(r)"

and A3: "B∈Fin(X)"
shows "B=0 ∨ HasAmaximum(r,B)"

proof -

have "0=0 ∨ HasAmaximum(r,0)" by simp

moreover note A3

moreover from A1 A2 have "∀ A∈Fin(X). ∀ x∈X.
x/∈A ∧ (A=0 ∨ HasAmaximum(r,A)) −→ (A∪{x}=0 ∨ HasAmaximum(r,A∪{x}))"
using Finite_ZF_1_1_L1 by simp

ultimately show "B=0 ∨ HasAmaximum(r,B)" by (rule Finite1_L16B)

qed

Finite set has a minimum - induction step.

lemma Finite_ZF_1_1_L2:

assumes A1: "r {is total on} X" and A2: "trans(r)"

and A3: "A∈Fin(X)" and A4: "x∈X" and A5: "A=0 ∨ HasAminimum(r,A)"

shows "A∪{x} = 0 ∨ HasAminimum(r,A∪{x})"
proof -

{ assume "A=0" then have T1: "A∪{x} = {x}" by simp

from A1 have "refl(X,r)" using total_is_refl by simp

with T1 A4 have "A∪{x} = 0 ∨ HasAminimum(r,A∪{x})"
using Order_ZF_4_L8 by simp }

moreover
{ assume "A 6=0"

with A1 A2 A3 A4 A5 have "A∪{x} = 0 ∨ HasAminimum(r,A∪{x})"
using FinD Order_ZF_4_L10 by simp }

ultimately show ?thesis by blast

qed

For total and transitive relations finite set has a minimum.

theorem Finite_ZF_1_1_T1B:

assumes A1: "r {is total on} X" and A2: "trans(r)"

and A3: "B ∈ Fin(X)"

shows "B=0 ∨ HasAminimum(r,B)"

proof -

have "0=0 ∨ HasAminimum(r,0)" by simp

moreover note A3

moreover from A1 A2 have "∀ A∈Fin(X). ∀ x∈X.
x/∈A ∧ (A=0 ∨ HasAminimum(r,A)) −→ (A∪{x}=0 ∨ HasAminimum(r,A∪{x}))"
using Finite_ZF_1_1_L2 by simp
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ultimately show "B=0 ∨ HasAminimum(r,B)" by (rule Finite1_L16B)

qed

For transitive and total relations finite sets are bounded.

theorem Finite_ZF_1_T1:

assumes A1: "r {is total on} X" and A2: "trans(r)"

and A3: "B∈Fin(X)"
shows "IsBounded(B,r)"

proof -

from A1 A2 A3 have "B=0 ∨ HasAminimum(r,B)" "B=0 ∨ HasAmaximum(r,B)"

using Finite_ZF_1_1_T1A Finite_ZF_1_1_T1B by auto

then have
"B = 0 ∨ IsBoundedBelow(B,r)" "B = 0 ∨ IsBoundedAbove(B,r)"

using Order_ZF_4_L7 Order_ZF_4_L8A by auto

then show "IsBounded(B,r)" using
IsBounded_def IsBoundedBelow_def IsBoundedAbove_def

by simp

qed

For linearly ordered finite sets maximum and minimum have desired prop-
erties. The reason we need linear order is that we need the order to be total
and transitive for the finite sets to have a maximum and minimum and then
we also need antisymmetry for the maximum and minimum to be unique.

theorem Finite_ZF_1_T2:

assumes A1: "IsLinOrder(X,r)" and A2: "A ∈ Fin(X)" and A3: "A6=0"

shows
"Maximum(r,A) ∈ A"

"Minimum(r,A) ∈ A"

"∀ x∈A. 〈x,Maximum(r,A)〉 ∈ r"

"∀ x∈A. 〈Minimum(r,A),x〉 ∈ r"

proof -

from A1 have T1: "r {is total on} X" "trans(r)" "antisym(r)"

using IsLinOrder_def by auto

moreover from T1 A2 A3 have "HasAmaximum(r,A)"

using Finite_ZF_1_1_T1A by auto

moreover from T1 A2 A3 have "HasAminimum(r,A)"

using Finite_ZF_1_1_T1B by auto

ultimately show
"Maximum(r,A) ∈ A"

"Minimum(r,A) ∈ A"

"∀ x∈A. 〈x,Maximum(r,A)〉 ∈ r" "∀ x∈A. 〈Minimum(r,A),x〉 ∈ r"

using Order_ZF_4_L3 Order_ZF_4_L4 by auto

qed

A special case of Finite_ZF_1_T2 when the set has three elements.

corollary Finite_ZF_1_L2A:

assumes A1: "IsLinOrder(X,r)" and A2: "a∈X" "b∈X" "c∈X"
shows

140



"Maximum(r,{a,b,c}) ∈ {a,b,c}"

"Minimum(r,{a,b,c}) ∈ {a,b,c}"

"Maximum(r,{a,b,c}) ∈ X"

"Minimum(r,{a,b,c}) ∈ X"

"〈a,Maximum(r,{a,b,c})〉 ∈ r"

"〈b,Maximum(r,{a,b,c})〉 ∈ r"

"〈c,Maximum(r,{a,b,c})〉 ∈ r"

proof -

from A2 have I: "{a,b,c} ∈ Fin(X)" "{a,b,c} 6= 0"

by auto

with A1 show II: "Maximum(r,{a,b,c}) ∈ {a,b,c}"

by (rule Finite_ZF_1_T2)

moreover from A1 I show III: "Minimum(r,{a,b,c}) ∈ {a,b,c}"

by (rule Finite_ZF_1_T2)

moreover from A2 have "{a,b,c} ⊆ X"

by auto

ultimately show
"Maximum(r,{a,b,c}) ∈ X"

"Minimum(r,{a,b,c}) ∈ X"

by auto

from A1 I have "∀ x∈{a,b,c}. 〈x,Maximum(r,{a,b,c})〉 ∈ r"

by (rule Finite_ZF_1_T2)

then show
"〈a,Maximum(r,{a,b,c})〉 ∈ r"

"〈b,Maximum(r,{a,b,c})〉 ∈ r"

"〈c,Maximum(r,{a,b,c})〉 ∈ r"

by auto

qed

If for every element of X we can find one in A that is greater, then the A
can not be finite. Works for relations that are total, transitive and antisym-
metric.

lemma Finite_ZF_1_1_L3:

assumes A1: "r {is total on} X"

and A2: "trans(r)" and A3: "antisym(r)"

and A4: "r ⊆ X×X" and A5: "X6=0"

and A6: "∀ x∈X. ∃ a∈A. x6=a ∧ 〈x,a〉 ∈ r"

shows "A /∈ Fin(X)"

proof -

from assms have "¬IsBounded(A,r)"
using Order_ZF_3_L14 IsBounded_def

by simp

with A1 A2 show "A /∈ Fin(X)"

using Finite_ZF_1_T1 by auto

qed

end
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15 Finite sets and order relations

theory FinOrd_ZF imports Finite_ZF func_ZF_1

begin

This theory file contains properties of finite sets related to order relations.
Part of this is similar to what is done in Finite_ZF_1 except that the devel-
opment is based on the notion of finite powerset defined in Finite_ZF rather
the one defined in standard Isabelle Finite theory.

15.1 Finite vs. bounded sets

The goal of this section is to show that finite sets are bounded and have
maxima and minima.

For total and transitive relations nonempty finite set has a maximum.

theorem fin_has_max:

assumes A1: "r {is total on} X" and A2: "trans(r)"

and A3: "B ∈ FinPow(X)" and A4: "B 6= 0"

shows "HasAmaximum(r,B)"

proof -

have "0=0 ∨ HasAmaximum(r,0)" by simp

moreover have
"∀ A ∈ FinPow(X). A=0 ∨ HasAmaximum(r,A) −→
(∀ x∈X. (A ∪ {x}) = 0 ∨ HasAmaximum(r,A ∪ {x}))"

proof -

{ fix A

assume "A ∈ FinPow(X)" "A = 0 ∨ HasAmaximum(r,A)"

have "∀ x∈X. (A ∪ {x}) = 0 ∨ HasAmaximum(r,A ∪ {x})"

proof -

{ fix x assume "x∈X"
note ‘A = 0 ∨ HasAmaximum(r,A)‘

moreover
{ assume "A = 0"

then have "A∪{x} = {x}" by simp

from A1 have "refl(X,r)" using total_is_refl

by simp

with ‘x∈X‘ ‘A∪{x} = {x}‘ have "HasAmaximum(r,A∪{x})"
using Order_ZF_4_L8 by simp }

moreover
{ assume "HasAmaximum(r,A)"

with A1 A2 ‘A ∈ FinPow(X)‘ ‘x∈X‘
have "HasAmaximum(r,A∪{x})"

using FinPow_def Order_ZF_4_L9 by simp }
ultimately have "A ∪ {x} = 0 ∨ HasAmaximum(r,A ∪ {x})"

by auto

} thus "∀ x∈X. (A ∪ {x}) = 0 ∨ HasAmaximum(r,A ∪ {x})"
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by simp

qed
} thus ?thesis by simp

qed
moreover note A3

ultimately have "B = 0 ∨ HasAmaximum(r,B)"

by (rule FinPow_induct)

with A4 show "HasAmaximum(r,B)" by simp

qed

For linearly ordered nonempty finite sets the maximum is in the set and
indeed it is the greatest element of the set.

lemma linord_max_props: assumes A1: "IsLinOrder(X,r)" and
A2: "A ∈ FinPow(X)" "A 6= 0"

shows
"Maximum(r,A) ∈ A"

"Maximum(r,A) ∈ X"

"∀ a∈A. 〈a,Maximum(r,A)〉 ∈ r"

proof -

from A1 A2 show
"Maximum(r,A) ∈ A" and "∀ a∈A. 〈a,Maximum(r,A)〉 ∈ r"

using IsLinOrder_def fin_has_max Order_ZF_4_L3

by auto

with A2 show "Maximum(r,A) ∈ X" using FinPow_def

by auto

qed

15.2 Order isomorphisms of finite sets

In this section we eastablish that if two linearly ordered finite sets have the
same number of elements, then they are order-isomorphic and the isomor-
phism is unique. This allows us to talk about ”enumeration” of a linearly
ordered finite set. We define the enumeration as the order isomorphism
between the number of elements of the set (which is a natural number
n = {0, 1, .., n− 1}) and the set.

A really weird corner case - empty set is order isomorphic with itself.

lemma empty_ord_iso: shows "ord_iso(0,r,0,R) 6= 0"

proof -

have "0 ≈ 0" using eqpoll_refl by simp

then obtain f where "f ∈ bij(0,0)"

using eqpoll_def by blast

then show ?thesis using ord_iso_def by auto

qed

Even weirder than empty_ord_iso The order automorphism of the empty set
is unique.

lemma empty_ord_iso_uniq:
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assumes "f ∈ ord_iso(0,r,0,R)" "g ∈ ord_iso(0,r,0,R)"

shows "f = g"

proof -

from assms have "f : 0 → 0" and "g: 0 → 0"

using ord_iso_def bij_def surj_def by auto

moreover have "∀ x∈0. f‘(x) = g‘(x)" by simp

ultimately show "f = g" by (rule func_eq)

qed

The empty set is the only order automorphism of itself.

lemma empty_ord_iso_empty: shows "ord_iso(0,r,0,R) = {0}"

proof -

have "0 ∈ ord_iso(0,r,0,R)"

proof -

have "ord_iso(0,r,0,R) 6= 0" by (rule empty_ord_iso)

then obtain f where "f ∈ ord_iso(0,r,0,R)" by auto

then show "0 ∈ ord_iso(0,r,0,R)"

using ord_iso_def bij_def surj_def fun_subset_prod

by auto

qed
then show "ord_iso(0,r,0,R) = {0}" using empty_ord_iso_uniq

by blast

qed

An induction (or maybe recursion?) scheme for linearly ordered sets. The
induction step is that we show that if the property holds when the set is
a singleton or for a set with the maximum removed, then it holds for the
set. The idea is that since we can build any finite set by adding elements on
the right, then if the property holds for the empty set and is invariant with
respect to this operation, then it must hold for all finite sets.

lemma fin_ord_induction:

assumes A1: "IsLinOrder(X,r)" and A2: "P(0)" and
A3: "∀ A ∈ FinPow(X). A 6= 0 −→ (P(A - {Maximum(r,A)}) −→ P(A))"

and A4: "B ∈ FinPow(X)" shows "P(B)"

proof -

note A2

moreover have "∀ A ∈ FinPow(X). A 6= 0 −→ (∃ a∈A. P(A-{a}) −→ P(A))"

proof -

{ fix A assume "A ∈ FinPow(X)" and "A 6= 0"

with A1 A3 have "∃ a∈A. P(A-{a}) −→ P(A)"

using IsLinOrder_def fin_has_max

IsLinOrder_def Order_ZF_4_L3

by blast

} thus ?thesis by simp

qed
moreover note A4

ultimately show "P(B)" by (rule FinPow_ind_rem_one)

qed
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A sligltly more complicated version of fin_ord_induction that allows to
prove properties that are not true for the empty set.

lemma fin_ord_ind:

assumes A1: "IsLinOrder(X,r)" and A2: "∀ A ∈ FinPow(X).

A = 0 ∨ (A = {Maximum(r,A)} ∨ P(A - {Maximum(r,A)}) −→ P(A))"

and A3: "B ∈ FinPow(X)" and A4: "B6=0"

shows "P(B)"

proof -

{ fix A assume "A ∈ FinPow(X)" and "A 6= 0"

with A1 A2 have
"∃ a∈A. A = {a} ∨ P(A-{a}) −→ P(A)"

using IsLinOrder_def fin_has_max

IsLinOrder_def Order_ZF_4_L3

by blast

} then have "∀ A ∈ FinPow(X).

A = 0 ∨ (∃ a∈A. A = {a} ∨ P(A-{a}) −→ P(A))"

by auto

with A3 A4 show "P(B)" using FinPow_rem_ind

by simp

qed

Yet another induction scheme. We build a linearly ordered set by adding
elements that are greater than all elements in the set.

lemma fin_ind_add_max:

assumes A1: "IsLinOrder(X,r)" and A2: "P(0)" and A3: "∀ A ∈ FinPow(X).

( ∀ x ∈ X-A. P(A) ∧ (∀ a∈A. 〈a,x〉 ∈ r ) −→ P(A ∪ {x}))"

and A4: "B ∈ FinPow(X)"

shows "P(B)"

proof -

note A1 A2

moreover have
"∀ C ∈ FinPow(X). C 6= 0 −→ (P(C - {Maximum(r,C)}) −→ P(C))"

proof -

{ fix C assume "C ∈ FinPow(X)" and "C 6= 0"

let ?x = "Maximum(r,C)"

let ?A = "C - {?x}"

assume "P(?A)"

moreover from ‘C ∈ FinPow(X)‘ have "?A ∈ FinPow(X)"

using fin_rem_point_fin by simp

moreover from A1 ‘C ∈ FinPow(X)‘ ‘C 6= 0‘ have
"?x ∈ C" and "?x ∈ X - ?A" and "∀ a∈?A. 〈a,?x〉 ∈ r"

using linord_max_props by auto

moreover note A3

ultimately have "P(?A ∪ {?x})" by auto

moreover from ‘?x ∈ C‘ have "?A ∪ {?x} = C"

by auto

ultimately have "P(C)" by simp

} thus ?thesis by simp
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qed
moreover note A4

ultimately show "P(B)" by (rule fin_ord_induction)

qed

The only order automorphism of a linearly ordered finite set is the identity.

theorem fin_ord_auto_id: assumes A1: "IsLinOrder(X,r)"

and A2: "B ∈ FinPow(X)" and A3: "B6=0"

shows "ord_iso(B,r,B,r) = {id(B)}"

proof -

note A1

moreover
{ fix A assume "A ∈ FinPow(X)" "A 6=0"

let ?M = "Maximum(r,A)"

let ?A0 = "A - {?M}"

assume "A = {?M} ∨ ord_iso(?A0,r,?A0,r) = {id(?A0)}"

moreover
{ assume "A = {?M}"

have "ord_iso({?M},r,{?M},r) = {id({?M})}"

using id_ord_auto_singleton by simp

with ‘A = {?M}‘ have "ord_iso(A,r,A,r) = {id(A)}"

by simp }
moreover
{ assume "ord_iso(?A0,r,?A0,r) = {id(?A0)}"

have "ord_iso(A,r,A,r) = {id(A)}"

proof
show "{id(A)} ⊆ ord_iso(A,r,A,r)"

using id_ord_iso by simp

{ fix f assume "f ∈ ord_iso(A,r,A,r)"

with A1 ‘A ∈ FinPow(X)‘ ‘A6=0‘ have
"restrict(f,?A0) ∈ ord_iso(?A0, r, A-{f‘(?M)},r)"

using IsLinOrder_def fin_has_max ord_iso_rem_max

by auto

with A1 ‘A ∈ FinPow(X)‘ ‘A6=0‘ ‘f ∈ ord_iso(A,r,A,r)‘

‘ord_iso(?A0,r,?A0,r) = {id(?A0)}‘

have "restrict(f,?A0) = id(?A0)"

using IsLinOrder_def fin_has_max max_auto_fixpoint

by auto

moreover from A1 ‘f ∈ ord_iso(A,r,A,r)‘

‘A ∈ FinPow(X)‘ ‘A 6=0‘ have
"f : A → A" and "?M ∈ A" and "f‘(?M) = ?M"

using ord_iso_def bij_is_fun IsLinOrder_def

fin_has_max Order_ZF_4_L3 max_auto_fixpoint

by auto

ultimately have "f = id(A)" using id_fixpoint_rem

by simp

} then show "ord_iso(A,r,A,r) ⊆ {id(A)}"

by auto

qed

146



}
ultimately have "ord_iso(A,r,A,r) = {id(A)}"

by auto

} then have "∀ A ∈ FinPow(X). A = 0 ∨
(A = {Maximum(r,A)} ∨
ord_iso(A-{Maximum(r,A)},r,A-{Maximum(r,A)},r) =

{id(A-{Maximum(r,A)})} −→ ord_iso(A,r,A,r) = {id(A)})"

by auto

moreover note A2 A3

ultimately show "ord_iso(B,r,B,r) = {id(B)}"

by (rule fin_ord_ind)

qed

Every two finite linearly ordered sets are order isomorphic. The statement
is formulated to make the proof by induction on the size of the set easier,
see fin_ord_iso_ex for an alternative formulation.

lemma fin_order_iso:

assumes A1: "IsLinOrder(X,r)" "IsLinOrder(Y,R)" and
A2: "n ∈ nat"

shows "∀ A ∈ FinPow(X). ∀ B ∈ FinPow(Y).

A ≈ n ∧ B ≈ n −→ ord_iso(A,r,B,R) 6= 0"

proof -

note A2

moreover have "∀ A ∈ FinPow(X). ∀ B ∈ FinPow(Y).

A ≈ 0 ∧ B ≈ 0 −→ ord_iso(A,r,B,R) 6= 0"

using eqpoll_0_is_0 empty_ord_iso by blast

moreover have "∀ k ∈ nat.

(∀ A ∈ FinPow(X). ∀ B ∈ FinPow(Y).

A ≈ k ∧ B ≈ k −→ ord_iso(A,r,B,R) 6= 0) −→
(∀ C ∈ FinPow(X). ∀ D ∈ FinPow(Y).

C ≈ succ(k) ∧ D ≈ succ(k) −→ ord_iso(C,r,D,R) 6= 0)"

proof -

{ fix k assume "k ∈ nat"

assume A3: "∀ A ∈ FinPow(X). ∀ B ∈ FinPow(Y).

A ≈ k ∧ B ≈ k −→ ord_iso(A,r,B,R) 6= 0"

have "∀ C ∈ FinPow(X). ∀ D ∈ FinPow(Y).

C ≈ succ(k) ∧ D ≈ succ(k) −→ ord_iso(C,r,D,R) 6= 0"

proof -

{ fix C assume "C ∈ FinPow(X)"

fix D assume "D ∈ FinPow(Y)"

assume "C ≈ succ(k)" "D ≈ succ(k)"

then have "C 6= 0" and "D 6= 0"

using eqpoll_succ_imp_not_empty by auto

let ?MC = "Maximum(r,C)"

let ?MD = "Maximum(R,D)"

let ?C0 = "C - {?MC}"

let ?D0 = "D - {?MD}"

from ‘C ∈ FinPow(X)‘ have "C ⊆ X"

using FinPow_def by simp
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with A1 have "IsLinOrder(C,r)"

using ord_linear_subset by blast

from ‘D ∈ FinPow(Y)‘ have "D ⊆ Y"

using FinPow_def by simp

with A1 have "IsLinOrder(D,R)"

using ord_linear_subset by blast

from A1 ‘C ∈ FinPow(X)‘ ‘D ∈ FinPow(Y)‘

‘C 6= 0‘ ‘D 6= 0‘ have
"HasAmaximum(r,C)" and "HasAmaximum(R,D)"

using IsLinOrder_def fin_has_max

by auto

with A1 have "?MC ∈ C" and "?MD ∈ D"

using IsLinOrder_def Order_ZF_4_L3 by auto

with ‘C ≈ succ(k)‘ ‘D ≈ succ(k)‘ have
"?C0 ≈ k" and "?D0 ≈ k" using Diff_sing_eqpoll by auto

from ‘C ∈ FinPow(X)‘ ‘D ∈ FinPow(Y)‘

have "?C0 ∈ FinPow(X)" and "?D0 ∈ FinPow(Y)"

using fin_rem_point_fin by auto

with A3 ‘?C0 ≈ k‘ ‘?D0 ≈ k‘ have
"ord_iso(?C0,r,?D0,R) 6= 0" by simp

with ‘IsLinOrder(C,r)‘ ‘IsLinOrder(D,R)‘

‘HasAmaximum(r,C)‘ ‘HasAmaximum(R,D)‘

have "ord_iso(C,r,D,R) 6= 0"

by (rule rem_max_ord_iso)

} thus ?thesis by simp

qed
} thus ?thesis by blast

qed
ultimately show ?thesis by (rule ind_on_nat)

qed

Every two finite linearly ordered sets are order isomorphic.

lemma fin_ord_iso_ex:

assumes A1: "IsLinOrder(X,r)" "IsLinOrder(Y,R)" and
A2: "A ∈ FinPow(X)" "B ∈ FinPow(Y)" and A3: "B ≈ A"

shows "ord_iso(A,r,B,R) 6= 0"

proof -

from A2 obtain n where "n ∈ nat" and "A ≈ n"

using finpow_decomp by auto

from A3 ‘A ≈ n‘ have "B ≈ n" by (rule eqpoll_trans)

with A1 A2 ‘A ≈ n‘ ‘n ∈ nat‘ show "ord_iso(A,r,B,R) 6= 0"

using fin_order_iso by simp

qed

Existence and uniqueness of order isomorphism for two linearly ordered sets
with the same number of elements.

theorem fin_ord_iso_ex_uniq:

assumes A1: "IsLinOrder(X,r)" "IsLinOrder(Y,R)" and
A2: "A ∈ FinPow(X)" "B ∈ FinPow(Y)" and A3: "B ≈ A"
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shows "∃ !f. f ∈ ord_iso(A,r,B,R)"

proof
from assms show "∃ f. f ∈ ord_iso(A,r,B,R)"

using fin_ord_iso_ex by blast

fix f g

assume A4: "f ∈ ord_iso(A,r,B,R)" "g ∈ ord_iso(A,r,B,R)"

then have "converse(g) ∈ ord_iso(B,R,A,r)"

using ord_iso_sym by simp

with ‘f ∈ ord_iso(A,r,B,R)‘ have
I: "converse(g) O f ∈ ord_iso(A,r,A,r)"

by (rule ord_iso_trans)

{ assume "A 6= 0"

with A1 A2 I have "converse(g) O f = id(A)"

using fin_ord_auto_id by auto

with A4 have "f = g"

using ord_iso_def comp_inv_id_eq_bij by auto }
moreover
{ assume "A = 0"

then have "A ≈ 0" using eqpoll_0_iff

by simp

with A3 have "B ≈ 0" by (rule eqpoll_trans)

with A4 ‘A = 0‘ have
"f ∈ ord_iso(0,r,0,R)" and "g ∈ ord_iso(0,r,0,R)"

using eqpoll_0_iff by auto

then have "f = g" by (rule empty_ord_iso_uniq) }
ultimately show "f = g"

using ord_iso_def comp_inv_id_eq_bij

by auto

qed

end

16 Equivalence relations

theory EquivClass1 imports EquivClass func_ZF ZF1

begin

In this theory file we extend the work on equivalence relations done in the
standard Isabelle’s EquivClass theory. That development is very good and
all, but we really would prefer an approach contained within the a standard
ZF set theory, without extensions specific to Isabelle. That is why this
theory is written.
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16.1 Congruent functions and projections on the quotient

Suppose we have a set X with a relation r ⊆ X×X and a function f : X →
X. The function f can be compatible (congruent) with r in the sense that if
two elements x, y are related then the values f(x), f(x) are also related. This
is especially useful if r is an equivalence relation as it allows to ”project”
the function to the quotient space X/r (the set of equivalence classes of
r) and create a new function F that satifies the formula F ([x]r) = [f(x)]r.
When f is congruent with respect to r such definition of the value of F on the
equivalence class [x]r does not depend on which x we choose to represent the
class. In this section we also consider binary operations that are congruent
with respect to a relation. These are important in algebra - the congruency
condition allows to project the operation to obtain the operation on the
quotient space.

First we define the notion of function that maps equivalent elements to equiv-
alent values. We use similar names as in the Isabelle’s standard EquivClass

theory to indicate the conceptual correspondence of the notions.

definition
"Congruent(r,f) ≡
(∀ x y. 〈x,y〉 ∈ r −→ 〈f‘(x),f‘(y)〉 ∈ r)"

Now we will define the projection of a function onto the quotient space. In
standard math the equivalence class of x with respect to relation r is usually
denoted [x]r. Here we reuse notation r{x} instead. This means the image
of the set {x} with respect to the relation, which, for equivalence relations
is exactly its equivalence class if you think about it.

definition
"ProjFun(A,r,f) ≡
{〈c,

⋃
x∈c. r‘‘{f‘(x)}〉. c ∈ (A//r)}"

Elements of equivalence classes belong to the set.

lemma EquivClass_1_L1:

assumes A1: "equiv(A,r)" and A2: "C ∈ A//r" and A3: "x∈C"
shows "x∈A"

proof -

from A2 have "C ⊆
⋃

(A//r)" by auto

with A1 A3 show "x∈A"
using Union_quotient by auto

qed

The image of a subset of X under projection is a subset of A/r.

lemma EquivClass_1_L1A:

assumes "A⊆X" shows "{r‘‘{x}. x∈A} ⊆ X//r"

using assms quotientI by auto
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If an element belongs to an equivalence class, then its image under relation
is this equivalence class.

lemma EquivClass_1_L2:

assumes A1: "equiv(A,r)" "C ∈ A//r" and A2: "x∈C"
shows "r‘‘{x} = C"

proof -

from A1 A2 have "x ∈ r‘‘{x}"

using EquivClass_1_L1 equiv_class_self by simp

with A2 have I: "r‘‘{x}∩C 6= 0" by auto

from A1 A2 have "r‘‘{x} ∈ A//r"

using EquivClass_1_L1 quotientI by simp

with A1 I show ?thesis

using quotient_disj by blast

qed

Elements that belong to the same equivalence class are equivalent.

lemma EquivClass_1_L2A:

assumes "equiv(A,r)" "C ∈ A//r" "x∈C" "y∈C"
shows "〈x,y〉 ∈ r"

using assms EquivClass_1_L2 EquivClass_1_L1 equiv_class_eq_iff

by simp

Every x is in the class of y, then they are equivalent.

lemma EquivClass_1_L2B:

assumes A1: "equiv(A,r)" and A2: "y∈A" and A3: "x ∈ r‘‘{y}"

shows "〈x,y〉 ∈ r"

proof -

from A2 have "r‘‘{y} ∈ A//r"

using quotientI by simp

with A1 A3 show ?thesis using
EquivClass_1_L1 equiv_class_self equiv_class_nondisjoint by blast

qed

If a function is congruent then the equivalence classes of the values that
come from the arguments from the same class are the same.

lemma EquivClass_1_L3:

assumes A1: "equiv(A,r)" and A2: "Congruent(r,f)"

and A3: "C ∈ A//r" "x∈C" "y∈C"
shows "r‘‘{f‘(x)} = r‘‘{f‘(y)}"

proof -

from A1 A3 have "〈x,y〉 ∈ r"

using EquivClass_1_L2A by simp

with A2 have "〈f‘(x),f‘(y)〉 ∈ r"

using Congruent_def by simp

with A1 show ?thesis using equiv_class_eq by simp

qed

The values of congruent functions are in the space.
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lemma EquivClass_1_L4:

assumes A1: "equiv(A,r)" and A2: "C ∈ A//r" "x∈C"
and A3: "Congruent(r,f)"

shows "f‘(x) ∈ A"

proof -

from A1 A2 have "x∈A"
using EquivClass_1_L1 by simp

with A1 have "〈x,x〉 ∈ r"

using equiv_def refl_def by simp

with A3 have "〈f‘(x),f‘(x)〉 ∈ r"

using Congruent_def by simp

with A1 show ?thesis using equiv_type by auto

qed

Equivalence classes are not empty.

lemma EquivClass_1_L5:

assumes A1: "refl(A,r)" and A2: "C ∈ A//r"

shows "C 6=0"

proof -

from A2 obtain x where I: "C = r‘‘{x}" and "x∈A"
using quotient_def by auto

from A1 ‘x∈A‘ have "x ∈ r‘‘{x}" using refl_def by auto

with I show ?thesis by auto

qed

To avoid using an axiom of choice, we define the projection using the ex-
pression

⋃
x∈C r({f(x)}). The next lemma shows that for congruent function

this is in the quotient space A/r.

lemma EquivClass_1_L6:

assumes A1: "equiv(A,r)" and A2: "Congruent(r,f)"

and A3: "C ∈ A//r"

shows "(
⋃
x∈C. r‘‘{f‘(x)}) ∈ A//r"

proof -

from A1 have "refl(A,r)" unfolding equiv_def by simp

with A3 have "C6=0" using EquivClass_1_L5 by simp

moreover from A2 A3 A1 have "∀ x∈C. r‘‘{f‘(x)} ∈ A//r"

using EquivClass_1_L4 quotientI by auto

moreover from A1 A2 A3 have
"∀ x y. x∈C ∧ y∈C −→ r‘‘{f‘(x)} = r‘‘{f‘(y)}"

using EquivClass_1_L3 by blast

ultimately show ?thesis by (rule ZF1_1_L2)

qed

Congruent functions can be projected.

lemma EquivClass_1_T0:

assumes "equiv(A,r)" "Congruent(r,f)"

shows "ProjFun(A,r,f) : A//r → A//r"

using assms EquivClass_1_L6 ProjFun_def ZF_fun_from_total
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by simp

We now define congruent functions of two variables (binary funtions). The
predicate Congruent2 corresponds to congruent2 in Isabelle’s standard EquivClass

theory, but uses ZF-functions rather than meta-functions.

definition
"Congruent2(r,f) ≡
(∀ x1 x2 y1 y2. 〈x1,x2〉 ∈ r ∧ 〈y1,y2〉 ∈ r −→
〈f‘〈x1,y1〉, f‘〈x2,y2〉 〉 ∈ r)"

Next we define the notion of projecting a binary operation to the quotient
space. This is a very important concept that allows to define quotient
groups, among other things.

definition
"ProjFun2(A,r,f) ≡
{〈p,

⋃
z ∈ fst(p)×snd(p). r‘‘{f‘(z)}〉. p ∈ (A//r)×(A//r) }"

The following lemma is a two-variables equivalent of EquivClass_1_L3.

lemma EquivClass_1_L7:

assumes A1: "equiv(A,r)" and A2: "Congruent2(r,f)"

and A3: "C1 ∈ A//r" "C2 ∈ A//r"

and A4: "z1 ∈ C1×C2" "z2 ∈ C1×C2"
shows "r‘‘{f‘(z1)} = r‘‘{f‘(z2)}"

proof -

from A4 obtain x1 y1 x2 y2 where
"x1∈C1" and "y1∈C2" and "z1 = 〈x1,y1〉" and
"x2∈C1" and "y2∈C2" and "z2 = 〈x2,y2〉"
by auto

with A1 A3 have "〈x1,x2〉 ∈ r" and "〈y1,y2〉 ∈ r"

using EquivClass_1_L2A by auto

with A2 have "〈f‘〈x1,y1〉,f‘〈x2,y2〉〉 ∈ r"

using Congruent2_def by simp

with A1 ‘z1 = 〈x1,y1〉‘ ‘z2 = 〈x2,y2〉‘ show ?thesis

using equiv_class_eq by simp

qed

The values of congruent functions of two variables are in the space.

lemma EquivClass_1_L8:

assumes A1: "equiv(A,r)" and A2: "C1 ∈ A//r" and A3: "C2 ∈ A//r"

and A4: "z ∈ C1×C2" and A5: "Congruent2(r,f)"

shows "f‘(z) ∈ A"

proof -

from A4 obtain x y where "x∈C1" and "y∈C2" and "z = 〈x,y〉"
by auto

with A1 A2 A3 have "x∈A" and "y∈A"
using EquivClass_1_L1 by auto

with A1 A4 have "〈x,x〉 ∈ r" and "〈y,y〉 ∈ r"

using equiv_def refl_def by auto
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with A5 have "〈f‘〈x,y〉, f‘〈x,y〉 〉 ∈ r"

using Congruent2_def by simp

with A1 ‘z = 〈x,y〉‘ show ?thesis using equiv_type by auto

qed

The values of congruent functions are in the space. Note that although this
lemma is intended to be used with functions, we don’t need to assume that
f is a function.

lemma EquivClass_1_L8A:

assumes A1: "equiv(A,r)" and A2: "x∈A" "y∈A"
and A3: "Congruent2(r,f)"

shows "f‘〈x,y〉 ∈ A"

proof -

from A1 A2 have "r‘‘{x} ∈ A//r" "r‘‘{y} ∈ A//r"

"〈x,y〉 ∈ r‘‘{x}×r‘‘{y}"
using equiv_class_self quotientI by auto

with A1 A3 show ?thesis using EquivClass_1_L8 by simp

qed

The following lemma is a two-variables equivalent of EquivClass_1_L6.

lemma EquivClass_1_L9:

assumes A1: "equiv(A,r)" and A2: "Congruent2(r,f)"

and A3: "p ∈ (A//r)×(A//r)"
shows "(

⋃
z ∈ fst(p)×snd(p). r‘‘{f‘(z)}) ∈ A//r"

proof -

from A3 have "fst(p) ∈ A//r" and "snd(p) ∈ A//r"

by auto

with A1 A2 have
I: "∀ z ∈ fst(p)×snd(p). f‘(z) ∈ A"

using EquivClass_1_L8 by simp

from A3 A1 have "fst(p)×snd(p) 6= 0"

using equiv_def EquivClass_1_L5 Sigma_empty_iff

by auto

moreover from A1 I have
"∀ z ∈ fst(p)×snd(p). r‘‘{f‘(z)} ∈ A//r"

using quotientI by simp

moreover from A1 A2 ‘fst(p) ∈ A//r‘ ‘snd(p) ∈ A//r‘ have
"∀ z1 z2. z1 ∈ fst(p)×snd(p) ∧ z2 ∈ fst(p)×snd(p) −→
r‘‘{f‘(z1)} = r‘‘{f‘(z2)}"

using EquivClass_1_L7 by blast

ultimately show ?thesis by (rule ZF1_1_L2)

qed

Congruent functions of two variables can be projected.

theorem EquivClass_1_T1:

assumes "equiv(A,r)" "Congruent2(r,f)"

shows "ProjFun2(A,r,f) : (A//r)×(A//r) → A//r"

using assms EquivClass_1_L9 ProjFun2_def ZF_fun_from_total
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by simp

The projection diagram commutes. I wish I knew how to draw this diagram
in LaTeX.

lemma EquivClass_1_L10:

assumes A1: "equiv(A,r)" and A2: "Congruent2(r,f)"

and A3: "x∈A" "y∈A"
shows "ProjFun2(A,r,f)‘〈r‘‘{x},r‘‘{y}〉 = r‘‘{f‘〈x,y〉}"

proof -

from A3 A1 have "r‘‘{x} × r‘‘{y} 6= 0"

using quotientI equiv_def EquivClass_1_L5 Sigma_empty_iff

by auto

moreover have
"∀ z ∈ r‘‘{x}×r‘‘{y}. r‘‘{f‘(z)} = r‘‘{f‘〈x,y〉}"

proof
fix z assume A4: "z ∈ r‘‘{x}×r‘‘{y}"
from A1 A3 have
"r‘‘{x} ∈ A//r" "r‘‘{y} ∈ A//r"

"〈x,y〉 ∈ r‘‘{x}×r‘‘{y}"
using quotientI equiv_class_self by auto

with A1 A2 A4 show
"r‘‘{f‘(z)} = r‘‘{f‘〈x,y〉}"
using EquivClass_1_L7 by blast

qed
ultimately have
"(
⋃
z ∈ r‘‘{x}×r‘‘{y}. r‘‘{f‘(z)}) = r‘‘{f‘〈x,y〉}"

by (rule ZF1_1_L1)

moreover have
"ProjFun2(A,r,f)‘〈r‘‘{x},r‘‘{y}〉 = (

⋃
z ∈ r‘‘{x}×r‘‘{y}. r‘‘{f‘(z)})"

proof -

from assms have
"ProjFun2(A,r,f) : (A//r)×(A//r) → A//r"

"〈r‘‘{x},r‘‘{y}〉 ∈ (A//r)×(A//r)"
using EquivClass_1_T1 quotientI by auto

then show ?thesis using ProjFun2_def ZF_fun_from_tot_val

by auto

qed
ultimately show ?thesis by simp

qed

16.2 Projecting commutative, associative and distributive
operations.

In this section we show that if the operations are congruent with respect to
an equivalence relation then the projection to the quotient space preserves
commutativity, associativity and distributivity.

The projection of commutative operation is commutative.
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lemma EquivClass_2_L1: assumes
A1: "equiv(A,r)" and A2: "Congruent2(r,f)"

and A3: "f {is commutative on} A"

and A4: "c1 ∈ A//r" "c2 ∈ A//r"

shows "ProjFun2(A,r,f)‘〈c1,c2〉 = ProjFun2(A,r,f)‘〈c2,c1〉"
proof -

from A4 obtain x y where D1:

"c1 = r‘‘{x}" "c2 = r‘‘{y}"

"x∈A" "y∈A"
using quotient_def by auto

with A1 A2 have "ProjFun2(A,r,f)‘〈c1,c2〉 = r‘‘{f‘〈x,y〉}"
using EquivClass_1_L10 by simp

also from A3 D1 have
"r‘‘{f‘〈x,y〉} = r‘‘{f‘〈y,x〉}"
using IsCommutative_def by simp

also from A1 A2 D1 have
"r‘‘{f‘〈y,x〉} = ProjFun2(A,r,f)‘ 〈c2,c1〉"
using EquivClass_1_L10 by simp

finally show ?thesis by simp

qed

The projection of commutative operation is commutative.

theorem EquivClass_2_T1:

assumes "equiv(A,r)" and "Congruent2(r,f)"

and "f {is commutative on} A"

shows "ProjFun2(A,r,f) {is commutative on} A//r"

using assms IsCommutative_def EquivClass_2_L1 by simp

The projection of an associative operation is associative.

lemma EquivClass_2_L2:

assumes A1: "equiv(A,r)" and A2: "Congruent2(r,f)"

and A3: "f {is associative on} A"

and A4: "c1 ∈ A//r" "c2 ∈ A//r" "c3 ∈ A//r"

and A5: "g = ProjFun2(A,r,f)"

shows "g‘〈g‘〈c1,c2〉,c3〉 = g‘〈c1,g‘〈c2,c3〉〉"
proof -

from A4 obtain x y z where D1:

"c1 = r‘‘{x}" "c2 = r‘‘{y}" "c3 = r‘‘{z}"

"x∈A" "y∈A" "z∈A"
using quotient_def by auto

with A3 have T1:"f‘〈x,y〉 ∈ A" "f‘〈y,z〉 ∈ A"

using IsAssociative_def apply_type by auto

with A1 A2 D1 A5 have
"g‘〈g‘〈c1,c2〉,c3〉 = r‘‘{f‘〈f‘〈x,y〉,z〉}"
using EquivClass_1_L10 by simp

also from D1 A3 have
". . . = r‘‘{f‘〈x,f‘〈y,z〉 〉}"
using IsAssociative_def by simp

also from T1 A1 A2 D1 A5 have
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". . . = g‘〈c1,g‘〈c2,c3〉〉"
using EquivClass_1_L10 by simp

finally show ?thesis by simp

qed

The projection of an associative operation is associative on the quotient.

theorem EquivClass_2_T2:

assumes A1: "equiv(A,r)" and A2: "Congruent2(r,f)"

and A3: "f {is associative on} A"

shows "ProjFun2(A,r,f) {is associative on} A//r"

proof -

let ?g = "ProjFun2(A,r,f)"

from A1 A2 have
"?g ∈ (A//r)×(A//r) → A//r"

using EquivClass_1_T1 by simp

moreover from A1 A2 A3 have
"∀ c1 ∈ A//r.∀ c2 ∈ A//r.∀ c3 ∈ A//r.

?g‘〈?g‘〈c1,c2〉,c3〉 = ?g‘〈c1,?g‘〈c2,c3〉〉"
using EquivClass_2_L2 by simp

ultimately show ?thesis

using IsAssociative_def by simp

qed

The essential condition to show that distributivity is preserved by projec-
tions to quotient spaces, provided both operations are congruent with respect
to the equivalence relation.

lemma EquivClass_2_L3:

assumes A1: "IsDistributive(X,A,M)"

and A2: "equiv(X,r)"

and A3: "Congruent2(r,A)" "Congruent2(r,M)"

and A4: "a ∈ X//r" "b ∈ X//r" "c ∈ X//r"

and A5: "Ap = ProjFun2(X,r,A)" "Mp = ProjFun2(X,r,M)"

shows "Mp‘〈a,Ap‘〈b,c〉〉 = Ap‘〈 Mp‘〈a,b〉,Mp‘〈a,c〉〉 ∧
Mp‘〈 Ap‘〈b,c〉,a 〉 = Ap‘〈 Mp‘〈b,a〉, Mp‘〈c,a〉〉"

proof
from A4 obtain x y z where "x∈X" "y∈X" "z∈X"
"a = r‘‘{x}" "b = r‘‘{y}" "c = r‘‘{z}"

using quotient_def by auto

with A1 A2 A3 A5 show
"Mp‘〈a,Ap‘〈b,c〉〉 = Ap‘〈 Mp‘〈a,b〉,Mp‘〈a,c〉〉" and
"Mp‘〈 Ap‘〈b,c〉,a 〉 = Ap‘〈 Mp‘〈b,a〉, Mp‘〈c,a〉〉"
using EquivClass_1_L8A EquivClass_1_L10 IsDistributive_def

by auto

qed

Distributivity is preserved by projections to quotient spaces, provided both
operations are congruent with respect to the equivalence relation.

lemma EquivClass_2_L4: assumes A1: "IsDistributive(X,A,M)"
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and A2: "equiv(X,r)"

and A3: "Congruent2(r,A)" "Congruent2(r,M)"

shows "IsDistributive(X//r,ProjFun2(X,r,A),ProjFun2(X,r,M))"

proof-
let ?Ap = "ProjFun2(X,r,A)"

let ?Mp = "ProjFun2(X,r,M)"

from A1 A2 A3 have
"∀ a∈X//r.∀ b∈X//r.∀ c∈X//r.
?Mp‘〈a,?Ap‘〈b,c〉〉 = ?Ap‘〈?Mp‘〈a,b〉,?Mp‘〈a,c〉〉 ∧
?Mp‘〈?Ap‘〈b,c〉,a〉 = ?Ap‘〈?Mp‘〈b,a〉,?Mp‘〈c,a〉〉"
using EquivClass_2_L3 by simp

then show ?thesis using IsDistributive_def by simp

qed

16.3 Saturated sets

In this section we consider sets that are saturated with respect to an equiv-
alence relation. A set A is saturated with respect to a relation r if A =
r−1(r(A)). For equivalence relations saturated sets are unions of equiva-
lence classes. This makes them useful as a tool to define subsets of the
quoutient space using properties of representants. Namely, we often define
a set B ⊆ X/r by saying that [x]r ∈ B iff x ∈ A. If A is a saturated set, this
definition is consistent in the sense that it does not depend on the choice of
x to represent [x]r.

The following defines the notion of a saturated set. Recall that in Isabelle
r-‘‘(A) is the inverse image of A with respect to relation r. This definition
is not specific to equivalence relations.

definition
"IsSaturated(r,A) ≡ A = r-‘‘(r‘‘(A))"

For equivalence relations a set is saturated iff it is an image of itself.

lemma EquivClass_3_L1: assumes A1: "equiv(X,r)"

shows "IsSaturated(r,A) ←→ A = r‘‘(A)"

proof
assume "IsSaturated(r,A)"

then have "A = (converse(r) O r)‘‘(A)"

using IsSaturated_def vimage_def image_comp

by simp

also from A1 have ". . . = r‘‘(A)"

using equiv_comp_eq by simp

finally show "A = r‘‘(A)" by simp

next assume "A = r‘‘(A)"

with A1 have "A = (converse(r) O r)‘‘(A)"

using equiv_comp_eq by simp

also have ". . . = r-‘‘(r‘‘(A))"

using vimage_def image_comp by simp

finally have "A = r-‘‘(r‘‘(A))" by simp
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then show "IsSaturated(r,A)" using IsSaturated_def

by simp

qed

For equivalence relations sets are contained in their images.

lemma EquivClass_3_L2: assumes A1: "equiv(X,r)" and A2: "A⊆X"
shows "A ⊆ r‘‘(A)"

proof
fix a assume "a∈A"
with A1 A2 have "a ∈ r‘‘{a}"

using equiv_class_self by auto

with ‘a∈A‘ show "a ∈ r‘‘(A)" by auto

qed

The next lemma shows that if ”∼” is an equivalence relation and a set A is
such that a ∈ A and a ∼ b implies b ∈ A, then A is saturated with respect
to the relation.

lemma EquivClass_3_L3: assumes A1: "equiv(X,r)"

and A2: "r ⊆ X×X" and A3: "A⊆X"
and A4: "∀ x∈A. ∀ y∈X. 〈x,y〉 ∈ r −→ y∈A"
shows "IsSaturated(r,A)"

proof -

from A2 A4 have "r‘‘(A) ⊆ A"

using image_iff by blast

moreover from A1 A3 have "A ⊆ r‘‘(A)"

using EquivClass_3_L2 by simp

ultimately have "A = r‘‘(A)" by auto

with A1 show "IsSaturated(r,A)" using EquivClass_3_L1

by simp

qed

If A ⊆ X and A is saturated and x ∼ y, then x ∈ A iff y ∈ A. Here we show
only one direction.

lemma EquivClass_3_L4: assumes A1: "equiv(X,r)"

and A2: "IsSaturated(r,A)" and A3: "A⊆X"
and A4: "〈x,y〉 ∈ r"

and A5: "x∈X" "y∈A"
shows "x∈A"

proof -

from A1 A5 have "x ∈ r‘‘{x}"

using equiv_class_self by simp

with A1 A3 A4 A5 have "x ∈ r‘‘(A)"

using equiv_class_eq equiv_class_self

by auto

with A1 A2 show "x∈A"
using EquivClass_3_L1 by simp

qed

If A ⊆ X and A is saturated and x ∼ y, then x ∈ A iff y ∈ A.
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lemma EquivClass_3_L5: assumes A1: "equiv(X,r)"

and A2: "IsSaturated(r,A)" and A3: "A⊆X"
and A4: "x∈X" "y∈X"
and A5: "〈x,y〉 ∈ r"

shows "x∈A ←→ y∈A"
proof

assume "y∈A"
with assms show "x∈A" using EquivClass_3_L4

by simp

next assume "x∈A"
from A1 A5 have "〈y,x〉 ∈ r"

using equiv_is_sym by blast

with A1 A2 A3 A4 ‘x∈A‘ show "y∈A"
using EquivClass_3_L4 by simp

qed

If A is saturated then x ∈ A iff its class is in the projection of A.

lemma EquivClass_3_L6: assumes A1: "equiv(X,r)"

and A2: "IsSaturated(r,A)" and A3: "A⊆X" and A4: "x∈X"
and A5: "B = {r‘‘{x}. x∈A}"
shows "x∈A ←→ r‘‘{x} ∈ B"

proof
assume "x∈A"
with A5 show "r‘‘{x} ∈ B" by auto

next assume "r‘‘{x} ∈ B"

with A5 obtain y where "y ∈ A" and "r‘‘{x} = r‘‘{y}"

by auto

with A1 A3 have "〈x,y〉 ∈ r"

using eq_equiv_class by auto

with A1 A2 A3 A4 ‘y ∈ A‘ show "x∈A"
using EquivClass_3_L4 by simp

qed

A technical lemma involving a projection of a saturated set and a logical
epression with exclusive or. Note that we don’t really care what Xor is here,
this is true for any predicate.

lemma EquivClass_3_L7: assumes "equiv(X,r)"

and "IsSaturated(r,A)" and "A⊆X"
and "x∈X" "y∈X"
and "B = {r‘‘{x}. x∈A}"
and "(x∈A) Xor (y∈A)"
shows "(r‘‘{x} ∈ B) Xor (r‘‘{y} ∈ B)"

using assms EquivClass_3_L6 by simp

end
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17 Finite sequences

theory FiniteSeq_ZF imports Nat_ZF_IML func1

begin

This theory treats finite sequences (i.e. maps n→ X, where n = {0, 1, .., n−
1} is a natural number) as lists. It defines and proves the properties of basic
operations on lists: concatenation, appending and element etc.

17.1 Lists as finite sequences

A natural way of representing (finite) lists in set theory is through (finite)
sequences. In such view a list of elements of a set X is a function that maps
the set {0, 1, ..n−1} into X. Since natural numbers in set theory are defined
so that n = {0, 1, ..n−1}, a list of length n can be understood as an element
of the function space n→ X.

We define the set of lists with values in set X as Lists(X).

definition
"Lists(X) ≡

⋃
n∈nat.(n→X)"

The set of nonempty X-value listst will be called NELists(X).

definition
"NELists(X) ≡

⋃
n∈nat.(succ(n)→X)"

We first define the shift that moves the second sequence to the domain
{n, .., n + k − 1}, where n, k are the lengths of the first and the second
sequence, resp. To understand the notation in the definitions below recall
that in Isabelle/ZF pred(n) is the previous natural number and denotes the
difference between natural numbers n and k.

definition
"ShiftedSeq(b,n) ≡ {〈j, b‘(j #- n)〉. j ∈ NatInterval(n,domain(b))}"

We define concatenation of two sequences as the union of the first sequence
with the shifted second sequence. The result of concatenating lists a and b
is called Concat(a,b).

definition
"Concat(a,b) ≡ a ∪ ShiftedSeq(b,domain(a))"

For a finite sequence we define the sequence of all elements except the first
one. This corresponds to the ”tail” function in Haskell. We call it Tail here
as well.

definition
"Tail(a) ≡ {〈k, a‘(succ(k))〉. k ∈ pred(domain(a))}"
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A dual notion to Tail is the list of all elements of a list except the last one.
Borrowing the terminology from Haskell again, we will call this Init.

definition
"Init(a) ≡ restrict(a,pred(domain(a)))"

Another obvious operation we can talk about is appending an element at
the end of a sequence. This is called Append.

definition
"Append(a,x) ≡ a ∪ {〈domain(a),x〉}"

If lists are modeled as finite sequences (i.e. functions on natural intervals
{0, 1, .., n − 1} = n) it is easy to get the first element of a list as the value
of the sequence at 0. The last element is the value at n − 1. To hide this
behind a familiar name we define the Last element of a list.

definition
"Last(a) ≡ a‘(pred(domain(a)))"

Shifted sequence is a function on a the interval of natural numbers.

lemma shifted_seq_props:

assumes A1: "n ∈ nat" "k ∈ nat" and A2: "b:k→X"

shows
"ShiftedSeq(b,n): NatInterval(n,k) → X"

"∀ i ∈ NatInterval(n,k). ShiftedSeq(b,n)‘(i) = b‘(i #- n)"

"∀ j∈k. ShiftedSeq(b,n)‘(n #+ j) = b‘(j)"

proof -

let ?I = "NatInterval(n,domain(b))"

from A2 have Fact: "?I = NatInterval(n,k)" using func1_1_L1 by simp

with A1 A2 have "∀ j∈ ?I. b‘(j #- n) ∈ X"

using inter_diff_in_len apply_funtype by simp

then have
"{〈j, b‘(j #- n)〉. j ∈ ?I} : ?I → X" by (rule ZF_fun_from_total)

with Fact show thesis_1: "ShiftedSeq(b,n): NatInterval(n,k) → X"

using ShiftedSeq_def by simp

{ fix i

from Fact thesis_1 have "ShiftedSeq(b,n): ?I → X" by simp

moreover
assume "i ∈ NatInterval(n,k)"

with Fact have "i ∈ ?I" by simp

moreover from Fact have
"ShiftedSeq(b,n) = {〈i, b‘(i #- n)〉. i ∈ ?I}"

using ShiftedSeq_def by simp

ultimately have "ShiftedSeq(b,n)‘(i) = b‘(i #- n)"

by (rule ZF_fun_from_tot_val)

} then show thesis1:

"∀ i ∈ NatInterval(n,k). ShiftedSeq(b,n)‘(i) = b‘(i #- n)"

by simp

{ fix j

let ?i = "n #+ j"
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assume A3: "j∈k"
with A1 have "j ∈ nat" using elem_nat_is_nat by blast

then have "?i #- n = j" using diff_add_inverse by simp

with A3 thesis1 have "ShiftedSeq(b,n)‘(?i) = b‘(j)"

using NatInterval_def by auto

} then show "∀ j∈k. ShiftedSeq(b,n)‘(n #+ j) = b‘(j)"

by simp

qed

Basis properties of the contatenation of two finite sequences.

theorem concat_props:

assumes A1: "n ∈ nat" "k ∈ nat" and A2: "a:n→X" "b:k→X"

shows
"Concat(a,b): n #+ k → X"

"∀ i∈n. Concat(a,b)‘(i) = a‘(i)"

"∀ i ∈ NatInterval(n,k). Concat(a,b)‘(i) = b‘(i #- n)"

"∀ j ∈ k. Concat(a,b)‘(n #+ j) = b‘(j)"

proof -

from A1 A2 have
"a:n→X" and I: "ShiftedSeq(b,n): NatInterval(n,k) → X"

and "n ∩ NatInterval(n,k) = 0"

using shifted_seq_props length_start_decomp by auto

then have
"a ∪ ShiftedSeq(b,n): n ∪ NatInterval(n,k) → X ∪ X"

by (rule fun_disjoint_Un)

with A1 A2 show "Concat(a,b): n #+ k → X"

using func1_1_L1 Concat_def length_start_decomp by auto

{ fix i assume "i ∈ n"

with A1 I have "i /∈ domain(ShiftedSeq(b,n))"

using length_start_decomp func1_1_L1 by auto

with A2 have "Concat(a,b)‘(i) = a‘(i)"

using func1_1_L1 fun_disjoint_apply1 Concat_def by simp

} thus "∀ i∈n. Concat(a,b)‘(i) = a‘(i)" by simp

{ fix i assume A3: "i ∈ NatInterval(n,k)"

with A1 A2 have "i /∈ domain(a)"

using length_start_decomp func1_1_L1 by auto

with A1 A2 A3 have "Concat(a,b)‘(i) = b‘(i #- n)"

using func1_1_L1 fun_disjoint_apply2 Concat_def shifted_seq_props

by simp

} thus II: "∀ i ∈ NatInterval(n,k). Concat(a,b)‘(i) = b‘(i #- n)"

by simp

{ fix j

let ?i = "n #+ j"

assume A3: "j∈k"
with A1 have "j ∈ nat" using elem_nat_is_nat by blast

then have "?i #- n = j" using diff_add_inverse by simp

with A3 II have "Concat(a,b)‘(?i) = b‘(j)"

using NatInterval_def by auto

} thus "∀ j ∈ k. Concat(a,b)‘(n #+ j) = b‘(j)"
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by simp

qed

Properties of concatenating three lists.

lemma concat_concat_list:

assumes A1: "n ∈ nat" "k ∈ nat" "m ∈ nat" and
A2: "a:n→X" "b:k→X" "c:m→X" and
A3: "d = Concat(Concat(a,b),c)"

shows
"d : n #+k #+ m → X"

"∀ j ∈ n. d‘(j) = a‘(j)"

"∀ j ∈ k. d‘(n #+ j) = b‘(j)"

"∀ j ∈ m. d‘(n #+ k #+ j) = c‘(j)"

proof -

from A1 A2 have I:

"n #+ k ∈ nat" "m ∈ nat"

"Concat(a,b): n #+ k → X" "c:m→X"

using concat_props by auto

with A3 show "d: n #+k #+ m → X"

using concat_props by simp

from I have II: "∀ i ∈ n #+ k.

Concat(Concat(a,b),c)‘(i) = Concat(a,b)‘(i)"

by (rule concat_props)

{ fix j assume A4: "j ∈ n"

moreover from A1 have "n ⊆ n #+ k" using add_nat_le by simp

ultimately have "j ∈ n #+ k" by auto

with A3 II have "d‘(j) = Concat(a,b)‘(j)" by simp

with A1 A2 A4 have "d‘(j) = a‘(j)"

using concat_props by simp

} thus "∀ j ∈ n. d‘(j) = a‘(j)" by simp

{ fix j assume A5: "j ∈ k"

with A1 A3 II have "d‘(n #+ j) = Concat(a,b)‘(n #+ j)"

using add_lt_mono by simp

also from A1 A2 A5 have ". . . = b‘(j)"

using concat_props by simp

finally have "d‘(n #+ j) = b‘(j)" by simp

} thus "∀ j ∈ k. d‘(n #+ j) = b‘(j)" by simp

from I have "∀ j ∈ m. Concat(Concat(a,b),c)‘(n #+ k #+ j) = c‘(j)"

by (rule concat_props)

with A3 show "∀ j ∈ m. d‘(n #+ k #+ j) = c‘(j)"

by simp

qed

Properties of concatenating a list with a concatenation of two other lists.

lemma concat_list_concat:

assumes A1: "n ∈ nat" "k ∈ nat" "m ∈ nat" and
A2: "a:n→X" "b:k→X" "c:m→X" and
A3: "e = Concat(a, Concat(b,c))"

shows
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"e : n #+k #+ m → X"

"∀ j ∈ n. e‘(j) = a‘(j)"

"∀ j ∈ k. e‘(n #+ j) = b‘(j)"

"∀ j ∈ m. e‘(n #+ k #+ j) = c‘(j)"

proof -

from A1 A2 have I:

"n ∈ nat" "k #+ m ∈ nat"

"a:n→X" "Concat(b,c): k #+ m → X"

using concat_props by auto

with A3 show "e : n #+k #+ m → X"

using concat_props add_assoc by simp

from I have "∀ j ∈ n. Concat(a, Concat(b,c))‘(j) = a‘(j)"

by (rule concat_props)

with A3 show "∀ j ∈ n. e‘(j) = a‘(j)" by simp

from I have II:

"∀ j ∈ k #+ m. Concat(a, Concat(b,c))‘(n #+ j) = Concat(b,c)‘(j)"

by (rule concat_props)

{ fix j assume A4: "j ∈ k"

moreover from A1 have "k ⊆ k #+ m" using add_nat_le by simp

ultimately have "j ∈ k #+ m" by auto

with A3 II have "e‘(n #+ j) = Concat(b,c)‘(j)" by simp

also from A1 A2 A4 have ". . . = b‘(j)"

using concat_props by simp

finally have "e‘(n #+ j) = b‘(j)" by simp

} thus "∀ j ∈ k. e‘(n #+ j) = b‘(j)" by simp

{ fix j assume A5: "j ∈ m"

with A1 II A3 have "e‘(n #+ k #+ j) = Concat(b,c)‘(k #+ j)"

using add_lt_mono add_assoc by simp

also from A1 A2 A5 have ". . . = c‘(j)"

using concat_props by simp

finally have "e‘(n #+ k #+ j) = c‘(j)" by simp

} then show "∀ j ∈ m. e‘(n #+ k #+ j) = c‘(j)"

by simp

qed

Concatenation is associative.

theorem concat_assoc:

assumes A1: "n ∈ nat" "k ∈ nat" "m ∈ nat" and
A2: "a:n→X" "b:k→X" "c:m→X"

shows "Concat(Concat(a,b),c) = Concat(a, Concat(b,c))"

proof -

let ?d = "Concat(Concat(a,b),c)"

let ?e = "Concat(a, Concat(b,c))"

from A1 A2 have
"?d : n #+k #+ m → X" and "?e : n #+k #+ m → X"

using concat_concat_list concat_list_concat by auto

moreover have "∀ i ∈ n #+k #+ m. ?d‘(i) = ?e‘(i)"

proof -

{ fix i assume "i ∈ n #+k #+ m"
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moreover from A1 have
"n #+k #+ m = n ∪ NatInterval(n,k) ∪ NatInterval(n #+ k,m)"

using adjacent_intervals3 by simp

ultimately have
"i ∈ n ∨ i ∈ NatInterval(n,k) ∨ i ∈ NatInterval(n #+ k,m)"

by simp

moreover
{ assume "i ∈ n"

with A1 A2 have "?d‘(i) = ?e‘(i)"

using concat_concat_list concat_list_concat by simp }
moreover
{ assume "i ∈ NatInterval(n,k)"

then obtain j where "j∈k" and "i = n #+ j"

using NatInterval_def by auto

with A1 A2 have "?d‘(i) = ?e‘(i)"

using concat_concat_list concat_list_concat by simp }
moreover
{ assume "i ∈ NatInterval(n #+ k,m)"

then obtain j where "j ∈ m" and "i = n #+ k #+ j"

using NatInterval_def by auto

with A1 A2 have "?d‘(i) = ?e‘(i)"

using concat_concat_list concat_list_concat by simp }
ultimately have "?d‘(i) = ?e‘(i)" by auto

} thus ?thesis by simp

qed
ultimately show "?d = ?e" by (rule func_eq)

qed

Properties of Tail.

theorem tail_props:

assumes A1: "n ∈ nat" and A2: "a: succ(n) → X"

shows
"Tail(a) : n → X"

"∀ k ∈ n. Tail(a)‘(k) = a‘(succ(k))"

proof -

from A1 A2 have "∀ k ∈ n. a‘(succ(k)) ∈ X"

using succ_ineq apply_funtype by simp

then have "{〈k, a‘(succ(k))〉. k ∈ n} : n → X"

by (rule ZF_fun_from_total)

with A2 show I: "Tail(a) : n → X"

using func1_1_L1 pred_succ_eq Tail_def by simp

moreover from A2 have "Tail(a) = {〈k, a‘(succ(k))〉. k ∈ n}"

using func1_1_L1 pred_succ_eq Tail_def by simp

ultimately show "∀ k ∈ n. Tail(a)‘(k) = a‘(succ(k))"

by (rule ZF_fun_from_tot_val0)

qed

Properties of Append. It is a bit surprising that the we don’t need to assume
that n is a natural number.
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theorem append_props:

assumes A1: "a: n → X" and A2: "x∈X" and A3: "b = Append(a,x)"

shows
"b : succ(n) → X"

"∀ k∈n. b‘(k) = a‘(k)"

"b‘(n) = x"

proof -

note A1

moreover have I: "n /∈ n" using mem_not_refl by simp

moreover from A1 A3 have II: "b = a ∪ {〈n,x〉}"
using func1_1_L1 Append_def by simp

ultimately have "b : n ∪ {n} → X ∪ {x}"

by (rule func1_1_L11D)

with A2 show "b : succ(n) → X"

using succ_explained set_elem_add by simp

from A1 I II show "∀ k∈n. b‘(k) = a‘(k)" and "b‘(n) = x"

using func1_1_L11D by auto

qed

A special case of append_props: appending to a nonempty list does not
change the head (first element) of the list.

corollary head_of_append:

assumes "n∈ nat" and "a: succ(n) → X" and "x∈X"
shows "Append(a,x)‘(0) = a‘(0)"

using assms append_props empty_in_every_succ by auto

Tail commutes with Append.

theorem tail_append_commute:

assumes A1: "n ∈ nat" and A2: "a: succ(n) → X" and A3: "x∈X"
shows "Append(Tail(a),x) = Tail(Append(a,x))"

proof -

let ?b = "Append(Tail(a),x)"

let ?c = "Tail(Append(a,x))"

from A1 A2 have I: "Tail(a) : n → X" using tail_props

by simp

from A1 A2 A3 have
"succ(n) ∈ nat" and "Append(a,x) : succ(succ(n)) → X"

using append_props by auto

then have II: "∀ k ∈ succ(n). ?c‘(k) = Append(a,x)‘(succ(k))"

by (rule tail_props)

from assms have
"?b : succ(n) → X" and "?c : succ(n) → X"

using tail_props append_props by auto

moreover have "∀ k ∈ succ(n). ?b‘(k) = ?c‘(k)"

proof -

{ fix k assume "k ∈ succ(n)"

hence "k ∈ n ∨ k = n" by auto

moreover
{ assume A4: "k ∈ n"
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with assms II have "?c‘(k) = a‘(succ(k))"

using succ_ineq append_props by simp

moreover
from A3 I have "∀ k∈n. ?b‘(k) = Tail(a)‘(k)"

using append_props by simp

with A1 A2 A4 have "?b‘(k) = a‘(succ(k))"

using tail_props by simp

ultimately have "?b‘(k) = ?c‘(k)" by simp }
moreover
{ assume A5: "k = n"

with A2 A3 I II have "?b‘(k) = ?c‘(k)"

using append_props by auto }
ultimately have "?b‘(k) = ?c‘(k)" by auto

} thus ?thesis by simp

qed
ultimately show "?b = ?c" by (rule func_eq)

qed

Properties of Init.

theorem init_props:

assumes A1: "n ∈ nat" and A2: "a: succ(n) → X"

shows
"Init(a) : n → X"

"∀ k∈n. Init(a)‘(k) = a‘(k)"

"a = Append(Init(a), a‘(n))"

proof -

have "n ⊆ succ(n)" by auto

with A2 have "restrict(a,n): n → X"

using restrict_type2 by simp

moreover from A1 A2 have I: "restrict(a,n) = Init(a)"

using func1_1_L1 pred_succ_eq Init_def by simp

ultimately show thesis1: "Init(a) : n → X" by simp

{ fix k assume "k∈n"
then have "restrict(a,n)‘(k) = a‘(k)"

using restrict by simp

with I have "Init(a)‘(k) = a‘(k)" by simp

} then show thesis2: "∀ k∈n. Init(a)‘(k) = a‘(k)" by simp

let ?b = "Append(Init(a), a‘(n))"

from A2 thesis1 have II:

"Init(a) : n → X" "a‘(n) ∈ X"

"?b = Append(Init(a), a‘(n))"

using apply_funtype by auto

note A2

moreover from II have "?b : succ(n) → X"

by (rule append_props)

moreover have "∀ k ∈ succ(n). a‘(k) = ?b‘(k)"

proof -

{ fix k assume A3: "k ∈ n"

from II have "∀ j∈n. ?b‘(j) = Init(a)‘(j)"
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by (rule append_props)

with thesis2 A3 have "a‘(k) = ?b‘(k)" by simp }
moreover
from II have "?b‘(n) = a‘(n)"

by (rule append_props)

hence " a‘(n) = ?b‘(n)" by simp

ultimately show "∀ k ∈ succ(n). a‘(k) = ?b‘(k)"

by simp

qed
ultimately show "a = ?b" by (rule func_eq)

qed

If we take init of the result of append, we get back the same list.

lemma init_append: assumes A1: "n ∈ nat" and A2: "a:n→X" and A3: "x

∈ X"

shows "Init(Append(a,x)) = a"

proof -

from A2 A3 have "Append(a,x): succ(n)→X" using append_props by simp

with A1 have "Init(Append(a,x)):n→X" and "∀ k∈n. Init(Append(a,x))‘(k)

= Append(a,x)‘(k)"

using init_props by auto

with A2 A3 have "∀ k∈n. Init(Append(a,x))‘(k) = a‘(k)" using append_props

by simp

with ‘Init(Append(a,x)):n→X‘ A2 show ?thesis by (rule func_eq)

qed

A reformulation of definition of Init.

lemma init_def: assumes "n ∈ nat" and "x:succ(n)→X"

shows "Init(x) = restrict(x,n)"

using assms func1_1_L1 Init_def by simp

A lemma about extending a finite sequence by one more value. This is just
a more explicit version of append_props.

lemma finseq_extend:

assumes "a:n→X" "y∈X" "b = a ∪ {〈n,y〉}"
shows
"b: succ(n) → X"

"∀ k∈n. b‘(k) = a‘(k)"

"b‘(n) = y"

using assms Append_def func1_1_L1 append_props by auto

The next lemma is a bit displaced as it is mainly about finite sets. It is
proven here because it uses the notion of Append. Suppose we have a list of
element of A is a bijection. Then for every element that does not belong to
A we can we can construct a bijection for the set A ∪ {x} by appending x.
This is just a specialised version of lemma bij_extend_point from func1.thy.

lemma bij_append_point:

assumes A1: "n ∈ nat" and A2: "b ∈ bij(n,X)" and A3: "x /∈ X"
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shows "Append(b,x) ∈ bij(succ(n), X ∪ {x})"

proof -

from A2 A3 have "b ∪ {〈n,x〉} ∈ bij(n ∪ {n},X ∪ {x})"

using mem_not_refl bij_extend_point by simp

moreover have "Append(b,x) = b ∪ {〈n,x〉}"
proof -

from A2 have "b:n→X"

using bij_def surj_def by simp

then have "b : n → X ∪ {x}" using func1_1_L1B

by blast

then show "Append(b,x) = b ∪ {〈n,x〉}"
using Append_def func1_1_L1 by simp

qed
ultimately show ?thesis using succ_explained by auto

qed

The next lemma rephrases the definition of Last. Recall that in ZF we have
{0, 1, 2, .., n} = n+ 1 =succ(n).

lemma last_seq_elem: assumes "a: succ(n) → X" shows "Last(a) = a‘(n)"

using assms func1_1_L1 pred_succ_eq Last_def by simp

If two finite sequences are the same when restricted to domain one shorter
than the original and have the same value on the last element, then they are
equal.

lemma finseq_restr_eq: assumes A1: "n ∈ nat" and
A2: "a: succ(n) → X" "b: succ(n) → X" and
A3: "restrict(a,n) = restrict(b,n)" and
A4: "a‘(n) = b‘(n)"

shows "a = b"

proof -

{ fix k assume "k ∈ succ(n)"

then have "k ∈ n ∨ k = n" by auto

moreover
{ assume "k ∈ n"

then have
"restrict(a,n)‘(k) = a‘(k)" and "restrict(b,n)‘(k) = b‘(k)"

using restrict by auto

with A3 have "a‘(k) = b‘(k)" by simp }
moreover
{ assume "k = n"

with A4 have "a‘(k) = b‘(k)" by simp }
ultimately have "a‘(k) = b‘(k)" by auto

} then have "∀ k ∈ succ(n). a‘(k) = b‘(k)" by simp

with A2 show "a = b" by (rule func_eq)

qed

Concatenating a list of length 1 is the same as appending its first (and only)
element. Recall that in ZF set theory 1 = {0}.
lemma append_1elem: assumes A1: "n ∈ nat" and
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A2: "a: n → X" and A3: "b : 1 → X"

shows "Concat(a,b) = Append(a,b‘(0))"

proof -

let ?C = "Concat(a,b)"

let ?A = "Append(a,b‘(0))"

from A1 A2 A3 have I:

"n ∈ nat" "1 ∈ nat"

"a:n→X" "b:1→X" by auto

have "?C : succ(n) → X"

proof -

from I have "?C : n #+ 1 → X"

by (rule concat_props)

with A1 show "?C : succ(n) → X" by simp

qed
moreover from A2 A3 have "?A : succ(n) → X"

using apply_funtype append_props by simp

moreover have "∀ k ∈ succ(n). ?C‘(k) = ?A‘(k)"

proof
fix k assume "k ∈ succ(n)"

moreover
{ assume "k ∈ n"

moreover from I have "∀ i ∈ n. ?C‘(i) = a‘(i)"

by (rule concat_props)

moreover from A2 A3 have "∀ i∈n. ?A‘(i) = a‘(i)"

using apply_funtype append_props by simp

ultimately have "?C‘(k) = ?A‘(k)" by simp }
moreover have "?C‘(n) = ?A‘(n)"

proof -

from I have "∀ j ∈ 1. ?C‘(n #+ j) = b‘(j)"

by (rule concat_props)

with A1 A2 A3 show "?C‘(n) = ?A‘(n)"

using apply_funtype append_props by simp

qed
ultimately show "?C‘(k) = ?A‘(k)" by auto

qed
ultimately show "?C = ?A" by (rule func_eq)

qed

A simple lemma about lists of length 1.

lemma list_len1_singleton: assumes A1: "x∈X"
shows "{〈0,x〉} : 1 → X"

proof -

from A1 have "{〈0,x〉} : {0} → X" using pair_func_singleton

by simp

moreover have "{0} = 1" by auto

ultimately show ?thesis by simp

qed

A singleton list is in fact a singleton set with a pair as the only element.

171



lemma list_singleton_pair: assumes A1: "x:1→X" shows "x = {〈0,x‘(0)〉}"
proof -

from A1 have "x = {〈t,x‘(t)〉. t∈1}" by (rule fun_is_set_of_pairs)

hence "x = {〈t,x‘(t)〉. t∈{0} }" by simp

thus ?thesis by simp

qed

When we append an element to the empty list we get a list with length 1.

lemma empty_append1: assumes A1: "x∈X"
shows "Append(0,x): 1 → X" and "Append(0,x)‘(0) = x"

proof -

let ?a = "Append(0,x)"

have "?a = {〈0,x〉}" using Append_def by auto

with A1 show "?a : 1 → X" and "?a‘(0) = x"

using list_len1_singleton pair_func_singleton

by auto

qed

Appending an element is the same as concatenating with certain pair.

lemma append_concat_pair:

assumes "n ∈ nat" and "a: n → X" and "x∈X"
shows "Append(a,x) = Concat(a,{〈0,x〉})"
using assms list_len1_singleton append_1elem pair_val

by simp

An associativity property involving concatenation and appending. For proof
we just convert appending to concatenation and use concat_assoc.

lemma concat_append_assoc: assumes A1: "n ∈ nat" "k ∈ nat" and
A2: "a:n→X" "b:k→X" and A3: "x ∈ X"

shows "Append(Concat(a,b),x) = Concat(a, Append(b,x))"

proof -

from A1 A2 A3 have
"n #+ k ∈ nat" "Concat(a,b) : n #+ k → X" "x ∈ X"

using concat_props by auto

then have
"Append(Concat(a,b),x) = Concat(Concat(a,b),{〈0,x〉})"
by (rule append_concat_pair)

moreover
from A1 A2 A3 have
"n ∈ nat" "k ∈ nat" "1 ∈ nat"

"a:n→X" "b:k→X" "{〈0,x〉} : 1 → X"

using list_len1_singleton by auto

then have
"Concat(Concat(a,b),{〈0,x〉}) = Concat(a, Concat(b,{〈0,x〉}))"
by (rule concat_assoc)

moreover from A1 A2 A3 have "Concat(b,{〈0,x〉}) = Append(b,x)"

using list_len1_singleton append_1elem pair_val by simp

ultimately show "Append(Concat(a,b),x) = Concat(a, Append(b,x))"

by simp
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qed

An identity involving concatenating with init and appending the last ele-
ment.

lemma concat_init_last_elem:

assumes "n ∈ nat" "k ∈ nat" and
"a: n → X" and "b : succ(k) → X"

shows "Append(Concat(a,Init(b)),b‘(k)) = Concat(a,b)"

using assms init_props apply_funtype concat_append_assoc

by simp

A lemma about creating lists by composition and how Append behaves in
such case.

lemma list_compose_append:

assumes A1: "n ∈ nat" and A2: "a : n → X" and
A3: "x ∈ X" and A4: "c : X → Y"

shows
"c O Append(a,x) : succ(n) → Y"

"c O Append(a,x) = Append(c O a, c‘(x))"

proof -

let ?b = "Append(a,x)"

let ?d = "Append(c O a, c‘(x))"

from A2 A4 have "c O a : n → Y"

using comp_fun by simp

from A2 A3 have "?b : succ(n) → X"

using append_props by simp

with A4 show "c O ?b : succ(n) → Y"

using comp_fun by simp

moreover from A3 A4 ‘c O a : n → Y‘ have
"?d: succ(n) → Y"

using apply_funtype append_props by simp

moreover have "∀ k ∈ succ(n). (c O ?b) ‘(k) = ?d‘(k)"

proof -

{ fix k assume "k ∈ succ(n)"

with ‘?b : succ(n) → X‘ have
"(c O ?b) ‘(k) = c‘(?b‘(k))"

using comp_fun_apply by simp

with A2 A3 A4 ‘c O a : n → Y‘ ‘c O a : n → Y‘ ‘k ∈ succ(n)‘

have "(c O ?b) ‘(k) = ?d‘(k)"

using append_props comp_fun_apply apply_funtype

by auto

} thus ?thesis by simp

qed
ultimately show "c O ?b = ?d" by (rule func_eq)

qed

A lemma about appending an element to a list defined by set comprehension.

lemma set_list_append: assumes
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A1: "∀ i ∈ succ(k). b(i) ∈ X" and
A2: "a = {〈i,b(i)〉. i ∈ succ(k)}"

shows
"a: succ(k) → X"

"{〈i,b(i)〉. i ∈ k}: k → X"

"a = Append({〈i,b(i)〉. i ∈ k},b(k))"

proof -

from A1 have "{〈i,b(i)〉. i ∈ succ(k)} : succ(k) → X"

by (rule ZF_fun_from_total)

with A2 show "a: succ(k) → X" by simp

from A1 have "∀ i ∈ k. b(i) ∈ X"

by simp

then show "{〈i,b(i)〉. i ∈ k}: k → X"

by (rule ZF_fun_from_total)

with A2 show "a = Append({〈i,b(i)〉. i ∈ k},b(k))"

using func1_1_L1 Append_def by auto

qed

An induction theorem for lists.

lemma list_induct: assumes A1: "∀ b∈1→X. P(b)" and
A2: "∀ b∈NELists(X). P(b) −→ (∀ x∈X. P(Append(b,x)))" and
A3: "d ∈ NELists(X)"

shows "P(d)"

proof -

{ fix n

assume "n∈nat"
moreover from A1 have "∀ b∈succ(0)→X. P(b)" by simp

moreover have "∀ k∈nat. ((∀ b∈succ(k)→X. P(b)) −→ (∀ c∈succ(succ(k))→X.

P(c)))"

proof -

{ fix k assume "k ∈ nat" assume "∀ b∈succ(k)→X. P(b)"

have "∀ c∈succ(succ(k))→X. P(c)"

proof
fix c assume "c: succ(succ(k))→X"

let ?b = "Init(c)"

let ?x = "c‘(succ(k))"

from ‘k ∈ nat‘ ‘c: succ(succ(k))→X‘ have "?b:succ(k)→X"

using init_props by simp

with A2 ‘k ∈ nat‘ ‘∀ b∈succ(k)→X. P(b)‘ have "∀ x∈X. P(Append(?b,x))"

using NELists_def by auto

with ‘c: succ(succ(k))→X‘ have "P(Append(?b,?x))" using apply_funtype

by simp

with ‘k ∈ nat‘ ‘c: succ(succ(k))→X‘ show "P(c)"

using init_props by simp

qed
} thus ?thesis by simp

qed
ultimately have "∀ b∈succ(n)→X. P(b)" by (rule ind_on_nat)

} with A3 show ?thesis using NELists_def by auto
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qed

17.2 Lists and cartesian products

Lists of length n of elements of some set X can be thought of as a model of
the cartesian product Xn which is more convenient in many applications.

There is a natural bijection between the space (n+ 1)→ X of lists of length
n+ 1 of elements of X and the cartesian product (n→ X)×X.

lemma lists_cart_prod: assumes "n ∈ nat"

shows "{〈x,〈Init(x),x‘(n)〉〉. x ∈ succ(n)→X} ∈ bij(succ(n)→X,(n→X)×X)"
proof -

let ?f = "{〈x,〈Init(x),x‘(n)〉〉. x ∈ succ(n)→X}"

from assms have "∀ x ∈ succ(n)→X. 〈Init(x),x‘(n)〉 ∈ (n→X)×X"
using init_props succ_iff apply_funtype by simp

then have I: "?f: (succ(n)→X)→((n→X)×X)" by (rule ZF_fun_from_total)

moreover from assms I have "∀ x∈succ(n)→X.∀ y∈succ(n)→X. ?f‘(x)=?f‘(y)

−→ x=y"

using ZF_fun_from_tot_val init_def finseq_restr_eq by auto

moreover have "∀ p∈(n→X)×X.∃ x∈succ(n)→X. ?f‘(x) = p"

proof
fix p assume "p ∈ (n→X)×X"
let ?x = "Append(fst(p),snd(p))"

from assms ‘p ∈ (n→X)×X‘ have "?x:succ(n)→X" using append_props

by simp

with I have "?f‘(?x) = 〈Init(?x),?x‘(n)〉" using succ_iff ZF_fun_from_tot_val

by simp

moreover from assms ‘p ∈ (n→X)×X‘ have "Init(?x) = fst(p)" and
"?x‘(n) = snd(p)"

using init_append append_props by auto

ultimately have "?f‘(?x) = 〈fst(p),snd(p)〉" by auto

with ‘p ∈ (n→X)×X‘ ‘?x:succ(n)→X‘ show "∃ x∈succ(n)→X. ?f‘(x)

= p" by auto

qed
ultimately show ?thesis using inj_def surj_def bij_def by auto

qed

We can identify a set X with lists of length one of elements of X.

lemma singleton_list_bij: shows "{〈x,x‘(0)〉. x∈1→X} ∈ bij(1→X,X)"

proof -

let ?f = "{〈x,x‘(0)〉. x∈1→X}"

have "∀ x∈1→X. x‘(0) ∈ X" using apply_funtype by simp

then have I: "?f:(1→X)→X" by (rule ZF_fun_from_total)

moreover have "∀ x∈1→X.∀ y∈1→X. ?f‘(x) = ?f‘(y) −→ x=y"

proof -

{ fix x y

assume "x:1→X" "y:1→X" and "?f‘(x) = ?f‘(y)"

with I have "x‘(0) = y‘(0)" using ZF_fun_from_tot_val by auto
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moreover from ‘x:1→X‘ ‘y:1→X‘ have "x = {〈0,x‘(0)〉}" and "y =

{〈0,y‘(0)〉}"
using list_singleton_pair by auto

ultimately have "x=y" by simp

} thus ?thesis by auto

qed
moreover have "∀ y∈X. ∃ x∈1→X. ?f‘(x)=y"

proof
fix y assume "y∈X"
let ?x = "{〈0,y〉}"
from I ‘y∈X‘ have "?x:1→X" and "?f‘(?x) = y"

using list_len1_singleton ZF_fun_from_tot_val pair_val by auto

thus "∃ x∈1→X. ?f‘(x)=y" by auto

qed
ultimately show ?thesis using inj_def surj_def bij_def by simp

qed

We can identify a set of X-valued lists of length with X.

lemma list_singleton_bij: shows
"{〈x,{〈0,x〉}〉.x∈X} ∈ bij(X,1→X)" and
"{〈y,y‘(0)〉. y∈1→X} = converse({〈x,{〈0,x〉}〉.x∈X})" and
"{〈x,{〈0,x〉}〉.x∈X} = converse({〈y,y‘(0)〉. y∈1→X})"

proof -

let ?f = "{〈y,y‘(0)〉. y∈1→X}"

let ?g = "{〈x,{〈0,x〉}〉.x∈X}"
have "1 = {0}" by auto

then have "?f ∈ bij(1→X,X)" and "?g:X→(1→X)"

using singleton_list_bij pair_func_singleton ZF_fun_from_total

by auto

moreover have "∀ y∈1→X.?g‘(?f‘(y)) = y"

proof
fix y assume "y:1→X"

have "?f:(1→X)→X" using singleton_list_bij bij_def inj_def by simp

with ‘1 = {0}‘ ‘y:1→X‘ ‘?g:X→(1→X)‘ show "?g‘(?f‘(y)) = y"

using ZF_fun_from_tot_val apply_funtype func_singleton_pair

by simp

qed
ultimately show "?g ∈ bij(X,1→X)" and "?f = converse(?g)" and "?g

= converse(?f)"

using comp_conv_id by auto

qed

What is the inverse image of a set by the natural bijection between X-valued
singleton lists and X?

lemma singleton_vimage: assumes "U⊆X" shows "{x∈1→X. x‘(0) ∈ U} =

{ {〈0,y〉}. y∈U}"
proof

have "1 = {0}" by auto

{ fix x assume "x ∈ {x∈1→X. x‘(0) ∈ U}"
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with ‘1 = {0}‘ have "x = {〈0, x‘(0)〉}" using func_singleton_pair by
auto

} thus "{x∈1→X. x‘(0) ∈ U} ⊆ { {〈0,y〉}. y∈U}" by auto

{ fix x assume "x ∈ { {〈0,y〉}. y∈U}"
then obtain y where "x = {〈0,y〉}" and "y∈U" by auto

with ‘1 = {0}‘ assms have "x:1→X" using pair_func_singleton by auto

} thus "{ {〈0,y〉}. y∈U} ⊆ {x∈1→X. x‘(0) ∈ U}" by auto

qed

A technical lemma about extending a list by values from a set.

lemma list_append_from: assumes A1: "n ∈ nat" and A2: "U ⊆ n→X" and
A3: "V ⊆ X"

shows
"{x ∈ succ(n)→X. Init(x) ∈ U ∧ x‘(n) ∈ V} = (

⋃
y∈V.{Append(x,y).x∈U})"

proof -

{ fix x assume "x ∈ {x ∈ succ(n)→X. Init(x) ∈ U ∧ x‘(n) ∈ V}"

then have "x ∈ succ(n)→X" and "Init(x) ∈ U" and I: "x‘(n) ∈ V"

by auto

let ?y = "x‘(n)"

from A1 and ‘x ∈ succ(n)→X‘ have "x = Append(Init(x),?y)"

using init_props by simp

with I and ‘Init(x) ∈ U‘ have "x ∈ (
⋃
y∈V.{Append(a,y).a∈U})" by

auto

}
moreover
{ fix x assume "x ∈ (

⋃
y∈V.{Append(a,y).a∈U})"

then obtain a y where "y∈V" and "a∈U" and "x = Append(a,y)" by
auto

with A2 A3 have "x: succ(n)→X" using append_props by blast

from A2 A3 ‘y∈V‘ ‘a∈U‘ have "a:n→X" and "y∈X" by auto

with A1 ‘a∈U‘ ‘y∈V‘ ‘x = Append(a,y)‘ have "Init(x) ∈ U" and "x‘(n)

∈ V"

using append_props init_append by auto

with ‘x: succ(n)→X‘ have "x ∈ {x ∈ succ(n)→X. Init(x) ∈ U ∧ x‘(n)

∈ V}"

by auto

}
ultimately show ?thesis by blast

qed

end

18 Inductive sequences

theory InductiveSeq_ZF imports Nat_ZF_IML FiniteSeq_ZF

begin

In this theory we discuss sequences defined by conditions of the form a0 =
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x, an+1 = f(an) and similar.

18.1 Sequences defined by induction

One way of defining a sequence (that is a function a : N→ X) is to provide
the first element of the sequence and a function to find the next value when
we have the current one. This is usually called ”defining a sequence by
induction”. In this section we set up the notion of a sequence defined by
induction and prove the theorems needed to use it.

First we define a helper notion of the sequence defined inductively up to a
given natural number n.

definition
"InductiveSequenceN(x,f,n) ≡
THE a. a: succ(n) → domain(f) ∧ a‘(0) = x ∧ (∀ k∈n. a‘(succ(k)) = f‘(a‘(k)))"

From that we define the inductive sequence on the whole set of natural
numbers. Recall that in Isabelle/ZF the set of natural numbers is denoted
nat.

definition
"InductiveSequence(x,f) ≡

⋃
n∈nat. InductiveSequenceN(x,f,n)"

First we will consider the question of existence and uniqueness of finite
inductive sequences. The proof is by induction and the next lemma is the
P (0) step. To understand the notation recall that for natural numbers in
set theory we have n = {0, 1, .., n− 1} and succ(n)= {0, 1, .., n}.
lemma indseq_exun0: assumes A1: "f: X→X" and A2: "x∈X"

shows
"∃ ! a. a: succ(0) → X ∧ a‘(0) = x ∧ ( ∀ k∈0. a‘(succ(k)) = f‘(a‘(k))

)"

proof
fix a b

assume A3:

"a: succ(0) → X ∧ a‘(0) = x ∧ ( ∀ k∈0. a‘(succ(k)) = f‘(a‘(k)) )"

"b: succ(0) → X ∧ b‘(0) = x ∧ ( ∀ k∈0. b‘(succ(k)) = f‘(b‘(k)) )"

moreover have "succ(0) = {0}" by auto

ultimately have "a: {0} → X" "b: {0} → X" by auto

then have "a = {〈0, a‘(0)〉}" "b = {〈0, b‘(0)〉}" using func_singleton_pair

by auto

with A3 show "a=b" by simp

next
let ?a = "{〈0,x〉}"
have "?a : {0} → {x}" using singleton_fun by simp

moreover from A1 A2 have "{x} ⊆ X" by simp

ultimately have "?a : {0} → X"

using func1_1_L1B by blast

moreover have "{0} = succ(0)" by auto
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ultimately have "?a : succ(0) → X" by simp

with A1 show
"∃ a. a: succ(0) → X ∧ a‘(0) = x ∧ (∀ k∈0. a‘(succ(k)) = f‘(a‘(k)))"

using singleton_apply by auto

qed

A lemma about restricting finite sequences needed for the proof of the in-
ductive step of the existence and uniqueness of finite inductive seqences.

lemma indseq_restrict:

assumes A1: "f: X→X" and A2: "x∈X" and A3: "n ∈ nat" and
A4: "a: succ(succ(n))→ X ∧ a‘(0) = x ∧ (∀ k∈succ(n). a‘(succ(k)) =

f‘(a‘(k)))"

and A5: "ar = restrict(a,succ(n))"

shows
"ar: succ(n) → X ∧ ar‘(0) = x ∧ ( ∀ k∈n. ar‘(succ(k)) = f‘(ar‘(k)) )"

proof -

from A3 have "succ(n) ⊆ succ(succ(n))" by auto

with A4 A5 have "ar: succ(n) → X" using restrict_type2 by auto

moreover
from A3 have "0 ∈ succ(n)" using empty_in_every_succ by simp

with A4 A5 have "ar‘(0) = x" using restrict_if by simp

moreover from A3 A4 A5 have "∀ k∈n. ar‘(succ(k)) = f‘(ar‘(k))"

using succ_ineq restrict_if by auto

ultimately show ?thesis by simp

qed

Existence and uniqueness of finite inductive sequences. The proof is by
induction and the next lemma is the inductive step.

lemma indseq_exun_ind:

assumes A1: "f: X→X" and A2: "x∈X" and A3: "n ∈ nat" and
A4: "∃ ! a. a: succ(n) → X ∧ a‘(0) = x ∧ (∀ k∈n. a‘(succ(k)) = f‘(a‘(k)))"

shows
"∃ ! a. a: succ(succ(n)) → X ∧ a‘(0) = x ∧
( ∀ k∈succ(n). a‘(succ(k)) = f‘(a‘(k)) )"

proof
fix a b assume
A5: "a: succ(succ(n)) → X ∧ a‘(0) = x ∧
( ∀ k∈succ(n). a‘(succ(k)) = f‘(a‘(k)) )" and
A6: "b: succ(succ(n)) → X ∧ b‘(0) = x ∧
( ∀ k∈succ(n). b‘(succ(k)) = f‘(b‘(k)) )"

show "a = b"

proof -

let ?ar = "restrict(a,succ(n))"

let ?br = "restrict(b,succ(n))"

note A1 A2 A3 A5

moreover have "?ar = restrict(a,succ(n))" by simp

ultimately have I:

"?ar: succ(n) → X ∧ ?ar‘(0) = x ∧ ( ∀ k∈n. ?ar‘(succ(k)) = f‘(?ar‘(k))

)"
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by (rule indseq_restrict)

note A1 A2 A3 A6

moreover have "?br = restrict(b,succ(n))" by simp

ultimately have
"?br: succ(n) → X ∧ ?br‘(0) = x ∧ ( ∀ k∈n. ?br‘(succ(k)) = f‘(?br‘(k))

)"

by (rule indseq_restrict)

with A4 I have II: "?ar = ?br" by blast

from A3 have "succ(n) ∈ nat" by simp

moreover from A5 A6 have
"a: succ(succ(n)) → X" and "b: succ(succ(n)) → X"

by auto

moreover note II

moreover
have T: "n ∈ succ(n)" by simp

then have "?ar‘(n) = a‘(n)" and "?br‘(n) = b‘(n)" using restrict

by auto

with A5 A6 II T have "a‘(succ(n)) = b‘(succ(n))" by simp

ultimately show "a = b" by (rule finseq_restr_eq)

qed
next show

"∃ a. a: succ(succ(n)) → X ∧ a‘(0) = x ∧
( ∀ k∈succ(n). a‘(succ(k)) = f‘(a‘(k)) )"

proof -

from A4 obtain a where III: "a: succ(n) → X" and IV: "a‘(0) = x"

and V: "∀ k∈n. a‘(succ(k)) = f‘(a‘(k))" by auto

let ?b = "a ∪ {〈succ(n), f‘(a‘(n))〉}"
from A1 III have
VI: "?b : succ(succ(n)) → X" and
VII: "∀ k ∈ succ(n). ?b‘(k) = a‘(k)" and
VIII: "?b‘(succ(n)) = f‘(a‘(n))"

using apply_funtype finseq_extend by auto

from A3 have "0 ∈ succ(n)" using empty_in_every_succ by simp

with IV VII have IX: "?b‘(0) = x" by auto

{ fix k assume "k ∈ succ(n)"

then have "k∈n ∨ k = n" by auto

moreover
{ assume A7: "k ∈ n"

with A3 VII have "?b‘(succ(k)) = a‘(succ(k))"

using succ_ineq by auto

also from A7 V VII have "a‘(succ(k)) = f‘(?b‘(k))" by simp

finally have "?b‘(succ(k)) = f‘(?b‘(k))" by simp }
moreover
{ assume A8: "k = n"

with VIII have "?b‘(succ(k)) = f‘(a‘(k))" by simp

with A8 VII VIII have "?b‘(succ(k)) = f‘(?b‘(k))" by simp }
ultimately have "?b‘(succ(k)) = f‘(?b‘(k))" by auto

} then have "∀ k ∈ succ(n). ?b‘(succ(k)) = f‘(?b‘(k))" by simp
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with VI IX show ?thesis by auto

qed
qed

The next lemma combines indseq_exun0 and indseq_exun_ind to show the
existence and uniqueness of finite sequences defined by induction.

lemma indseq_exun:

assumes A1: "f: X→X" and A2: "x∈X" and A3: "n ∈ nat"

shows
"∃ ! a. a: succ(n) → X ∧ a‘(0) = x ∧ (∀ k∈n. a‘(succ(k)) = f‘(a‘(k)))"

proof -

note A3

moreover from A1 A2 have
"∃ ! a. a: succ(0) → X ∧ a‘(0) = x ∧ ( ∀ k∈0. a‘(succ(k)) = f‘(a‘(k))

)"

using indseq_exun0 by simp

moreover from A1 A2 have "∀ k ∈ nat.

( ∃ ! a. a: succ(k) → X ∧ a‘(0) = x ∧
( ∀ i∈k. a‘(succ(i)) = f‘(a‘(i)) )) −→
( ∃ ! a. a: succ(succ(k)) → X ∧ a‘(0) = x ∧
( ∀ i∈succ(k). a‘(succ(i)) = f‘(a‘(i)) ) )"

using indseq_exun_ind by simp

ultimately show
"∃ ! a. a: succ(n) → X ∧ a‘(0) = x ∧ ( ∀ k∈n. a‘(succ(k)) = f‘(a‘(k))

)"

by (rule ind_on_nat)

qed

We are now ready to prove the main theorem about finite inductive se-
quences.

theorem fin_indseq_props:

assumes A1: "f: X→X" and A2: "x∈X" and A3: "n ∈ nat" and
A4: "a = InductiveSequenceN(x,f,n)"

shows
"a: succ(n) → X"

"a‘(0) = x"

"∀ k∈n. a‘(succ(k)) = f‘(a‘(k))"

proof -

let ?i = "THE a. a: succ(n) → X ∧ a‘(0) = x ∧
( ∀ k∈n. a‘(succ(k)) = f‘(a‘(k)) )"

from A1 A2 A3 have
"∃ ! a. a: succ(n) → X ∧ a‘(0) = x ∧ ( ∀ k∈n. a‘(succ(k)) = f‘(a‘(k))

)"

using indseq_exun by simp

then have
"?i: succ(n) → X ∧ ?i‘(0) = x ∧ ( ∀ k∈n. ?i‘(succ(k)) = f‘(?i‘(k))

)"

by (rule theI)

moreover from A1 A4 have "a = ?i"
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using InductiveSequenceN_def func1_1_L1 by simp

ultimately show
"a: succ(n) → X" "a‘(0) = x" "∀ k∈n. a‘(succ(k)) = f‘(a‘(k))"

by auto

qed

A corollary about the domain of a finite inductive sequence.

corollary fin_indseq_domain:

assumes A1: "f: X→X" and A2: "x∈X" and A3: "n ∈ nat"

shows "domain(InductiveSequenceN(x,f,n)) = succ(n)"

proof -

from assms have "InductiveSequenceN(x,f,n) : succ(n) → X"

using fin_indseq_props by simp

then show ?thesis using func1_1_L1 by simp

qed

The collection of finite sequences defined by induction is consistent in the
sense that the restriction of the sequence defined on a larger set to the
smaller set is the same as the sequence defined on the smaller set.

lemma indseq_consistent: assumes A1: "f: X→X" and A2: "x∈X" and
A3: "i ∈ nat" "j ∈ nat" and A4: "i ⊆ j"

shows
"restrict(InductiveSequenceN(x,f,j),succ(i)) = InductiveSequenceN(x,f,i)"

proof -

let ?a = "InductiveSequenceN(x,f,j)"

let ?b = "restrict(InductiveSequenceN(x,f,j),succ(i))"

let ?c = "InductiveSequenceN(x,f,i)"

from A1 A2 A3 have
"?a: succ(j) → X" "?a‘(0) = x" "∀ k∈j. ?a‘(succ(k)) = f‘(?a‘(k))"

using fin_indseq_props by auto

with A3 A4 have
"?b: succ(i) → X ∧ ?b‘(0) = x ∧ ( ∀ k∈i. ?b‘(succ(k)) = f‘(?b‘(k)))"

using succ_subset restrict_type2 empty_in_every_succ restrict succ_ineq

by auto

moreover from A1 A2 A3 have
"?c: succ(i) → X ∧ ?c‘(0) = x ∧ ( ∀ k∈i. ?c‘(succ(k)) = f‘(?c‘(k)))"

using fin_indseq_props by simp

moreover from A1 A2 A3 have
"∃ ! a. a: succ(i) → X ∧ a‘(0) = x ∧ ( ∀ k∈i. a‘(succ(k)) = f‘(a‘(k))

)"

using indseq_exun by simp

ultimately show "?b = ?c" by blast

qed

For any two natural numbers one of the corresponding inductive sequences
is contained in the other.

lemma indseq_subsets: assumes A1: "f: X→X" and A2: "x∈X" and
A3: "i ∈ nat" "j ∈ nat" and
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A4: "a = InductiveSequenceN(x,f,i)" "b = InductiveSequenceN(x,f,j)"

shows "a ⊆ b ∨ b ⊆ a"

proof -

from A3 have "i⊆j ∨ j⊆i" using nat_incl_total by simp

moreover
{ assume "i⊆j"

with A1 A2 A3 A4 have "restrict(b,succ(i)) = a"

using indseq_consistent by simp

moreover have "restrict(b,succ(i)) ⊆ b"

using restrict_subset by simp

ultimately have "a ⊆ b ∨ b ⊆ a" by simp }
moreover
{ assume "j⊆i"

with A1 A2 A3 A4 have "restrict(a,succ(j)) = b"

using indseq_consistent by simp

moreover have "restrict(a,succ(j)) ⊆ a"

using restrict_subset by simp

ultimately have "a ⊆ b ∨ b ⊆ a" by simp }
ultimately show "a ⊆ b ∨ b ⊆ a" by auto

qed

The first theorem about properties of infinite inductive sequences: inductive
sequence is a indeed a sequence (i.e. a function on the set of natural numbers.

theorem indseq_seq: assumes A1: "f: X→X" and A2: "x∈X"
shows "InductiveSequence(x,f) : nat → X"

proof -

let ?S = "{InductiveSequenceN(x,f,n). n ∈ nat}"

{ fix a assume "a∈?S"
then obtain n where "n ∈ nat" and "a = InductiveSequenceN(x,f,n)"

by auto

with A1 A2 have "a : succ(n)→X" using fin_indseq_props

by simp

then have "∃ A B. a:A→B" by auto

} then have "∀ a ∈ ?S. ∃ A B. a:A→B" by auto

moreover
{ fix a b assume "a∈?S" "b∈?S"

then obtain i j where "i∈nat" "j∈nat" and
"a = InductiveSequenceN(x,f,i)" "b = InductiveSequenceN(x,f,j)"

by auto

with A1 A2 have "a⊆b ∨ b⊆a" using indseq_subsets by simp

} then have "∀ a∈?S. ∀ b∈?S. a⊆b ∨ b⊆a" by auto

ultimately have "
⋃
?S : domain(

⋃
?S) → range(

⋃
?S)"

using fun_Union by simp

with A1 A2 have I: "
⋃
?S : nat → range(

⋃
?S)"

using domain_UN fin_indseq_domain nat_union_succ by simp

moreover
{ fix k assume A3: "k ∈ nat"

let ?y = "(
⋃
?S)‘(k)"

note I A3
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moreover have "?y = (
⋃
?S)‘(k)" by simp

ultimately have "〈k,?y〉 ∈ (
⋃
?S)" by (rule func1_1_L5A)

then obtain n where "n ∈ nat" and II: "〈k,?y〉 ∈ InductiveSequenceN(x,f,n)"

by auto

with A1 A2 have "InductiveSequenceN(x,f,n): succ(n) → X"

using fin_indseq_props by simp

with II have "?y ∈ X" using func1_1_L5 by blast

} then have "∀ k ∈ nat. (
⋃
?S)‘(k) ∈ X" by simp

ultimately have "
⋃
?S : nat → X" using func1_1_L1A

by blast

then show "InductiveSequence(x,f) : nat → X"

using InductiveSequence_def by simp

qed

Restriction of an inductive sequence to a finite domain is the corresponding
finite inductive sequence.

lemma indseq_restr_eq:

assumes A1: "f: X→X" and A2: "x∈X" and A3: "n ∈ nat"

shows
"restrict(InductiveSequence(x,f),succ(n)) = InductiveSequenceN(x,f,n)"

proof -

let ?a = "InductiveSequence(x,f)"

let ?b = "InductiveSequenceN(x,f,n)"

let ?S = "{InductiveSequenceN(x,f,n). n ∈ nat}"

from A1 A2 A3 have
I: "?a : nat → X" and "succ(n) ⊆ nat"

using indseq_seq succnat_subset_nat by auto

then have "restrict(?a,succ(n)) : succ(n) → X"

using restrict_type2 by simp

moreover from A1 A2 A3 have "?b : succ(n) → X"

using fin_indseq_props by simp

moreover
{ fix k assume A4: "k ∈ succ(n)"

from A1 A2 A3 I have
"
⋃
?S : nat → X" "?b ∈ ?S" "?b : succ(n) → X"

using InductiveSequence_def fin_indseq_props by auto

with A4 have "restrict(?a,succ(n))‘(k) = ?b‘(k)"

using fun_Union_apply InductiveSequence_def restrict_if

by simp

} then have "∀ k ∈ succ(n). restrict(?a,succ(n))‘(k) = ?b‘(k)"

by simp

ultimately show ?thesis by (rule func_eq)

qed

The first element of the inductive sequence starting at x and generated by
f is indeed x.

theorem indseq_valat0: assumes A1: "f: X→X" and A2: "x∈X"
shows "InductiveSequence(x,f)‘(0) = x"

proof -
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let ?a = "InductiveSequence(x,f)"

let ?b = "InductiveSequenceN(x,f,0)"

have T: "0∈nat" "0 ∈ succ(0)" by auto

with A1 A2 have "?b‘(0) = x"

using fin_indseq_props by simp

moreover from T have "restrict(?a,succ(0))‘(0) = ?a‘(0)"

using restrict_if by simp

moreover from A1 A2 T have
"restrict(?a,succ(0)) = ?b"

using indseq_restr_eq by simp

ultimately show "?a‘(0) = x" by simp

qed

An infinite inductive sequence satisfies the inductive relation that defines it.

theorem indseq_vals:

assumes A1: "f: X→X" and A2: "x∈X" and A3: "n ∈ nat"

shows
"InductiveSequence(x,f)‘(succ(n)) = f‘(InductiveSequence(x,f)‘(n))"

proof -

let ?a = "InductiveSequence(x,f)"

let ?b = "InductiveSequenceN(x,f,succ(n))"

from A3 have T:

"succ(n) ∈ succ(succ(n))"

"succ(succ(n)) ∈ nat"

"n ∈ succ(succ(n))"

by auto

then have "?a‘(succ(n)) = restrict(?a,succ(succ(n)))‘(succ(n))"

using restrict_if by simp

also from A1 A2 T have ". . . = f‘(restrict(?a,succ(succ(n)))‘(n))"

using indseq_restr_eq fin_indseq_props by simp

also from T have ". . . = f‘(?a‘(n))" using restrict_if by simp

finally show "?a‘(succ(n)) = f‘(?a‘(n))" by simp

qed

18.2 Images of inductive sequences

In this section we consider the properties of sets that are images of inductive
sequences, that is are of the form {f (n)(x) : n ∈ N} for some x in the domain
of f , where f (n) denotes the n’th iteration of the function f . For a function
f : X → X and a point x ∈ X such set is set is sometimes called the orbit
of x generated by f .

The basic properties of orbits.

theorem ind_seq_image: assumes A1: "f: X→X" and A2: "x∈X" and
A3: "A = InductiveSequence(x,f)‘‘(nat)"

shows "x∈A" and "∀ y∈A. f‘(y) ∈ A"

proof -

let ?a = "InductiveSequence(x,f)"
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from A1 A2 have "?a : nat → X" using indseq_seq

by simp

with A3 have I: "A = {?a‘(n). n ∈ nat}" using func_imagedef

by auto hence "?a‘(0) ∈ A" by auto

with A1 A2 show "x∈A" using indseq_valat0 by simp

{ fix y assume "y∈A"
with I obtain n where II: "n ∈ nat" and III: "y = ?a‘(n)"

by auto

with A1 A2 have "?a‘(succ(n)) = f‘(y)"

using indseq_vals by simp

moreover from I II have "?a‘(succ(n)) ∈ A" by auto

ultimately have "f‘(y) ∈ A" by simp

} then show "∀ y∈A. f‘(y) ∈ A" by simp

qed

18.3 Subsets generated by a binary operation

In algebra we often talk about sets ”generated” by an element, that is sets
of the form (in multiplicative notation) {an|n ∈ Z}. This is a related to a
general notion of ”power” (as in an = a · a · .. · a ) or multiplicity n · a =
a+a+ ..+a. The intuitive meaning of such notions is obvious, but we need
to do some work to be able to use it in the formalized setting. This sections
is devoted to sequences that are created by repeatedly applying a binary
operation with the second argument fixed to some constant.

Basic propertes of sets generated by binary operations.

theorem binop_gen_set:

assumes A1: "f: X×Y → X" and A2: "x∈X" "y∈Y" and
A3: "a = InductiveSequence(x,Fix2ndVar(f,y))"

shows
"a : nat → X"

"a‘‘(nat) ∈ Pow(X)"

"x ∈ a‘‘(nat)"

"∀ z ∈ a‘‘(nat). Fix2ndVar(f,y)‘(z) ∈ a‘‘(nat)"

proof -

let ?g = "Fix2ndVar(f,y)"

from A1 A2 have I: "?g : X→X"

using fix_2nd_var_fun by simp

with A2 A3 show "a : nat → X"

using indseq_seq by simp

then show "a‘‘(nat) ∈ Pow(X)" using func1_1_L6 by simp

from A2 A3 I show "x ∈ a‘‘(nat)" using ind_seq_image by blast

from A2 A3 I have
"?g : X→X" "x∈X" "a‘‘(nat) = InductiveSequence(x,?g)‘‘(nat)"

by auto

then show "∀ z ∈ a‘‘(nat). Fix2ndVar(f,y)‘(z) ∈ a‘‘(nat)"

by (rule ind_seq_image)

qed
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A simple corollary to the theorem binop_gen_set: a set that contains all
iterations of the application of a binary operation exists.

lemma binop_gen_set_ex: assumes A1: "f: X×Y → X" and A2: "x∈X" "y∈Y"
shows "{A ∈ Pow(X). x∈A ∧ (∀ z ∈ A. f‘〈z,y〉 ∈ A) } 6= 0"

proof -

let ?a = "InductiveSequence(x,Fix2ndVar(f,y))"

let ?A = "?a‘‘(nat)"

from A1 A2 have I: "?A ∈ Pow(X)" and "x ∈ ?A" using binop_gen_set

by auto

moreover
{ fix z assume T: "z∈?A"

with A1 A2 have "Fix2ndVar(f,y)‘(z) ∈ ?A"

using binop_gen_set by simp

moreover
from I T have "z ∈ X" by auto

with A1 A2 have "Fix2ndVar(f,y)‘(z) = f‘〈z,y〉"
using fix_var_val by simp

ultimately have "f‘〈z,y〉 ∈ ?A" by simp

} then have "∀ z ∈ ?A. f‘〈z,y〉 ∈ ?A" by simp

ultimately show ?thesis by auto

qed

A more general version of binop_gen_set where the generating binary oper-
ation acts on a larger set.

theorem binop_gen_set1: assumes A1: "f: X×Y → X" and
A2: "X1 ⊆ X" and A3: "x∈X1" "y∈Y" and
A4: "∀ t∈X1. f‘〈t,y〉 ∈ X1" and
A5: "a = InductiveSequence(x,Fix2ndVar(restrict(f,X1×Y),y))"

shows
"a : nat → X1"

"a‘‘(nat) ∈ Pow(X1)"

"x ∈ a‘‘(nat)"

"∀ z ∈ a‘‘(nat). Fix2ndVar(f,y)‘(z) ∈ a‘‘(nat)"

"∀ z ∈ a‘‘(nat). f‘〈z,y〉 ∈ a‘‘(nat)"

proof -

let ?h = "restrict(f,X1×Y)"
let ?g = "Fix2ndVar(?h,y)"

from A2 have "X1×Y ⊆ X×Y" by auto

with A1 have I: "?h : X1×Y → X"

using restrict_type2 by simp

with A3 have II: "?g: X1 → X" using fix_2nd_var_fun by simp

from A3 A4 I have "∀ t∈X1. ?g‘(t) ∈ X1"

using restrict fix_var_val by simp

with II have III: "?g : X1 → X1" using func1_1_L1A by blast

with A3 A5 show "a : nat → X1" using indseq_seq by simp

then show IV: "a‘‘(nat) ∈ Pow(X1)" using func1_1_L6 by simp

from A3 A5 III show "x ∈ a‘‘(nat)" using ind_seq_image by blast

from A3 A5 III have
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"?g : X1 → X1" "x∈X1" "a‘‘(nat) = InductiveSequence(x,?g)‘‘(nat)"

by auto

then have "∀ z ∈ a‘‘(nat). Fix2ndVar(?h,y)‘(z) ∈ a‘‘(nat)"

by (rule ind_seq_image)

moreover
{ fix z assume "z ∈ a‘‘(nat)"

with IV have "z ∈ X1" by auto

with A1 A2 A3 have "?g‘(z) = Fix2ndVar(f,y)‘(z)"

using fix_2nd_var_restr_comm restrict by simp

} then have "∀ z ∈ a‘‘(nat). ?g‘(z) = Fix2ndVar(f,y)‘(z)" by simp

ultimately show "∀ z ∈ a‘‘(nat). Fix2ndVar(f,y)‘(z) ∈ a‘‘(nat)" by
simp

moreover
{ fix z assume "z ∈ a‘‘(nat)"

with A2 IV have "z∈X" by auto

with A1 A3 have "Fix2ndVar(f,y)‘(z) = f‘〈z,y〉"
using fix_var_val by simp

} then have "∀ z ∈ a‘‘(nat). Fix2ndVar(f,y)‘(z) = f‘〈z,y〉"
by simp

ultimately show "∀ z ∈ a‘‘(nat). f‘〈z,y〉 ∈ a‘‘(nat)"

by simp

qed

A generalization of binop_gen_set_ex that applies when the binary operation
acts on a larger set. This is used in our Metamath translation to prove
the existence of the set of real natural numbers. Metamath defines the real
natural numbers as the smallest set that cantains 1 and is closed with respect
to operation of adding 1.

lemma binop_gen_set_ex1: assumes A1: "f: X×Y → X" and
A2: "X1 ⊆ X" and A3: "x∈X1" "y∈Y" and
A4: "∀ t∈X1. f‘〈t,y〉 ∈ X1"

shows "{A ∈ Pow(X1). x∈A ∧ (∀ z ∈ A. f‘〈z,y〉 ∈ A) } 6= 0"

proof -

let ?a = "InductiveSequence(x,Fix2ndVar(restrict(f,X1×Y),y))"
let ?A = "?a‘‘(nat)"

from A1 A2 A3 A4 have
"?A ∈ Pow(X1)" "x ∈ ?A" "∀ z ∈ ?A. f‘〈z,y〉 ∈ ?A"

using binop_gen_set1 by auto

thus ?thesis by auto

qed

18.4 Inductive sequences with changing generating function

A seemingly more general form of a sequence defined by induction is a
sequence generated by the difference equation xn+1 = fn(xn) where n 7→ fn
is a given sequence of functions such that each maps X into inself. For
example when fn(x) := x + xn then the equation Sn+1 = fn(Sn) describes
the sequence n 7→ Sn = s0 +

∑n
i=0 xn, i.e. the sequence of partial sums of
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the sequence {s0, x0, x1, x3, ..}.

The situation where the function that we iterate changes with n can be
derived from the simpler case if we define the generating function appro-
priately. Namely, we replace the generating function in the definitions
of InductiveSequenceN by the function f : X × n → X × n, f〈x, k〉 =
〈fk(x), k + 1〉 if k < n, 〈fk(x), k〉 otherwise. The first notion defines the
expression we will use to define the generating function. To understand the
notation recall that in standard Isabelle/ZF for a pair s = 〈x, n〉 we have
fst(s) = x and snd(s) = n.

definition
"StateTransfFunNMeta(F,n,s) ≡
if (snd(s) ∈ n) then 〈F‘(snd(s))‘(fst(s)), succ(snd(s))〉 else s"

Then we define the actual generating function on sets of pairs from X ×
{0, 1, .., n}.
definition
"StateTransfFunN(X,F,n) ≡ {〈s, StateTransfFunNMeta(F,n,s)〉. s ∈ X×succ(n)}"

Having the generating function we can define the expression that we cen use
to define the inductive sequence generates.

definition
"StatesSeq(x,X,F,n) ≡
InductiveSequenceN(〈x,0〉, StateTransfFunN(X,F,n),n)"

Finally we can define the sequence given by a initial point x, and a sequence
F of n functions.

definition
"InductiveSeqVarFN(x,X,F,n) ≡ {〈k,fst(StatesSeq(x,X,F,n)‘(k))〉. k ∈

succ(n)}"

The state transformation function (StateTransfFunN is a function that trans-
forms X × n into itself.

lemma state_trans_fun: assumes A1: "n ∈ nat" and A2: "F: n → (X→X)"

shows "StateTransfFunN(X,F,n): X×succ(n) → X×succ(n)"
proof -

{ fix s assume A3: "s ∈ X×succ(n)"
let ?x = "fst(s)"

let ?k = "snd(s)"

let ?S = "StateTransfFunNMeta(F,n,s)"

from A3 have T: "?x ∈ X" "?k ∈ succ(n)" and "〈?x,?k〉 = s" by auto

{ assume A4: "?k ∈ n"

with A1 have "succ(?k) ∈ succ(n)" using succ_ineq by simp

with A2 T A4 have "?S ∈ X×succ(n)"
using apply_funtype StateTransfFunNMeta_def by simp }

with A2 A3 T have "?S ∈ X×succ(n)"
using apply_funtype StateTransfFunNMeta_def by auto

189



} then have "∀ s ∈ X×succ(n). StateTransfFunNMeta(F,n,s) ∈ X×succ(n)"
by simp

then have
"{〈s, StateTransfFunNMeta(F,n,s)〉. s ∈ X×succ(n)} : X×succ(n) →

X×succ(n)"
by (rule ZF_fun_from_total)

then show "StateTransfFunN(X,F,n): X×succ(n) → X×succ(n)"
using StateTransfFunN_def by simp

qed

We can apply fin_indseq_props to the sequence used in the definition of
InductiveSeqVarFN to get the properties of the sequence of states generated
by the StateTransfFunN.

lemma states_seq_props:

assumes A1: "n ∈ nat" and A2: "F: n → (X→X)" and A3: "x∈X" and
A4: "b = StatesSeq(x,X,F,n)"

shows
"b : succ(n) → X×succ(n)"
"b‘(0) = 〈x,0〉"
"∀ k ∈ succ(n). snd(b‘(k)) = k"

"∀ k∈n. b‘(succ(k)) = 〈F‘(k)‘(fst(b‘(k))), succ(k)〉"
proof -

let ?f = "StateTransfFunN(X,F,n)"

from A1 A2 have I: "?f : X×succ(n) → X×succ(n)"
using state_trans_fun by simp

moreover from A1 A3 have II: "〈x,0〉 ∈ X×succ(n)"
using empty_in_every_succ by simp

moreover note A1

moreover from A4 have III: "b = InductiveSequenceN(〈x,0〉,?f,n)"
using StatesSeq_def by simp

ultimately show IV: "b : succ(n) → X×succ(n)"
by (rule fin_indseq_props)

from I II A1 III show V: "b‘(0) = 〈x,0〉"
by (rule fin_indseq_props)

from I II A1 III have VI: "∀ k∈n. b‘(succ(k)) = ?f‘(b‘(k))"

by (rule fin_indseq_props)

{ fix k

note I

moreover
assume A5: "k ∈ n" hence "k ∈ succ(n)" by auto

with IV have "b‘(k) ∈ X×succ(n)" using apply_funtype by simp

moreover have "?f = {〈s, StateTransfFunNMeta(F,n,s)〉. s ∈ X×succ(n)}"
using StateTransfFunN_def by simp

ultimately have "?f‘(b‘(k)) = StateTransfFunNMeta(F,n,b‘(k))"

by (rule ZF_fun_from_tot_val)

} then have VII: "∀ k ∈ n. ?f‘(b‘(k)) = StateTransfFunNMeta(F,n,b‘(k))"

by simp

{ fix k assume A5: "k ∈ succ(n)"

note A1 A5
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moreover from V have " snd(b‘(0)) = 0" by simp

moreover from VI VII have
"∀ j∈n. snd(b‘(j)) = j −→ snd(b‘(succ(j))) = succ(j)"

using StateTransfFunNMeta_def by auto

ultimately have "snd(b‘(k)) = k" by (rule fin_nat_ind)

} then show "∀ k ∈ succ(n). snd(b‘(k)) = k" by simp

with VI VII show "∀ k∈n. b‘(succ(k)) = 〈F‘(k)‘(fst(b‘(k))), succ(k)〉"
using StateTransfFunNMeta_def by auto

qed

Basic properties of sequences defined by equation xn+1 = fn(xn).

theorem fin_indseq_var_f_props:

assumes A1: "n ∈ nat" and A2: "x∈X" and A3: "F: n → (X→X)" and
A4: "a = InductiveSeqVarFN(x,X,F,n)"

shows
"a: succ(n) → X"

"a‘(0) = x"

"∀ k∈n. a‘(succ(k)) = F‘(k)‘(a‘(k))"

proof -

let ?f = "StateTransfFunN(X,F,n)"

let ?b = "StatesSeq(x,X,F,n)"

from A1 A2 A3 have "?b : succ(n) → X×succ(n)"
using states_seq_props by simp

then have "∀ k ∈ succ(n). ?b‘(k) ∈ X×succ(n)"
using apply_funtype by simp

hence "∀ k ∈ succ(n). fst(?b‘(k)) ∈ X" by auto

then have I: "{〈k,fst(?b‘(k))〉. k ∈ succ(n)} : succ(n) → X"

by (rule ZF_fun_from_total)

with A4 show II: "a: succ(n) → X" using InductiveSeqVarFN_def

by simp

moreover from A1 have "0 ∈ succ(n)" using empty_in_every_succ

by simp

moreover from A4 have III:

"a = {〈k,fst(StatesSeq(x,X,F,n)‘(k))〉. k ∈ succ(n)}"

using InductiveSeqVarFN_def by simp

ultimately have "a‘(0) = fst(?b‘(0))"

by (rule ZF_fun_from_tot_val)

with A1 A2 A3 show "a‘(0) = x" using states_seq_props by auto

{ fix k

assume A5: "k ∈ n"

with A1 have T1: "succ(k) ∈ succ(n)" and T2: "k ∈ succ(n)"

using succ_ineq by auto

from II T1 III have "a‘(succ(k)) = fst(?b‘(succ(k)))"

by (rule ZF_fun_from_tot_val)

with A1 A2 A3 A5 have "a‘(succ(k)) = F‘(k)‘(fst(?b‘(k)))"

using states_seq_props by simp

moreover from II T2 III have "a‘(k) = fst(?b‘(k))"

by (rule ZF_fun_from_tot_val)

ultimately have "a‘(succ(k)) = F‘(k)‘(a‘(k))"
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by simp

} then show "∀ k∈n. a‘(succ(k)) = F‘(k)‘(a‘(k))"

by simp

qed

A consistency condition: if we make the sequence of generating functions
shorter, then we get a shorter inductive sequence with the same values as in
the original sequence.

lemma fin_indseq_var_f_restrict: assumes
A1: "n ∈ nat" "i ∈ nat" "x∈X" "F: n → (X→X)" "G: i → (X→X)"

and A2: "i ⊆ n" and A3: "∀ j∈i. G‘(j) = F‘(j)" and A4: "k ∈ succ(i)"

shows "InductiveSeqVarFN(x,X,G,i)‘(k) = InductiveSeqVarFN(x,X,F,n)‘(k)"

proof -

let ?a = "InductiveSeqVarFN(x,X,F,n)"

let ?b = "InductiveSeqVarFN(x,X,G,i)"

from A1 A4 have "i ∈ nat" "k ∈ succ(i)" by auto

moreover from A1 have "?b‘(0) = ?a‘(0)"

using fin_indseq_var_f_props by simp

moreover from A1 A2 A3 have
"∀ j∈i. ?b‘(j) = ?a‘(j) −→ ?b‘(succ(j)) = ?a‘(succ(j))"

using fin_indseq_var_f_props by auto

ultimately show "?b‘(k) = ?a‘(k)"

by (rule fin_nat_ind)

qed

end

19 Folding in ZF

theory Fold_ZF imports InductiveSeq_ZF

begin

Suppose we have a binary operation P : X×X → X written multiplicatively
as P 〈x, y〉 = x·y. In informal mathematics we can take a sequence {xk}k∈0..n

of elements of X and consider the product x0 ·x1 ·..·xn. To do the same thing
in formalized mathematics we have to define precisely what is meant by that
”·..·”. The definitition we want to use is based on the notion of sequence
defined by induction discussed in InductiveSeq_ZF. We don’t really want to
derive the terminology for this from the word ”product” as that would tie it
conceptually to the multiplicative notation. This would be awkward when
we want to reuse the same notions to talk about sums like x0 +x1 + ..+xn.

In functional programming there is something called ”fold”. Namely for a
function f , initial point a and list [b, c, d] the expression fold(f, a, [b,c,d])
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is defined to be f(f(f(a,b),c),d) (in Haskell something like this is called
foldl). If we write f in multiplicative notation we get a · b · c · d, so this
is exactly what we need. The notion of folds in functional programming
is actually much more general that what we need here (not that I know
anything about that). In this theory file we just make a slight generalization
and talk about folding a list with a binary operation f : X × Y → X with
X not necessarily the same as Y .

19.1 Folding in ZF

Suppose we have a binary operation f : X × Y → X. Then every y ∈ Y
defines a transformation of X defined by Ty(x) = f〈x, y〉. In IsarMathLib
such transformation is called as Fix2ndVar(f,y). Using this notion, given a
function f : X × Y → X and a sequence y = {yk}k∈N of elements of X we
can get a sequence of transformations of X. This is defined in Seq2TransSeq

below. Then we use that sequence of tranformations to define the sequence
of partial folds (called FoldSeq) by means of InductiveSeqVarFN (defined in
InductiveSeq_ZF theory) which implements the inductive sequence deter-
mined by a starting point and a sequence of transformations. Finally, we
define the fold of a sequence as the last element of the sequence of the partial
folds.

Definition that specifies how to convert a sequence a of elements of Y into a
sequence of transformations of X, given a binary operation f : X×Y → X.

definition
"Seq2TrSeq(f,a) ≡ {〈k,Fix2ndVar(f,a‘(k))〉. k ∈ domain(a)}"

Definition of a sequence of partial folds.

definition
"FoldSeq(f,x,a) ≡
InductiveSeqVarFN(x,fstdom(f),Seq2TrSeq(f,a),domain(a))"

Definition of a fold.

definition
"Fold(f,x,a) ≡ Last(FoldSeq(f,x,a))"

IfX is a set with a binary operation f : X×Y → X then Seq2TransSeqN(f,a)

converts a sequence a of elements of Y into the sequence of corresponding
transformations of X.

lemma seq2trans_seq_props:

assumes A1: "n ∈ nat" and A2: "f : X×Y → X" and A3: "a:n→Y" and
A4: "T = Seq2TrSeq(f,a)"

shows
"T : n → (X→X)" and
"∀ k∈n. ∀ x∈X. (T‘(k))‘(x) = f‘〈x,a‘(k)〉"
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proof -

from ‘a:n→Y‘ have D: "domain(a) = n" using func1_1_L1 by simp

with A2 A3 A4 show "T : n → (X→X)"

using apply_funtype fix_2nd_var_fun ZF_fun_from_total Seq2TrSeq_def

by simp

with A4 D have I: "∀ k ∈ n. T‘(k) = Fix2ndVar(f,a‘(k))"

using Seq2TrSeq_def ZF_fun_from_tot_val0 by simp

{ fix k fix x assume A5: "k∈n" "x∈X"
with A1 A3 have "a‘(k) ∈ Y" using apply_funtype

by auto

with A2 A5 I have "(T‘(k))‘(x) = f‘〈x,a‘(k)〉"
using fix_var_val by simp

} thus "∀ k∈n. ∀ x∈X. (T‘(k))‘(x) = f‘〈x,a‘(k)〉"
by simp

qed

Basic properties of the sequence of partial folds of a sequence a = {yk}k∈{0,..,n}.
theorem fold_seq_props:

assumes A1: "n ∈ nat" and A2: "f : X×Y → X" and
A3: "y:n→Y" and A4: "x∈X" and A5: "Y6=0" and
A6: "F = FoldSeq(f,x,y)"

shows
"F: succ(n) → X"

"F‘(0) = x" and
"∀ k∈n. F‘(succ(k)) = f‘〈F‘(k), y‘(k)〉"

proof -

let ?T = "Seq2TrSeq(f,y)"

from A1 A3 have D: "domain(y) = n"

using func1_1_L1 by simp

from ‘f : X×Y → X‘ ‘Y6=0‘ have I: "fstdom(f) = X"

using fstdomdef by simp

with A1 A2 A3 A4 A6 D show
II: "F: succ(n) → X" and "F‘(0) = x"

using seq2trans_seq_props FoldSeq_def fin_indseq_var_f_props

by auto

from A1 A2 A3 A4 A6 I D have "∀ k∈n. F‘(succ(k)) = ?T‘(k)‘(F‘(k))"

using seq2trans_seq_props FoldSeq_def fin_indseq_var_f_props

by simp

moreover
{ fix k assume A5: "k∈n" hence "k ∈ succ(n)" by auto

with A1 A2 A3 II A5 have "(?T‘(k))‘(F‘(k)) = f‘〈F‘(k),y‘(k)〉"
using apply_funtype seq2trans_seq_props by simp }

ultimately show "∀ k∈n. F‘(succ(k)) = f‘〈F‘(k), y‘(k)〉"
by simp

qed

A consistency condition: if we make the list shorter, then we get a shorter
sequence of partial folds with the same values as in the original sequence.
This can be proven as a special case of fin_indseq_var_f_restrict but a
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proof using fold_seq_props and induction turns out to be shorter.

lemma foldseq_restrict: assumes
"n ∈ nat" "k ∈ succ(n)" and
"i ∈ nat" "f : X×Y → X" "a : n → Y" "b : i → Y" and
"n ⊆ i" "∀ j ∈ n. b‘(j) = a‘(j)" "x ∈ X" "Y 6= 0"

shows "FoldSeq(f,x,b)‘(k) = FoldSeq(f,x,a)‘(k)"

proof -

let ?P = "FoldSeq(f,x,a)"

let ?Q = "FoldSeq(f,x,b)"

from assms have
"n ∈ nat" "k ∈ succ(n)"

"?Q‘(0) = ?P‘(0)" and
"∀ j ∈ n. ?Q‘(j) = ?P‘(j) −→ ?Q‘(succ(j)) = ?P‘(succ(j))"

using fold_seq_props by auto

then show "?Q‘(k) = ?P‘(k)" by (rule fin_nat_ind)

qed

A special case of foldseq_restrict when the longer sequence is created from
the shorter one by appending one element.

corollary fold_seq_append:

assumes "n ∈ nat" "f : X×Y → X" "a:n → Y" and
"x∈X" "k ∈ succ(n)" "y∈Y"
shows "FoldSeq(f,x,Append(a,y))‘(k) = FoldSeq(f,x,a)‘(k)"

proof -

let ?b = "Append(a,y)"

from assms have "?b : succ(n) → Y" "∀ j ∈ n. ?b‘(j) = a‘(j)"

using append_props by auto

with assms show ?thesis using foldseq_restrict by blast

qed

What we really will be using is the notion of the fold of a sequence, which we
define as the last element of (inductively defined) sequence of partial folds.
The next theorem lists some properties of the product of the fold operation.

theorem fold_props:

assumes A1: "n ∈ nat" and
A2: "f : X×Y → X" "a:n → Y" "x∈X" "Y6=0"

shows
"Fold(f,x,a) = FoldSeq(f,x,a)‘(n)" and
"Fold(f,x,a) ∈ X"

proof -

from assms have " FoldSeq(f,x,a) : succ(n) → X"

using fold_seq_props by simp

with A1 show
"Fold(f,x,a) = FoldSeq(f,x,a)‘(n)" and "Fold(f,x,a) ∈ X"

using last_seq_elem apply_funtype Fold_def by auto

qed

A corner case: what happens when we fold an empty list?
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theorem fold_empty: assumes A1: "f : X×Y → X" and
A2: "a:0→Y" "x∈X" "Y6=0"

shows "Fold(f,x,a) = x"

proof -

let ?F = "FoldSeq(f,x,a)"

from assms have I:

"0 ∈ nat" "f : X×Y → X" "a:0→Y" "x∈X" "Y6=0"

by auto

then have "Fold(f,x,a) = ?F‘(0)" by (rule fold_props)

moreover
from I have
"0 ∈ nat" "f : X×Y → X" "a:0→Y" "x∈X" "Y6=0" and
"?F = FoldSeq(f,x,a)" by auto

then have "?F‘(0) = x" by (rule fold_seq_props)

ultimately show "Fold(f,x,a) = x" by simp

qed

The next theorem tells us what happens to the fold of a sequence when we
add one more element to it.

theorem fold_append:

assumes A1: "n ∈ nat" and A2: "f : X×Y → X" and
A3: "a:n→Y" and A4: "x∈X" and A5: "y∈Y"
shows
"FoldSeq(f,x,Append(a,y))‘(n) = Fold(f,x,a)" and
"Fold(f,x,Append(a,y)) = f‘〈Fold(f,x,a), y〉"

proof -

let ?b = "Append(a,y)"

let ?P = "FoldSeq(f,x,?b)"

from A5 have I: "Y 6= 0" by auto

with assms show thesis1: "?P‘(n) = Fold(f,x,a)"

using fold_seq_append fold_props by simp

from assms I have II:

"succ(n) ∈ nat" "f : X×Y → X"

"?b : succ(n) → Y" "x∈X" "Y 6= 0"

"?P = FoldSeq(f,x,?b)"

using append_props by auto

then have
"∀ k ∈ succ(n). ?P‘(succ(k)) = f‘〈?P‘(k), ?b‘(k)〉"
by (rule fold_seq_props)

with A3 A5 thesis1 have "?P‘(succ(n)) = f‘〈 Fold(f,x,a), y〉"
using append_props by auto

moreover
from II have "?P : succ(succ(n)) → X"

by (rule fold_seq_props)

then have "Fold(f,x,?b) = ?P‘(succ(n))"

using last_seq_elem Fold_def by simp

ultimately show "Fold(f,x,Append(a,y)) = f‘〈Fold(f,x,a), y〉"
by simp

qed
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end

20 Partitions of sets

theory Partitions_ZF imports Finite_ZF FiniteSeq_ZF

begin

It is a common trick in proofs that we divide a set into non-overlapping
subsets. The first case is when we split the set into two nonempty disjoint
sets. Here this is modeled as an ordered pair of sets and the set of such
divisions of set X is called Bisections(X). The second variation on this
theme is a set-valued function (aren’t they all in ZF?) whose values are
nonempty and mutually disjoint.

20.1 Bisections

This section is about dividing sets into two non-overlapping subsets.

The set of bisections of a given set A is a set of pairs of nonempty subsets
of A that do not overlap and their union is equal to A.

definition
"Bisections(X) = {p ∈ Pow(X)×Pow(X).
fst(p)6=0 ∧ snd(p)6=0 ∧ fst(p)∩snd(p) = 0 ∧ fst(p)∪snd(p) = X}"

Properties of bisections.

lemma bisec_props: assumes "〈A,B〉 ∈ Bisections(X)" shows
"A 6=0" "B6=0" "A ⊆ X" "B ⊆ X" "A ∩ B = 0" "A ∪ B = X" "X 6= 0"

using assms Bisections_def by auto

Kind of inverse of bisec_props: a pair of nonempty disjoint sets form a
bisection of their union.

lemma is_bisec:

assumes "A6=0" "B6=0" "A ∩ B = 0"

shows "〈A,B〉 ∈ Bisections(A∪B)" using assms Bisections_def

by auto

Bisection of X is a pair of subsets of X.

lemma bisec_is_pair: assumes "Q ∈ Bisections(X)"

shows "Q = 〈fst(Q), snd(Q)〉"
using assms Bisections_def by auto

The set of bisections of the empty set is empty.

lemma bisec_empty: shows "Bisections(0) = 0"
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using Bisections_def by auto

The next lemma shows what can we say about bisections of a set with
another element added.

lemma bisec_add_point:

assumes A1: "x /∈ X" and A2: "〈A,B〉 ∈ Bisections(X ∪ {x})"

shows "(A = {x} ∨ B = {x}) ∨ (〈A - {x}, B - {x}〉 ∈ Bisections(X))"

proof -

{ assume "A 6= {x}" and "B 6= {x}"

with A2 have "A - {x} 6= 0" and "B - {x} 6= 0"

using singl_diff_empty Bisections_def

by auto

moreover have "(A - {x}) ∪ (B - {x}) = X"

proof -

have "(A - {x}) ∪ (B - {x}) = (A ∪ B) - {x}"

by auto

also from assms have "(A ∪ B) - {x} = X"

using Bisections_def by auto

finally show ?thesis by simp

qed
moreover from A2 have "(A - {x}) ∩ (B - {x}) = 0"

using Bisections_def by auto

ultimately have "〈A - {x}, B - {x}〉 ∈ Bisections(X)"

using Bisections_def by auto

} thus ?thesis by auto

qed

A continuation of the lemma bisec_add_point that refines the case when the
pair with removed point bisects the original set.

lemma bisec_add_point_case3:

assumes A1: "〈A,B〉 ∈ Bisections(X ∪ {x})"

and A2: "〈A - {x}, B - {x}〉 ∈ Bisections(X)"

shows
"(〈A, B - {x}〉 ∈ Bisections(X) ∧ x ∈ B) ∨
(〈A - {x}, B〉 ∈ Bisections(X) ∧ x ∈ A)"

proof -

from A1 have "x ∈ A ∪ B"

using Bisections_def by auto

hence "x∈A ∨ x∈B" by simp

from A1 have "A - {x} = A ∨ B - {x} = B"

using Bisections_def by auto

moreover
{ assume "A - {x} = A"

with A2 ‘x ∈ A ∪ B‘ have
"〈A, B - {x}〉 ∈ Bisections(X) ∧ x ∈ B"

using singl_diff_eq by simp }
moreover
{ assume "B - {x} = B"

with A2 ‘x ∈ A ∪ B‘ have
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"〈A - {x}, B〉 ∈ Bisections(X) ∧ x ∈ A"

using singl_diff_eq by simp }
ultimately show ?thesis by auto

qed

Another lemma about bisecting a set with an added point.

lemma point_set_bisec:

assumes A1: "x /∈ X" and A2: "〈{x}, A〉 ∈ Bisections(X ∪ {x})"

shows "A = X" and "X 6= 0"

proof -

from A2 have "A ⊆ X" using Bisections_def by auto

moreover
{ fix a assume "a∈X"

with A2 have "a ∈ {x} ∪ A" using Bisections_def by simp

with A1 ‘a∈X‘ have "a ∈ A" by auto }
ultimately show "A = X" by auto

with A2 show "X 6= 0" using Bisections_def by simp

qed

Yet another lemma about bisecting a set with an added point, very similar
to point_set_bisec with almost the same proof.

lemma set_point_bisec:

assumes A1: "x /∈ X" and A2: "〈A, {x}〉 ∈ Bisections(X ∪ {x})"

shows "A = X" and "X 6= 0"

proof -

from A2 have "A ⊆ X" using Bisections_def by auto

moreover
{ fix a assume "a∈X"

with A2 have "a ∈ A ∪ {x}" using Bisections_def by simp

with A1 ‘a∈X‘ have "a ∈ A" by auto }
ultimately show "A = X" by auto

with A2 show "X 6= 0" using Bisections_def by simp

qed

If a pair of sets bisects a finite set, then both elements of the pair are finite.

lemma bisect_fin:

assumes A1: "A ∈ FinPow(X)" and A2: "Q ∈ Bisections(A)"

shows "fst(Q) ∈ FinPow(X)" and "snd(Q) ∈ FinPow(X)"

proof -

from A2 have "〈fst(Q), snd(Q)〉 ∈ Bisections(A)"

using bisec_is_pair by simp

then have "fst(Q) ⊆ A" and "snd(Q) ⊆ A"

using bisec_props by auto

with A1 show "fst(Q) ∈ FinPow(X)" and "snd(Q) ∈ FinPow(X)"

using FinPow_def subset_Finite by auto

qed
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20.2 Partitions

This sections covers the situation when we have an arbitrary number of sets
we want to partition into.

We define a notion of a partition as a set valued function such that the values
for different arguments are disjoint. The name is derived from the fact that
such function ”partitions” the union of its arguments. Please let me know
if you have a better idea for a name for such notion. We would prefer to
say ”is a partition”, but that reserves the letter ”a” as a keyword(?) which
causes problems.

definition
Partition ("_ {is partition}" [90] 91) where
"P {is partition} ≡ ∀ x ∈ domain(P).

P‘(x) 6= 0 ∧ (∀ y ∈ domain(P). x6=y −→ P‘(x) ∩ P‘(y) = 0)"

A fact about lists of mutually disjoint sets.

lemma list_partition: assumes A1: "n ∈ nat" and
A2: "a : succ(n) → X" "a {is partition}"

shows "(
⋃
i∈n. a‘(i)) ∩ a‘(n) = 0"

proof -

{ assume "(
⋃
i∈n. a‘(i)) ∩ a‘(n) 6= 0"

then have "∃ x. x ∈ (
⋃
i∈n. a‘(i)) ∩ a‘(n)"

by (rule nonempty_has_element)

then obtain x where "x ∈ (
⋃
i∈n. a‘(i))" and I: "x ∈ a‘(n)"

by auto

then obtain i where "i ∈ n" and "x ∈ a‘(i)" by auto

with A2 I have False

using mem_imp_not_eq func1_1_L1 Partition_def

by auto

} thus ?thesis by auto

qed

We can turn every injection into a partition.

lemma inj_partition:

assumes A1: "b ∈ inj(X,Y)"

shows
"∀ x ∈ X. {〈x, {b‘(x)}〉. x ∈ X}‘(x) = {b‘(x)}" and
"{〈x, {b‘(x)}〉. x ∈ X} {is partition}"

proof -

let ?p = "{〈x, {b‘(x)}〉. x ∈ X}"

{ fix x assume "x ∈ X"

from A1 have "b : X → Y" using inj_def

by simp

with ‘x ∈ X‘ have "{b‘(x)} ∈ Pow(Y)"

using apply_funtype by simp

} hence "∀ x ∈ X. {b‘(x)} ∈ Pow(Y)" by simp

then have "?p : X → Pow(Y)" using ZF_fun_from_total
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by simp

then have "domain(?p) = X" using func1_1_L1

by simp

from ‘?p : X → Pow(Y)‘ show I: "∀ x ∈ X. ?p‘(x) = {b‘(x)}"

using ZF_fun_from_tot_val0 by simp

{ fix x assume "x ∈ X"

with I have "?p‘(x) = {b‘(x)}" by simp

hence "?p‘(x) 6= 0" by simp

moreover
{ fix t assume "t ∈ X" and "x 6= t"

with A1 ‘x ∈ X‘ have "b‘(x) 6= b‘(t)" using inj_def

by auto

with I ‘x∈X‘ ‘t ∈ X‘ have "?p‘(x) ∩ ?p‘(t) = 0"

by auto }
ultimately have
"?p‘(x) 6= 0 ∧ (∀ t ∈ X. x6=t −→ ?p‘(x) ∩ ?p‘(t) = 0)"

by simp

} with ‘domain(?p) = X‘ show "{〈x, {b‘(x)}〉. x ∈ X} {is partition}"

using Partition_def by simp

qed

end

21 Enumerations

theory Enumeration_ZF imports NatOrder_ZF FiniteSeq_ZF FinOrd_ZF

begin

Suppose r is a linear order on a set A that has n elements, where n ∈ N .
In the FinOrd_ZF theory we prove a theorem stating that there is a unique
order isomorphism between n = {0, 1, .., n− 1} (with natural order) and A.
Another way of stating that is that there is a unique way of counting the
elements of A in the order increasing according to relation r. Yet another
way of stating the same thing is that there is a unique sorted list of elements
of A. We will call this list the Enumeration of A.

21.1 Enumerations: definition and notation

In this section we introduce the notion of enumeration and define a proof
context (a ”locale” in Isabelle terms) that sets up the notation for writing
about enumarations.

We define enumeration as the only order isomorphism beween a set A and
the number of its elements. We are using the formula

⋃
{x} = x to extract
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the only element from a singleton. Le is the (natural) order on natural
numbers, defined is Nat_ZF theory in the standard Isabelle library.

definition
"Enumeration(A,r) ≡

⋃
ord_iso(|A|,Le,A,r)"

To set up the notation we define a locale enums. In this locale we will assume
that r is a linear order on some set X. In most applications this set will
be just the set of natural numbers. Standard Isabelle uses ≤ to denote
the ”less or equal” relation on natural numbers. We will use the ≤ symbol
to denote the relation r. Those two symbols usually look the same in the
presentation, but they are different in the source.To shorten the notation the
enumeration Enumeration(A,r) will be denoted as σ(A). Similarly as in the
Semigroup theory we will write a←↩ x for the result of appending an element
x to the finite sequence (list) a. Finally, at b will denote the concatenation
of the lists a and b.

locale enums =

fixes X r

assumes linord: "IsLinOrder(X,r)"

fixes ler (infix "≤" 70)

defines ler_def[simp]: "x ≤ y ≡ 〈x,y〉 ∈ r"

fixes σ
defines σ_def [simp]: "σ(A) ≡ Enumeration(A,r)"

fixes append (infix "←↩" 72)

defines append_def[simp]: "a ←↩ x ≡ Append(a,x)"

fixes concat (infixl "t" 69)

defines concat_def[simp]: "a t b ≡ Concat(a,b)"

21.2 Properties of enumerations

In this section we prove basic facts about enumerations.

A special case of the existence and uniqueess of the order isomorphism for
finite sets when the first set is a natural number.

lemma (in enums) ord_iso_nat_fin:

assumes "A ∈ FinPow(X)" and "n ∈ nat" and "A ≈ n"

shows "∃ !f. f ∈ ord_iso(n,Le,A,r)"

using assms NatOrder_ZF_1_L2 linord nat_finpow_nat

fin_ord_iso_ex_uniq by simp

An enumeration is an order isomorhism, a bijection, and a list.

lemma (in enums) enum_props: assumes "A ∈ FinPow(X)"

shows
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"σ(A) ∈ ord_iso(|A|,Le, A,r)"

"σ(A) ∈ bij(|A|,A)"

"σ(A) : |A| → A"

proof -

from assms have
"IsLinOrder(nat,Le)" and "|A| ∈ FinPow(nat)" and "A ≈ |A|"

using NatOrder_ZF_1_L2 card_fin_is_nat nat_finpow_nat

by auto

with assms show "σ(A) ∈ ord_iso(|A|,Le, A,r)"

using linord fin_ord_iso_ex_uniq sigleton_extract

Enumeration_def by simp

then show "σ(A) ∈ bij(|A|,A)" and "σ(A) : |A| → A"

using ord_iso_def bij_def surj_def

by auto

qed

A corollary from enum_props. Could have been attached as another assertion,
but this slows down verification of some other proofs.

lemma (in enums) enum_fun: assumes "A ∈ FinPow(X)"

shows "σ(A) : |A| → X"

proof -

from assms have "σ(A) : |A| → A" and "A⊆X"
using enum_props FinPow_def by auto

then show "σ(A) : |A| → X" by (rule func1_1_L1B)

qed

If a list is an order isomorphism then it must be the enumeration.

lemma (in enums) ord_iso_enum: assumes A1: "A ∈ FinPow(X)" and
A2: "n ∈ nat" and A3: "f ∈ ord_iso(n,Le,A,r)"

shows "f = σ(A)"
proof -

from A3 have "n ≈ A" using ord_iso_def eqpoll_def

by auto

then have "A ≈ n" by (rule eqpoll_sym)

with A1 A2 have "∃ !f. f ∈ ord_iso(n,Le,A,r)"

using ord_iso_nat_fin by simp

with assms ‘A ≈ n‘ show "f = σ(A)"
using enum_props card_card by blast

qed

What is the enumeration of the empty set?

lemma (in enums) empty_enum: shows "σ(0) = 0"

proof -

have
"0 ∈ FinPow(X)" and "0 ∈ nat" and "0 ∈ ord_iso(0,Le,0,r)"

using empty_in_finpow empty_ord_iso_empty

by auto

then show "σ(0) = 0" using ord_iso_enum

by blast
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qed

Adding a new maximum to a set appends it to the enumeration.

lemma (in enums) enum_append:

assumes A1: "A ∈ FinPow(X)" and A2: "b ∈ X-A" and
A3: "∀ a∈A. a≤b"
shows " σ(A ∪ {b}) = σ(A)←↩ b"

proof -

let ?f = "σ(A) ∪ {〈|A|,b〉}"
from A1 have "|A| ∈ nat" using card_fin_is_nat

by simp

from A1 A2 have "A ∪ {b} ∈ FinPow(X)"

using singleton_in_finpow union_finpow by simp

moreover from this have "|A ∪ {b}| ∈ nat"

using card_fin_is_nat by simp

moreover have "?f ∈ ord_iso(|A ∪ {b}| , Le, A ∪ {b} ,r)"

proof -

from A1 A2 have
"σ(A) ∈ ord_iso(|A|,Le, A,r)" and
"|A| /∈ |A|" and "b /∈ A"

using enum_props mem_not_refl by auto

moreover from ‘|A| ∈ nat‘ have
"∀ k ∈ |A|. 〈k, |A|〉 ∈ Le"

using elem_nat_is_nat by blast

moreover from A3 have "∀ a∈A. 〈a,b〉 ∈ r" by simp

moreover have "antisym(Le)" and "antisym(r)"

using linord NatOrder_ZF_1_L2 IsLinOrder_def by auto

moreover
from A2 ‘|A| ∈ nat‘ have
"〈|A|,|A|〉 ∈ Le" and "〈b,b〉 ∈ r"

using linord NatOrder_ZF_1_L2 IsLinOrder_def

total_is_refl refl_def by auto

hence "〈|A|,|A|〉 ∈ Le ←→ 〈b,b〉 ∈ r" by simp

ultimately have "?f ∈ ord_iso(|A| ∪ {|A|} , Le, A ∪ {b} ,r)"

by (rule ord_iso_extend)

with A1 A2 show "?f ∈ ord_iso(|A ∪ {b}| , Le, A ∪ {b} ,r)"

using card_fin_add_one by simp

qed
ultimately have "?f = σ(A ∪ {b})"

using ord_iso_enum by simp

moreover have "σ(A)←↩ b = ?f"

proof -

have "σ(A)←↩ b = σ(A) ∪ {〈domain(σ(A)),b〉}"
using Append_def by simp

moreover from A1 have "domain(σ(A)) = |A|"

using enum_props func1_1_L1 by blast

ultimately show "σ(A)←↩ b = ?f" by simp

qed
ultimately show "σ(A ∪ {b}) = σ(A)←↩ b" by simp
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qed

What is the enumeration of a singleton?

lemma (in enums) enum_singleton:

assumes A1: "x∈X" shows "σ({x}): 1 → X" and "σ({x})‘(0) = x"

proof -

from A1 have
"0 ∈ FinPow(X)" and "x ∈ (X - 0)" and "∀ a∈0. a≤x"
using empty_in_finpow by auto

then have "σ(0 ∪ {x}) = σ(0)←↩ x" by (rule enum_append)

with A1 show "σ({x}): 1 → X" and "σ({x})‘(0) = x"

using empty_enum empty_append1 by auto

qed

end

22 Semigroups

theory Semigroup_ZF imports Partitions_ZF Fold_ZF Enumeration_ZF

begin

It seems that the minimal setup needed to talk about a product of a sequence
is a set with a binary operation. Such object is called ”magma”. However,
interesting properties show up when the binary operation is associative and
such alebraic structure is called a semigroup. In this theory file we define and
study sequences of partial products of sequences of magma and semigroup
elements.

22.1 Products of sequences of semigroup elements

Semigroup is a a magma in which the binary operation is associative. In this
section we mostly study the products of sequences of elements of semigroup.
The goal is to establish the fact that taking the product of a sequence is
distributive with respect to concatenation of sequences, i.e for two sequences
a, b of the semigroup elements we have

∏
(atb) = (

∏
a)·(

∏
b), where ”atb”

is concatenation of a and b (a++b in Haskell notation). Less formally, we
want to show that we can discard parantheses in expressions of the form
(a0 · a1 · .. · an) · (b0 · .. · bk).

First we define a notion similar to Fold, except that that the initial element
of the fold is given by the first element of sequence. By analogy with Haskell
fold we call that Fold1

definition
"Fold1(f,a) ≡ Fold(f,a‘(0),Tail(a))"
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The definition of the semigr0 context below introduces notation for writing
about finite sequences and semigroup products. In the context we fix the
carrier and denote it G. The binary operation on G is called f . All theorems
proven in the context semigr0 will implicitly assume that f is an associative
operation on G. We will use multiplicative notation for the semigroup oper-
ation. The product of a sequence a is denoted

∏
a. We will write a←↩ x for

the result of appending an element x to the finite sequence (list) a. This is a
bit nonstandard, but I don’t have a better idea for the ”append” notation.
Finally, a t b will denote the concatenation of the lists a and b.

locale semigr0 =

fixes G f

assumes assoc_assum: "f {is associative on} G"

fixes prod (infixl "·" 72)

defines prod_def [simp]: "x · y ≡ f‘〈x,y〉"

fixes seqprod ("
∏

_" 71)

defines seqprod_def [simp]: "
∏

a ≡ Fold1(f,a)"

fixes append (infix "←↩" 72)

defines append_def [simp]: "a ←↩ x ≡ Append(a,x)"

fixes concat (infixl "t" 69)

defines concat_def [simp]: "a t b ≡ Concat(a,b)"

The next lemma shows our assumption on the associativity of the semigroup
operation in the notation defined in in the semigr0 context.

lemma (in semigr0) semigr_assoc: assumes "x ∈ G" "y ∈ G" "z ∈ G"

shows "x·y·z = x·(y·z)"
using assms assoc_assum IsAssociative_def by simp

In the way we define associativity the assumption that f is associative on
G also implies that it is a binary operation on X.

lemma (in semigr0) semigr_binop: shows "f : G×G → G"

using assoc_assum IsAssociative_def by simp

Semigroup operation is closed.

lemma (in semigr0) semigr_closed:

assumes "a∈G" "b∈G" shows "a·b ∈ G"

using assms semigr_binop apply_funtype by simp

Lemma append_1elem written in the notation used in the semigr0 context.

lemma (in semigr0) append_1elem_nice:

assumes "n ∈ nat" and "a: n → X" and "b : 1 → X"

shows "a t b = a ←↩ b‘(0)"
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using assms append_1elem by simp

Lemma concat_init_last_elem rewritten in the notation used in the semigr0

context.

lemma (in semigr0) concat_init_last:

assumes "n ∈ nat" "k ∈ nat" and
"a: n → X" and "b : succ(k) → X"

shows "(a t Init(b)) ←↩ b‘(k) = a t b"

using assms concat_init_last_elem by simp

The product of semigroup (actually, magma – we don’t need associativity
for this) elements is in the semigroup.

lemma (in semigr0) prod_type:

assumes "n ∈ nat" and "a : succ(n) → G"

shows "(
∏

a) ∈ G"

proof -

from assms have
"succ(n) ∈ nat" "f : G×G → G" "Tail(a) : n → G"

using semigr_binop tail_props by auto

moreover from assms have "a‘(0) ∈ G" and "G 6= 0"

using empty_in_every_succ apply_funtype

by auto

ultimately show "(
∏

a) ∈ G" using Fold1_def fold_props

by simp

qed

What is the product of one element list?

lemma (in semigr0) prod_of_1elem: assumes A1: "a: 1 → G"

shows "(
∏

a) = a‘(0)"

proof -

have "f : G×G → G" using semigr_binop by simp

moreover from A1 have "Tail(a) : 0 → G" using tail_props

by blast

moreover from A1 have "a‘(0) ∈ G" and "G 6= 0"

using apply_funtype by auto

ultimately show "(
∏

a) = a‘(0)" using fold_empty Fold1_def

by simp

qed

What happens to the product of a list when we append an element to the
list?

lemma (in semigr0) prod_append: assumes A1: "n ∈ nat" and
A2: "a : succ(n) → G" and A3: "x∈G"
shows "(

∏
a←↩x) = (

∏
a) · x"

proof -

from A1 A2 have I: "Tail(a) : n → G" "a‘(0) ∈ G"

using tail_props empty_in_every_succ apply_funtype

by auto
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from assms have "(
∏

a←↩x) = Fold(f,a‘(0),Tail(a)←↩x)"
using head_of_append tail_append_commute Fold1_def

by simp

also from A1 A3 I have ". . . = (
∏

a) · x"
using semigr_binop fold_append Fold1_def

by simp

finally show ?thesis by simp

qed

The main theorem of the section: taking the product of a sequence is dis-
tributive with respect to concatenation of sequences. The proof is by induc-
tion on the length of the second list.

theorem (in semigr0) prod_conc_distr:

assumes A1: "n ∈ nat" "k ∈ nat" and
A2: "a : succ(n) → G" "b: succ(k) → G"

shows "(
∏

a) · (
∏

b) =
∏

(a t b)"

proof -

from A1 have "k ∈ nat" by simp

moreover have "∀ b ∈ succ(0) → G. (
∏

a) · (
∏

b) =
∏

(a t b)"

proof -

{ fix b assume A3: "b : succ(0) → G"

with A1 A2 have
"succ(n) ∈ nat" "a : succ(n) → G" "b : 1 → G"

by auto

then have "a t b = a ←↩ b‘(0)" by (rule append_1elem_nice)

with A1 A2 A3 have "(
∏

a) · (
∏

b) =
∏

(a t b)"

using apply_funtype prod_append semigr_binop prod_of_1elem

by simp

} thus ?thesis by simp

qed
moreover have "∀ j ∈ nat.

(∀ b ∈ succ(j) → G. (
∏

a) · (
∏

b) =
∏

(a t b)) −→
(∀ b ∈ succ(succ(j)) → G. (

∏
a) · (

∏
b) =

∏
(a t b))"

proof -

{ fix j assume A4: "j ∈ nat" and
A5: "(∀ b ∈ succ(j) → G. (

∏
a) · (

∏
b) =

∏
(a t b))"

{ fix b assume A6: "b : succ(succ(j)) → G"

let ?c = "Init(b)"

from A4 A6 have T: "b‘(succ(j)) ∈ G" and
I: "?c : succ(j) → G" and II: "b = ?c←↩b‘(succ(j))"
using apply_funtype init_props by auto

from A1 A2 A4 A6 have
"succ(n) ∈ nat" "succ(j) ∈ nat"

"a : succ(n) → G" "b : succ(succ(j)) → G"

by auto

then have III: "(a t ?c) ←↩ b‘(succ(j)) = a t b"

by (rule concat_init_last)

from A4 I T have "(
∏

?c←↩b‘(succ(j))) = (
∏

?c) · b‘(succ(j))"
by (rule prod_append)
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with II have
"(
∏

a) · (
∏

b) = (
∏

a) · ((
∏

?c) · b‘(succ(j)))"
by simp

moreover from A1 A2 A4 T I have
"(
∏

a) ∈ G" "(
∏

?c) ∈ G" "b‘(succ(j)) ∈ G"

using prod_type by auto

ultimately have
"(
∏

a) · (
∏

b) = ((
∏

a) · (
∏

?c)) · b‘(succ(j))"
using semigr_assoc by auto

with A5 I have "(
∏

a) · (
∏

b) = (
∏

(a t ?c))·b‘(succ(j))"
by simp

moreover
from A1 A2 A4 I have
T1: "succ(n) ∈ nat" "succ(j) ∈ nat" and
"a : succ(n) → G" "?c : succ(j) → G"

by auto

then have "Concat(a,?c): succ(n) #+ succ(j) → G"

by (rule concat_props)

with A1 A4 T have
"succ(n #+ j) ∈ nat"

"a t ?c : succ(succ(n #+j)) → G"

"b‘(succ(j)) ∈ G"

using succ_plus by auto

then have
"(
∏

(a t ?c)←↩b‘(succ(j))) = (
∏

(a t ?c))·b‘(succ(j))"
by (rule prod_append)

with III have "(
∏

(a t ?c))·b‘(succ(j)) =
∏

(a t b)"

by simp

ultimately have "(
∏

a) · (
∏

b) =
∏

(a t b)"

by simp

} hence "(∀ b ∈ succ(succ(j)) → G. (
∏

a) · (
∏

b) =
∏

(a t b))"

by simp

} thus ?thesis by blast

qed
ultimately have "∀ b ∈ succ(k) → G. (

∏
a) · (

∏
b) =

∏
(a t b)"

by (rule ind_on_nat)

with A2 show "(
∏

a) · (
∏

b) =
∏

(a t b)" by simp

qed

22.2 Products over sets of indices

In this section we study the properties of expressions of the form
∏

i∈Λ ai =
ai0 · ai1 · .. · ai−1, i.e. what we denote as

∏
(Λ,a). Λ here is a finite subset of

some set X and a is a function defined on X with values in the semigroup
G.

Suppose a : X → G is an indexed family of elements of a semigroup G
and Λ = {i0, i1, .., in−1} ⊆ N is a finite set of indices. We want to define∏

i∈Λ ai = ai0 · ai1 · .. · ai−1. To do that we use the notion of Enumeration
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defined in the Enumeration_ZF theory file that takes a set of indices and lists
them in increasing order, thus converting it to list. Then we use the Fold1

to multiply the resulting list. Recall that in Isabelle/ZF the capital letter
”O” denotes the composition of two functions (or relations).

definition
"SetFold(f,a,Λ,r) = Fold1(f,a O Enumeration(Λ,r))"

For a finite subset Λ of a linearly ordered set X we will write σ(Λ) to denote
the enumeration of the elements of Λ, i.e. the only order isomorphism |Λ| →
Λ, where |Λ| ∈ N is the number of elements of Λ. We also define notation
for taking a product over a set of indices of some sequence of semigroup
elements. The product of semigroup elements over some set Λ ⊆ X of
indices of a sequence a : X → G (i.e.

∏
i∈Λ ai) is denoted

∏
(Λ,a). In the

semigr1 context we assume that a is a function defined on some linearly
ordered set X with values in the semigroup G.

locale semigr1 = semigr0 +

fixes X r

assumes linord: "IsLinOrder(X,r)"

fixes a

assumes a_is_fun: "a : X → G"

fixes σ
defines σ_def [simp]: "σ(A) ≡ Enumeration(A,r)"

fixes setpr ("
∏
")

defines setpr_def [simp]: "
∏
(Λ,b) ≡ SetFold(f,b,Λ,r)"

We can use the enums locale in the semigr0 context.

lemma (in semigr1) enums_valid_in_semigr1: shows "enums(X,r)"

using linord enums_def by simp

Definition of product over a set expressed in notation of the semigr0 locale.

lemma (in semigr1) setproddef:

shows "
∏
(Λ,a) =

∏
(a O σ(Λ))"

using SetFold_def by simp

A composition of enumeration of a nonempty finite subset of N with a se-
quence of elements of G is a nonempty list of elements of G. This implies
that a product over set of a finite set of indices belongs to the (carrier of)
semigroup.

lemma (in semigr1) setprod_type: assumes
A1: "Λ ∈ FinPow(X)" and A2: "Λ 6=0"

shows
"∃ n ∈ nat . |Λ| = succ(n) ∧ a O σ(Λ) : succ(n) → G"
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and "
∏
(Λ,a) ∈ G"

proof -

from assms obtain n where "n ∈ nat" and "|Λ| = succ(n)"

using card_non_empty_succ by auto

from A1 have "σ(Λ) : |Λ| → Λ"
using enums_valid_in_semigr1 enums.enum_props

by simp

with A1 have "a O σ(Λ): |Λ| → G"

using a_is_fun FinPow_def comp_fun_subset

by simp

with ‘n ∈ nat‘ and ‘|Λ| = succ(n)‘ show
"∃ n ∈ nat . |Λ| = succ(n) ∧ a O σ(Λ) : succ(n) → G"

by auto

from ‘n ∈ nat‘ ‘|Λ| = succ(n)‘ ‘a O σ(Λ): |Λ| → G‘

show "
∏
(Λ,a) ∈ G" using prod_type setproddef

by auto

qed

The enum_append lemma from the Enemeration theory specialized for natural
numbers.

lemma (in semigr1) semigr1_enum_append:

assumes "Λ ∈ FinPow(X)" and
"n ∈ X - Λ" and "∀ k∈Λ. 〈k,n〉 ∈ r"

shows "σ(Λ ∪ {n}) = σ(Λ)←↩ n"
using assms FinPow_def enums_valid_in_semigr1

enums.enum_append by simp

What is product over a singleton?

lemma (in semigr1) gen_prod_singleton:

assumes A1: "x ∈ X"

shows "
∏
({x},a) = a‘(x)"

proof -

from A1 have "σ({x}): 1 → X" and "σ({x})‘(0) = x"

using enums_valid_in_semigr1 enums.enum_singleton

by auto

then show "
∏
({x},a) = a‘(x)"

using a_is_fun comp_fun setproddef prod_of_1elem

comp_fun_apply by simp

qed

A generalization of prod_append to the products over sets of indices.

lemma (in semigr1) gen_prod_append:

assumes
A1: "Λ ∈ FinPow(X)" and A2: "Λ 6= 0" and
A3: "n ∈ X - Λ" and
A4: "∀ k∈Λ. 〈k,n〉 ∈ r"

shows "
∏
(Λ ∪ {n}, a) = (

∏
(Λ,a)) · a‘(n)"

proof -

have "
∏
(Λ ∪ {n}, a) =

∏
(a O σ(Λ ∪ {n}))"
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using setproddef by simp

also from A1 A3 A4 have ". . . =
∏

(a O (σ(Λ)←↩ n))"
using semigr1_enum_append by simp

also have ". . . =
∏

((a O σ(Λ))←↩ a‘(n))"
proof -

from A1 A3 have
"|Λ| ∈ nat" and "σ(Λ) : |Λ| → X" and "n ∈ X"

using card_fin_is_nat enums_valid_in_semigr1 enums.enum_fun

by auto

then show ?thesis using a_is_fun list_compose_append

by simp

qed
also from assms have ". . . = (

∏
(a O σ(Λ)))·a‘(n)"

using a_is_fun setprod_type apply_funtype prod_append

by blast

also have ". . . = (
∏
(Λ,a)) · a‘(n)"

using SetFold_def by simp

finally show "
∏
(Λ ∪ {n}, a) = (

∏
(Λ,a)) · a‘(n)"

by simp

qed

Very similar to gen_prod_append: a relation between a product over a set of
indices and the product over the set with the maximum removed.

lemma (in semigr1) gen_product_rem_point:

assumes A1: "A ∈ FinPow(X)" and
A2: "n ∈ A" and A4: "A - {n} 6= 0" and
A3: "∀ k∈A. 〈k, n〉 ∈ r"

shows
"(
∏
(A - {n},a)) · a‘(n) =

∏
(A, a)"

proof -

let ?Λ = "A - {n}"

from A1 A2 have "?Λ ∈ FinPow(X)" and "n ∈ X - ?Λ"
using fin_rem_point_fin FinPow_def by auto

with A3 A4 have "
∏
(?Λ ∪ {n}, a) = (

∏
(?Λ,a)) · a‘(n)"

using a_is_fun gen_prod_append by blast

with A2 show ?thesis using rem_add_eq by simp

qed

22.3 Commutative semigroups

Commutative semigroups are those whose operation is commutative, i.e.
a · b = b · a. This implies that for any permutation s : n → n we have∏n

j=0 aj =
∏n

j=0 as(j), or, closer to the notation we are using in the semigr0

context,
∏
a =

∏
(a ◦ s). Maybe one day we will be able to prove this,

but for now the goal is to prove something simpler: that if the semigroup
operation is commutative taking the product of a sequence is distributive

with respect to the operation:
∏n

j=0(aj ·bj) =
(∏n

j=0 aj)
)(∏n

j=0 bj)
)

. Many

of the rearrangements (namely those that don’t use the inverse) proven in
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the AbelianGroup_ZF theory hold in fact in semigroups. Some of them will
be reproven in this section.

A rearrangement with 3 elements.

lemma (in semigr0) rearr3elems:

assumes "f {is commutative on} G" and "a∈G" "b∈G" "c∈G"
shows "a·b·c = a·c·b"
using assms semigr_assoc IsCommutative_def by simp

A rearrangement of four elements.

lemma (in semigr0) rearr4elems:

assumes A1: "f {is commutative on} G" and
A2: "a∈G" "b∈G" "c∈G" "d∈G"
shows "a·b·(c·d) = a·c·(b·d)"

proof -

from A2 have "a·b·(c·d) = a·b·c·d"
using semigr_closed semigr_assoc by simp

also have "a·b·c·d = a·c·(b·d)"
proof -

from A1 A2 have "a·b·c·d = c·(a·b)·d"
using IsCommutative_def semigr_closed

by simp

also from A2 have ". . . = c·a·b·d"
using semigr_closed semigr_assoc

by simp

also from A1 A2 have ". . . = a·c·b·d"
using IsCommutative_def semigr_closed

by simp

also from A2 have ". . . = a·c·(b·d)"
using semigr_closed semigr_assoc

by simp

finally show "a·b·c·d = a·c·(b·d)" by simp

qed
finally show "a·b·(c·d) = a·c·(b·d)"

by simp

qed

We start with a version of prod_append that will shorten a bit the proof of
the main theorem.

lemma (in semigr0) shorter_seq: assumes A1: "k ∈ nat" and
A2: "a ∈ succ(succ(k)) → G"

shows "(
∏

a) = (
∏

Init(a)) · a‘(succ(k))"
proof -

let ?x = "Init(a)"

from assms have
"a‘(succ(k)) ∈ G" and "?x : succ(k) → G"

using apply_funtype init_props by auto

with A1 have "(
∏

?x←↩a‘(succ(k))) = (
∏

?x) · a‘(succ(k))"

213



using prod_append by simp

with assms show ?thesis using init_props

by simp

qed

A lemma useful in the induction step of the main theorem.

lemma (in semigr0) prod_distr_ind_step:

assumes A1: "k ∈ nat" and
A2: "a : succ(succ(k)) → G" and
A3: "b : succ(succ(k)) → G" and
A4: "c : succ(succ(k)) → G" and
A5: "∀ j∈succ(succ(k)). c‘(j) = a‘(j) · b‘(j)"
shows
"Init(a) : succ(k) → G"

"Init(b) : succ(k) → G"

"Init(c) : succ(k) → G"

"∀ j∈succ(k). Init(c)‘(j) = Init(a)‘(j) · Init(b)‘(j)"
proof -

from A1 A2 A3 A4 show
"Init(a) : succ(k) → G"

"Init(b) : succ(k) → G"

"Init(c) : succ(k) → G"

using init_props by auto

from A1 have T: "succ(k) ∈ nat" by simp

from T A2 have "∀ j∈succ(k). Init(a)‘(j) = a‘(j)"

by (rule init_props)

moreover from T A3 have "∀ j∈succ(k). Init(b)‘(j) = b‘(j)"

by (rule init_props)

moreover from T A4 have "∀ j∈succ(k). Init(c)‘(j) = c‘(j)"

by (rule init_props)

moreover from A5 have "∀ j∈succ(k). c‘(j) = a‘(j) · b‘(j)"
by simp

ultimately show "∀ j∈succ(k). Init(c)‘(j) = Init(a)‘(j) · Init(b)‘(j)"
by simp

qed

For commutative operations taking the product of a sequence is distributive
with respect to the operation. This version will probably not be used in
applications, it is formulated in a way that is easier to prove by induction.
For a more convenient formulation see prod_comm_distrib. The proof by
induction on the length of the sequence.

theorem (in semigr0) prod_comm_distr:

assumes A1: "f {is commutative on} G" and A2: "n∈nat"
shows "∀ a b c.

(a : succ(n)→G ∧ b : succ(n)→G ∧ c : succ(n)→G ∧
(∀ j∈succ(n). c‘(j) = a‘(j) · b‘(j))) −→
(
∏

c) = (
∏

a) · (
∏

b)"

proof -

note A2
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moreover have "∀ a b c.

(a : succ(0)→G ∧ b : succ(0)→G ∧ c : succ(0)→G ∧
(∀ j∈succ(0). c‘(j) = a‘(j) · b‘(j))) −→
(
∏

c) = (
∏

a) · (
∏

b)"

proof -

{ fix a b c

assume "a : succ(0)→G ∧ b : succ(0)→G ∧ c : succ(0)→G ∧
(∀ j∈succ(0). c‘(j) = a‘(j) · b‘(j))"

then have
I: "a : 1→G" "b : 1→G" "c : 1→G" and
II: "c‘(0) = a‘(0) · b‘(0)" by auto

from I have
"(
∏

a) = a‘(0)" and "(
∏

b) = b‘(0)" and "(
∏

c) = c‘(0)"

using prod_of_1elem by auto

with II have "(
∏

c) = (
∏

a) · (
∏

b)" by simp

} then show ?thesis using Fold1_def by simp

qed
moreover have "∀ k ∈ nat.

(∀ a b c.

(a : succ(k)→G ∧ b : succ(k)→G ∧ c : succ(k)→G ∧
(∀ j∈succ(k). c‘(j) = a‘(j) · b‘(j))) −→
(
∏

c) = (
∏

a) · (
∏

b)) −→
(∀ a b c.

(a : succ(succ(k))→G ∧ b : succ(succ(k))→G ∧ c : succ(succ(k))→G

∧
(∀ j∈succ(succ(k)). c‘(j) = a‘(j) · b‘(j))) −→
(
∏

c) = (
∏

a) · (
∏

b))"

proof
fix k assume "k ∈ nat"

show "(∀ a b c.

a ∈ succ(k) → G ∧
b ∈ succ(k) → G ∧ c ∈ succ(k) → G ∧
(∀ j∈succ(k). c‘(j) = a‘(j) · b‘(j)) −→
(
∏

c) = (
∏

a) · (
∏

b)) −→
(∀ a b c.

a ∈ succ(succ(k)) → G ∧
b ∈ succ(succ(k)) → G ∧
c ∈ succ(succ(k)) → G ∧
(∀ j∈succ(succ(k)). c‘(j) = a‘(j) · b‘(j)) −→
(
∏

c) = (
∏

a) · (
∏

b))"

proof
assume A3: "∀ a b c.

a ∈ succ(k) → G ∧
b ∈ succ(k) → G ∧ c ∈ succ(k) → G ∧
(∀ j∈succ(k). c‘(j) = a‘(j) · b‘(j)) −→
(
∏

c) = (
∏

a) · (
∏

b)"

show "∀ a b c.

a ∈ succ(succ(k)) → G ∧
b ∈ succ(succ(k)) → G ∧

215



c ∈ succ(succ(k)) → G ∧
(∀ j∈succ(succ(k)). c‘(j) = a‘(j) · b‘(j)) −→
(
∏

c) = (
∏

a) · (
∏

b)"

proof -

{ fix a b c

assume
"a ∈ succ(succ(k)) → G ∧
b ∈ succ(succ(k)) → G ∧
c ∈ succ(succ(k)) → G ∧
(∀ j∈succ(succ(k)). c‘(j) = a‘(j) · b‘(j))"

with ‘k ∈ nat‘ have I:

"a : succ(succ(k)) → G"

"b : succ(succ(k)) → G"

"c : succ(succ(k)) → G"

and II: "∀ j∈succ(succ(k)). c‘(j) = a‘(j) · b‘(j)"
by auto

let ?x = "Init(a)"

let ?y = "Init(b)"

let ?z = "Init(c)"

from ‘k ∈ nat‘ I have III:

"(
∏

a) = (
∏

?x) · a‘(succ(k))"
"(
∏

b) = (
∏

?y) · b‘(succ(k))" and
IV: "(

∏
c) = (

∏
?z) · c‘(succ(k))"

using shorter_seq by auto

moreover
from ‘k ∈ nat‘ I II have
"?x : succ(k) → G"

"?y : succ(k) → G"

"?z : succ(k) → G" and
"∀ j∈succ(k). ?z‘(j) = ?x‘(j) · ?y‘(j)"
using prod_distr_ind_step by auto

with A3 II IV have
"(
∏

c) = (
∏

?x)·(
∏

?y)·(a‘(succ(k)) · b‘(succ(k)))"
by simp

moreover from A1 ‘k ∈ nat‘ I III have
"(
∏

?x)·(
∏

?y)·(a‘(succ(k)) · b‘(succ(k)))=
(
∏

a) · (
∏

b)"

using init_props prod_type apply_funtype

rearr4elems by simp

ultimately have "(
∏

c) = (
∏

a) · (
∏

b)"

by simp

} thus ?thesis by auto

qed
qed

qed
ultimately show ?thesis by (rule ind_on_nat)

qed

A reformulation of prod_comm_distr that is more convenient in applications.
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theorem (in semigr0) prod_comm_distrib:

assumes "f {is commutative on} G" and "n∈nat" and
"a : succ(n)→G" "b : succ(n)→G" "c : succ(n)→G" and
"∀ j∈succ(n). c‘(j) = a‘(j) · b‘(j)"
shows "(

∏
c) = (

∏
a) · (

∏
b)"

using assms prod_comm_distr by simp

A product of two products over disjoint sets of indices is the product over
the union.

lemma (in semigr1) prod_bisect:

assumes A1: "f {is commutative on} G" and A2: "Λ ∈ FinPow(X)"

shows
"∀ P ∈ Bisections(Λ).

∏
(Λ,a) = (

∏
(fst(P),a))·(

∏
(snd(P),a))"

proof -

have "IsLinOrder(X,r)" using linord by simp

moreover have
"∀ P ∈ Bisections(0).

∏
(0,a) = (

∏
(fst(P),a))·(

∏
(snd(P),a))"

using bisec_empty by simp

moreover have "∀ A ∈ FinPow(X).

( ∀ n ∈ X - A.

(∀ P ∈ Bisections(A).
∏
(A,a) = (

∏
(fst(P),a))·(

∏
(snd(P),a)))

∧ (∀ k∈A. 〈k,n〉 ∈ r ) −→
(∀ Q ∈ Bisections(A ∪ {n}).∏
(A ∪ {n},a) = (

∏
(fst(Q),a))·(

∏
(snd(Q),a))))"

proof -

{ fix A assume "A ∈ FinPow(X)"

fix n assume "n ∈ X - A"

have "( ∀ P ∈ Bisections(A).∏
(A,a) = (

∏
(fst(P),a))·(

∏
(snd(P),a)))

∧ (∀ k∈A. 〈k,n〉 ∈ r ) −→
(∀ Q ∈ Bisections(A ∪ {n}).∏
(A ∪ {n},a) = (

∏
(fst(Q),a))·(

∏
(snd(Q),a)))"

proof -

{ assume I:

"∀ P ∈ Bisections(A).
∏
(A,a) = (

∏
(fst(P),a))·(

∏
(snd(P),a))"

and II: "∀ k∈A. 〈k,n〉 ∈ r"

have "∀ Q ∈ Bisections(A ∪ {n}).∏
(A ∪ {n},a) = (

∏
(fst(Q),a))·(

∏
(snd(Q),a))"

proof -

{ fix Q assume "Q ∈ Bisections(A ∪ {n})"

let ?Q0 = "fst(Q)"

let ?Q1 = "snd(Q)"

from ‘A ∈ FinPow(X)‘ ‘n ∈ X - A‘ have "A ∪ {n} ∈ FinPow(X)"

using singleton_in_finpow union_finpow by auto

with ‘Q ∈ Bisections(A ∪ {n})‘ have
"?Q0 ∈ FinPow(X)" "?Q0 6= 0" and "?Q1 ∈ FinPow(X)" "?Q1 6= 0"

using bisect_fin bisec_is_pair Bisections_def by auto

then have "
∏
(?Q0,a) ∈ G" and "

∏
(?Q1,a) ∈ G"

using a_is_fun setprod_type by auto
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from ‘Q ∈ Bisections(A ∪ {n})‘ ‘A ∈ FinPow(X)‘ ‘n ∈ X-A‘

have "refl(X,r)" "?Q0 ⊆ A ∪ {n}" "?Q1 ⊆ A ∪ {n}"

"A ⊆ X" and "n ∈ X"

using linord IsLinOrder_def total_is_refl Bisections_def

FinPow_def by auto

from ‘refl(X,r)‘ ‘?Q0 ⊆ A ∪ {n}‘ ‘A ⊆ X‘ ‘n ∈ X‘ II

have III: "∀ k ∈ ?Q0. 〈k, n〉 ∈ r" by (rule refl_add_point)

from ‘refl(X,r)‘ ‘?Q1 ⊆ A ∪ {n}‘ ‘A ⊆ X‘ ‘n ∈ X‘ II

have IV: "∀ k ∈ ?Q1. 〈k, n〉 ∈ r" by (rule refl_add_point)

from ‘n ∈ X - A‘ ‘Q ∈ Bisections(A ∪ {n})‘ have
"?Q0 = {n} ∨ ?Q1 = {n} ∨ 〈?Q0 - {n},?Q1-{n}〉 ∈ Bisections(A)"

using bisec_is_pair bisec_add_point by simp

moreover
{ assume "?Q1 = {n}"

from ‘n ∈ X - A‘ have "n /∈ A" by auto

moreover
from ‘Q ∈ Bisections(A ∪ {n})‘

have "〈?Q0,?Q1 〉 ∈ Bisections(A ∪ {n})"

using bisec_is_pair by simp

with ‘?Q1 = {n}‘ have "〈?Q0, {n}〉 ∈ Bisections(A ∪ {n})"

by simp

ultimately have "?Q0 = A" and "A 6= 0"

using set_point_bisec by auto

with ‘A ∈ FinPow(X)‘ ‘n ∈ X - A‘ II ‘?Q1 = {n}‘

have "
∏
(A ∪ {n},a) = (

∏
(?Q0,a))·

∏
(?Q1,a)"

using a_is_fun gen_prod_append gen_prod_singleton

by simp }
moreover
{ assume "?Q0 = {n}"

from ‘n ∈ X - A‘ have "n ∈ X" by auto

then have "{n} ∈ FinPow(X)" and "{n} 6= 0"

using singleton_in_finpow by auto

from ‘n ∈ X - A‘ have "n /∈ A" by auto

moreover
from ‘Q ∈ Bisections(A ∪ {n})‘

have "〈?Q0, ?Q1〉 ∈ Bisections(A ∪ {n})"

using bisec_is_pair by simp

with ‘?Q0 = {n}‘ have "〈{n}, ?Q1〉 ∈ Bisections(A ∪ {n})"

by simp

ultimately have "?Q1 = A" and "A 6= 0" using point_set_bisec

by auto

with A1 ‘A ∈ FinPow(X)‘ ‘n ∈ X - A‘ II

‘{n} ∈ FinPow(X)‘ ‘{n} 6= 0‘ ‘?Q0 = {n}‘

have "
∏
(A ∪ {n},a) = (

∏
(?Q0,a))·(

∏
(?Q1,a))"

using a_is_fun gen_prod_append gen_prod_singleton

setprod_type IsCommutative_def by auto }
moreover
{ assume A4: "〈?Q0 - {n},?Q1 - {n}〉 ∈ Bisections(A)"

with ‘A ∈ FinPow(X)‘ have
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"?Q0 - {n} ∈ FinPow(X)" "?Q0 - {n} 6= 0" and
"?Q1 - {n} ∈ FinPow(X)" "?Q1 - {n} 6= 0"

using FinPow_def Bisections_def by auto

with ‘n ∈ X - A‘ have
"
∏
(?Q0 - {n},a) ∈ G" "

∏
(?Q1 - {n},a) ∈ G" and

T: "a‘(n) ∈ G"

using a_is_fun setprod_type apply_funtype by auto

from ‘Q ∈ Bisections(A ∪ {n})‘ A4 have
"(〈?Q0, ?Q1 - {n}〉 ∈ Bisections(A) ∧ n ∈ ?Q1) ∨
(〈?Q0 - {n}, ?Q1〉 ∈ Bisections(A) ∧ n ∈ ?Q0) "

using bisec_is_pair bisec_add_point_case3 by auto

moreover
{ assume "〈?Q0, ?Q1 - {n}〉 ∈ Bisections(A)" and "n ∈ ?Q1"

then have "A 6= 0" using bisec_props by simp

with A2 ‘A ∈ FinPow(X)‘ ‘n ∈ X - A‘ I II T IV

‘〈?Q0, ?Q1 - {n}〉 ∈ Bisections(A)‘ ‘
∏
(?Q0,a) ∈ G‘

‘
∏
(?Q1 - {n},a) ∈ G‘ ‘?Q1 ∈ FinPow(X)‘

‘n ∈ ?Q1‘ ‘?Q1 - {n} 6= 0‘

have "
∏
(A ∪ {n},a) = (

∏
(?Q0,a))·(

∏
(?Q1,a))"

using gen_prod_append semigr_assoc gen_product_rem_point

by simp }
moreover
{ assume "〈?Q0 - {n}, ?Q1〉 ∈ Bisections(A)" and "n ∈ ?Q0"

then have "A 6= 0" using bisec_props by simp

with A1 A2 ‘A ∈ FinPow(X)‘ ‘n ∈ X - A‘ I II III T

‘〈?Q0 - {n}, ?Q1〉∈Bisections(A)‘ ‘
∏
(?Q0 - {n},a)∈G‘

‘
∏
(?Q1,a) ∈ G‘ ‘?Q0 ∈ FinPow(X)‘ ‘n ∈ ?Q0‘ ‘?Q0-{n}6=0‘

have "
∏
(A ∪ {n},a) = (

∏
(?Q0,a))·(

∏
(?Q1,a))"

using gen_prod_append rearr3elems gen_product_rem_point

by simp }
ultimately have
"
∏
(A ∪ {n},a) = (

∏
(?Q0,a))·(

∏
(?Q1,a))"

by auto }
ultimately have "

∏
(A ∪ {n},a) = (

∏
(?Q0,a))·(

∏
(?Q1,a))"

by auto

} thus ?thesis by simp

qed
} thus ?thesis by simp

qed
} thus ?thesis by simp

qed
moreover note A2

ultimately show ?thesis by (rule fin_ind_add_max)

qed

A better looking reformulation of prod_bisect.

theorem (in semigr1) prod_disjoint: assumes
A1: "f {is commutative on} G" and
A2: "A ∈ FinPow(X)" "A 6= 0" and
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A3: "B ∈ FinPow(X)" "B 6= 0" and
A4: "A ∩ B = 0"

shows "
∏
(A∪B,a) = (

∏
(A,a))·(

∏
(B,a))"

proof -

from A2 A3 A4 have "〈A,B〉 ∈ Bisections(A∪B)"
using is_bisec by simp

with A1 A2 A3 show ?thesis

using a_is_fun union_finpow prod_bisect by simp

qed

A generalization of prod_disjoint.

lemma (in semigr1) prod_list_of_lists: assumes
A1: "f {is commutative on} G" and A2: "n ∈ nat"

shows "∀ M ∈ succ(n) → FinPow(X).

M {is partition} −→
(
∏

{〈i,
∏
(M‘(i),a)〉. i ∈ succ(n)}) =

(
∏
(
⋃
i ∈ succ(n). M‘(i),a))"

proof -

note A2

moreover have "∀ M ∈ succ(0) → FinPow(X).

M {is partition} −→
(
∏

{〈i,
∏
(M‘(i),a)〉. i ∈ succ(0)}) = (

∏
(
⋃
i ∈ succ(0). M‘(i),a))"

using a_is_fun func1_1_L1 Partition_def apply_funtype setprod_type

list_len1_singleton prod_of_1elem

by simp

moreover have "∀ k ∈ nat.

(∀ M ∈ succ(k) → FinPow(X).

M {is partition} −→
(
∏

{〈i,
∏
(M‘(i),a)〉. i ∈ succ(k)}) =

(
∏
(
⋃
i ∈ succ(k). M‘(i),a))) −→

(∀ M ∈ succ(succ(k)) → FinPow(X).

M {is partition} −→
(
∏

{〈i,
∏
(M‘(i),a)〉. i ∈ succ(succ(k))}) =

(
∏
(
⋃
i ∈ succ(succ(k)). M‘(i),a)))"

proof -

{ fix k assume "k ∈ nat"

assume A3: "∀ M ∈ succ(k) → FinPow(X).

M {is partition} −→
(
∏

{〈i,
∏
(M‘(i),a)〉. i ∈ succ(k)}) =

(
∏
(
⋃
i ∈ succ(k). M‘(i),a))"

have "(∀ N ∈ succ(succ(k)) → FinPow(X).

N {is partition} −→
(
∏

{〈i,
∏
(N‘(i),a)〉. i ∈ succ(succ(k))}) =

(
∏
(
⋃
i ∈ succ(succ(k)). N‘(i),a)))"

proof -

{ fix N assume A4: "N : succ(succ(k)) → FinPow(X)"

assume A5: "N {is partition}"

with A4 have I: "∀ i ∈ succ(succ(k)). N‘(i) 6= 0"

using func1_1_L1 Partition_def by simp

220



let ?b = "{〈i,
∏
(N‘(i),a)〉. i ∈ succ(succ(k))}"

let ?c = "{〈i,
∏
(N‘(i),a)〉. i ∈ succ(k)}"

have II: "∀ i ∈ succ(succ(k)).
∏
(N‘(i),a) ∈ G"

proof
fix i assume "i ∈ succ(succ(k))"

with A4 I have "N‘(i) ∈ FinPow(X)" and "N‘(i) 6= 0"

using apply_funtype by auto

then show "
∏
(N‘(i),a) ∈ G" using setprod_type

by simp

qed
hence "∀ i ∈ succ(k).

∏
(N‘(i),a) ∈ G" by auto

then have "?c : succ(k) → G" by (rule ZF_fun_from_total)

have "?b = {〈i,
∏
(N‘(i),a)〉. i ∈ succ(succ(k))}"

by simp

with II have "?b = Append(?c,
∏
(N‘(succ(k)),a))"

by (rule set_list_append)

with II ‘k ∈ nat‘ ‘?c : succ(k) → G‘

have "(
∏

?b) = (
∏

?c)·(
∏
(N‘(succ(k)),a))"

using prod_append by simp

also have
". . . = (

∏
(
⋃
i ∈ succ(k). N‘(i),a))·(

∏
(N‘(succ(k)),a))"

proof -

let ?M = "restrict(N,succ(k))"

have "succ(k) ⊆ succ(succ(k))" by auto

with ‘N : succ(succ(k)) → FinPow(X)‘

have "?M : succ(k) → FinPow(X)" and
III: "∀ i ∈ succ(k). ?M‘(i) = N‘(i)"

using restrict_type2 restrict apply_funtype

by auto

with A5 ‘?M : succ(k) → FinPow(X)‘have "?M {is partition}"

using func1_1_L1 Partition_def by simp

with A3 ‘?M : succ(k) → FinPow(X)‘ have
"(
∏

{〈i,
∏
(?M‘(i),a)〉. i ∈ succ(k)}) =

(
∏
(
⋃
i ∈ succ(k). ?M‘(i),a))"

by blast

with III show ?thesis by simp

qed
also have ". . . = (

∏
(
⋃
i ∈ succ(succ(k)). N‘(i),a))"

proof -

let ?A = "
⋃
i ∈ succ(k). N‘(i)"

let ?B = "N‘(succ(k))"

from A4 ‘k ∈ nat‘ have "succ(k) ∈ nat" and
"∀ i ∈ succ(k). N‘(i) ∈ FinPow(X)"

using apply_funtype by auto

then have "?A ∈ FinPow(X)" by (rule union_fin_list_fin)

moreover from I have "?A 6= 0" by auto

moreover from A4 I have
"N‘(succ(k)) ∈ FinPow(X)" and "N‘(succ(k)) 6= 0"

using apply_funtype by auto
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moreover from ‘succ(k) ∈ nat‘ A4 A5 have "?A ∩ ?B = 0"

by (rule list_partition)

moreover note A1

ultimately have "
∏
(?A∪?B,a) = (

∏
(?A,a))·(

∏
(?B,a))"

using prod_disjoint by simp

moreover have "?A ∪ ?B = (
⋃
i ∈ succ(succ(k)). N‘(i))"

by auto

ultimately show ?thesis by simp

qed
finally have "(

∏
{〈i,

∏
(N‘(i),a)〉. i ∈ succ(succ(k))}) =

(
∏
(
⋃
i ∈ succ(succ(k)). N‘(i),a))"

by simp

} thus ?thesis by auto

qed
} thus ?thesis by simp

qed
ultimately show ?thesis by (rule ind_on_nat)

qed

A more convenient reformulation of prod_list_of_lists.

theorem (in semigr1) prod_list_of_sets:

assumes A1: "f {is commutative on} G" and
A2: "n ∈ nat" "n 6= 0" and
A3: "M : n → FinPow(X)" "M {is partition}"

shows
"(
∏

{〈i,
∏
(M‘(i),a)〉. i ∈ n}) = (

∏
(
⋃
i ∈ n. M‘(i),a))"

proof -

from A2 obtain k where "k ∈ nat" and "n = succ(k)"

using Nat_ZF_1_L3 by auto

with A1 A3 show ?thesis using prod_list_of_lists

by simp

qed

The definition of the product
∏
(A,a) ≡ SetFold(f,a,A,r) of a some (finite)

set of semigroup elements requires that r is a linear order on the set of indices
A. This is necessary so that we know in which order we are multiplying the
elements. The product over A is defined so that we have

∏
A a =

∏
a◦σ(A)

where σ : |A| → A is the enumeration of A (the only order isomorphism
between the number of elements in A and A), see lemma setproddef. How-
ever, if the operation is commutative, the order is irrelevant. The next
theorem formalizes that fact stating that we can replace the enumeration
σ(A) by any bijection between |A| and A. In a way this is a generalization
of setproddef. The proof is based on application of prod_list_of_sets to
the finite collection of singletons that comprise A.

theorem (in semigr1) prod_order_irr:

assumes A1: "f {is commutative on} G" and
A2: "A ∈ FinPow(X)" "A 6= 0" and
A3: "b ∈ bij(|A|,A)"
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shows "(
∏

(a O b)) =
∏
(A,a)"

proof -

let ?n = "|A|"

let ?M = "{〈k, {b‘(k)}〉. k ∈ ?n}"

have "(
∏

(a O b)) = (
∏

{〈i,
∏
(?M‘(i),a)〉. i ∈ ?n})"

proof -

have "∀ i ∈ ?n.
∏
(?M‘(i),a) = (a O b)‘(i)"

proof
fix i assume "i ∈ ?n"

with A2 A3 ‘i ∈ ?n‘ have "b‘(i) ∈ X"

using bij_def inj_def apply_funtype FinPow_def

by auto

then have "
∏
({b‘(i)},a) = a‘(b‘(i))"

using gen_prod_singleton by simp

with A3 ‘i ∈ ?n‘ have "
∏
({b‘(i)},a) = (a O b)‘(i)"

using bij_def inj_def comp_fun_apply by auto

with ‘i ∈ ?n‘ A3 show "
∏
(?M‘(i),a) = (a O b)‘(i)"

using bij_def inj_partition by auto

qed
hence "{〈i,

∏
(?M‘(i),a)〉. i ∈ ?n} = {〈i,(a O b)‘(i)〉. i ∈ ?n}"

by simp

moreover have "{〈i,(a O b)‘(i)〉. i ∈ ?n} = a O b"

proof -

from A3 have "b : ?n → A" using bij_def inj_def by simp

moreover from A2 have "A ⊆ X" using FinPow_def by simp

ultimately have "b : ?n → X" by (rule func1_1_L1B)

then have "a O b: ?n → G" using a_is_fun comp_fun

by simp

then show "{〈i,(a O b)‘(i)〉. i ∈ ?n} = a O b"

using fun_is_set_of_pairs by simp

qed
ultimately show ?thesis by simp

qed
also have ". . . = (

∏
(
⋃
i ∈ ?n. ?M‘(i),a))"

proof -

note A1

moreover from A2 have "?n ∈ nat" and "?n 6= 0"

using card_fin_is_nat card_non_empty_non_zero by auto

moreover have "?M : ?n → FinPow(X)" and "?M {is partition}"

proof -

from A2 A3 have "∀ k ∈ ?n. {b‘(k)} ∈ FinPow(X)"

using bij_def inj_def apply_funtype FinPow_def

singleton_in_finpow by auto

then show "?M : ?n → FinPow(X)" using ZF_fun_from_total

by simp

from A3 show "?M {is partition}" using bij_def inj_partition

by auto

qed
ultimately show
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"(
∏

{〈i,
∏
(?M‘(i),a)〉. i ∈ ?n}) = (

∏
(
⋃
i ∈ ?n. ?M‘(i),a))"

by (rule prod_list_of_sets)

qed
also from A3 have "(

∏
(
⋃
i ∈ ?n. ?M‘(i),a)) =

∏
(A,a)"

using bij_def inj_partition surj_singleton_image

by auto

finally show ?thesis by simp

qed

Another way of expressing the fact that the product dos not depend on the
order.

corollary (in semigr1) prod_bij_same:

assumes "f {is commutative on} G" and
"A ∈ FinPow(X)" "A 6= 0" and
"b ∈ bij(|A|,A)" "c ∈ bij(|A|,A)"

shows "(
∏

(a O b)) = (
∏

(a O c))"

using assms prod_order_irr by simp

end

23 Commutative Semigroups

theory CommutativeSemigroup_ZF imports Semigroup_ZF

begin

In the Semigroup theory we introduced a notion of SetFold(f,a,Λ,r) that
represents the sum of values of some function a valued in a semigroup where
the arguments of that function vary over some set Λ. Using the additive
notation something like this would be expressed as

∑
x∈Λ f(x) in informal

mathematics. This theory considers an alternative to that notion that is
more specific to commutative semigroups.

23.1 Sum of a function over a set

The r parameter in the definition of SetFold(f,a,Λ,r) (from Semigroup_ZF)
represents a linear order relation on Λ that is needed to indicate in what
order we are summing the values f(x). If the semigroup operation is com-
mutative the order does not matter and the relation r is not needed. In this
section we define a notion of summing up values of some function a : X → G
over a finite set of indices Γ ⊆ X, without using any order relation on X.

We define the sum of values of a function a : X → G over a set Λ as the only
element of the set of sums of lists that are bijections between the number of
values in Λ (which is a natural number n = {0, 1, .., n− 1} if Λ is finite) and
Λ. The notion of Fold1(f,c) is defined in Semigroup_ZF as the fold (sum) of
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the list c starting from the first element of that list. The intention is to use
the fact that since the result of summing up a list does not depend on the
order, the set {Fold1(f,a O b). b ∈ bij( |Λ|, Λ)} is a singleton and we
can extract its only value by taking its union.

definition
"CommSetFold(f,a,Λ) =

⋃
{Fold1(f,a O b). b ∈ bij(|Λ|, Λ)}"

the next locale sets up notation for writing about summation in commutative
semigroups. We define two kinds of sums. One is the sum of elements of a list
(which are just functions defined on a natural number) and the second one
represents a more general notion the sum of values of a semigroup valued
function over some set of arguments. Since those two types of sums are
different notions they are represented by different symbols. However in the
presentations they are both intended to be printed as

∑
.

locale commsemigr =

fixes G f

assumes csgassoc: "f {is associative on} G"

assumes csgcomm: "f {is commutative on} G"

fixes csgsum (infixl "+" 69)

defines csgsum_def[simp]: "x + y ≡ f‘〈x,y〉"

fixes X a

assumes csgaisfun: "a : X → G"

fixes csglistsum ("
∑

_" 70)

defines csglistsum_def[simp]: "
∑

k ≡ Fold1(f,k)"

fixes csgsetsum ("
∑

")

defines csgsetsum_def[simp]: "
∑

(A,h) ≡ CommSetFold(f,h,A)"

Definition of a sum of function over a set in notation defined in the commsemigr
locale.

lemma (in commsemigr) CommSetFolddef:

shows "(
∑

(A,a)) = (
⋃
{
∑

(a O b). b ∈ bij(|A|, A)})"

using CommSetFold_def by simp

The next lemma states that the result of a sum does not depend on the order
we calculate it. This is similar to lemma prod_order_irr in the Semigroup

theory, except that the semigr1 locale assumes that the domain of the func-
tion we sum up is linearly ordered, while in commsemigr we don’t have this
assumption.

lemma (in commsemigr) sum_over_set_bij:
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assumes A1: "A ∈ FinPow(X)" "A 6= 0" and A2: "b ∈ bij(|A|,A)"

shows "(
∑

(A,a)) = (
∑

(a O b))"

proof -

have
"∀ c ∈ bij(|A|,A). ∀ d ∈ bij(|A|,A). (

∑
(a O c)) = (

∑
(a O d))"

proof -

{ fix c assume "c ∈ bij(|A|,A)"

fix d assume "d ∈ bij(|A|,A)"

let ?r = "InducedRelation(converse(c), Le)"

have "semigr1(G,f,A,?r,restrict(a, A))"

proof -

have "semigr0(G,f)" using csgassoc semigr0_def by simp

moreover from A1 ‘c ∈ bij(|A|,A)‘ have "IsLinOrder(A,?r)"

using bij_converse_bij card_fin_is_nat

natord_lin_on_each_nat ind_rel_pres_lin by simp

moreover from A1 have "restrict(a, A) : A → G"

using FinPow_def csgaisfun restrict_fun by simp

ultimately show ?thesis using semigr1_axioms.intro semigr1_def

by simp

qed
moreover have "f {is commutative on} G" using csgcomm

by simp

moreover from A1 have "A ∈ FinPow(A)" "A 6= 0"

using FinPow_def by auto

moreover note ‘c ∈ bij(|A|,A)‘ ‘d ∈ bij(|A|,A)‘

ultimately have
"Fold1(f,restrict(a,A) O c) = Fold1(f,restrict(a,A) O d)"

by (rule semigr1.prod_bij_same)

hence "(
∑

(restrict(a,A) O c)) = (
∑

(restrict(a,A) O d))"

by simp

moreover from A1 ‘c ∈ bij(|A|,A)‘ ‘d ∈ bij(|A|,A)‘

have
"restrict(a,A) O c = a O c" and "restrict(a,A) O d = a O d"

using bij_def surj_def csgaisfun FinPow_def comp_restrict

by auto

ultimately have "(
∑

(a O c)) = (
∑

(a O d))" by simp

} thus ?thesis by blast

qed
with A2 have "(

⋃
{
∑

(a O b). b ∈ bij(|A|, A)}) = (
∑

(a O b))"

by (rule singleton_comprehension)

then show ?thesis using CommSetFolddef by simp

qed

The result of a sum is in the semigroup. Also, as the second assertion
we show that every semigroup valued function generates a homomorphism
between the finite subsets of a semigroup and the semigroup. Adding an
element to a set coresponds to adding a value.

lemma (in commsemigr) sum_over_set_add_point:

assumes A1: "A ∈ FinPow(X)" "A 6= 0"
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shows "
∑

(A,a) ∈ G" and
"∀ x ∈ X-A.

∑
(A ∪ {x},a) = (

∑
(A,a)) + a‘(x)"

proof -

from A1 obtain b where "b ∈ bij(|A|,A)"

using fin_bij_card by auto

with A1 have "
∑

(A,a) = (
∑

(a O b))"

using sum_over_set_bij by simp

from A1 have "|A| ∈ nat" using card_fin_is_nat by simp

have "semigr0(G,f)" using csgassoc semigr0_def by simp

moreover
from A1 obtain n where "n ∈ nat" and "|A| = succ(n)"

using card_non_empty_succ by auto

with A1 ‘b ∈ bij(|A|,A)‘ have
"n ∈ nat" and "a O b : succ(n) → G"

using bij_def inj_def FinPow_def comp_fun_subset csgaisfun

by auto

ultimately have "Fold1(f,a O b) ∈ G" by (rule semigr0.prod_type)

with ‘
∑

(A,a) = (
∑

(a O b))‘ show "
∑

(A,a) ∈ G"

by simp

{ fix x assume "x ∈ X-A"

with A1 have "(A ∪ {x}) ∈ FinPow(X)" and "A ∪ {x} 6= 0"

using singleton_in_finpow union_finpow by auto

moreover have "Append(b,x) ∈ bij(|A ∪ {x}|, A ∪ {x})"

proof -

note ‘|A| ∈ nat‘ ‘b ∈ bij(|A|,A)‘

moreover from ‘x ∈ X-A‘ have "x /∈ A" by simp

ultimately have "Append(b,x) ∈ bij(succ(|A|), A ∪ {x})"

by (rule bij_append_point)

with A1 ‘x ∈ X-A‘ show ?thesis

using card_fin_add_one by auto

qed
ultimately have "(

∑
(A ∪ {x},a)) = (

∑
(a O Append(b,x)))"

using sum_over_set_bij by simp

also have ". . . = (
∑

Append(a O b, a‘(x)))"

proof -

note ‘|A| ∈ nat‘

moreover
from A1 ‘b ∈ bij(|A|, A)‘ have

"b : |A| → A" and "A ⊆ X"

using bij_def inj_def using FinPow_def by auto

then have "b : |A| → X" by (rule func1_1_L1B)

moreover from ‘x ∈ X-A‘ have "x ∈ X" and "a : X → G"

using csgaisfun by auto

ultimately show ?thesis using list_compose_append

by simp

qed
also have ". . . = (

∑
(A,a)) + a‘(x)"

proof -

note ‘semigr0(G,f)‘ ‘n ∈ nat‘ ‘a O b : succ(n) → G‘

227



moreover from ‘x ∈ X-A‘ have "a‘(x) ∈ G"

using csgaisfun apply_funtype by simp

ultimately have
"Fold1(f,Append(a O b, a‘(x))) = f‘〈Fold1(f,a O b),a‘(x)〉"
by (rule semigr0.prod_append)

with A1 ‘b ∈ bij(|A|,A)‘ show ?thesis

using sum_over_set_bij by simp

qed
finally have "(

∑
(A ∪ {x},a)) = (

∑
(A,a)) + a‘(x)"

by simp

} thus "∀ x ∈ X-A.
∑

(A ∪ {x},a) = (
∑

(A,a)) + a‘(x)"

by simp

qed

end

24 Monoids

theory Monoid_ZF imports func_ZF

begin

This theory provides basic facts about monoids.

24.1 Definition and basic properties

In this section we talk about monoids. The notion of a monoid is similar to
the notion of a semigroup except that we require the existence of a neutral
element. It is also similar to the notion of group except that we don’t require
existence of the inverse.

Monoid is a set G with an associative operation and a neutral element. The
operation is a function on G×G with values in G. In the context of ZF set
theory this means that it is a set of pairs 〈x, y〉, where x ∈ G×G and y ∈ G.
In other words the operation is a certain subset of (G×G)×G. We express
all this by defing a predicate IsAmonoid(G,f). Here G is the ”carrier” of the
group and f is the binary operation on it.

definition
"IsAmonoid(G,f) ≡
f {is associative on} G ∧
(∃ e∈G. (∀ g∈G. ( (f‘(〈e,g〉) = g) ∧ (f‘(〈g,e〉) = g))))"

The next locale called ”monoid0” defines a context for theorems that concern
monoids. In this contex we assume that the pair (G, f) is a monoid. We will
use the ⊕ symbol to denote the monoid operation (for no particular reason).

locale monoid0 =

fixes G
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fixes f

assumes monoidAsssum: "IsAmonoid(G,f)"

fixes monoper (infixl "⊕" 70)

defines monoper_def [simp]: "a ⊕ b ≡ f‘〈a,b〉"

The result of the monoid operation is in the monoid (carrier).

lemma (in monoid0) group0_1_L1:

assumes "a∈G" "b∈G" shows "a⊕b ∈ G"

using assms monoidAsssum IsAmonoid_def IsAssociative_def apply_funtype

by auto

There is only one neutral element in a monoid.

lemma (in monoid0) group0_1_L2: shows
"∃ !e. e∈G ∧ (∀ g∈G. ( (e⊕g = g) ∧ g⊕e = g))"

proof
fix e y

assume "e ∈ G ∧ (∀ g∈G. e ⊕ g = g ∧ g ⊕ e = g)"

and "y ∈ G ∧ (∀ g∈G. y ⊕ g = g ∧ g ⊕ y = g)"

then have "y⊕e = y" "y⊕e = e" by auto

thus "e = y" by simp

next from monoidAsssum show
"∃ e. e∈ G ∧ (∀ g∈G. e⊕g = g ∧ g⊕e = g)"

using IsAmonoid_def by auto

qed

We could put the definition of neutral element anywhere, but it is only usable
in conjuction with the above lemma.

definition
"TheNeutralElement(G,f) ≡
( THE e. e∈G ∧ (∀ g∈G. f‘〈e,g〉 = g ∧ f‘〈g,e〉 = g))"

The neutral element is neutral.

lemma (in monoid0) unit_is_neutral:

assumes A1: "e = TheNeutralElement(G,f)"

shows "e ∈ G ∧ (∀ g∈G. e ⊕ g = g ∧ g ⊕ e = g)"

proof -

let ?n = "THE b. b∈ G ∧ (∀ g∈G. b⊕g = g ∧ g⊕b = g)"

have "∃ !b. b∈ G ∧ (∀ g∈G. b⊕g = g ∧ g⊕b = g)"

using group0_1_L2 by simp

then have "?n∈ G ∧ (∀ g∈G. ?n⊕g = g ∧ g⊕?n = g)"

by (rule theI)

with A1 show ?thesis

using TheNeutralElement_def by simp

qed

The monoid carrier is not empty.

lemma (in monoid0) group0_1_L3A: shows "G 6=0"
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proof -

have "TheNeutralElement(G,f) ∈ G" using unit_is_neutral

by simp

thus ?thesis by auto

qed

The range of the monoid operation is the whole monoid carrier.

lemma (in monoid0) group0_1_L3B: shows "range(f) = G"

proof
from monoidAsssum have "f : G×G→G"

using IsAmonoid_def IsAssociative_def by simp

then show "range(f) ⊆ G"

using func1_1_L5B by simp

show "G ⊆ range(f)"

proof
fix g assume A1: "g∈G"
let ?e = "TheNeutralElement(G,f)"

from A1 have "〈?e,g〉 ∈ G×G" "g = f‘〈?e,g〉"
using unit_is_neutral by auto

with ‘f : G×G→G‘ show "g ∈ range(f)"

using func1_1_L5A by blast

qed
qed

Another way to state that the range of the monoid operation is the whole
monoid carrier.

lemma (in monoid0) range_carr: shows "f‘‘(G×G) = G"

using monoidAsssum IsAmonoid_def IsAssociative_def

group0_1_L3B range_image_domain by auto

In a monoid any neutral element is the neutral element.

lemma (in monoid0) group0_1_L4:

assumes A1: "e ∈ G ∧ (∀ g∈G. e ⊕ g = g ∧ g ⊕ e = g)"

shows "e = TheNeutralElement(G,f)"

proof -

let ?n = "THE b. b∈ G ∧ (∀ g∈G. b⊕g = g ∧ g⊕b = g)"

have "∃ !b. b∈ G ∧ (∀ g∈G. b⊕g = g ∧ g⊕b = g)"

using group0_1_L2 by simp

moreover note A1

ultimately have "?n = e" by (rule the_equality2)

then show ?thesis using TheNeutralElement_def by simp

qed

The next lemma shows that if the if we restrict the monoid operation to a
subset of G that contains the neutral element, then the neutral element of
the monoid operation is also neutral with the restricted operation.

lemma (in monoid0) group0_1_L5:

assumes A1: "∀ x∈H.∀ y∈H. x⊕y ∈ H"
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and A2: "H⊆G"
and A3: "e = TheNeutralElement(G,f)"

and A4: "g = restrict(f,H×H)"
and A5: "e∈H"
and A6: "h∈H"
shows "g‘〈e,h〉 = h ∧ g‘〈h,e〉 = h"

proof -

from A4 A6 A5 have
"g‘〈e,h〉 = e⊕h ∧ g‘〈h,e〉 = h⊕e"
using restrict_if by simp

with A3 A4 A6 A2 show
"g‘〈e,h〉 = h ∧ g‘〈h,e〉 = h"

using unit_is_neutral by auto

qed

The next theorem shows that if the monoid operation is closed on a subset
of G then this set is a (sub)monoid (although we do not define this notion).
This fact will be useful when we study subgroups.

theorem (in monoid0) group0_1_T1:

assumes A1: "H {is closed under} f"

and A2: "H⊆G"
and A3: "TheNeutralElement(G,f) ∈ H"

shows "IsAmonoid(H,restrict(f,H×H))"
proof -

let ?g = "restrict(f,H×H)"
let ?e = "TheNeutralElement(G,f)"

from monoidAsssum have "f ∈ G×G→G"

using IsAmonoid_def IsAssociative_def by simp

moreover from A2 have "H×H ⊆ G×G" by auto

moreover from A1 have "∀ p ∈ H×H. f‘(p) ∈ H"

using IsOpClosed_def by auto

ultimately have "?g ∈ H×H→H"

using func1_2_L4 by simp

moreover have "∀ x∈H.∀ y∈H.∀ z∈H.
?g‘〈?g‘〈x,y〉 ,z〉 = ?g‘〈x,?g‘〈y,z〉〉"

proof -

from A1 have "∀ x∈H.∀ y∈H.∀ z∈H.
?g‘〈?g‘〈x,y〉,z〉 = x⊕y⊕z"
using IsOpClosed_def restrict_if by simp

moreover have "∀ x∈H.∀ y∈H.∀ z∈H. x⊕y⊕z = x⊕(y⊕z)"
proof -

from monoidAsssum have
"∀ x∈G.∀ y∈G.∀ z∈G. x⊕y⊕z = x⊕(y⊕z)"
using IsAmonoid_def IsAssociative_def

by simp

with A2 show ?thesis by auto

qed
moreover from A1 have
"∀ x∈H.∀ y∈H.∀ z∈H. x⊕(y⊕z) = ?g‘〈 x,?g‘〈y,z〉 〉"
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using IsOpClosed_def restrict_if by simp

ultimately show ?thesis by simp

qed
moreover have
"∃ n∈H. (∀ h∈H. ?g‘〈n,h〉 = h ∧ ?g‘〈h,n〉 = h)"

proof -

from A1 have "∀ x∈H.∀ y∈H. x⊕y ∈ H"

using IsOpClosed_def by simp

with A2 A3 have
"∀ h∈H. ?g‘〈?e,h〉 = h ∧ ?g‘〈h,?e〉 = h"

using group0_1_L5 by blast

with A3 show ?thesis by auto

qed
ultimately show ?thesis using IsAmonoid_def IsAssociative_def

by simp

qed

Under the assumptions of group0_1_T1 the neutral element of a submonoid
is the same as that of the monoid.

lemma group0_1_L6:

assumes A1: "IsAmonoid(G,f)"

and A2: "H {is closed under} f"

and A3: "H⊆G"
and A4: "TheNeutralElement(G,f) ∈ H"

shows "TheNeutralElement(H,restrict(f,H×H)) = TheNeutralElement(G,f)"

proof -

let ?e = "TheNeutralElement(G,f)"

let ?g = "restrict(f,H×H)"
from assms have "monoid0(H,?g)"

using monoid0_def monoid0.group0_1_T1

by simp

moreover have
"?e ∈ H ∧ (∀ h∈H. ?g‘〈?e,h〉 = h ∧ ?g‘〈h,?e〉 = h)"

proof -

{ fix h assume "h ∈ H"

with assms have
"monoid0(G,f)" "∀ x∈H.∀ y∈H. f‘〈x,y〉 ∈ H"

"H⊆G" "?e = TheNeutralElement(G,f)" "?g = restrict(f,H×H)"
"?e ∈ H" "h ∈ H"

using monoid0_def IsOpClosed_def by auto

then have "?g‘〈?e,h〉 = h ∧ ?g‘〈h,?e〉 = h"

by (rule monoid0.group0_1_L5)

} hence "∀ h∈H. ?g‘〈?e,h〉 = h ∧ ?g‘〈h,?e〉 = h" by simp

with A4 show ?thesis by simp

qed
ultimately have "?e = TheNeutralElement(H,?g)"

by (rule monoid0.group0_1_L4)

thus ?thesis by simp

qed
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If a sum of two elements is not zero, then at least one has to be nonzero.

lemma (in monoid0) sum_nonzero_elmnt_nonzero:

assumes "a ⊕ b 6= TheNeutralElement(G,f)"

shows "a 6= TheNeutralElement(G,f) ∨ b 6= TheNeutralElement(G,f)"

using assms unit_is_neutral by auto

end

25 Groups - introduction

theory Group_ZF imports Monoid_ZF

begin

This theory file covers basics of group theory.

25.1 Definition and basic properties of groups

In this section we define the notion of a group and set up the notation for
discussing groups. We prove some basic theorems about groups.

To define a group we take a monoid and add a requirement that the right
inverse needs to exist for every element of the group.

definition
"IsAgroup(G,f) ≡
(IsAmonoid(G,f) ∧ (∀ g∈G. ∃ b∈G. f‘〈g,b〉 = TheNeutralElement(G,f)))"

We define the group inverse as the set {〈x, y〉 ∈ G × G : x · y = e}, where
e is the neutral element of the group. This set (which can be written as
(·)−1{e}) is a certain relation on the group (carrier). Since, as we show
later, for every x ∈ G there is exactly one y ∈ G such that x · y = e this
relation is in fact a function from G to G.

definition
"GroupInv(G,f) ≡ {〈x,y〉 ∈ G×G. f‘〈x,y〉 = TheNeutralElement(G,f)}"

We will use the miltiplicative notation for groups. The neutral element is
denoted 1.

locale group0 =

fixes G

fixes P

assumes groupAssum: "IsAgroup(G,P)"

fixes neut ("1")
defines neut_def[simp]: "1 ≡ TheNeutralElement(G,P)"

fixes groper (infixl "·" 70)
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defines groper_def[simp]: "a · b ≡ P‘〈a,b〉"

fixes inv ("_−1 " [90] 91)

defines inv_def[simp]: "x−1 ≡ GroupInv(G,P)‘(x)"

First we show a lemma that says that we can use theorems proven in the
monoid0 context (locale).

lemma (in group0) group0_2_L1: shows "monoid0(G,P)"

using groupAssum IsAgroup_def monoid0_def by simp

In some strange cases Isabelle has difficulties with applying the definition of
a group. The next lemma defines a rule to be applied in such cases.

lemma definition_of_group: assumes "IsAmonoid(G,f)"

and "∀ g∈G. ∃ b∈G. f‘〈g,b〉 = TheNeutralElement(G,f)"

shows "IsAgroup(G,f)"

using assms IsAgroup_def by simp

A technical lemma that allows to use 1 as the neutral element of the group
without referencing a list of lemmas and definitions.

lemma (in group0) group0_2_L2:

shows "1∈G ∧ (∀ g∈G.(1·g = g ∧ g·1 = g))"

using group0_2_L1 monoid0.unit_is_neutral by simp

The group is closed under the group operation. Used all the time, useful to
have handy.

lemma (in group0) group_op_closed: assumes "a∈G" "b∈G"
shows "a·b ∈ G" using assms group0_2_L1 monoid0.group0_1_L1

by simp

The group operation is associative. This is another technical lemma that
allows to shorten the list of referenced lemmas in some proofs.

lemma (in group0) group_oper_assoc:

assumes "a∈G" "b∈G" "c∈G" shows "a·(b·c) = a·b·c"
using groupAssum assms IsAgroup_def IsAmonoid_def

IsAssociative_def group_op_closed by simp

The group operation maps G × G into G. It is conveniet to have this fact
easily accessible in the group0 context.

lemma (in group0) group_oper_assocA: shows "P : G×G→G"

using groupAssum IsAgroup_def IsAmonoid_def IsAssociative_def

by simp

The definition of a group requires the existence of the right inverse. We
show that this is also the left inverse.

theorem (in group0) group0_2_T1:

assumes A1: "g∈G" and A2: "b∈G" and A3: "g·b = 1"
shows "b·g = 1"
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proof -

from A2 groupAssum obtain c where I: "c ∈ G ∧ b·c = 1"
using IsAgroup_def by auto

then have "c∈G" by simp

have "1∈G" using group0_2_L2 by simp

with A1 A2 I have "b·g = b·(g·(b·c))"
using group_op_closed group0_2_L2 group_oper_assoc

by simp

also from A1 A2 ‘c∈G‘ have "b·(g·(b·c)) = b·(g·b·c)"
using group_oper_assoc by simp

also from A3 A2 I have "b·(g·b·c)= 1" using group0_2_L2 by simp

finally show "b·g = 1" by simp

qed

For every element of a group there is only one inverse.

lemma (in group0) group0_2_L4:

assumes A1: "x∈G" shows "∃ !y. y∈G ∧ x·y = 1"
proof

from A1 groupAssum show "∃ y. y∈G ∧ x·y = 1"
using IsAgroup_def by auto

fix y n

assume A2: "y∈G ∧ x·y = 1" and A3:"n∈G ∧ x·n = 1" show "y=n"

proof -

from A1 A2 have T1: "y·x = 1"
using group0_2_T1 by simp

from A2 A3 have "y = y·(x·n)"
using group0_2_L2 by simp

also from A1 A2 A3 have ". . . = (y·x)·n"
using group_oper_assoc by blast

also from T1 A3 have ". . . = n"

using group0_2_L2 by simp

finally show "y=n" by simp

qed
qed

The group inverse is a function that maps G into G.

theorem group0_2_T2:

assumes A1: "IsAgroup(G,f)" shows "GroupInv(G,f) : G→G"

proof -

have "GroupInv(G,f) ⊆ G×G" using GroupInv_def by auto

moreover from A1 have
"∀ x∈G. ∃ !y. y∈G ∧ 〈x,y〉 ∈ GroupInv(G,f)"

using group0_def group0.group0_2_L4 GroupInv_def by simp

ultimately show ?thesis using func1_1_L11 by simp

qed

We can think about the group inverse (the function) as the inverse image
of the neutral element. Recall that in Isabelle f-‘‘(A) denotes the inverse
image of the set A.
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theorem (in group0) group0_2_T3: shows "P-‘‘{1} = GroupInv(G,P)"

proof -

from groupAssum have "P : G×G → G"

using IsAgroup_def IsAmonoid_def IsAssociative_def

by simp

then show "P-‘‘{1} = GroupInv(G,P)"

using func1_1_L14 GroupInv_def by auto

qed

The inverse is in the group.

lemma (in group0) inverse_in_group: assumes A1: "x∈G" shows "x−1∈G"
proof -

from groupAssum have "GroupInv(G,P) : G→G" using group0_2_T2 by simp

with A1 show ?thesis using apply_type by simp

qed

The notation for the inverse means what it is supposed to mean.

lemma (in group0) group0_2_L6:

assumes A1: "x∈G" shows "x·x−1 = 1 ∧ x−1·x = 1"
proof

from groupAssum have "GroupInv(G,P) : G→G"

using group0_2_T2 by simp

with A1 have "〈x,x−1〉 ∈ GroupInv(G,P)"

using apply_Pair by simp

then show "x·x−1 = 1" using GroupInv_def by simp

with A1 show "x−1·x = 1" using inverse_in_group group0_2_T1

by blast

qed

The next two lemmas state that unless we multiply by the neutral element,
the result is always different than any of the operands.

lemma (in group0) group0_2_L7:

assumes A1: "a∈G" and A2: "b∈G" and A3: "a·b = a"

shows "b=1"
proof -

from A3 have "a−1 · (a·b) = a−1·a" by simp

with A1 A2 show ?thesis using
inverse_in_group group_oper_assoc group0_2_L6 group0_2_L2

by simp

qed

See the comment to group0_2_L7.

lemma (in group0) group0_2_L8:

assumes A1: "a∈G" and A2: "b∈G" and A3: "a·b = b"

shows "a=1"
proof -

from A3 have "(a·b)·b−1 = b·b−1" by simp

with A1 A2 have "a·(b·b−1) = b·b−1" using
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inverse_in_group group_oper_assoc by simp

with A1 A2 show ?thesis

using group0_2_L6 group0_2_L2 by simp

qed

The inverse of the neutral element is the neutral element.

lemma (in group0) group_inv_of_one: shows "1−1 = 1"
using group0_2_L2 inverse_in_group group0_2_L6 group0_2_L7 by blast

if a−1 = 1, then a = 1.

lemma (in group0) group0_2_L8A:

assumes A1: "a∈G" and A2: "a−1 = 1"
shows "a = 1"

proof -

from A1 have "a·a−1 = 1" using group0_2_L6 by simp

with A1 A2 show "a = 1" using group0_2_L2 by simp

qed

If a is not a unit, then its inverse is not a unit either.

lemma (in group0) group0_2_L8B:

assumes "a∈G" and "a 6= 1"
shows "a−1 6= 1" using assms group0_2_L8A by auto

If a−1 is not a unit, then a is not a unit either.

lemma (in group0) group0_2_L8C:

assumes "a∈G" and "a−1 6= 1"
shows "a 6=1"
using assms group0_2_L8A group_inv_of_one by auto

If a product of two elements of a group is equal to the neutral element then
they are inverses of each other.

lemma (in group0) group0_2_L9:

assumes A1: "a∈G" and A2: "b∈G" and A3: "a·b = 1"
shows "a = b−1" and "b = a−1"

proof -

from A3 have "a·b·b−1 = 1·b−1" by simp

with A1 A2 have "a·(b·b−1) = 1·b−1" using
inverse_in_group group_oper_assoc by simp

with A1 A2 show "a = b−1" using
group0_2_L6 inverse_in_group group0_2_L2 by simp

from A3 have "a−1·(a·b) = a−1·1" by simp

with A1 A2 show "b = a−1" using
inverse_in_group group_oper_assoc group0_2_L6 group0_2_L2

by simp

qed

It happens quite often that we know what is (have a meta-function for) the
right inverse in a group. The next lemma shows that the value of the group
inverse (function) is equal to the right inverse (meta-function).
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lemma (in group0) group0_2_L9A:

assumes A1: "∀ g∈G. b(g) ∈ G ∧ g·b(g) = 1"
shows "∀ g∈G. b(g) = g−1"

proof
fix g assume "g∈G"
moreover from A1 ‘g∈G‘ have "b(g) ∈ G" by simp

moreover from A1 ‘g∈G‘ have "g·b(g) = 1" by simp

ultimately show "b(g) = g−1" by (rule group0_2_L9)

qed

What is the inverse of a product?

lemma (in group0) group_inv_of_two:

assumes A1: "a∈G" and A2: "b∈G"
shows " b−1·a−1 = (a·b)−1"

proof -

from A1 A2 have
"b−1∈G" "a−1∈G" "a·b∈G" "b−1·a−1 ∈ G"

using inverse_in_group group_op_closed

by auto

from A1 A2 ‘b−1·a−1 ∈ G‘ have "a·b·(b−1·a−1) = a·(b·(b−1·a−1))"

using group_oper_assoc by simp

moreover from A2 ‘b−1∈G‘ ‘a−1∈G‘ have "b·(b−1·a−1) = b·b−1·a−1"

using group_oper_assoc by simp

moreover from A2 ‘a−1∈G‘ have "b·b−1·a−1 = a−1"

using group0_2_L6 group0_2_L2 by simp

ultimately have "a·b·(b−1·a−1) = a·a−1"

by simp

with A1 have "a·b·(b−1·a−1) = 1"
using group0_2_L6 by simp

with ‘a·b ∈ G‘ ‘b−1·a−1 ∈ G‘ show "b−1·a−1 = (a·b)−1"

using group0_2_L9 by simp

qed

What is the inverse of a product of three elements?

lemma (in group0) group_inv_of_three:

assumes A1: "a∈G" "b∈G" "c∈G"
shows
"(a·b·c)−1 = c−1·(a·b)−1"

"(a·b·c)−1 = c−1·(b−1·a−1)"

"(a·b·c)−1 = c−1·b−1·a−1"

proof -

from A1 have T:

"a·b ∈ G" "a−1 ∈ G" "b−1 ∈ G" "c−1 ∈ G"

using group_op_closed inverse_in_group by auto

with A1 show
"(a·b·c)−1 = c−1·(a·b)−1" and "(a·b·c)−1 = c−1·(b−1·a−1)"

using group_inv_of_two by auto

with T show "(a·b·c)−1 = c−1·b−1·a−1" using group_oper_assoc

by simp
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qed

The inverse of the inverse is the element.

lemma (in group0) group_inv_of_inv:

assumes "a∈G" shows "a = (a−1)−1"

using assms inverse_in_group group0_2_L6 group0_2_L9

by simp

Group inverse is nilpotent, therefore a bijection and involution.

lemma (in group0) group_inv_bij:

shows "GroupInv(G,P) O GroupInv(G,P) = id(G)" and "GroupInv(G,P) ∈
bij(G,G)" and
"GroupInv(G,P) = converse(GroupInv(G,P))"

proof -

have I: "GroupInv(G,P): G→G" using groupAssum group0_2_T2 by simp

then have "GroupInv(G,P) O GroupInv(G,P): G→G" and "id(G):G→G"

using comp_fun id_type by auto

moreover
{ fix g assume "g∈G"

with I have "(GroupInv(G,P) O GroupInv(G,P))‘(g) = id(G)‘(g)"

using comp_fun_apply group_inv_of_inv id_conv by simp

} hence "∀ g∈G. (GroupInv(G,P) O GroupInv(G,P))‘(g) = id(G)‘(g)" by
simp

ultimately show "GroupInv(G,P) O GroupInv(G,P) = id(G)"

by (rule func_eq)

with I show "GroupInv(G,P) ∈ bij(G,G)" using nilpotent_imp_bijective

by simp

with ‘GroupInv(G,P) O GroupInv(G,P) = id(G)‘ show
"GroupInv(G,P) = converse(GroupInv(G,P))" using comp_id_conv by simp

qed

For the group inverse the image is the same as inverse image.

lemma (in group0) inv_image_vimage: shows "GroupInv(G,P)‘‘(V) = GroupInv(G,P)-‘‘(V)"

using group_inv_bij vimage_converse by simp

If the unit is in a set then it is in the inverse of that set.

lemma (in group0) neut_inv_neut: assumes "A⊆G" and "1∈A"
shows "1 ∈ GroupInv(G,P)‘‘(A)"

proof -

have "GroupInv(G,P):G→G" using groupAssum group0_2_T2 by simp

with assms have "1−1 ∈ GroupInv(G,P)‘‘(A)" using func_imagedef by auto

then show ?thesis using group_inv_of_one by simp

qed

The group inverse is onto.

lemma (in group0) group_inv_surj: shows "GroupInv(G,P)‘‘(G) = G"

using group_inv_bij bij_def surj_range_image_domain by auto

If a−1 · b = 1, then a = b.

239



lemma (in group0) group0_2_L11:

assumes A1: "a∈G" "b∈G" and A2: "a−1·b = 1"
shows "a=b"

proof -

from A1 A2 have "a−1 ∈ G" "b∈G" "a−1·b = 1"
using inverse_in_group by auto

then have "b = (a−1)−1" by (rule group0_2_L9)

with A1 show "a=b" using group_inv_of_inv by simp

qed

If a · b−1 = 1, then a = b.

lemma (in group0) group0_2_L11A:

assumes A1: "a∈G" "b∈G" and A2: "a·b−1 = 1"
shows "a=b"

proof -

from A1 A2 have "a ∈ G" "b−1∈G" "a·b−1 = 1"
using inverse_in_group by auto

then have "a = (b−1)−1" by (rule group0_2_L9)

with A1 show "a=b" using group_inv_of_inv by simp

qed

If if the inverse of b is different than a, then the inverse of a is different than
b.

lemma (in group0) group0_2_L11B:

assumes A1: "a∈G" and A2: "b−1 6= a"

shows "a−1 6= b"

proof -

{ assume "a−1 = b"

then have "(a−1)−1 = b−1" by simp

with A1 A2 have False using group_inv_of_inv

by simp

} then show "a−1 6= b" by auto

qed

What is the inverse of ab−1 ?

lemma (in group0) group0_2_L12:

assumes A1: "a∈G" "b∈G"
shows
"(a·b−1)−1 = b·a−1"

"(a−1·b)−1 = b−1·a"
proof -

from A1 have
"(a·b−1)−1 = (b−1)−1· a−1" and "(a−1·b)−1 = b−1·(a−1)−1"

using inverse_in_group group_inv_of_two by auto

with A1 show "(a·b−1)−1 = b·a−1" "(a−1·b)−1 = b−1·a"
using group_inv_of_inv by auto

qed

A couple useful rearrangements with three elements: we can insert a b · b−1
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between two group elements (another version) and one about a product of
an element and inverse of a product, and two others.

lemma (in group0) group0_2_L14A:

assumes A1: "a∈G" "b∈G" "c∈G"
shows
"a·c−1= (a·b−1)·(b·c−1)"

"a−1·c = (a−1·b)·(b−1·c)"
"a·(b·c)−1 = a·c−1·b−1"

"a·(b·c−1) = a·b·c−1"

"(a·b−1·c−1)−1 = c·b·a−1"

"a·b·c−1·(c·b−1) = a"

"a·(b·c)·c−1 = a·b"
proof -

from A1 have T:

"a−1 ∈ G" "b−1∈G" "c−1∈G"
"a−1·b ∈ G" "a·b−1 ∈ G" "a·b ∈ G"

"c·b−1 ∈ G" "b·c ∈ G"

using inverse_in_group group_op_closed

by auto

from A1 T have
"a·c−1 = a·(b−1·b)·c−1"

"a−1·c = a−1·(b·b−1)·c"
using group0_2_L2 group0_2_L6 by auto

with A1 T show
"a·c−1= (a·b−1)·(b·c−1)"

"a−1·c = (a−1·b)·(b−1·c)"
using group_oper_assoc by auto

from A1 have "a·(b·c)−1 = a·(c−1·b−1)"

using group_inv_of_two by simp

with A1 T show "a·(b·c)−1 =a·c−1·b−1"

using group_oper_assoc by simp

from A1 T show "a·(b·c−1) = a·b·c−1"

using group_oper_assoc by simp

from A1 T show "(a·b−1·c−1)−1 = c·b·a−1"

using group_inv_of_three group_inv_of_inv

by simp

from T have "a·b·c−1·(c·b−1) = a·b·(c−1·(c·b−1))"

using group_oper_assoc by simp

also from A1 T have ". . . = a·b·b−1"

using group_oper_assoc group0_2_L6 group0_2_L2

by simp

also from A1 T have ". . . = a·(b·b−1)"

using group_oper_assoc by simp

also from A1 have ". . . = a"

using group0_2_L6 group0_2_L2 by simp

finally show "a·b·c−1·(c·b−1) = a" by simp

from A1 T have "a·(b·c)·c−1 = a·(b·(c·c−1))"

using group_oper_assoc by simp

also from A1 T have ". . . = a·b"
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using group0_2_L6 group0_2_L2 by simp

finally show "a·(b·c)·c−1 = a·b"
by simp

qed

Another lemma about rearranging a product of four group elements.

lemma (in group0) group0_2_L15:

assumes A1: "a∈G" "b∈G" "c∈G" "d∈G"
shows "(a·b)·(c·d)−1 = a·(b·d−1)·a−1·(a·c−1)"

proof -

from A1 have T1:

"d−1∈G" "c−1∈G" "a·b∈G" "a·(b·d−1)∈G"
using inverse_in_group group_op_closed

by auto

with A1 have "(a·b)·(c·d)−1 = (a·b)·(d−1·c−1)"

using group_inv_of_two by simp

also from A1 T1 have ". . . = a·(b·d−1)·c−1"

using group_oper_assoc by simp

also from A1 T1 have ". . . = a·(b·d−1)·a−1·(a·c−1)"

using group0_2_L14A by blast

finally show ?thesis by simp

qed

We can cancel an element with its inverse that is written next to it.

lemma (in group0) inv_cancel_two:

assumes A1: "a∈G" "b∈G"
shows
"a·b−1·b = a"

"a·b·b−1 = a"

"a−1·(a·b) = b"

"a·(a−1·b) = b"

proof -

from A1 have
"a·b−1·b = a·(b−1·b)" "a·b·b−1 = a·(b·b−1)"

"a−1·(a·b) = a−1·a·b" "a·(a−1·b) = a·a−1·b"
using inverse_in_group group_oper_assoc by auto

with A1 show
"a·b−1·b = a"

"a·b·b−1 = a"

"a−1·(a·b) = b"

"a·(a−1·b) = b"

using group0_2_L6 group0_2_L2 by auto

qed

Another lemma about cancelling with two group elements.

lemma (in group0) group0_2_L16A:

assumes A1: "a∈G" "b∈G"
shows "a·(b·a)−1 = b−1"

proof -

242



from A1 have "(b·a)−1 = a−1·b−1" "b−1 ∈ G"

using group_inv_of_two inverse_in_group by auto

with A1 show "a·(b·a)−1 = b−1" using inv_cancel_two

by simp

qed

Adding a neutral element to a set that is closed under the group operation
results in a set that is closed under the group operation.

lemma (in group0) group0_2_L17:

assumes "H⊆G"
and "H {is closed under} P"

shows "(H ∪ {1}) {is closed under} P"

using assms IsOpClosed_def group0_2_L2 by auto

We can put an element on the other side of an equation.

lemma (in group0) group0_2_L18:

assumes A1: "a∈G" "b∈G" "c∈G"
and A2: "c = a·b"
shows "c·b−1 = a" "a−1·c = b"

proof-
from A2 A1 have "c·b−1 = a·(b·b−1)" "a−1·c = (a−1·a)·b"

using inverse_in_group group_oper_assoc by auto

moreover from A1 have "a·(b·b−1) = a" "(a−1·a)·b = b"

using group0_2_L6 group0_2_L2 by auto

ultimately show "c·b−1 = a" "a−1·c = b"

by auto

qed

Multiplying different group elements by the same factor results in different
group elements.

lemma (in group0) group0_2_L19:

assumes A1: "a∈G" "b∈G" "c∈G" and A2: "a6=b"

shows "a·c 6= b·c" and "c·a 6= c·b"
proof -

{ assume "a·c = b·c ∨ c·a =c·b"
then have "a·c·c−1 = b·c·c−1 ∨ c−1·(c·a) = c−1·(c·b)"

by auto

with A1 A2 have False using inv_cancel_two by simp

} then show "a·c 6= b·c" and "c·a 6= c·b" by auto

qed

25.2 Subgroups

There are two common ways to define subgroups. One requires that the
group operation is closed in the subgroup. The second one defines subgroup
as a subset of a group which is itself a group under the group operations.
We use the second approach because it results in shorter definition.
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The rest of this section is devoted to proving the equivalence of these two
definitions of the notion of a subgroup.

A pair (H,P ) is a subgroup if H forms a group with the operation P re-
stricted to H × H. It may be surprising that we don’t require H to be a
subset of G. This however can be inferred from the definition if the pair
(G,P ) is a group, see lemma group0_3_L2.

definition
"IsAsubgroup(H,P) ≡ IsAgroup(H, restrict(P,H×H))"

Formally the group operation in a subgroup is different than in the group as
they have different domains. Of course we want to use the original operation
with the associated notation in the subgroup. The next couple of lemmas
will allow for that.

The next lemma states that the neutral element of a subgroup is in the
subgroup and it is both right and left neutral there. The notation is very
ugly because we don’t want to introduce a separate notation for the subgroup
operation.

lemma group0_3_L1:

assumes A1: "IsAsubgroup(H,f)"

and A2: "n = TheNeutralElement(H,restrict(f,H×H))"
shows "n ∈ H"

"∀ h∈H. restrict(f,H×H)‘〈n,h 〉 = h"

"∀ h∈H. restrict(f,H×H)‘〈h,n〉 = h"

proof -

let ?b = "restrict(f,H×H)"
let ?e = "TheNeutralElement(H,restrict(f,H×H))"
from A1 have "group0(H,?b)"

using IsAsubgroup_def group0_def by simp

then have I:

"?e ∈ H ∧ (∀ h∈H. (?b‘〈?e,h 〉 = h ∧ ?b‘〈h,?e〉 = h))"

by (rule group0.group0_2_L2)

with A2 show "n ∈ H" by simp

from A2 I show "∀ h∈H. ?b‘〈n,h〉 = h" and "∀ h∈H. ?b‘〈h,n〉 = h"

by auto

qed

A subgroup is contained in the group.

lemma (in group0) group0_3_L2:

assumes A1: "IsAsubgroup(H,P)"

shows "H ⊆ G"

proof
fix h assume "h∈H"
let ?b = "restrict(P,H×H)"
let ?n = "TheNeutralElement(H,restrict(P,H×H))"
from A1 have "?b ∈ H×H→H"

using IsAsubgroup_def IsAgroup_def
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IsAmonoid_def IsAssociative_def by simp

moreover from A1 ‘h∈H‘ have "〈 ?n,h〉 ∈ H×H"
using group0_3_L1 by simp

moreover from A1 ‘h∈H‘ have "h = ?b‘〈?n,h 〉"
using group0_3_L1 by simp

ultimately have "〈〈?n,h〉,h〉 ∈ ?b"

using func1_1_L5A by blast

then have "〈〈?n,h〉,h〉 ∈ P" using restrict_subset by auto

moreover from groupAssum have "P:G×G→G"

using IsAgroup_def IsAmonoid_def IsAssociative_def

by simp

ultimately show "h∈G" using func1_1_L5

by blast

qed

The group’s neutral element (denoted 1 in the group0 context) is a neutral
element for the subgroup with respect to the group action.

lemma (in group0) group0_3_L3:

assumes "IsAsubgroup(H,P)"

shows "∀ h∈H. 1·h = h ∧ h·1 = h"

using assms groupAssum group0_3_L2 group0_2_L2

by auto

The neutral element of a subgroup is the same as that of the group.

lemma (in group0) group0_3_L4: assumes A1: "IsAsubgroup(H,P)"

shows "TheNeutralElement(H,restrict(P,H×H)) = 1"
proof -

let ?n = "TheNeutralElement(H,restrict(P,H×H))"
from A1 have "?n ∈ H" using group0_3_L1 by simp

with groupAssum A1 have "?n∈G" using group0_3_L2 by auto

with A1 ‘?n ∈ H‘ show ?thesis using
group0_3_L1 restrict_if group0_2_L7 by simp

qed

The neutral element of the group (denoted 1 in the group0 context) belongs
to every subgroup.

lemma (in group0) group0_3_L5: assumes A1: "IsAsubgroup(H,P)"

shows "1 ∈ H"

proof -

from A1 show "1∈H" using group0_3_L1 group0_3_L4

by fast

qed

Subgroups are closed with respect to the group operation.

lemma (in group0) group0_3_L6: assumes A1: "IsAsubgroup(H,P)"

and A2: "a∈H" "b∈H"
shows "a·b ∈ H"

proof -
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let ?f = "restrict(P,H×H)"
from A1 have "monoid0(H,?f)" using
IsAsubgroup_def IsAgroup_def monoid0_def by simp

with A2 have "?f‘ (〈a,b〉) ∈ H" using monoid0.group0_1_L1

by blast

with A2 show "a·b ∈ H" using restrict_if by simp

qed

A preliminary lemma that we need to show that taking the inverse in the
subgroup is the same as taking the inverse in the group.

lemma group0_3_L7A:

assumes A1: "IsAgroup(G,f)"

and A2: "IsAsubgroup(H,f)" and A3: "g = restrict(f,H×H)"
shows "GroupInv(G,f) ∩ H×H = GroupInv(H,g)"

proof -

let ?e = "TheNeutralElement(G,f)"

let ?e1 = "TheNeutralElement(H,g)"

from A1 have "group0(G,f)" using group0_def by simp

from A2 A3 have "group0(H,g)"

using IsAsubgroup_def group0_def by simp

from ‘group0(G,f)‘ A2 A3 have "GroupInv(G,f) = f-‘‘{?e1}"

using group0.group0_3_L4 group0.group0_2_T3

by simp

moreover have "g-‘‘{?e1} = f-‘‘{?e1} ∩ H×H"
proof -

from A1 have "f ∈ G×G→G"

using IsAgroup_def IsAmonoid_def IsAssociative_def

by simp

moreover from A2 ‘group0(G,f)‘ have "H×H ⊆ G×G"
using group0.group0_3_L2 by auto

ultimately show "g-‘‘{?e1} = f-‘‘{?e1} ∩ H×H"
using A3 func1_2_L1 by simp

qed
moreover from A3 ‘group0(H,g)‘ have "GroupInv(H,g) = g-‘‘{?e1}"

using group0.group0_2_T3 by simp

ultimately show ?thesis by simp

qed

Using the lemma above we can show the actual statement: taking the inverse
in the subgroup is the same as taking the inverse in the group.

theorem (in group0) group0_3_T1:

assumes A1: "IsAsubgroup(H,P)"

and A2: "g = restrict(P,H×H)"
shows "GroupInv(H,g) = restrict(GroupInv(G,P),H)"

proof -

from groupAssum have "GroupInv(G,P) : G→G"

using group0_2_T2 by simp

moreover from A1 A2 have "GroupInv(H,g) : H→H"

using IsAsubgroup_def group0_2_T2 by simp
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moreover from A1 have "H ⊆ G"

using group0_3_L2 by simp

moreover from groupAssum A1 A2 have
"GroupInv(G,P) ∩ H×H = GroupInv(H,g)"

using group0_3_L7A by simp

ultimately show ?thesis

using func1_2_L3 by simp

qed

A sligtly weaker, but more convenient in applications, reformulation of the
above theorem.

theorem (in group0) group0_3_T2:

assumes "IsAsubgroup(H,P)"

and "g = restrict(P,H×H)"
shows "∀ h∈H. GroupInv(H,g)‘(h) = h−1"

using assms group0_3_T1 restrict_if by simp

Subgroups are closed with respect to taking the group inverse.

theorem (in group0) group0_3_T3A:

assumes A1: "IsAsubgroup(H,P)" and A2: "h∈H"
shows "h−1∈ H"

proof -

let ?g = "restrict(P,H×H)"
from A1 have "GroupInv(H,?g) ∈ H→H"

using IsAsubgroup_def group0_2_T2 by simp

with A2 have "GroupInv(H,?g)‘(h) ∈ H"

using apply_type by simp

with A1 A2 show "h−1∈ H" using group0_3_T2 by simp

qed

The next theorem states that a nonempty subset of a group G that is closed
under the group operation and taking the inverse is a subgroup of the group.

theorem (in group0) group0_3_T3:

assumes A1: "H6=0"

and A2: "H⊆G"
and A3: "H {is closed under} P"

and A4: "∀ x∈H. x−1 ∈ H"

shows "IsAsubgroup(H,P)"

proof -

let ?g = "restrict(P,H×H)"
let ?n = "TheNeutralElement(H,?g)"

from A3 have I: "∀ x∈H.∀ y∈H. x·y ∈ H"

using IsOpClosed_def by simp

from A1 obtain x where "x∈H" by auto

with A4 I A2 have "1∈H"
using group0_2_L6 by blast

with A3 A2 have T2: "IsAmonoid(H,?g)"

using group0_2_L1 monoid0.group0_1_T1
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by simp

moreover have "∀ h∈H.∃ b∈H. ?g‘〈h,b〉 = ?n"

proof
fix h assume "h∈H"
with A4 A2 have "h·h−1 = 1"

using group0_2_L6 by auto

moreover from groupAssum A2 A3 ‘1∈H‘ have "1 = ?n"

using IsAgroup_def group0_1_L6 by auto

moreover from A4 ‘h∈H‘ have "?g‘〈h,h−1〉 = h·h−1"

using restrict_if by simp

ultimately have "?g‘〈h,h−1〉 = ?n" by simp

with A4 ‘h∈H‘ show "∃ b∈H. ?g‘〈h,b〉 = ?n" by auto

qed
ultimately show "IsAsubgroup(H,P)" using
IsAsubgroup_def IsAgroup_def by simp

qed

Intersection of subgroups is a subgroup.

lemma group0_3_L7:

assumes A1: "IsAgroup(G,f)"

and A2: "IsAsubgroup(H1,f)"

and A3: "IsAsubgroup(H2,f)"

shows "IsAsubgroup(H1∩H2,restrict(f,H1×H1))"
proof -

let ?e = "TheNeutralElement(G,f)"

let ?g = "restrict(f,H1×H1)"
from A1 have I: "group0(G,f)"

using group0_def by simp

from A2 have "group0(H1,?g)"

using IsAsubgroup_def group0_def by simp

moreover have "H1∩H2 6= 0"

proof -

from A1 A2 A3 have "?e ∈ H1∩H2"
using group0_def group0.group0_3_L5 by simp

thus ?thesis by auto

qed
moreover have "H1∩H2 ⊆ H1" by auto

moreover from A2 A3 I ‘H1∩H2 ⊆ H1‘ have
"H1∩H2 {is closed under} ?g"

using group0.group0_3_L6 IsOpClosed_def

func_ZF_4_L7 func_ZF_4_L5 by simp

moreover from A2 A3 I have
"∀ x ∈ H1∩H2. GroupInv(H1,?g)‘(x) ∈ H1∩H2"
using group0.group0_3_T2 group0.group0_3_T3A

by simp

ultimately show ?thesis

using group0.group0_3_T3 by simp

qed

The range of the subgroup operation is the whole subgroup.
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lemma image_subgr_op: assumes A1: "IsAsubgroup(H,P)"

shows "restrict(P,H×H)‘‘(H×H) = H"

proof -

from A1 have "monoid0(H,restrict(P,H×H))"
using IsAsubgroup_def IsAgroup_def monoid0_def

by simp

then show ?thesis by (rule monoid0.range_carr)

qed

If we restrict the inverse to a subgroup, then the restricted inverse is onto
the subgroup.

lemma (in group0) restr_inv_onto: assumes A1: "IsAsubgroup(H,P)"

shows "restrict(GroupInv(G,P),H)‘‘(H) = H"

proof -

from A1 have "GroupInv(H,restrict(P,H×H))‘‘(H) = H"

using IsAsubgroup_def group0_def group0.group_inv_surj

by simp

with A1 show ?thesis using group0_3_T1 by simp

qed

end

26 Groups 1

theory Group_ZF_1 imports Group_ZF

begin

In this theory we consider right and left translations and odd functions.

26.1 Translations

In this section we consider translations. Translations are maps T : G → G
of the form Tg(a) = g · a or Tg(a) = a · g. We also consider two-dimensional
translations Tg : G×G→ G×G, where Tg(a, b) = (a · g, b · g) or Tg(a, b) =
(g · a, g · b).

For an element a ∈ G the right translation is defined a function (set of pairs)
such that its value (the second element of a pair) is the value of the group
operation on the first element of the pair and g. This looks a bit strange in
the raw set notation, when we write a function explicitely as a set of pairs
and value of the group operation on the pair 〈a, b〉 as P‘〈a,b〉 instead of the
usual infix a · b or a+ b.

definition
"RightTranslation(G,P,g) ≡ {〈 a,b〉 ∈ G×G. P‘〈a,g〉 = b}"

A similar definition of the left translation.
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definition
"LeftTranslation(G,P,g) ≡ {〈a,b〉 ∈ G×G. P‘〈g,a〉 = b}"

Translations map G into G. Two dimensional translations map G×G into
itself.

lemma (in group0) group0_5_L1: assumes A1: "g∈G"
shows "RightTranslation(G,P,g) : G→G" and "LeftTranslation(G,P,g)

: G→G"

proof -

from A1 have "∀ a∈G. a·g ∈ G" and "∀ a∈G. g·a ∈ G"

using group_oper_assocA apply_funtype by auto

then show
"RightTranslation(G,P,g) : G→G"

"LeftTranslation(G,P,g) : G→G"

using RightTranslation_def LeftTranslation_def func1_1_L11A

by auto

qed

The values of the translations are what we expect.

lemma (in group0) group0_5_L2: assumes "g∈G" "a∈G"
shows
"RightTranslation(G,P,g)‘(a) = a·g"
"LeftTranslation(G,P,g)‘(a) = g·a"
using assms group0_5_L1 RightTranslation_def LeftTranslation_def

func1_1_L11B by auto

Composition of left translations is a left translation by the product.

lemma (in group0) group0_5_L4: assumes A1: "g∈G" "h∈G" "a∈G" and
A2: "Tg = LeftTranslation(G,P,g)" "Th = LeftTranslation(G,P,h)"

shows
"Tg‘(Th‘(a)) = g·h·a"
"Tg‘(Th‘(a)) = LeftTranslation(G,P,g·h)‘(a)"

proof -

from A1 have I: "h·a∈G" "g·h∈G"
using group_oper_assocA apply_funtype by auto

with A1 A2 show "Tg‘(Th‘(a)) = g·h·a"
using group0_5_L2 group_oper_assoc by simp

with A1 A2 I show
"Tg‘(Th‘(a)) = LeftTranslation(G,P,g·h)‘(a)"
using group0_5_L2 group_oper_assoc by simp

qed

Composition of right translations is a right translation by the product.

lemma (in group0) group0_5_L5: assumes A1: "g∈G" "h∈G" "a∈G" and
A2: "Tg = RightTranslation(G,P,g)" "Th = RightTranslation(G,P,h)"

shows
"Tg‘(Th‘(a)) = a·h·g"
"Tg‘(Th‘(a)) = RightTranslation(G,P,h·g)‘(a)"
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proof -

from A1 have I: "a·h∈G" "h·g ∈G"
using group_oper_assocA apply_funtype by auto

with A1 A2 show "Tg‘(Th‘(a)) = a·h·g"
using group0_5_L2 group_oper_assoc by simp

with A1 A2 I show
"Tg‘(Th‘(a)) = RightTranslation(G,P,h·g)‘(a)"
using group0_5_L2 group_oper_assoc by simp

qed

Point free version of group0_5_L4 and group0_5_L5.

lemma (in group0) trans_comp: assumes "g∈G" "h∈G" shows
"RightTranslation(G,P,g) O RightTranslation(G,P,h) = RightTranslation(G,P,h·g)"
"LeftTranslation(G,P,g) O LeftTranslation(G,P,h) = LeftTranslation(G,P,g·h)"

proof -

let ?Tg = "RightTranslation(G,P,g)"

let ?Th = "RightTranslation(G,P,h)"

from assms have "?Tg:G→G" and "?Th:G→G"

using group0_5_L1 by auto

then have "?Tg O ?Th:G→G" using comp_fun by simp

moreover from assms have "RightTranslation(G,P,h·g):G→G"

using group_op_closed group0_5_L1 by simp

moreover from assms ‘?Th:G→G‘ have
"∀ a∈G. (?Tg O ?Th)‘(a) = RightTranslation(G,P,h·g)‘(a)"
using comp_fun_apply group0_5_L5 by simp

ultimately show "?Tg O ?Th = RightTranslation(G,P,h·g)"
by (rule func_eq)

next
let ?Tg = "LeftTranslation(G,P,g)"

let ?Th = "LeftTranslation(G,P,h)"

from assms have "?Tg:G→G" and "?Th:G→G"

using group0_5_L1 by auto

then have "?Tg O ?Th:G→G" using comp_fun by simp

moreover from assms have "LeftTranslation(G,P,g·h):G→G"

using group_op_closed group0_5_L1 by simp

moreover from assms ‘?Th:G→G‘ have
"∀ a∈G. (?Tg O ?Th)‘(a) = LeftTranslation(G,P,g·h)‘(a)"
using comp_fun_apply group0_5_L4 by simp

ultimately show "?Tg O ?Th = LeftTranslation(G,P,g·h)"
by (rule func_eq)

qed

The image of a set under a composition of translations is the same as the
image under translation by a product.

lemma (in group0) trans_comp_image: assumes A1: "g∈G" "h∈G" and
A2: "Tg = LeftTranslation(G,P,g)" "Th = LeftTranslation(G,P,h)"

shows "Tg‘‘(Th‘‘(A)) = LeftTranslation(G,P,g·h)‘‘(A)"
proof -

from A2 have "Tg‘‘(Th‘‘(A)) = (Tg O Th)‘‘(A)"
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using image_comp by simp

with assms show ?thesis using trans_comp by simp

qed

Another form of the image of a set under a composition of translations

lemma (in group0) group0_5_L6:

assumes A1: "g∈G" "h∈G" and A2: "A⊆G" and
A3: "Tg = RightTranslation(G,P,g)" "Th = RightTranslation(G,P,h)"

shows "Tg‘‘(Th‘‘(A)) = {a·h·g. a∈A}"
proof -

from A2 have "∀ a∈A. a∈G" by auto

from A1 A3 have "Tg : G→G" "Th : G→G"

using group0_5_L1 by auto

with assms ‘∀ a∈A. a∈G‘ show
"Tg‘‘(Th‘‘(A)) = {a·h·g. a∈A}"
using func1_1_L15C group0_5_L5 by auto

qed

The translation by neutral element is the identity on group.

lemma (in group0) trans_neutral: shows
"RightTranslation(G,P,1) = id(G)" and "LeftTranslation(G,P,1) = id(G)"

proof -

have "RightTranslation(G,P,1):G→G" and "∀ a∈G. RightTranslation(G,P,1)‘(a)
= a"

using group0_2_L2 group0_5_L1 group0_5_L2 by auto

then show "RightTranslation(G,P,1) = id(G)" by (rule indentity_fun)

have "LeftTranslation(G,P,1):G→G" and "∀ a∈G. LeftTranslation(G,P,1)‘(a)
= a"

using group0_2_L2 group0_5_L1 group0_5_L2 by auto

then show "LeftTranslation(G,P,1) = id(G)" by (rule indentity_fun)

qed

Composition of translations by an element and its inverse is identity.

lemma (in group0) trans_comp_id: assumes "g∈G" shows
"RightTranslation(G,P,g) O RightTranslation(G,P,g−1) = id(G)" and
"RightTranslation(G,P,g−1) O RightTranslation(G,P,g) = id(G)" and
"LeftTranslation(G,P,g) O LeftTranslation(G,P,g−1) = id(G)" and
"LeftTranslation(G,P,g−1) O LeftTranslation(G,P,g) = id(G)"

using assms inverse_in_group trans_comp group0_2_L6 trans_neutral by
auto

Translations are bijective.

lemma (in group0) trans_bij: assumes "g∈G" shows
"RightTranslation(G,P,g) ∈ bij(G,G)" and "LeftTranslation(G,P,g) ∈

bij(G,G)"

proof-
from assms have
"RightTranslation(G,P,g):G→G" and
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"RightTranslation(G,P,g−1):G→G" and
"RightTranslation(G,P,g) O RightTranslation(G,P,g−1) = id(G)"

"RightTranslation(G,P,g−1) O RightTranslation(G,P,g) = id(G)"

using inverse_in_group group0_5_L1 trans_comp_id by auto

then show "RightTranslation(G,P,g) ∈ bij(G,G)" using fg_imp_bijective

by simp

from assms have
"LeftTranslation(G,P,g):G→G" and
"LeftTranslation(G,P,g−1):G→G" and
"LeftTranslation(G,P,g) O LeftTranslation(G,P,g−1) = id(G)"

"LeftTranslation(G,P,g−1) O LeftTranslation(G,P,g) = id(G)"

using inverse_in_group group0_5_L1 trans_comp_id by auto

then show "LeftTranslation(G,P,g) ∈ bij(G,G)" using fg_imp_bijective

by simp

qed

Converse of a translation is translation by the inverse.

lemma (in group0) trans_conv_inv: assumes "g∈G" shows
"converse(RightTranslation(G,P,g)) = RightTranslation(G,P,g−1)" and
"converse(LeftTranslation(G,P,g)) = LeftTranslation(G,P,g−1)" and
"LeftTranslation(G,P,g) = converse(LeftTranslation(G,P,g−1))" and
"RightTranslation(G,P,g) = converse(RightTranslation(G,P,g−1))"

proof -

from assms have
"RightTranslation(G,P,g) ∈ bij(G,G)" "RightTranslation(G,P,g−1) ∈

bij(G,G)" and
"LeftTranslation(G,P,g) ∈ bij(G,G)" "LeftTranslation(G,P,g−1) ∈

bij(G,G)"

using trans_bij inverse_in_group by auto

moreover from assms have
"RightTranslation(G,P,g−1) O RightTranslation(G,P,g) = id(G)" and
"LeftTranslation(G,P,g−1) O LeftTranslation(G,P,g) = id(G)" and
"LeftTranslation(G,P,g) O LeftTranslation(G,P,g−1) = id(G)" and
"LeftTranslation(G,P,g−1) O LeftTranslation(G,P,g) = id(G)"

using trans_comp_id by auto

ultimately show
"converse(RightTranslation(G,P,g)) = RightTranslation(G,P,g−1)" and
"converse(LeftTranslation(G,P,g)) = LeftTranslation(G,P,g−1)" and

"LeftTranslation(G,P,g) = converse(LeftTranslation(G,P,g−1))" and
"RightTranslation(G,P,g) = converse(RightTranslation(G,P,g−1))"

using comp_id_conv by auto

qed

The image of a set by translation is the same as the inverse image by by the
inverse element translation.

lemma (in group0) trans_image_vimage: assumes "g∈G" shows
"LeftTranslation(G,P,g)‘‘(A) = LeftTranslation(G,P,g−1)-‘‘(A)" and
"RightTranslation(G,P,g)‘‘(A) = RightTranslation(G,P,g−1)-‘‘(A)"

253



using assms trans_conv_inv vimage_converse by auto

Another way of looking at translations is that they are sections of the group
operation.

lemma (in group0) trans_eq_section: assumes "g∈G" shows
"RightTranslation(G,P,g) = Fix2ndVar(P,g)" and
"LeftTranslation(G,P,g) = Fix1stVar(P,g)"

proof -

let ?T = "RightTranslation(G,P,g)"

let ?F = "Fix2ndVar(P,g)"

from assms have "?T: G→G" and "?F: G→G"

using group0_5_L1 group_oper_assocA fix_2nd_var_fun by auto

moreover from assms have "∀ a∈G. ?T‘(a) = ?F‘(a)"

using group0_5_L2 group_oper_assocA fix_var_val by simp

ultimately show "?T = ?F" by (rule func_eq)

next
let ?T = "LeftTranslation(G,P,g)"

let ?F = "Fix1stVar(P,g)"

from assms have "?T: G→G" and "?F: G→G"

using group0_5_L1 group_oper_assocA fix_1st_var_fun by auto

moreover from assms have "∀ a∈G. ?T‘(a) = ?F‘(a)"

using group0_5_L2 group_oper_assocA fix_var_val by simp

ultimately show "?T = ?F" by (rule func_eq)

qed

A lemma about translating sets.

lemma (in group0) ltrans_image: assumes A1: "V⊆G" and A2: "x∈G"
shows "LeftTranslation(G,P,x)‘‘(V) = {x·v. v∈V}"

proof -

from assms have "LeftTranslation(G,P,x)‘‘(V) = {LeftTranslation(G,P,x)‘(v).

v∈V}"
using group0_5_L1 func_imagedef by blast

moreover from assms have "∀ v∈V. LeftTranslation(G,P,x)‘(v) = x·v"
using group0_5_L2 by auto

ultimately show ?thesis by auto

qed

A technical lemma about solving equations with translations.

lemma (in group0) ltrans_inv_in: assumes A1: "V⊆G" and A2: "y∈G" and
A3: "x ∈ LeftTranslation(G,P,y)‘‘(GroupInv(G,P)‘‘(V))"

shows "y ∈ LeftTranslation(G,P,x)‘‘(V)"

proof -

have "x∈G"
proof -

from A2 have "LeftTranslation(G,P,y):G→G" using group0_5_L1 by simp

then have "LeftTranslation(G,P,y)‘‘(GroupInv(G,P)‘‘(V)) ⊆ G"

using func1_1_L6 by simp

with A3 show "x∈G" by auto

qed
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have "∃ v∈V. x = y·v−1"

proof -

have "GroupInv(G,P): G→G" using groupAssum group0_2_T2

by simp

with assms obtain z where "z ∈ GroupInv(G,P)‘‘(V)" and "x = y·z"
using func1_1_L6 ltrans_image by auto

with A1 ‘GroupInv(G,P): G→G‘ show ?thesis using func_imagedef by
auto

qed
then obtain v where "v∈V" and "x = y·v−1" by auto

with A1 A2 have "y = x·v" using inv_cancel_two by auto

with assms ‘x∈G‘ ‘v∈V‘ show ?thesis using ltrans_image by auto

qed

We can look at the result of interval arithmetic operation as union of trans-
lated sets.

lemma (in group0) image_ltrans_union: assumes "A⊆G" "B⊆G" shows
"(P {lifted to subsets of} G)‘〈A,B〉 = (

⋃
a∈A. LeftTranslation(G,P,a)‘‘(B))"

proof
from assms have I: "(P {lifted to subsets of} G)‘〈A,B〉 = {a·b . 〈a,b〉

∈ A×B}"
using group_oper_assocA lift_subsets_explained by simp

{ fix c assume "c ∈ (P {lifted to subsets of} G)‘〈A,B〉"
with I obtain a b where "c = a·b" and "a∈A" "b∈B" by auto

hence "c ∈ {a·b. b∈B}" by auto

moreover from assms ‘a∈A‘ have
"LeftTranslation(G,P,a)‘‘(B) = {a·b. b∈B}" using ltrans_image by

auto

ultimately have "c ∈ LeftTranslation(G,P,a)‘‘(B)" by simp

with ‘a∈A‘ have "c ∈ (
⋃
a∈A. LeftTranslation(G,P,a)‘‘(B))" by auto

} thus "(P {lifted to subsets of} G)‘〈A,B〉 ⊆ (
⋃
a∈A. LeftTranslation(G,P,a)‘‘(B))"

by auto

{ fix c assume "c ∈ (
⋃
a∈A. LeftTranslation(G,P,a)‘‘(B))"

then obtain a where "a∈A" and "c ∈ LeftTranslation(G,P,a)‘‘(B)"

by auto

moreover from assms ‘a∈A‘ have "LeftTranslation(G,P,a)‘‘(B) = {a·b.
b∈B}"

using ltrans_image by auto

ultimately obtain b where "b∈B" and "c = a·b" by auto

with I ‘a∈A‘ have "c ∈ (P {lifted to subsets of} G)‘〈A,B〉" by auto

} thus "(
⋃
a∈A. LeftTranslation(G,P,a)‘‘(B)) ⊆ (P {lifted to subsets

of} G)‘〈A,B〉"
by auto

qed

If the neutral element belongs to a set, then an element of group belongs
the translation of that set.

lemma (in group0) neut_trans_elem:

assumes A1: "A⊆G" "g∈G" and A2: "1∈A"
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shows "g ∈ LeftTranslation(G,P,g)‘‘(A)"

proof -

from assms have "g·1 ∈ LeftTranslation(G,P,g)‘‘(A)"

using ltrans_image by auto

with A1 show ?thesis using group0_2_L2 by simp

qed

The neutral element belongs to the translation of a set by the inverse of an
element that belongs to it.

lemma (in group0) elem_trans_neut: assumes A1: "A⊆G" and A2: "g∈A"
shows "1 ∈ LeftTranslation(G,P,g−1)‘‘(A)"

proof -

from assms have "g−1 ∈ G" using inverse_in_group by auto

with assms have "g−1·g ∈ LeftTranslation(G,P,g−1)‘‘(A)"

using ltrans_image by auto

moreover from assms have "g−1·g = 1" using group0_2_L6 by auto

ultimately show ?thesis by simp

qed

26.2 Odd functions

This section is about odd functions.

Odd functions are those that commute with the group inverse: f(a−1) =
(f(a))−1.

definition
"IsOdd(G,P,f) ≡ (∀ a∈G. f‘(GroupInv(G,P)‘(a)) = GroupInv(G,P)‘(f‘(a))

)"

Let’s see the definition of an odd function in a more readable notation.

lemma (in group0) group0_6_L1:

shows "IsOdd(G,P,p) ←→ ( ∀ a∈G. p‘(a−1) = (p‘(a))−1 )"

using IsOdd_def by simp

We can express the definition of an odd function in two ways.

lemma (in group0) group0_6_L2:

assumes A1: "p : G→G"

shows
"(∀ a∈G. p‘(a−1) = (p‘(a))−1) ←→ (∀ a∈G. (p‘(a−1))−1 = p‘(a))"

proof
assume "∀ a∈G. p‘(a−1) = (p‘(a))−1"

with A1 show "∀ a∈G. (p‘(a−1))−1 = p‘(a)"

using apply_funtype group_inv_of_inv by simp

next assume A2: "∀ a∈G. (p‘(a−1))−1 = p‘(a)"

{ fix a assume "a∈G"
with A1 A2 have
"p‘(a−1) ∈ G" and "((p‘(a−1))−1)−1 = (p‘(a))−1"

using apply_funtype inverse_in_group by auto
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then have "p‘(a−1) = (p‘(a))−1"

using group_inv_of_inv by simp

} then show "∀ a∈G. p‘(a−1) = (p‘(a))−1" by simp

qed

end

27 Groups - and alternative definition

theory Group_ZF_1b imports Group_ZF

begin

In a typical textbook a group is defined as a set G with an associative
operation such that two conditions hold:

A: there is an element e ∈ G such that for all g ∈ G we have e · g = g and
g · e = g. We call this element a ”unit” or a ”neutral element” of the group.

B: for every a ∈ G there exists a b ∈ G such that a · b = e, where e is the
element of G whose existence is guaranteed by A.

The validity of this definition is rather dubious to me, as condition A does
not define any specific element e that can be referred to in condition B -
it merely states that a set of such units e is not empty. Of course it does
work in the end as we can prove that the set of such neutral elements has
exactly one element, but still the definition by itself is not valid. You just
can’t reference a variable bound by a quantifier outside of the scope of that
quantifier.

One way around this is to first use condition A to define the notion of a
monoid, then prove the uniqueness of e and then use the condition B to
define groups.

Another way is to write conditions A and B together as follows:

∃e∈G (∀g∈G e · g = g ∧ g · e = g) ∧ (∀a∈G∃b∈G a · b = e).

This is rather ugly.

What I want to talk about is an amusing way to define groups directly
without any reference to the neutral elements. Namely, we can define a
group as a non-empty set G with an associative operation ”·” such that

C: for every a, b ∈ G the equations a ·x = b and y ·a = b can be solved in G.

This theory file aims at proving the equivalence of this alternative definition
with the usual definition of the group, as formulated in Group_ZF.thy. The
informal proofs come from an Aug. 14, 2005 post by buli on the matem-
atyka.org forum.
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27.1 An alternative definition of group

First we will define notation for writing about groups.

We will use the multiplicative notation for the group operation. To do this,
we define a context (locale) that tells Isabelle to interpret a · b as the value
of function P on the pair 〈a, b〉.
locale group2 =

fixes P

fixes dot (infixl "·" 70)

defines dot_def [simp]: "a · b ≡ P‘〈a,b〉"

The next theorem states that a set G with an associative operation that
satisfies condition C is a group, as defined in IsarMathLib Group_ZF theory.

theorem (in group2) altgroup_is_group:

assumes A1: "G 6=0" and A2: "P {is associative on} G"

and A3: "∀ a∈G.∀ b∈G. ∃ x∈G. a·x = b"

and A4: "∀ a∈G.∀ b∈G. ∃ y∈G. y·a = b"

shows "IsAgroup(G,P)"

proof -

from A1 obtain a where "a∈G" by auto

with A3 obtain x where "x∈G" and "a·x = a"

by auto

from A4 ‘a∈G‘ obtain y where "y∈G" and "y·a = a"

by auto

have I: "∀ b∈G. b = b·x ∧ b = y·b"
proof

fix b assume "b∈G"
with A4 ‘a∈G‘ obtain yb where "yb∈G"
and "yb·a = b" by auto

from A3 ‘a∈G‘ ‘b∈G‘ obtain xb where "xb∈G"
and "a·xb = b" by auto

from ‘a·x = a‘ ‘y·a = a‘ ‘yb·a = b‘ ‘a·xb = b‘

have "b = yb·(a·x)" and "b = (y·a)·xb"
by auto

moreover from A2 ‘a∈G‘ ‘x∈G‘ ‘y∈G‘ ‘xb∈G‘ ‘yb∈G‘ have
"(y·a)·xb = y·(a·xb)" "yb·(a·x) = (yb·a)·x"
using IsAssociative_def by auto

moreover from ‘yb·a = b‘ ‘a·xb = b‘ have
"(yb·a)·x = b·x" "y·(a·xb) = y·b"
by auto

ultimately show "b = b·x ∧ b = y·b" by simp

qed
moreover have "x = y"

proof -

from ‘x∈G‘ I have "x = y·x" by simp

also from ‘y∈G‘ I have "y·x = y" by simp

finally show "x = y" by simp

qed
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ultimately have "∀ b∈G. b·x = b ∧ x·b = b" by simp

with A2 ‘x∈G‘ have "IsAmonoid(G,P)" using IsAmonoid_def by auto

with A3 show "IsAgroup(G,P)"

using monoid0_def monoid0.unit_is_neutral IsAgroup_def

by simp

qed

The converse of altgroup_is_group: in every (classically defined) group con-
dition C holds. In informal mathematics we can say ”Obviously condition C
holds in any group.” In formalized mathematics the word ”obviously” is not
in the language. The next theorem is proven in the context called group0

defined in the theory Group_ZF.thy. Similarly to the group2 that context
defines a · b as P 〈a, b〉 It also defines notation related to the group inverse
and adds an assumption that the pair (G,P ) is a group to all its theorems.
This is why in the next theorem we don’t explicitely assume that (G,P ) is
a group - this assumption is implicit in the context.

theorem (in group0) group_is_altgroup: shows
"∀ a∈G.∀ b∈G. ∃ x∈G. a·x = b" and "∀ a∈G.∀ b∈G. ∃ y∈G. y·a = b"

proof -

{ fix a b assume "a∈G" "b∈G"
let ?x = "a−1· b"
let ?y = "b·a−1"

from ‘a∈G‘ ‘b∈G‘ have
"?x ∈ G" "?y ∈ G" and "a·?x = b" "?y·a = b"

using inverse_in_group group_op_closed inv_cancel_two

by auto

hence "∃ x∈G. a·x = b" and "∃ y∈G. y·a = b" by auto

} thus
"∀ a∈G.∀ b∈G. ∃ x∈G. a·x = b" and
"∀ a∈G.∀ b∈G. ∃ y∈G. y·a = b"

by auto

qed

end

28 Abelian Group

theory AbelianGroup_ZF imports Group_ZF

begin

A group is called “abelian“ if its operation is commutative, i.e. P 〈a, b〉 =
P 〈a, b〉 for all group elements a, b, where P is the group operation. It is
customary to use the additive notation for abelian groups, so this condition
is typically written as a+b = b+a. We will be using multiplicative notation
though (in which the commutativity condition of the operation is written as
a · b = b · a), just to avoid the hassle of changing the notation we used for
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general groups.

28.1 Rearrangement formulae

This section is not interesting and should not be read. Here we will prove
formulas is which right hand side uses the same factors as the left hand side,
just in different order. These facts are obvious in informal math sense, but
Isabelle prover is not able to derive them automatically, so we have to prove
them by hand.

Proving the facts about associative and commutative operations is quite
tedious in formalized mathematics. To a human the thing is simple: we can
arrange the elements in any order and put parantheses wherever we want,
it is all the same. However, formalizing this statement would be rather
difficult (I think). The next lemma attempts a quasi-algorithmic approach
to this type of problem. To prove that two expressions are equal, we first
strip one from parantheses, then rearrange the elements in proper order,
then put the parantheses where we want them to be. The algorithm for
rearrangement is easy to describe: we keep putting the first element (from
the right) that is in the wrong place at the left-most position until we get
the proper arrangement. As far removing parantheses is concerned Isabelle
does its job automatically.

lemma (in group0) group0_4_L2:

assumes A1:"P {is commutative on} G"

and A2:"a∈G" "b∈G" "c∈G" "d∈G" "E∈G" "F∈G"
shows "(a·b)·(c·d)·(E·F) = (a·(d·F))·(b·(c·E))"

proof -

from A2 have "(a·b)·(c·d)·(E·F) = a·b·c·d·E·F"
using group_op_closed group_oper_assoc

by simp

also have "a·b·c·d·E·F = a·d·F·b·c·E"
proof -

from A1 A2 have "a·b·c·d·E·F = F·(a·b·c·d·E)"
using IsCommutative_def group_op_closed

by simp

also from A2 have "F·(a·b·c·d·E) = F·a·b·c·d·E"
using group_op_closed group_oper_assoc

by simp

also from A1 A2 have "F·a·b·c·d·E = d·(F·a·b·c)·E"
using IsCommutative_def group_op_closed

by simp

also from A2 have "d·(F·a·b·c)·E = d·F·a·b·c·E"
using group_op_closed group_oper_assoc

by simp

also from A1 A2 have " d·F·a·b·c·E = a·(d·F)·b·c·E"
using IsCommutative_def group_op_closed

by simp
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also from A2 have "a·(d·F)·b·c·E = a·d·F·b·c·E"
using group_op_closed group_oper_assoc

by simp

finally show ?thesis by simp

qed
also from A2 have "a·d·F·b·c·E = (a·(d·F))·(b·(c·E))"

using group_op_closed group_oper_assoc

by simp

finally show ?thesis by simp

qed

Another useful rearrangement.

lemma (in group0) group0_4_L3:

assumes A1:"P {is commutative on} G"

and A2: "a∈G" "b∈G" and A3: "c∈G" "d∈G" "E∈G" "F∈G"
shows "a·b·((c·d)−1·(E·F)−1) = (a·(E·c)−1)·(b·(F·d)−1)"

proof -

from A3 have T1:

"c−1∈G" "d−1∈G" "E−1∈G" "F−1∈G" "(c·d)−1∈G" "(E·F)−1∈G"
using inverse_in_group group_op_closed

by auto

from A2 T1 have
"a·b·((c·d)−1·(E·F)−1) = a·b·(c·d)−1·(E·F)−1"

using group_op_closed group_oper_assoc

by simp

also from A2 A3 have
"a·b·(c·d)−1·(E·F)−1 = (a·b)·(d−1·c−1)·(F−1·E−1)"

using group_inv_of_two by simp

also from A1 A2 T1 have
"(a·b)·(d−1·c−1)·(F−1·E−1) = (a·(c−1·E−1))·(b·(d−1·F−1))"

using group0_4_L2 by simp

also from A2 A3 have
"(a·(c−1·E−1))·(b·(d−1·F−1)) = (a·(E·c)−1)·(b·(F·d)−1)"

using group_inv_of_two by simp

finally show ?thesis by simp

qed

Some useful rearrangements for two elements of a group.

lemma (in group0) group0_4_L4:

assumes A1:"P {is commutative on} G"

and A2: "a∈G" "b∈G"
shows
"b−1·a−1 = a−1·b−1"

"(a·b)−1 = a−1·b−1"

"(a·b−1)−1 = a−1·b"
proof -

from A2 have T1: "b−1∈G" "a−1∈G" using inverse_in_group by auto

with A1 show "b−1·a−1 = a−1·b−1" using IsCommutative_def by simp

with A2 show "(a·b)−1 = a−1·b−1" using group_inv_of_two by simp
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from A2 T1 have "(a·b−1)−1 = (b−1)−1·a−1" using group_inv_of_two by
simp

with A1 A2 T1 show "(a·b−1)−1 = a−1·b"
using group_inv_of_inv IsCommutative_def by simp

qed

Another bunch of useful rearrangements with three elements.

lemma (in group0) group0_4_L4A:

assumes A1: "P {is commutative on} G"

and A2: "a∈G" "b∈G" "c∈G"
shows
"a·b·c = c·a·b"
"a−1·(b−1·c−1)−1 = (a·(b·c)−1)−1"

"a·(b·c)−1 = a·b−1·c−1"

"a·(b·c−1)−1 = a·b−1·c"
"a·b−1·c−1 = a·c−1·b−1"

proof -

from A1 A2 have "a·b·c = c·(a·b)"
using IsCommutative_def group_op_closed

by simp

with A2 show "a·b·c = c·a·b" using
group_op_closed group_oper_assoc

by simp

from A2 have T:

"b−1∈G" "c−1∈G" "b−1·c−1 ∈ G" "a·b ∈ G"

using inverse_in_group group_op_closed

by auto

with A1 A2 show "a−1·(b−1·c−1)−1 = (a·(b·c)−1)−1"

using group_inv_of_two IsCommutative_def

by simp

from A1 A2 T have "a·(b·c)−1 = a·(b−1·c−1)"

using group_inv_of_two IsCommutative_def by simp

with A2 T show "a·(b·c)−1 = a·b−1·c−1"

using group_oper_assoc by simp

from A1 A2 T have "a·(b·c−1)−1 = a·(b−1·(c−1)−1)"

using group_inv_of_two IsCommutative_def by simp

with A2 T show "a·(b·c−1)−1 = a·b−1·c"
using group_oper_assoc group_inv_of_inv by simp

from A1 A2 T have "a·b−1·c−1 = a·(c−1·b−1)"

using group_oper_assoc IsCommutative_def by simp

with A2 T show "a·b−1·c−1 = a·c−1·b−1"

using group_oper_assoc by simp

qed

Another useful rearrangement.

lemma (in group0) group0_4_L4B:

assumes "P {is commutative on} G"

and "a∈G" "b∈G" "c∈G"
shows "a·b−1·(b·c−1) = a·c−1"
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using assms inverse_in_group group_op_closed

group0_4_L4 group_oper_assoc inv_cancel_two by simp

A couple of permutations of order for three alements.

lemma (in group0) group0_4_L4C:

assumes A1: "P {is commutative on} G"

and A2: "a∈G" "b∈G" "c∈G"
shows
"a·b·c = c·a·b"
"a·b·c = a·(c·b)"
"a·b·c = c·(a·b)"
"a·b·c = c·b·a"

proof -

from A1 A2 show I: "a·b·c = c·a·b"
using group0_4_L4A by simp

also from A1 A2 have "c·a·b = a·c·b"
using IsCommutative_def by simp

also from A2 have "a·c·b = a·(c·b)"
using group_oper_assoc by simp

finally show "a·b·c = a·(c·b)" by simp

from A2 I show "a·b·c = c·(a·b)"
using group_oper_assoc by simp

also from A1 A2 have "c·(a·b) = c·(b·a)"
using IsCommutative_def by simp

also from A2 have "c·(b·a) = c·b·a"
using group_oper_assoc by simp

finally show "a·b·c = c·b·a" by simp

qed

Some rearangement with three elements and inverse.

lemma (in group0) group0_4_L4D:

assumes A1: "P {is commutative on} G"

and A2: "a∈G" "b∈G" "c∈G"
shows
"a−1·b−1·c = c·a−1·b−1"

"b−1·a−1·c = c·a−1·b−1"

"(a−1·b·c)−1 = a·b−1·c−1"

proof -

from A2 have T:

"a−1 ∈ G" "b−1 ∈ G" "c−1∈G"
using inverse_in_group by auto

with A1 A2 show
"a−1·b−1·c = c·a−1·b−1"

"b−1·a−1·c = c·a−1·b−1"

using group0_4_L4A by auto

from A1 A2 T show "(a−1·b·c)−1 = a·b−1·c−1"

using group_inv_of_three group_inv_of_inv group0_4_L4C

by simp

qed
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Another rearrangement lemma with three elements and equation.

lemma (in group0) group0_4_L5: assumes A1:"P {is commutative on} G"

and A2: "a∈G" "b∈G" "c∈G"
and A3: "c = a·b−1"

shows "a = b·c"
proof -

from A2 A3 have "c·(b−1)−1 = a"

using inverse_in_group group0_2_L18

by simp

with A1 A2 show ?thesis using
group_inv_of_inv IsCommutative_def by simp

qed

In abelian groups we can cancel an element with its inverse even if separated
by another element.

lemma (in group0) group0_4_L6A: assumes A1: "P {is commutative on} G"

and A2: "a∈G" "b∈G"
shows
"a·b·a−1 = b"

"a−1·b·a = b"

"a−1·(b·a) = b"

"a·(b·a−1) = b"

proof -

from A1 A2 have
"a·b·a−1 = a−1·a·b"
using inverse_in_group group0_4_L4A by blast

also from A2 have ". . . = b"

using group0_2_L6 group0_2_L2 by simp

finally show "a·b·a−1 = b" by simp

from A1 A2 have
"a−1·b·a = a·a−1·b"
using inverse_in_group group0_4_L4A by blast

also from A2 have ". . . = b"

using group0_2_L6 group0_2_L2 by simp

finally show "a−1·b·a = b" by simp

moreover from A2 have "a−1·b·a = a−1·(b·a)"
using inverse_in_group group_oper_assoc by simp

ultimately show "a−1·(b·a) = b" by simp

from A1 A2 show "a·(b·a−1) = b"

using inverse_in_group IsCommutative_def inv_cancel_two

by simp

qed

Another lemma about cancelling with two elements.

lemma (in group0) group0_4_L6AA:

assumes A1: "P {is commutative on} G" and A2: "a∈G" "b∈G"
shows "a·b−1·a−1 = b−1"
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using assms inverse_in_group group0_4_L6A

by auto

Another lemma about cancelling with two elements.

lemma (in group0) group0_4_L6AB:

assumes A1: "P {is commutative on} G" and A2: "a∈G" "b∈G"
shows
"a·(a·b)−1 = b−1"

"a·(b·a−1) = b"

proof -

from A2 have "a·(a·b)−1 = a·(b−1·a−1)"

using group_inv_of_two by simp

also from A2 have ". . . = a·b−1·a−1"

using inverse_in_group group_oper_assoc by simp

also from A1 A2 have ". . . = b−1"

using group0_4_L6AA by simp

finally show "a·(a·b)−1 = b−1" by simp

from A1 A2 have "a·(b·a−1) = a·(a−1·b)"
using inverse_in_group IsCommutative_def by simp

also from A2 have ". . . = b"

using inverse_in_group group_oper_assoc group0_2_L6 group0_2_L2

by simp

finally show "a·(b·a−1) = b" by simp

qed

Another lemma about cancelling with two elements.

lemma (in group0) group0_4_L6AC:

assumes "P {is commutative on} G" and "a∈G" "b∈G"
shows "a·(a·b−1)−1 = b"

using assms inverse_in_group group0_4_L6AB group_inv_of_inv

by simp

In abelian groups we can cancel an element with its inverse even if separated
by two other elements.

lemma (in group0) group0_4_L6B: assumes A1: "P {is commutative on} G"

and A2: "a∈G" "b∈G" "c∈G"
shows
"a·b·c·a−1 = b·c"
"a−1·b·c·a = b·c"

proof -

from A2 have
"a·b·c·a−1 = a·(b·c)·a−1"

"a−1·b·c·a = a−1·(b·c)·a"
using group_op_closed group_oper_assoc inverse_in_group

by auto

with A1 A2 show
"a·b·c·a−1 = b·c"
"a−1·b·c·a = b·c"
using group_op_closed group0_4_L6A
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by auto

qed

In abelian groups we can cancel an element with its inverse even if separated
by three other elements.

lemma (in group0) group0_4_L6C: assumes A1: "P {is commutative on} G"

and A2: "a∈G" "b∈G" "c∈G" "d∈G"
shows "a·b·c·d·a−1 = b·c·d"

proof -

from A2 have "a·b·c·d·a−1 = a·(b·c·d)·a−1"

using group_op_closed group_oper_assoc

by simp

with A1 A2 show ?thesis

using group_op_closed group0_4_L6A

by simp

qed

Another couple of useful rearrangements of three elements and cancelling.

lemma (in group0) group0_4_L6D:

assumes A1: "P {is commutative on} G"

and A2: "a∈G" "b∈G" "c∈G"
shows
"a·b−1·(a·c−1)−1 = c·b−1"

"(a·c)−1·(b·c) = a−1·b"
"a·(b·(c·a−1·b−1)) = c"

"a·b·c−1·(c·a−1) = b"

proof -

from A2 have T:

"a−1 ∈ G" "b−1 ∈ G" "c−1 ∈ G"

"a·b ∈ G" "a·b−1 ∈ G" "c−1·a−1 ∈ G" "c·a−1 ∈ G"

using inverse_in_group group_op_closed by auto

with A1 A2 show "a·b−1·(a·c−1)−1 = c·b−1"

using group0_2_L12 group_oper_assoc group0_4_L6B

IsCommutative_def by simp

from A2 T have "(a·c)−1·(b·c) = c−1·a−1·b·c"
using group_inv_of_two group_oper_assoc by simp

also from A1 A2 T have ". . . = a−1·b"
using group0_4_L6B by simp

finally show "(a·c)−1·(b·c) = a−1·b"
by simp

from A1 A2 T show "a·(b·(c·a−1·b−1)) = c"

using group_oper_assoc group0_4_L6B group0_4_L6A

by simp

from T have "a·b·c−1·(c·a−1) = a·b·(c−1·(c·a−1))"

using group_oper_assoc by simp

also from A1 A2 T have ". . . = b"

using group_oper_assoc group0_2_L6 group0_2_L2 group0_4_L6A

by simp

finally show "a·b·c−1·(c·a−1) = b" by simp
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qed

Another useful rearrangement of three elements and cancelling.

lemma (in group0) group0_4_L6E:

assumes A1: "P {is commutative on} G"

and A2: "a∈G" "b∈G" "c∈G"
shows
"a·b·(a·c)−1 = b·c−1"

proof -

from A2 have T: "b−1 ∈ G" "c−1 ∈ G"

using inverse_in_group by auto

with A1 A2 have
"a·(b−1)−1·(a·(c−1)−1)−1 = c−1·(b−1)−1"

using group0_4_L6D by simp

with A1 A2 T show "a·b·(a·c)−1 = b·c−1"

using group_inv_of_inv IsCommutative_def

by simp

qed

A rearrangement with two elements and canceelling, special case of group0_4_L6D
when c = b−1.

lemma (in group0) group0_4_L6F:

assumes A1: "P {is commutative on} G"

and A2: "a∈G" "b∈G"
shows "a·b−1·(a·b)−1 = b−1·b−1"

proof -

from A2 have "b−1 ∈ G"

using inverse_in_group by simp

with A1 A2 have "a·b−1·(a·(b−1)−1)−1 = b−1·b−1"

using group0_4_L6D by simp

with A2 show "a·b−1·(a·b)−1 = b−1·b−1"

using group_inv_of_inv by simp

qed

Some other rearrangements with four elements. The algorithm for proof as
in group0_4_L2 works very well here.

lemma (in group0) rearr_ab_gr_4_elemA:

assumes A1: "P {is commutative on} G"

and A2: "a∈G" "b∈G" "c∈G" "d∈G"
shows
"a·b·c·d = a·d·b·c"
"a·b·c·d = a·c·(b·d)"

proof -

from A1 A2 have "a·b·c·d = d·(a·b·c)"
using IsCommutative_def group_op_closed

by simp

also from A2 have ". . . = d·a·b·c"
using group_op_closed group_oper_assoc
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by simp

also from A1 A2 have ". . . = a·d·b·c"
using IsCommutative_def group_op_closed

by simp

finally show "a·b·c·d = a·d·b·c"
by simp

from A1 A2 have "a·b·c·d = c·(a·b)·d"
using IsCommutative_def group_op_closed

by simp

also from A2 have ". . . = c·a·b·d"
using group_op_closed group_oper_assoc

by simp

also from A1 A2 have ". . . = a·c·b·d"
using IsCommutative_def group_op_closed

by simp

also from A2 have ". . . = a·c·(b·d)"
using group_op_closed group_oper_assoc

by simp

finally show "a·b·c·d = a·c·(b·d)"
by simp

qed

Some rearrangements with four elements and inverse that are applications
of rearr_ab_gr_4_elem

lemma (in group0) rearr_ab_gr_4_elemB:

assumes A1: "P {is commutative on} G"

and A2: "a∈G" "b∈G" "c∈G" "d∈G"
shows
"a·b−1·c−1·d−1 = a·d−1·b−1·c−1"

"a·b·c·d−1 = a·d−1·b·c"
"a·b·c−1·d−1 = a·c−1·(b·d−1)"

proof -

from A2 have T: "b−1 ∈ G" "c−1 ∈ G" "d−1 ∈ G"

using inverse_in_group by auto

with A1 A2 show
"a·b−1·c−1·d−1 = a·d−1·b−1·c−1"

"a·b·c·d−1 = a·d−1·b·c"
"a·b·c−1·d−1 = a·c−1·(b·d−1)"

using rearr_ab_gr_4_elemA by auto

qed

Some rearrangement lemmas with four elements.

lemma (in group0) group0_4_L7:

assumes A1: "P {is commutative on} G"

and A2: "a∈G" "b∈G" "c∈G" "d∈G"
shows
"a·b·c·d−1 = a·d−1· b·c"
"a·d·(b·d·(c·d))−1 = a·(b·c)−1·d−1"

"a·(b·c)·d = a·b·d·c"
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proof -

from A2 have T:

"b·c ∈ G" "d−1 ∈ G" "b−1∈G" "c−1∈G"
"d−1·b ∈ G" "c−1·d ∈ G" "(b·c)−1 ∈ G"

"b·d ∈ G" "b·d·c ∈ G" "(b·d·c)−1 ∈ G"

"a·d ∈ G" "b·c ∈ G"

using group_op_closed inverse_in_group

by auto

with A1 A2 have "a·b·c·d−1 = a·(d−1·b·c)"
using group_oper_assoc group0_4_L4A by simp

also from A2 T have "a·(d−1·b·c) = a·d−1·b·c"
using group_oper_assoc by simp

finally show "a·b·c·d−1 = a·d−1· b·c" by simp

from A2 T have "a·d·(b·d·(c·d))−1 = a·d·(d−1·(b·d·c)−1)"

using group_oper_assoc group_inv_of_two by simp

also from A2 T have ". . . = a·(b·d·c)−1"

using group_oper_assoc inv_cancel_two by simp

also from A1 A2 have ". . . = a·(d·(b·c))−1"

using IsCommutative_def group_oper_assoc by simp

also from A2 T have ". . . = a·((b·c)−1·d−1)"

using group_inv_of_two by simp

also from A2 T have ". . . = a·(b·c)−1·d−1"

using group_oper_assoc by simp

finally show "a·d·(b·d·(c·d))−1 = a·(b·c)−1·d−1"

by simp

from A2 have "a·(b·c)·d = a·(b·(c·d))"
using group_op_closed group_oper_assoc by simp

also from A1 A2 have ". . . = a·(b·(d·c))"
using IsCommutative_def group_op_closed by simp

also from A2 have ". . . = a·b·d·c"
using group_op_closed group_oper_assoc by simp

finally show "a·(b·c)·d = a·b·d·c" by simp

qed

Some other rearrangements with four elements.

lemma (in group0) group0_4_L8:

assumes A1: "P {is commutative on} G"

and A2: "a∈G" "b∈G" "c∈G" "d∈G"
shows
"a·(b·c)−1 = (a·d−1·c−1)·(d·b−1)"

"a·b·(c·d) = c·a·(b·d)"
"a·b·(c·d) = a·c·(b·d)"
"a·(b·c−1)·d = a·b·d·c−1"

"(a·b)·(c·d)−1·(b·d−1)−1 = a·c−1"

proof -

from A2 have T:

"b·c ∈ G" "a·b ∈ G" "d−1 ∈ G" "b−1∈G" "c−1∈G"
"d−1·b ∈ G" "c−1·d ∈ G" "(b·c)−1 ∈ G"

"a·b ∈ G" "(c·d)−1 ∈ G" "(b·d−1)−1 ∈ G" "d·b−1 ∈ G"
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using group_op_closed inverse_in_group

by auto

from A2 have "a·(b·c)−1 = a·c−1·b−1" using group0_2_L14A by blast

moreover from A2 have "a·c−1 = (a·d−1)·(d·c−1)" using group0_2_L14A

by blast

ultimately have "a·(b·c)−1 = (a·d−1)·(d·c−1)·b−1" by simp

with A1 A2 T have "a·(b·c)−1= a·d−1·(c−1·d)·b−1"

using IsCommutative_def by simp

with A2 T show "a·(b·c)−1 = (a·d−1·c−1)·(d·b−1)"

using group_op_closed group_oper_assoc by simp

from A2 T have "a·b·(c·d) = a·b·c·d"
using group_oper_assoc by simp

also have "a·b·c·d = c·a·b·d"
proof -

from A1 A2 have "a·b·c·d = c·(a·b)·d"
using IsCommutative_def group_op_closed

by simp

also from A2 have ". . . = c·a·b·d"
using group_op_closed group_oper_assoc

by simp

finally show ?thesis by simp

qed
also from A2 have "c·a·b·d = c·a·(b·d)"

using group_op_closed group_oper_assoc

by simp

finally show "a·b·(c·d) = c·a·(b·d)" by simp

with A1 A2 show "a·b·(c·d) = a·c·(b·d)"
using IsCommutative_def by simp

from A1 A2 T show "a·(b·c−1)·d = a·b·d·c−1"

using group0_4_L7 by simp

from T have "(a·b)·(c·d)−1·(b·d−1)−1 = (a·b)·((c·d)−1·(b·d−1)−1)"

using group_oper_assoc by simp

also from A1 A2 T have ". . . = (a·b)·(c−1·d−1·(d·b−1))"

using group_inv_of_two group0_2_L12 IsCommutative_def

by simp

also from T have ". . . = (a·b)·(c−1·(d−1·(d·b−1)))"

using group_oper_assoc by simp

also from A1 A2 T have ". . . = a·c−1"

using group_oper_assoc group0_2_L6 group0_2_L2 IsCommutative_def

inv_cancel_two by simp

finally show "(a·b)·(c·d)−1·(b·d−1)−1 = a·c−1"

by simp

qed

Some other rearrangements with four elements.

lemma (in group0) group0_4_L8A:

assumes A1: "P {is commutative on} G"

and A2: "a∈G" "b∈G" "c∈G" "d∈G"
shows
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"a·b−1·(c·d−1) = a·c·(b−1·d−1)"

"a·b−1·(c·d−1) = a·c·b−1·d−1"

proof -

from A2 have
T: "a∈G" "b−1 ∈ G" "c∈G" "d−1 ∈ G"

using inverse_in_group by auto

with A1 show "a·b−1·(c·d−1) = a·c·(b−1·d−1)"

by (rule group0_4_L8)

with A2 T show "a·b−1·(c·d−1) = a·c·b−1·d−1"

using group_op_closed group_oper_assoc

by simp

qed

Some rearrangements with an equation.

lemma (in group0) group0_4_L9:

assumes A1: "P {is commutative on} G"

and A2: "a∈G" "b∈G" "c∈G" "d∈G"
and A3: "a = b·c−1·d−1"

shows
"d = b·a−1·c−1"

"d = a−1·b·c−1"

"b = a·d·c"
proof -

from A2 have T:

"a−1 ∈ G" "c−1 ∈ G" "d−1 ∈ G" "b·c−1 ∈ G"

using group_op_closed inverse_in_group

by auto

with A2 A3 have "a·(d−1)−1 = b·c−1"

using group0_2_L18 by simp

with A2 have "b·c−1 = a·d"
using group_inv_of_inv by simp

with A2 T have I: "a−1·(b·c−1) = d"

using group0_2_L18 by simp

with A1 A2 T show
"d = b·a−1·c−1"

"d = a−1·b·c−1"

using group_oper_assoc IsCommutative_def by auto

from A3 have "a·d·c = (b·c−1·d−1)·d·c" by simp

also from A2 T have ". . . = b·c−1·(d−1·d)·c"
using group_oper_assoc by simp

also from A2 T have ". . . = b·c−1·c"
using group0_2_L6 group0_2_L2 by simp

also from A2 T have ". . . = b·(c−1·c)"
using group_oper_assoc by simp

also from A2 have ". . . = b"

using group0_2_L6 group0_2_L2 by simp

finally have "a·d·c = b" by simp

thus "b = a·d·c" by simp

qed
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end

29 Groups 2

theory Group_ZF_2 imports AbelianGroup_ZF func_ZF EquivClass1

begin

This theory continues Group ZF.thy and considers lifting the group struc-
ture to function spaces and projecting the group structure to quotient spaces,
in particular the quotient qroup.

29.1 Lifting groups to function spaces

If we have a monoid (group) G than we get a monoid (group) structure on
a space of functions valued in in G by defining (f · g)(x) := f(x) · g(x). We
call this process ”lifting the monoid (group) to function space”. This section
formalizes this lifting.

The lifted operation is an operation on the function space.

lemma (in monoid0) Group_ZF_2_1_L0A:

assumes A1: "F = f {lifted to function space over} X"

shows "F : (X→G)×(X→G)→(X→G)"

proof -

from monoidAsssum have "f : G×G→G"

using IsAmonoid_def IsAssociative_def by simp

with A1 show ?thesis

using func_ZF_1_L3 group0_1_L3B by auto

qed

The result of the lifted operation is in the function space.

lemma (in monoid0) Group_ZF_2_1_L0:

assumes A1:"F = f {lifted to function space over} X"

and A2:"s:X→G" "r:X→G"

shows "F‘〈 s,r〉 : X→G"

proof -

from A1 have "F : (X→G)×(X→G)→(X→G)"

using Group_ZF_2_1_L0A

by simp

with A2 show ?thesis using apply_funtype

by simp

qed

The lifted monoid operation has a neutral element, namely the constant
function with the neutral element as the value.

lemma (in monoid0) Group_ZF_2_1_L1:
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assumes A1: "F = f {lifted to function space over} X"

and A2: "E = ConstantFunction(X,TheNeutralElement(G,f))"

shows "E : X→G ∧ (∀ s∈X→G. F‘〈 E,s〉 = s ∧ F‘〈 s,E〉 = s)"

proof
from A2 show T1:"E : X→G"

using unit_is_neutral func1_3_L1 by simp

show "∀ s∈X→G. F‘〈 E,s〉 = s ∧ F‘〈 s,E〉 = s"

proof
fix s assume A3:"s:X→G"

from monoidAsssum have T2:"f : G×G→G"

using IsAmonoid_def IsAssociative_def by simp

from A3 A1 T1 have
"F‘〈 E,s〉 : X→G" "F‘〈 s,E〉 : X→G" "s : X→G"

using Group_ZF_2_1_L0 by auto

moreover from T2 A1 T1 A2 A3 have
"∀ x∈X. (F‘〈 E,s〉)‘(x) = s‘(x)"

"∀ x∈X. (F‘〈 s,E〉)‘(x) = s‘(x)"

using func_ZF_1_L4 group0_1_L3B func1_3_L2

apply_type unit_is_neutral by auto

ultimately show
"F‘〈 E,s〉 = s ∧ F‘〈 s,E〉 = s"

using fun_extension_iff by auto

qed
qed

Monoids can be lifted to a function space.

lemma (in monoid0) Group_ZF_2_1_T1:

assumes A1: "F = f {lifted to function space over} X"

shows "IsAmonoid(X→G,F)"

proof -

from monoidAsssum A1 have
"F {is associative on} (X→G)"

using IsAmonoid_def func_ZF_2_L4 group0_1_L3B

by auto

moreover from A1 have
"∃ E ∈ X→G. ∀ s ∈ X→G. F‘〈 E,s〉 = s ∧ F‘〈 s,E〉 = s"

using Group_ZF_2_1_L1 by blast

ultimately show ?thesis using IsAmonoid_def

by simp

qed

The constant function with the neutral element as the value is the neutral
element of the lifted monoid.

lemma Group_ZF_2_1_L2:

assumes A1: "IsAmonoid(G,f)"

and A2: "F = f {lifted to function space over} X"

and A3: "E = ConstantFunction(X,TheNeutralElement(G,f))"

shows "E = TheNeutralElement(X→G,F)"

proof -
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from A1 A2 have
T1:"monoid0(G,f)" and T2:"monoid0(X→G,F)"

using monoid0_def monoid0.Group_ZF_2_1_T1

by auto

from T1 A2 A3 have
"E : X→G ∧ (∀ s∈X→G. F‘〈 E,s〉 = s ∧ F‘〈 s,E〉 = s)"

using monoid0.Group_ZF_2_1_L1 by simp

with T2 show ?thesis

using monoid0.group0_1_L4 by auto

qed

The lifted operation acts on the functions in a natural way defined by the
monoid operation.

lemma (in monoid0) lifted_val:

assumes "F = f {lifted to function space over} X"

and "s:X→G" "r:X→G"

and "x∈X"
shows "(F‘〈s,r〉)‘(x) = s‘(x) ⊕ r‘(x)"

using monoidAsssum assms IsAmonoid_def IsAssociative_def

group0_1_L3B func_ZF_1_L4

by auto

The lifted operation acts on the functions in a natural way defined by the
group operation. This is the same as lifted_val, but in the group0 context.

lemma (in group0) Group_ZF_2_1_L3:

assumes "F = P {lifted to function space over} X"

and "s:X→G" "r:X→G"

and "x∈X"
shows "(F‘〈s,r〉)‘(x) = s‘(x)·r‘(x)"
using assms group0_2_L1 monoid0.lifted_val by simp

In the group0 context we can apply theorems proven in monoid0 context to
the lifted monoid.

lemma (in group0) Group_ZF_2_1_L4:

assumes A1: "F = P {lifted to function space over} X"

shows "monoid0(X→G,F)"

proof -

from A1 show ?thesis

using group0_2_L1 monoid0.Group_ZF_2_1_T1 monoid0_def

by simp

qed

The compostion of a function f : X → G with the group inverse is a right
inverse for the lifted group.

lemma (in group0) Group_ZF_2_1_L5:

assumes A1: "F = P {lifted to function space over} X"

and A2: "s : X→G"

and A3: "i = GroupInv(G,P) O s"
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shows "i: X→G" and "F‘〈 s,i〉 = TheNeutralElement(X→G,F)"

proof -

let ?E = "ConstantFunction(X,1)"
have "?E : X→G"

using group0_2_L2 func1_3_L1 by simp

moreover from groupAssum A2 A3 A1 have
"F‘〈 s,i〉 : X→G" using group0_2_T2 comp_fun

Group_ZF_2_1_L4 monoid0.group0_1_L1

by simp

moreover from groupAssum A2 A3 A1 have
"∀ x∈X. (F‘〈 s,i〉)‘(x) = ?E‘(x)"

using group0_2_T2 comp_fun Group_ZF_2_1_L3

comp_fun_apply apply_funtype group0_2_L6 func1_3_L2

by simp

moreover from groupAssum A1 have
"?E = TheNeutralElement(X→G,F)"

using IsAgroup_def Group_ZF_2_1_L2 by simp

ultimately show "F‘〈 s,i〉 = TheNeutralElement(X→G,F)"

using fun_extension_iff IsAgroup_def Group_ZF_2_1_L2

by simp

from groupAssum A2 A3 show "i: X→G"

using group0_2_T2 comp_fun by simp

qed

Groups can be lifted to the function space.

theorem (in group0) Group_ZF_2_1_T2:

assumes A1: "F = P {lifted to function space over} X"

shows "IsAgroup(X→G,F)"

proof -

from A1 have "IsAmonoid(X→G,F)"

using group0_2_L1 monoid0.Group_ZF_2_1_T1

by simp

moreover have
"∀ s∈X→G. ∃ i∈X→G. F‘〈 s,i〉 = TheNeutralElement(X→G,F)"

proof
fix s assume A2: "s : X→G"

let ?i = "GroupInv(G,P) O s"

from groupAssum A2 have "?i:X→G"

using group0_2_T2 comp_fun by simp

moreover from A1 A2 have
"F‘〈 s,?i〉 = TheNeutralElement(X→G,F)"

using Group_ZF_2_1_L5 by fast

ultimately show "∃ i∈X→G. F‘〈 s,i〉 = TheNeutralElement(X→G,F)"

by auto

qed
ultimately show ?thesis using IsAgroup_def

by simp

qed

What is the group inverse for the lifted group?
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lemma (in group0) Group_ZF_2_1_L6:

assumes A1: "F = P {lifted to function space over} X"

shows "∀ s∈(X→G). GroupInv(X→G,F)‘(s) = GroupInv(G,P) O s"

proof -

from A1 have "group0(X→G,F)"

using group0_def Group_ZF_2_1_T2

by simp

moreover from A1 have "∀ s∈X→G. GroupInv(G,P) O s : X→G ∧
F‘〈 s,GroupInv(G,P) O s〉 = TheNeutralElement(X→G,F)"

using Group_ZF_2_1_L5 by simp

ultimately have
"∀ s∈(X→G). GroupInv(G,P) O s = GroupInv(X→G,F)‘(s)"

by (rule group0.group0_2_L9A)

thus ?thesis by simp

qed

What is the value of the group inverse for the lifted group?

corollary (in group0) lift_gr_inv_val:

assumes "F = P {lifted to function space over} X" and
"s : X→G" and "x∈X"
shows "(GroupInv(X→G,F)‘(s))‘(x) = (s‘(x))−1"

using groupAssum assms Group_ZF_2_1_L6 group0_2_T2 comp_fun_apply

by simp

What is the group inverse in a subgroup of the lifted group?

lemma (in group0) Group_ZF_2_1_L6A:

assumes A1: "F = P {lifted to function space over} X"

and A2: "IsAsubgroup(H,F)"

and A3: "g = restrict(F,H×H)"
and A4: "s∈H"
shows "GroupInv(H,g)‘(s) = GroupInv(G,P) O s"

proof -

from A1 have T1: "group0(X→G,F)"

using group0_def Group_ZF_2_1_T2

by simp

with A2 A3 A4 have "GroupInv(H,g)‘(s) = GroupInv(X→G,F)‘(s)"

using group0.group0_3_T1 restrict by simp

moreover from T1 A1 A2 A4 have
"GroupInv(X→G,F)‘(s) = GroupInv(G,P) O s"

using group0.group0_3_L2 Group_ZF_2_1_L6 by blast

ultimately show ?thesis by simp

qed

If a group is abelian, then its lift to a function space is also abelian.

lemma (in group0) Group_ZF_2_1_L7:

assumes A1: "F = P {lifted to function space over} X"

and A2: "P {is commutative on} G"

shows "F {is commutative on} (X→G)"

proof-

276



from A1 A2 have
"F {is commutative on} (X→range(P))"

using group_oper_assocA func_ZF_2_L2

by simp

moreover from groupAssum have "range(P) = G"

using group0_2_L1 monoid0.group0_1_L3B

by simp

ultimately show ?thesis by simp

qed

29.2 Equivalence relations on groups

The goal of this section is to establish that (under some conditions) given
an equivalence relation on a group or (monoid )we can project the group
(monoid) structure on the quotient and obtain another group.

The neutral element class is neutral in the projection.

lemma (in monoid0) Group_ZF_2_2_L1:

assumes A1: "equiv(G,r)" and A2:"Congruent2(r,f)"

and A3: "F = ProjFun2(G,r,f)"

and A4: "e = TheNeutralElement(G,f)"

shows "r‘‘{e} ∈ G//r ∧
(∀ c ∈ G//r. F‘〈 r‘‘{e},c〉 = c ∧ F‘〈 c,r‘‘{e}〉 = c)"

proof
from A4 show T1:"r‘‘{e} ∈ G//r"

using unit_is_neutral quotientI

by simp

show
"∀ c ∈ G//r. F‘〈 r‘‘{e},c〉 = c ∧ F‘〈 c,r‘‘{e}〉 = c"

proof
fix c assume A5:"c ∈ G//r"

then obtain g where D1:"g∈G" "c = r‘‘{g}"

using quotient_def by auto

with A1 A2 A3 A4 D1 show
"F‘〈 r‘‘{e},c〉 = c ∧ F‘〈 c,r‘‘{e}〉 = c"

using unit_is_neutral EquivClass_1_L10

by simp

qed
qed

The projected structure is a monoid.

theorem (in monoid0) Group_ZF_2_2_T1:

assumes A1: "equiv(G,r)" and A2: "Congruent2(r,f)"

and A3: "F = ProjFun2(G,r,f)"

shows "IsAmonoid(G//r,F)"

proof -

let ?E = "r‘‘{TheNeutralElement(G,f)}"

from A1 A2 A3 have
"?E ∈ G//r ∧ (∀ c∈G//r. F‘〈 ?E,c〉 = c ∧ F‘〈 c,?E〉 = c)"
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using Group_ZF_2_2_L1 by simp

hence
"∃ E∈G//r. ∀ c∈G//r. F‘〈 E,c〉 = c ∧ F‘〈 c,E〉 = c"

by auto

with monoidAsssum A1 A2 A3 show ?thesis

using IsAmonoid_def EquivClass_2_T2

by simp

qed

The class of the neutral element is the neutral element of the projected
monoid.

lemma Group_ZF_2_2_L1:

assumes A1: "IsAmonoid(G,f)"

and A2: "equiv(G,r)" and A3: "Congruent2(r,f)"

and A4: "F = ProjFun2(G,r,f)"

and A5: "e = TheNeutralElement(G,f)"

shows " r‘‘{e} = TheNeutralElement(G//r,F)"

proof -

from A1 A2 A3 A4 have
T1:"monoid0(G,f)" and T2:"monoid0(G//r,F)"

using monoid0_def monoid0.Group_ZF_2_2_T1 by auto

from T1 A2 A3 A4 A5 have "r‘‘{e} ∈ G//r ∧
(∀ c ∈ G//r. F‘〈 r‘‘{e},c〉 = c ∧ F‘〈 c,r‘‘{e}〉 = c)"

using monoid0.Group_ZF_2_2_L1 by simp

with T2 show ?thesis using monoid0.group0_1_L4

by auto

qed

The projected operation can be defined in terms of the group operation on
representants in a natural way.

lemma (in group0) Group_ZF_2_2_L2:

assumes A1: "equiv(G,r)" and A2: "Congruent2(r,P)"

and A3: "F = ProjFun2(G,r,P)"

and A4: "a∈G" "b∈G"
shows "F‘〈 r‘‘{a},r‘‘{b}〉 = r‘‘{a·b}"

proof -

from A1 A2 A3 A4 show ?thesis

using EquivClass_1_L10 by simp

qed

The class of the inverse is a right inverse of the class.

lemma (in group0) Group_ZF_2_2_L3:

assumes A1: "equiv(G,r)" and A2: "Congruent2(r,P)"

and A3: "F = ProjFun2(G,r,P)"

and A4: "a∈G"
shows "F‘〈r‘‘{a},r‘‘{a−1}〉 = TheNeutralElement(G//r,F)"

proof -

from A1 A2 A3 A4 have
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"F‘〈r‘‘{a},r‘‘{a−1}〉 = r‘‘{1}"
using inverse_in_group Group_ZF_2_2_L2 group0_2_L6

by simp

with groupAssum A1 A2 A3 show ?thesis

using IsAgroup_def Group_ZF_2_2_L1 by simp

qed

The group structure can be projected to the quotient space.

theorem (in group0) Group_ZF_3_T2:

assumes A1: "equiv(G,r)" and A2: "Congruent2(r,P)"

shows "IsAgroup(G//r,ProjFun2(G,r,P))"

proof -

let ?F = "ProjFun2(G,r,P)"

let ?E = "TheNeutralElement(G//r,?F)"

from groupAssum A1 A2 have "IsAmonoid(G//r,?F)"

using IsAgroup_def monoid0_def monoid0.Group_ZF_2_2_T1

by simp

moreover have
"∀ c∈G//r. ∃ b∈G//r. ?F‘〈 c,b〉 = ?E"

proof
fix c assume A3: "c ∈ G//r"

then obtain g where D1: "g∈G" "c = r‘‘{g}"

using quotient_def by auto

let ?b = "r‘‘{g−1}"

from D1 have "?b ∈ G//r"

using inverse_in_group quotientI

by simp

moreover from A1 A2 D1 have
"?F‘〈 c,?b〉 = ?E"

using Group_ZF_2_2_L3 by simp

ultimately show "∃ b∈G//r. ?F‘〈 c,b〉 = ?E"

by auto

qed
ultimately show ?thesis

using IsAgroup_def by simp

qed

The group inverse (in the projected group) of a class is the class of the
inverse.

lemma (in group0) Group_ZF_2_2_L4:

assumes A1: "equiv(G,r)" and
A2: "Congruent2(r,P)" and
A3: "F = ProjFun2(G,r,P)" and
A4: "a∈G"
shows "r‘‘{a−1} = GroupInv(G//r,F)‘(r‘‘{a})"

proof -

from A1 A2 A3 have "group0(G//r,F)"

using Group_ZF_3_T2 group0_def by simp

moreover from A4 have
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"r‘‘{a} ∈ G//r" "r‘‘{a−1} ∈ G//r"

using inverse_in_group quotientI by auto

moreover from A1 A2 A3 A4 have
"F‘〈r‘‘{a},r‘‘{a−1}〉 = TheNeutralElement(G//r,F)"

using Group_ZF_2_2_L3 by simp

ultimately show ?thesis

by (rule group0.group0_2_L9)

qed

29.3 Normal subgroups and quotient groups

If H is a subgroup of G, then for every a ∈ G we can cosider the sets
{a · h.h ∈ H} and {h · a.h ∈ H} (called a left and right ”coset of H”,
resp.) These sets sometimes form a group, called the ”quotient group”.
This section discusses the notion of quotient groups.

A normal subgorup N of a group G is such that aba−1 belongs to N if
a ∈ G, b ∈ N .

definition
"IsAnormalSubgroup(G,P,N) ≡ IsAsubgroup(N,P) ∧
(∀ n∈N.∀ g∈G. P‘〈 P‘〈 g,n 〉,GroupInv(G,P)‘(g) 〉 ∈ N)"

Having a group and a normal subgroup N we can create another group
consisting of eqivalence classes of the relation a ∼ b ≡ a · b−1 ∈ N . We
will refer to this relation as the quotient group relation. The classes of this
relation are in fact cosets of subgroup H.

definition
"QuotientGroupRel(G,P,H) ≡
{〈 a,b〉 ∈ G×G. P‘〈 a, GroupInv(G,P)‘(b)〉 ∈ H}"

Next we define the operation in the quotient group as the projection of the
group operation on the classses of the quotient group relation.

definition
"QuotientGroupOp(G,P,H) ≡ ProjFun2(G,QuotientGroupRel(G,P,H ),P)"

Definition of a normal subgroup in a more readable notation.

lemma (in group0) Group_ZF_2_4_L0:

assumes "IsAnormalSubgroup(G,P,H)"

and "g∈G" "n∈H"
shows "g·n·g−1 ∈ H"

using assms IsAnormalSubgroup_def by simp

The quotient group relation is reflexive.

lemma (in group0) Group_ZF_2_4_L1:

assumes "IsAsubgroup(H,P)"

shows "refl(G,QuotientGroupRel(G,P,H))"

using assms group0_2_L6 group0_3_L5
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QuotientGroupRel_def refl_def by simp

The quotient group relation is symmetric.

lemma (in group0) Group_ZF_2_4_L2:

assumes A1:"IsAsubgroup(H,P)"

shows "sym(QuotientGroupRel(G,P,H))"

proof -

{
fix a b assume A2: "〈 a,b〉 ∈ QuotientGroupRel(G,P,H)"

with A1 have "(a·b−1)−1 ∈ H"

using QuotientGroupRel_def group0_3_T3A

by simp

moreover from A2 have "(a·b−1)−1 = b·a−1"

using QuotientGroupRel_def group0_2_L12

by simp

ultimately have "b·a−1 ∈ H" by simp

with A2 have "〈 b,a〉 ∈ QuotientGroupRel(G,P,H)"

using QuotientGroupRel_def by simp

}
then show ?thesis using symI by simp

qed

The quotient group relation is transistive.

lemma (in group0) Group_ZF_2_4_L3A:

assumes A1: "IsAsubgroup(H,P)" and
A2: "〈 a,b〉 ∈ QuotientGroupRel(G,P,H)" and
A3: "〈 b,c〉 ∈ QuotientGroupRel(G,P,H)"

shows "〈 a,c〉 ∈ QuotientGroupRel(G,P,H)"

proof -

let ?r = "QuotientGroupRel(G,P,H)"

from A2 A3 have T1:"a∈G" "b∈G" "c∈G"
using QuotientGroupRel_def by auto

from A1 A2 A3 have "(a·b−1)·(b·c−1) ∈ H"

using QuotientGroupRel_def group0_3_L6

by simp

moreover from T1 have
"a·c−1 = (a·b−1)·(b·c−1)"

using group0_2_L14A by blast

ultimately have "a·c−1 ∈ H"

by simp

with T1 show ?thesis using QuotientGroupRel_def

by simp

qed

The quotient group relation is an equivalence relation. Note we do not need
the subgroup to be normal for this to be true.

lemma (in group0) Group_ZF_2_4_L3: assumes A1:"IsAsubgroup(H,P)"

shows "equiv(G,QuotientGroupRel(G,P,H))"

proof -
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let ?r = "QuotientGroupRel(G,P,H)"

from A1 have
"∀ a b c. (〈a, b〉 ∈ ?r ∧ 〈b, c〉 ∈ ?r −→ 〈a, c〉 ∈ ?r)"

using Group_ZF_2_4_L3A by blast

then have "trans(?r)"

using Fol1_L2 by blast

with A1 show ?thesis

using Group_ZF_2_4_L1 Group_ZF_2_4_L2

QuotientGroupRel_def equiv_def

by auto

qed

The next lemma states the essential condition for congruency of the group
operation with respect to the quotient group relation.

lemma (in group0) Group_ZF_2_4_L4:

assumes A1: "IsAnormalSubgroup(G,P,H)"

and A2: "〈a1,a2〉 ∈ QuotientGroupRel(G,P,H)"

and A3: "〈b1,b2〉 ∈ QuotientGroupRel(G,P,H)"

shows "〈a1·b1, a2·b2〉 ∈ QuotientGroupRel(G,P,H)"

proof -

from A2 A3 have T1:

"a1∈G" "a2∈G" "b1∈G" "b2∈G"
"a1·b1 ∈ G" "a2·b2 ∈ G"

"b1·b2−1 ∈ H" "a1·a2−1 ∈ H"

using QuotientGroupRel_def group0_2_L1 monoid0.group0_1_L1

by auto

with A1 show ?thesis using
IsAnormalSubgroup_def group0_3_L6 group0_2_L15

QuotientGroupRel_def by simp

qed

If the subgroup is normal, the group operation is congruent with respect to
the quotient group relation.

lemma Group_ZF_2_4_L5A:

assumes "IsAgroup(G,P)"

and "IsAnormalSubgroup(G,P,H)"

shows "Congruent2(QuotientGroupRel(G,P,H),P)"

using assms group0_def group0.Group_ZF_2_4_L4 Congruent2_def

by simp

The quotient group is indeed a group.

theorem Group_ZF_2_4_T1:

assumes "IsAgroup(G,P)" and "IsAnormalSubgroup(G,P,H)"

shows
"IsAgroup(G//QuotientGroupRel(G,P,H),QuotientGroupOp(G,P,H))"

using assms group0_def group0.Group_ZF_2_4_L3 IsAnormalSubgroup_def

Group_ZF_2_4_L5A group0.Group_ZF_3_T2 QuotientGroupOp_def

by simp

282



The class (coset) of the neutral element is the neutral element of the quotient
group.

lemma Group_ZF_2_4_L5B:

assumes "IsAgroup(G,P)" and "IsAnormalSubgroup(G,P,H)"

and "r = QuotientGroupRel(G,P,H)"

and "e = TheNeutralElement(G,P)"

shows " r‘‘{e} = TheNeutralElement(G//r,QuotientGroupOp(G,P,H))"

using assms IsAnormalSubgroup_def group0_def

IsAgroup_def group0.Group_ZF_2_4_L3 Group_ZF_2_4_L5A

QuotientGroupOp_def Group_ZF_2_2_L1

by simp

A group element is equivalent to the neutral element iff it is in the subgroup
we divide the group by.

lemma (in group0) Group_ZF_2_4_L5C: assumes "a∈G"
shows "〈a,1〉 ∈ QuotientGroupRel(G,P,H) ←→ a∈H"
using assms QuotientGroupRel_def group_inv_of_one group0_2_L2

by auto

A group element is in H iff its class is the neutral element of G/H.

lemma (in group0) Group_ZF_2_4_L5D:

assumes A1: "IsAnormalSubgroup(G,P,H)" and
A2: "a∈G" and
A3: "r = QuotientGroupRel(G,P,H)" and
A4: "TheNeutralElement(G//r,QuotientGroupOp(G,P,H)) = e"

shows "r‘‘{a} = e ←→ 〈a,1〉 ∈ r"

proof
assume "r‘‘{a} = e"

with groupAssum assms have
"r‘‘{1} = r‘‘{a}" and I: "equiv(G,r)"

using Group_ZF_2_4_L5B IsAnormalSubgroup_def Group_ZF_2_4_L3

by auto

with A2 have "〈1,a〉 ∈ r" using eq_equiv_class

by simp

with I show "〈a,1〉 ∈ r" by (rule equiv_is_sym)

next assume "〈a,1〉 ∈ r"

moreover from A1 A3 have "equiv(G,r)"

using IsAnormalSubgroup_def Group_ZF_2_4_L3

by simp

ultimately have "r‘‘{a} = r‘‘{1}"
using equiv_class_eq by simp

with groupAssum A1 A3 A4 show "r‘‘{a} = e"

using Group_ZF_2_4_L5B by simp

qed

The class of a ∈ G is the neutral element of the quotient G/H iff a ∈ H.

lemma (in group0) Group_ZF_2_4_L5E:

assumes "IsAnormalSubgroup(G,P,H)" and
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"a∈G" and "r = QuotientGroupRel(G,P,H)" and
"TheNeutralElement(G//r,QuotientGroupOp(G,P,H)) = e"

shows "r‘‘{a} = e ←→ a∈H"
using assms Group_ZF_2_4_L5C Group_ZF_2_4_L5D

by simp

Essential condition to show that every subgroup of an abelian group is nor-
mal.

lemma (in group0) Group_ZF_2_4_L5:

assumes A1: "P {is commutative on} G"

and A2: "IsAsubgroup(H,P)"

and A3: "g∈G" "h∈H"
shows "g·h·g−1 ∈ H"

proof -

from A2 A3 have T1:"h∈G" "g−1 ∈ G"

using group0_3_L2 inverse_in_group by auto

with A3 A1 have "g·h·g−1 = g−1·g·h"
using group0_4_L4A by simp

with A3 T1 show ?thesis using
group0_2_L6 group0_2_L2

by simp

qed

Every subgroup of an abelian group is normal. Moreover, the quotient group
is also abelian.

lemma Group_ZF_2_4_L6:

assumes A1: "IsAgroup(G,P)"

and A2: "P {is commutative on} G"

and A3: "IsAsubgroup(H,P)"

shows "IsAnormalSubgroup(G,P,H)"

"QuotientGroupOp(G,P,H) {is commutative on} (G//QuotientGroupRel(G,P,H))"

proof -

from A1 A2 A3 show T1: "IsAnormalSubgroup(G,P,H)" using
group0_def IsAnormalSubgroup_def group0.Group_ZF_2_4_L5

by simp

let ?r = "QuotientGroupRel(G,P,H)"

from A1 A3 T1 have "equiv(G,?r)" "Congruent2(?r,P)"

using group0_def group0.Group_ZF_2_4_L3 Group_ZF_2_4_L5A

by auto

with A2 show
"QuotientGroupOp(G,P,H) {is commutative on} (G//QuotientGroupRel(G,P,H))"

using EquivClass_2_T1 QuotientGroupOp_def

by simp

qed

The group inverse (in the quotient group) of a class (coset) is the class of
the inverse.

lemma (in group0) Group_ZF_2_4_L7:
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assumes "IsAnormalSubgroup(G,P,H)"

and "a∈G" and "r = QuotientGroupRel(G,P,H)"

and "F = QuotientGroupOp(G,P,H)"

shows "r‘‘{a−1} = GroupInv(G//r,F)‘(r‘‘{a})"

using groupAssum assms IsAnormalSubgroup_def Group_ZF_2_4_L3

Group_ZF_2_4_L5A QuotientGroupOp_def Group_ZF_2_2_L4

by simp

29.4 Function spaces as monoids

On every space of functions {f : X → X} we can define a natural monoid
structure with composition as the operation. This section explores this fact.

The next lemma states that composition has a neutral element, namely the
identity function on X (the one that maps x ∈ X into itself).

lemma Group_ZF_2_5_L1: assumes A1: "F = Composition(X)"

shows "∃ I∈(X→X). ∀ f∈(X→X). F‘〈 I,f〉 = f ∧ F‘〈 f,I〉 = f"

proof-
let ?I = "id(X)"

from A1 have
"?I ∈ X→X ∧ (∀ f∈(X→X). F‘〈 ?I,f〉 = f ∧ F‘〈 f,?I〉 = f)"

using id_type func_ZF_6_L1A by simp

thus ?thesis by auto

qed

The space of functions that map a set X into itsef is a monoid with compo-
sition as operation and the identity function as the neutral element.

lemma Group_ZF_2_5_L2: shows
"IsAmonoid(X→X,Composition(X))"

"id(X) = TheNeutralElement(X→X,Composition(X))"

proof -

let ?I = "id(X)"

let ?F = "Composition(X)"

show "IsAmonoid(X→X,Composition(X))"

using func_ZF_5_L5 Group_ZF_2_5_L1 IsAmonoid_def

by auto

then have "monoid0(X→X,?F)"

using monoid0_def by simp

moreover have
"?I ∈ X→X ∧ (∀ f∈(X→X). ?F‘〈 ?I,f〉 = f ∧ ?F‘〈 f,?I〉 = f)"

using id_type func_ZF_6_L1A by simp

ultimately show "?I = TheNeutralElement(X→X,?F)"

using monoid0.group0_1_L4 by auto

qed

end
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30 Groups 3

theory Group_ZF_3 imports Group_ZF_2 Finite1

begin

In this theory we consider notions in group theory that are useful for the
construction of real numbers in the Real_ZF_x series of theories.

30.1 Group valued finite range functions

In this section show that the group valued functions f : X → G, with the
property that f(X) is a finite subset of G, is a group. Such functions play
an important role in the construction of real numbers in the Real_ZF series.

The following proves the essential condition to show that the set of finite
range functions is closed with respect to the lifted group operation.

lemma (in group0) Group_ZF_3_1_L1:

assumes A1: "F = P {lifted to function space over} X"

and
A2: "s ∈ FinRangeFunctions(X,G)" "r ∈ FinRangeFunctions(X,G)"

shows "F‘〈 s,r〉 ∈ FinRangeFunctions(X,G)"

proof -

let ?q = "F‘〈 s,r〉"
from A2 have T1:"s:X→G" "r:X→G"

using FinRangeFunctions_def by auto

with A1 have T2:"?q : X→G"

using group0_2_L1 monoid0.Group_ZF_2_1_L0

by simp

moreover have "?q‘‘(X) ∈ Fin(G)"

proof -

from A2 have
"{s‘(x). x∈X} ∈ Fin(G)"

"{r‘(x). x∈X} ∈ Fin(G)"

using Finite1_L18 by auto

with A1 T1 T2 show ?thesis using
group_oper_assocA Finite1_L15 Group_ZF_2_1_L3 func_imagedef

by simp

qed
ultimately show ?thesis using FinRangeFunctions_def

by simp

qed

The set of group valued finite range functions is closed with respect to the
lifted group operation.

lemma (in group0) Group_ZF_3_1_L2:

assumes A1: "F = P {lifted to function space over} X"

shows "FinRangeFunctions(X,G) {is closed under} F"
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proof -

let ?A = "FinRangeFunctions(X,G)"

from A1 have "∀ x∈?A. ∀ y∈?A. F‘〈 x,y〉 ∈ ?A"

using Group_ZF_3_1_L1 by simp

then show ?thesis using IsOpClosed_def by simp

qed

A composition of a finite range function with the group inverse is a finite
range function.

lemma (in group0) Group_ZF_3_1_L3:

assumes A1: "s ∈ FinRangeFunctions(X,G)"

shows "GroupInv(G,P) O s ∈ FinRangeFunctions(X,G)"

using groupAssum assms group0_2_T2 Finite1_L20 by simp

The set of finite range functions is s subgroup of the lifted group.

theorem Group_ZF_3_1_T1:

assumes A1: "IsAgroup(G,P)"

and A2: "F = P {lifted to function space over} X"

and A3: "X6=0"

shows "IsAsubgroup(FinRangeFunctions(X,G),F)"

proof -

let ?e = "TheNeutralElement(G,P)"

let ?S = "FinRangeFunctions(X,G)"

from A1 have T1: "group0(G,P)" using group0_def

by simp

with A1 A2 have T2:"group0(X→G,F)"

using group0.Group_ZF_2_1_T2 group0_def

by simp

moreover have "?S 6= 0"

proof -

from T1 A3 have
"ConstantFunction(X,?e) ∈ ?S"

using group0.group0_2_L1 monoid0.unit_is_neutral

Finite1_L17 by simp

thus ?thesis by auto

qed
moreover have "?S ⊆ X→G"

using FinRangeFunctions_def by auto

moreover from A2 T1 have
"?S {is closed under} F"

using group0.Group_ZF_3_1_L2

by simp

moreover from A1 A2 T1 have
"∀ s ∈ ?S. GroupInv(X→G,F)‘(s) ∈ ?S"

using FinRangeFunctions_def group0.Group_ZF_2_1_L6

group0.Group_ZF_3_1_L3 by simp

ultimately show ?thesis

using group0.group0_3_T3 by simp

qed
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30.2 Almost homomorphisms

An almost homomorphism is a group valued function defined on a monoid
M with the property that the set {f(m+ n)− f(m)− f(n)}m,n∈M is finite.
This term is used by R. D. Arthan in ”The Eudoxus Real Numbers”. We
use this term in the general group context and use the A‘Campo’s term
”slopes” (see his ”A natural construction for the real numbers”) to mean
an almost homomorphism mapping interegers into themselves. We consider
almost homomorphisms because we use slopes to define real numbers in the
Real_ZF_x series.

HomDiff is an acronym for ”homomorphism difference”. This is the expres-
sion s(mn)(s(m)s(n))−1, or s(m+n)−s(m)−s(n) in the additive notation.
It is equal to the neutral element of the group if s is a homomorphism.

definition
"HomDiff(G,f,s,x) ≡
f‘〈s‘(f‘〈 fst(x),snd(x)〉) ,

(GroupInv(G,f)‘(f‘〈 s‘(fst(x)),s‘(snd(x))〉))〉"

Almost homomorphisms are defined as those maps s : G→ G such that the
homomorphism difference takes only finite number of values on G×G.

definition
"AlmostHoms(G,f) ≡
{s ∈ G→G.{HomDiff(G,f,s,x). x ∈ G×G } ∈ Fin(G)}"

AlHomOp1(G, f) is the group operation on almost homomorphisms defined
in a natural way by (s · r)(n) = s(n) · r(n). In the terminology defined in
func1.thy this is the group operation f (on G) lifted to the function space
G→ G and restricted to the set AlmostHoms(G, f).

definition
"AlHomOp1(G,f) ≡
restrict(f {lifted to function space over} G,

AlmostHoms(G,f)×AlmostHoms(G,f))"

We also define a composition (binary) operator on almost homomorphisms
in a natural way. We call that operator AlHomOp2 - the second operation on
almost homomorphisms. Composition of almost homomorphisms is used to
define multiplication of real numbers in Real_ZF series.

definition
"AlHomOp2(G,f) ≡
restrict(Composition(G),AlmostHoms(G,f)×AlmostHoms(G,f))"

This lemma provides more readable notation for the HomDiff definition.
Not really intended to be used in proofs, but just to see the definition in the
notation defined in the group0 locale.

lemma (in group0) HomDiff_notation:
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shows "HomDiff(G,P,s,〈 m,n〉) = s‘(m·n)·(s‘(m)·s‘(n))−1"

using HomDiff_def by simp

The next lemma shows the set from the definition of almost homomorphism
in a different form.

lemma (in group0) Group_ZF_3_2_L1A: shows
"{HomDiff(G,P,s,x). x ∈ G×G } = {s‘(m·n)·(s‘(m)·s‘(n))−1. 〈 m,n〉 ∈ G×G}"

proof -

have "∀ m∈G.∀ n∈G. HomDiff(G,P,s,〈 m,n〉) = s‘(m·n)·(s‘(m)·s‘(n))−1"

using HomDiff_notation by simp

then show ?thesis by (rule ZF1_1_L4A)

qed

Let’s define some notation. We inherit the notation and assumptions from
the group0 context (locale) and add some. We will use AH to denote the
set of almost homomorphisms. ∼ is the inverse (negative if the group is
the group of integers) of almost homomorphisms, (∼ p)(n) = p(n)−1. δ will
denote the homomorphism difference specific for the group (HomDiff(G, f)).
The notation s ≈ r will mean that s, r are almost equal, that is they are in
the equivalence relation defined by the group of finite range functions (that
is a normal subgroup of almost homomorphisms, if the group is abelian).
We show that this is equivalent to the set {s(n) · r(n)−1 : n ∈ G} being
finite. We also add an assumption that the G is abelian as many needed
properties do not hold without that.

locale group1 = group0 +

assumes isAbelian: "P {is commutative on} G"

fixes AH

defines AH_def [simp]: "AH ≡ AlmostHoms(G,P)"

fixes Op1

defines Op1_def [simp]: "Op1 ≡ AlHomOp1(G,P)"

fixes Op2

defines Op2_def [simp]: "Op2 ≡ AlHomOp2(G,P)"

fixes FR

defines FR_def [simp]: "FR ≡ FinRangeFunctions(G,G)"

fixes neg ("∼_" [90] 91)

defines neg_def [simp]: "∼s ≡ GroupInv(G,P) O s"

fixes δ
defines δ_def [simp]: "δ(s,x) ≡ HomDiff(G,P,s,x)"

fixes AHprod (infix "·" 69)

defines AHprod_def [simp]: "s · r ≡ AlHomOp1(G,P)‘〈s,r〉"
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fixes AHcomp (infix "◦" 70)

defines AHcomp_def [simp]: "s ◦ r ≡ AlHomOp2(G,P)‘〈s,r〉"

fixes AlEq (infix "≈" 68)

defines AlEq_def [simp]:

"s ≈ r ≡ 〈s,r〉 ∈ QuotientGroupRel(AH,Op1,FR)"

HomDiff is a homomorphism on the lifted group structure.

lemma (in group1) Group_ZF_3_2_L1:

assumes A1: "s:G→G" "r:G→G"

and A2: "x ∈ G×G"
and A3: "F = P {lifted to function space over} G"

shows "δ(F‘〈 s,r〉,x) = δ(s,x)·δ(r,x)"
proof -

let ?p = "F‘〈 s,r〉"
from A2 obtain m n where

D1: "x = 〈 m,n〉" "m∈G" "n∈G"
by auto

then have T1:"m·n ∈ G"

using group0_2_L1 monoid0.group0_1_L1 by simp

with A1 D1 have T2:

"s‘(m)∈G" "s‘(n)∈G" "r‘(m)∈G"
"r‘(n)∈G" "s‘(m·n)∈G" "r‘(m·n)∈G"
using apply_funtype by auto

from A3 A1 have T3:"?p : G→G"

using group0_2_L1 monoid0.Group_ZF_2_1_L0

by simp

from D1 T3 have
"δ(?p,x) = ?p‘(m·n)·((?p‘(n))−1·(?p‘(m))−1)"

using HomDiff_notation apply_funtype group_inv_of_two

by simp

also from A3 A1 D1 T1 isAbelian T2 have
". . . = δ(s,x)· δ(r,x)"
using Group_ZF_2_1_L3 group0_4_L3 HomDiff_notation

by simp

finally show ?thesis by simp

qed

The group operation lifted to the function space over G preserves almost
homomorphisms.

lemma (in group1) Group_ZF_3_2_L2: assumes A1: "s ∈ AH" "r ∈ AH"

and A2: "F = P {lifted to function space over} G"

shows "F‘〈 s,r〉 ∈ AH"

proof -

let ?p = "F‘〈 s,r〉"
from A1 A2 have "?p : G→G"

using AlmostHoms_def group0_2_L1 monoid0.Group_ZF_2_1_L0

by simp

moreover have
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"{δ(?p,x). x ∈ G×G} ∈ Fin(G)"

proof -

from A1 have
"{δ(s,x). x ∈ G×G } ∈ Fin(G)"

"{δ(r,x). x ∈ G×G } ∈ Fin(G)"

using AlmostHoms_def by auto

with groupAssum A1 A2 show ?thesis

using IsAgroup_def IsAmonoid_def IsAssociative_def

Finite1_L15 AlmostHoms_def Group_ZF_3_2_L1

by auto

qed
ultimately show ?thesis using AlmostHoms_def

by simp

qed

The set of almost homomorphisms is closed under the lifted group operation.

lemma (in group1) Group_ZF_3_2_L3:

assumes "F = P {lifted to function space over} G"

shows "AH {is closed under} F"

using assms IsOpClosed_def Group_ZF_3_2_L2 by simp

The terms in the homomorphism difference for a function are in the group.

lemma (in group1) Group_ZF_3_2_L4:

assumes "s:G→G" and "m∈G" "n∈G"
shows
"m·n ∈ G"

"s‘(m·n) ∈ G"

"s‘(m) ∈ G" "s‘(n) ∈ G"

"δ(s,〈 m,n〉) ∈ G"

"s‘(m)·s‘(n) ∈ G"

using assms group_op_closed inverse_in_group

apply_funtype HomDiff_def by auto

It is handy to have a version of Group_ZF_3_2_L4 specifically for almost ho-
momorphisms.

corollary (in group1) Group_ZF_3_2_L4A:

assumes "s ∈ AH" and "m∈G" "n∈G"
shows "m·n ∈ G"

"s‘(m·n) ∈ G"

"s‘(m) ∈ G" "s‘(n) ∈ G"

"δ(s,〈 m,n〉) ∈ G"

"s‘(m)·s‘(n) ∈ G"

using assms AlmostHoms_def Group_ZF_3_2_L4

by auto

The terms in the homomorphism difference are in the group, a different
form.

lemma (in group1) Group_ZF_3_2_L4B:
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assumes A1:"s ∈ AH" and A2:"x∈G×G"
shows "fst(x)·snd(x) ∈ G"

"s‘(fst(x)·snd(x)) ∈ G"

"s‘(fst(x)) ∈ G" "s‘(snd(x)) ∈ G"

"δ(s,x) ∈ G"

"s‘(fst(x))·s‘(snd(x)) ∈ G"

proof -

let ?m = "fst(x)"

let ?n = "snd(x)"

from A1 A2 show
"?m·?n ∈ G" "s‘(?m·?n) ∈ G"

"s‘(?m) ∈ G" "s‘(?n) ∈ G"

"s‘(?m)·s‘(?n) ∈ G"

using Group_ZF_3_2_L4A

by auto

from A1 A2 have "δ(s,〈 ?m,?n〉) ∈ G" using Group_ZF_3_2_L4A

by simp

moreover from A2 have "〈 ?m,?n〉 = x" by auto

ultimately show "δ(s,x) ∈ G" by simp

qed

What are the values of the inverse of an almost homomorphism?

lemma (in group1) Group_ZF_3_2_L5:

assumes "s ∈ AH" and "n∈G"
shows "(∼s)‘(n) = (s‘(n))−1"

using assms AlmostHoms_def comp_fun_apply by auto

Homomorphism difference commutes with the inverse for almost homomor-
phisms.

lemma (in group1) Group_ZF_3_2_L6:

assumes A1:"s ∈ AH" and A2:"x∈G×G"
shows "δ(∼s,x) = (δ(s,x))−1"

proof -

let ?m = "fst(x)"

let ?n = "snd(x)"

have "δ(∼s,x) = (∼s)‘(?m·?n)·((∼s)‘(?m)·(∼s)‘(?n))−1"

using HomDiff_def by simp

from A1 A2 isAbelian show ?thesis

using Group_ZF_3_2_L4B HomDiff_def

Group_ZF_3_2_L5 group0_4_L4A

by simp

qed

The inverse of an almost homomorphism maps the group into itself.

lemma (in group1) Group_ZF_3_2_L7:

assumes "s ∈ AH"

shows "∼s : G→G"

using groupAssum assms AlmostHoms_def group0_2_T2 comp_fun by auto
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The inverse of an almost homomorphism is an almost homomorphism.

lemma (in group1) Group_ZF_3_2_L8:

assumes A1: "F = P {lifted to function space over} G"

and A2: "s ∈ AH"

shows "GroupInv(G→G,F)‘(s) ∈ AH"

proof -

from A2 have "{δ(s,x). x ∈ G×G} ∈ Fin(G)"

using AlmostHoms_def by simp

with groupAssum have
"GroupInv(G,P)‘‘{δ(s,x). x ∈ G×G} ∈ Fin(G)"

using group0_2_T2 Finite1_L6A by blast

moreover have
"GroupInv(G,P)‘‘{δ(s,x). x ∈ G×G} =

{(δ(s,x))−1. x ∈ G×G}"
proof -

from groupAssum have
"GroupInv(G,P) : G→G"

using group0_2_T2 by simp

moreover from A2 have
"∀ x∈G×G. δ(s,x)∈G"
using Group_ZF_3_2_L4B by simp

ultimately show ?thesis

using func1_1_L17 by simp

qed
ultimately have "{(δ(s,x))−1. x ∈ G×G} ∈ Fin(G)"

by simp

moreover from A2 have
"{(δ(s,x))−1. x ∈ G×G} = {δ(∼s,x). x ∈ G×G}"
using Group_ZF_3_2_L6 by simp

ultimately have "{δ(∼s,x). x ∈ G×G} ∈ Fin(G)"

by simp

with A2 groupAssum A1 show ?thesis

using Group_ZF_3_2_L7 AlmostHoms_def Group_ZF_2_1_L6

by simp

qed

The function that assigns the neutral element everywhere is an almost ho-
momorphism.

lemma (in group1) Group_ZF_3_2_L9: shows
"ConstantFunction(G,1) ∈ AH" and "AH6=0"

proof -

let ?z = "ConstantFunction(G,1)"
have "G×G 6=0" using group0_2_L1 monoid0.group0_1_L3A

by blast

moreover have "∀ x∈G×G. δ(?z,x) = 1"
proof

fix x assume A1:"x ∈ G × G"

then obtain m n where "x = 〈 m,n〉" "m∈G" "n∈G"
by auto
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then show "δ(?z,x) = 1"
using group0_2_L1 monoid0.group0_1_L1

func1_3_L2 HomDiff_def group0_2_L2

group_inv_of_one by simp

qed
ultimately have "{δ(?z,x). x∈G×G} = {1}" by (rule ZF1_1_L5)

then show "?z ∈ AH" using group0_2_L2 Finite1_L16

func1_3_L1 group0_2_L2 AlmostHoms_def by simp

then show "AH6=0" by auto

qed

If the group is abelian, then almost homomorphisms form a subgroup of the
lifted group.

lemma Group_ZF_3_2_L10:

assumes A1: "IsAgroup(G,P)"

and A2: "P {is commutative on} G"

and A3: "F = P {lifted to function space over} G"

shows "IsAsubgroup(AlmostHoms(G,P),F)"

proof -

let ?AH = "AlmostHoms(G,P)"

from A2 A1 have T1: "group1(G,P)"

using group1_axioms.intro group0_def group1_def

by simp

from A1 A3 have "group0(G→G,F)"

using group0_def group0.Group_ZF_2_1_T2 by simp

moreover from T1 have "?AH 6=0"

using group1.Group_ZF_3_2_L9 by simp

moreover have T2:"?AH ⊆ G→G"

using AlmostHoms_def by auto

moreover from T1 A3 have
"?AH {is closed under} F"

using group1.Group_ZF_3_2_L3 by simp

moreover from T1 A3 have
"∀ s∈?AH. GroupInv(G→G,F)‘(s) ∈ ?AH"

using group1.Group_ZF_3_2_L8 by simp

ultimately show "IsAsubgroup(AlmostHoms(G,P),F)"

using group0.group0_3_T3 by simp

qed

If the group is abelian, then almost homomorphisms form a group with the
first operation, hence we can use theorems proven in group0 context aplied
to this group.

lemma (in group1) Group_ZF_3_2_L10A:

shows "IsAgroup(AH,Op1)" "group0(AH,Op1)"

using groupAssum isAbelian Group_ZF_3_2_L10 IsAsubgroup_def

AlHomOp1_def group0_def by auto

The group of almost homomorphisms is abelian

lemma Group_ZF_3_2_L11: assumes A1: "IsAgroup(G,f)"
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and A2: "f {is commutative on} G"

shows
"IsAgroup(AlmostHoms(G,f),AlHomOp1(G,f))"

"AlHomOp1(G,f) {is commutative on} AlmostHoms(G,f)"

proof-
let ?AH = "AlmostHoms(G,f)"

let ?F = "f {lifted to function space over} G"

from A1 A2 have "IsAsubgroup(?AH,?F)"

using Group_ZF_3_2_L10 by simp

then show "IsAgroup(?AH,AlHomOp1(G,f))"

using IsAsubgroup_def AlHomOp1_def by simp

from A1 have "?F : (G→G)×(G→G)→(G→G)"

using IsAgroup_def monoid0_def monoid0.Group_ZF_2_1_L0A

by simp

moreover have "?AH ⊆ G→G"

using AlmostHoms_def by auto

moreover from A1 A2 have
"?F {is commutative on} (G→G)"

using group0_def group0.Group_ZF_2_1_L7

by simp

ultimately show
"AlHomOp1(G,f){is commutative on} ?AH"

using func_ZF_4_L1 AlHomOp1_def by simp

qed

The first operation on homomorphisms acts in a natural way on its operands.

lemma (in group1) Group_ZF_3_2_L12:

assumes "s∈AH" "r∈AH" and "n∈G"
shows "(s·r)‘(n) = s‘(n)·r‘(n)"
using assms AlHomOp1_def restrict AlmostHoms_def Group_ZF_2_1_L3

by simp

What is the group inverse in the group of almost homomorphisms?

lemma (in group1) Group_ZF_3_2_L13:

assumes A1: "s∈AH"
shows
"GroupInv(AH,Op1)‘(s) = GroupInv(G,P) O s"

"GroupInv(AH,Op1)‘(s) ∈ AH"

"GroupInv(G,P) O s ∈ AH"

proof -

let ?F = "P {lifted to function space over} G"

from groupAssum isAbelian have "IsAsubgroup(AH,?F)"

using Group_ZF_3_2_L10 by simp

with A1 show I: "GroupInv(AH,Op1)‘(s) = GroupInv(G,P) O s"

using AlHomOp1_def Group_ZF_2_1_L6A by simp

from A1 show "GroupInv(AH,Op1)‘(s) ∈ AH"

using Group_ZF_3_2_L10A group0.inverse_in_group by simp

with I show "GroupInv(G,P) O s ∈ AH" by simp

qed
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The group inverse in the group of almost homomorphisms acts in a natural
way on its operand.

lemma (in group1) Group_ZF_3_2_L14:

assumes "s∈AH" and "n∈G"
shows "(GroupInv(AH,Op1)‘(s))‘(n) = (s‘(n))−1"

using isAbelian assms Group_ZF_3_2_L13 AlmostHoms_def comp_fun_apply

by auto

The next lemma states that if s, r are almost homomorphisms, then s · r−1

is also an almost homomorphism.

lemma Group_ZF_3_2_L15: assumes "IsAgroup(G,f)"

and "f {is commutative on} G"

and "AH = AlmostHoms(G,f)" "Op1 = AlHomOp1(G,f)"

and "s ∈ AH" "r ∈ AH"

shows
"Op1‘〈 s,r〉 ∈ AH"

"GroupInv(AH,Op1)‘(r) ∈ AH"

"Op1‘〈 s,GroupInv(AH,Op1)‘(r)〉 ∈ AH"

using assms group0_def group1_axioms.intro group1_def

group1.Group_ZF_3_2_L10A group0.group0_2_L1

monoid0.group0_1_L1 group0.inverse_in_group by auto

A version of Group_ZF_3_2_L15 formulated in notation used in group1 con-
text. States that the product of almost homomorphisms is an almost homo-
morphism and the the product of an almost homomorphism with a (point-
wise) inverse of an almost homomorphism is an almost homomorphism.

corollary (in group1) Group_ZF_3_2_L16: assumes "s ∈ AH" "r ∈ AH"

shows "s·r ∈ AH" "s·(∼r) ∈ AH"

using assms isAbelian group0_def group1_axioms group1_def

Group_ZF_3_2_L15 Group_ZF_3_2_L13 by auto

30.3 The classes of almost homomorphisms

In the Real_ZF series we define real numbers as a quotient of the group of
integer almost homomorphisms by the integer finite range functions. In this
section we setup the background for that in the general group context.

Finite range functions are almost homomorphisms.

lemma (in group1) Group_ZF_3_3_L1: shows "FR ⊆ AH"

proof
fix s assume A1:"s ∈ FR"

then have T1:"{s‘(n). n ∈ G} ∈ Fin(G)"

"{s‘(fst(x)). x∈G×G} ∈ Fin(G)"

"{s‘(snd(x)). x∈G×G} ∈ Fin(G)"

using Finite1_L18 Finite1_L6B by auto

have "{s‘(fst(x)·snd(x)). x ∈ G×G} ∈ Fin(G)"

proof -
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have "∀ x∈G×G. fst(x)·snd(x) ∈ G"

using group0_2_L1 monoid0.group0_1_L1 by simp

moreover from T1 have "{s‘(n). n ∈ G} ∈ Fin(G)" by simp

ultimately show ?thesis by (rule Finite1_L6B)

qed
moreover have
"{(s‘(fst(x))·s‘(snd(x)))−1. x∈G×G} ∈ Fin(G)"

proof -

have "∀ g∈G. g−1 ∈ G" using inverse_in_group

by simp

moreover from T1 have
"{s‘(fst(x))·s‘(snd(x)). x∈G×G} ∈ Fin(G)"

using group_oper_assocA Finite1_L15 by simp

ultimately show ?thesis

by (rule Finite1_L6C)

qed
ultimately have "{δ(s,x). x∈G×G} ∈ Fin(G)"

using HomDiff_def Finite1_L15 group_oper_assocA

by simp

with A1 show "s ∈ AH"

using FinRangeFunctions_def AlmostHoms_def

by simp

qed

Finite range functions valued in an abelian group form a normal subgroup
of almost homomorphisms.

lemma Group_ZF_3_3_L2: assumes A1:"IsAgroup(G,f)"

and A2:"f {is commutative on} G"

shows
"IsAsubgroup(FinRangeFunctions(G,G),AlHomOp1(G,f))"

"IsAnormalSubgroup(AlmostHoms(G,f),AlHomOp1(G,f),

FinRangeFunctions(G,G))"

proof -

let ?H1 = "AlmostHoms(G,f)"

let ?H2 = "FinRangeFunctions(G,G)"

let ?F = "f {lifted to function space over} G"

from A1 A2 have T1:"group0(G,f)"

"monoid0(G,f)" "group1(G,f)"

using group0_def group0.group0_2_L1

group1_axioms.intro group1_def

by auto

with A1 A2 have "IsAgroup(G→G,?F)"

"IsAsubgroup(?H1,?F)" "IsAsubgroup(?H2,?F)"

using group0.Group_ZF_2_1_T2 Group_ZF_3_2_L10

monoid0.group0_1_L3A Group_ZF_3_1_T1

by auto

then have
"IsAsubgroup(?H1∩?H2,restrict(?F,?H1×?H1))"
using group0_3_L7 by simp
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moreover from T1 have "?H1∩?H2 = ?H2"

using group1.Group_ZF_3_3_L1 by auto

ultimately show "IsAsubgroup(?H2,AlHomOp1(G,f))"

using AlHomOp1_def by simp

with A1 A2 show "IsAnormalSubgroup(AlmostHoms(G,f),AlHomOp1(G,f),

FinRangeFunctions(G,G))"

using Group_ZF_3_2_L11 Group_ZF_2_4_L6

by simp

qed

The group of almost homomorphisms divided by the subgroup of finite range
functions is an abelian group.

theorem (in group1) Group_ZF_3_3_T1:

shows
"IsAgroup(AH//QuotientGroupRel(AH,Op1,FR),QuotientGroupOp(AH,Op1,FR))"

and
"QuotientGroupOp(AH,Op1,FR) {is commutative on}

(AH//QuotientGroupRel(AH,Op1,FR))"

using groupAssum isAbelian Group_ZF_3_3_L2 Group_ZF_3_2_L10A

Group_ZF_2_4_T1 Group_ZF_3_2_L10A Group_ZF_3_2_L11

Group_ZF_3_3_L2 IsAnormalSubgroup_def Group_ZF_2_4_L6 by auto

It is useful to have a direct statement that the quotient group relation is an
equivalence relation for the group of AH and subgroup FR.

lemma (in group1) Group_ZF_3_3_L3: shows
"QuotientGroupRel(AH,Op1,FR) ⊆ AH × AH" and
"equiv(AH,QuotientGroupRel(AH,Op1,FR))"

using groupAssum isAbelian QuotientGroupRel_def

Group_ZF_3_3_L2 Group_ZF_3_2_L10A group0.Group_ZF_2_4_L3

by auto

The ”almost equal” relation is symmetric.

lemma (in group1) Group_ZF_3_3_L3A: assumes A1: "s≈r"
shows "r≈s"

proof -

let ?R = "QuotientGroupRel(AH,Op1,FR)"

from A1 have "equiv(AH,?R)" and "〈s,r〉 ∈ ?R"

using Group_ZF_3_3_L3 by auto

then have "〈r,s〉 ∈ ?R" by (rule equiv_is_sym)

then show "r≈s" by simp

qed

Although we have bypassed this fact when proving that group of almost
homomorphisms divided by the subgroup of finite range functions is a group,
it is still useful to know directly that the first group operation on AH is
congruent with respect to the quotient group relation.

lemma (in group1) Group_ZF_3_3_L4:

shows "Congruent2(QuotientGroupRel(AH,Op1,FR),Op1)"
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using groupAssum isAbelian Group_ZF_3_2_L10A Group_ZF_3_3_L2

Group_ZF_2_4_L5A by simp

The class of an almost homomorphism s is the neutral element of the quo-
tient group of almost homomorphisms iff s is a finite range function.

lemma (in group1) Group_ZF_3_3_L5: assumes "s ∈ AH" and
"r = QuotientGroupRel(AH,Op1,FR)" and
"TheNeutralElement(AH//r,QuotientGroupOp(AH,Op1,FR)) = e"

shows "r‘‘{s} = e ←→ s ∈ FR"

using groupAssum isAbelian assms Group_ZF_3_2_L11

group0_def Group_ZF_3_3_L2 group0.Group_ZF_2_4_L5E

by simp

The group inverse of a class of an almost homomorphism f is the class of
the inverse of f .

lemma (in group1) Group_ZF_3_3_L6:

assumes A1: "s ∈ AH" and
"r = QuotientGroupRel(AH,Op1,FR)" and
"F = ProjFun2(AH,r,Op1)"

shows "r‘‘{∼s} = GroupInv(AH//r,F)‘(r‘‘{s})"

proof -

from groupAssum isAbelian assms have
"r‘‘{GroupInv(AH, Op1)‘(s)} = GroupInv(AH//r,F)‘(r ‘‘ {s})"

using Group_ZF_3_2_L10A Group_ZF_3_3_L2 QuotientGroupOp_def

group0.Group_ZF_2_4_L7 by simp

with A1 show ?thesis using Group_ZF_3_2_L13

by simp

qed

30.4 Compositions of almost homomorphisms

The goal of this section is to establish some facts about composition of almost
homomorphisms. needed for the real numbers construction in Real_ZF_x

series. In particular we show that the set of almost homomorphisms is
closed under composition and that composition is congruent with respect
to the equivalence relation defined by the group of finite range functions (a
normal subgroup of almost homomorphisms).

The next formula restates the definition of the homomorphism difference to
express the value an almost homomorphism on a product.

lemma (in group1) Group_ZF_3_4_L1:

assumes "s∈AH" and "m∈G" "n∈G"
shows "s‘(m·n) = s‘(m)·s‘(n)·δ(s,〈 m,n〉)"
using isAbelian assms Group_ZF_3_2_L4A HomDiff_def group0_4_L5

by simp

What is the value of a composition of almost homomorhisms?
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lemma (in group1) Group_ZF_3_4_L2:

assumes "s∈AH" "r∈AH" and "m∈G"
shows "(s◦r)‘(m) = s‘(r‘(m))" "s‘(r‘(m)) ∈ G"

using assms AlmostHoms_def func_ZF_5_L3 restrict AlHomOp2_def

apply_funtype by auto

What is the homomorphism difference of a composition?

lemma (in group1) Group_ZF_3_4_L3:

assumes A1: "s∈AH" "r∈AH" and A2: "m∈G" "n∈G"
shows "δ(s◦r,〈 m,n〉) =

δ(s,〈 r‘(m),r‘(n)〉)·s‘(δ(r,〈 m,n〉))·δ(s,〈 r‘(m)·r‘(n),δ(r,〈 m,n〉)〉)"
proof -

from A1 A2 have T1:

"s‘(r‘(m))· s‘(r‘(n)) ∈ G"

"δ(s,〈 r‘(m),r‘(n)〉)∈ G" "s‘(δ(r,〈 m,n〉)) ∈G"
"δ(s,〈 (r‘(m)·r‘(n)),δ(r,〈 m,n〉)〉) ∈ G"

using Group_ZF_3_4_L2 AlmostHoms_def apply_funtype

Group_ZF_3_2_L4A group0_2_L1 monoid0.group0_1_L1

by auto

from A1 A2 have "δ(s◦r,〈 m,n〉) =

s‘(r‘(m)·r‘(n)·δ(r,〈 m,n〉))·(s‘((r‘(m)))·s‘(r‘(n)))−1"

using HomDiff_def group0_2_L1 monoid0.group0_1_L1 Group_ZF_3_4_L2

Group_ZF_3_4_L1 by simp

moreover from A1 A2 have
"s‘(r‘(m)·r‘(n)·δ(r,〈 m,n〉)) =

s‘(r‘(m)·r‘(n))·s‘(δ(r,〈 m,n〉))·δ(s,〈 (r‘(m)·r‘(n)),δ(r,〈 m,n〉)〉)"
"s‘(r‘(m)·r‘(n)) = s‘(r‘(m))·s‘(r‘(n))·δ(s,〈 r‘(m),r‘(n)〉)"
using Group_ZF_3_2_L4A Group_ZF_3_4_L1 by auto

moreover from T1 isAbelian have
"s‘(r‘(m))·s‘(r‘(n))·δ(s,〈 r‘(m),r‘(n)〉)·
s‘(δ(r,〈 m,n〉))·δ(s,〈 (r‘(m)·r‘(n)),δ(r,〈 m,n〉)〉)·
(s‘((r‘(m)))·s‘(r‘(n)))−1 =

δ(s,〈 r‘(m),r‘(n)〉)·s‘(δ(r,〈 m,n〉))·δ(s,〈 (r‘(m)·r‘(n)),δ(r,〈 m,n〉)〉)"

using group0_4_L6C by simp

ultimately show ?thesis by simp

qed

What is the homomorphism difference of a composition (another form)?
Here we split the homomorphism difference of a composition into a product
of three factors. This will help us in proving that the range of homomorphism
difference for the composition is finite, as each factor has finite range.

lemma (in group1) Group_ZF_3_4_L4:

assumes A1: "s∈AH" "r∈AH" and A2: "x ∈ G×G"
and A3:

"A = δ(s,〈 r‘(fst(x)),r‘(snd(x))〉)"
"B = s‘(δ(r,x))"
"C = δ(s,〈 (r‘(fst(x))·r‘(snd(x))),δ(r,x)〉)"
shows "δ(s◦r,x) = A·B·C"
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proof -

let ?m = "fst(x)"

let ?n = "snd(x)"

note A1

moreover from A2 have "?m∈G" "?n∈G"
by auto

ultimately have
"δ(s◦r,〈 ?m,?n〉) =

δ(s,〈 r‘(?m),r‘(?n)〉)·s‘(δ(r,〈 ?m,?n〉))·
δ(s,〈 (r‘(?m)·r‘(?n)),δ(r,〈 ?m,?n〉)〉)"
by (rule Group_ZF_3_4_L3)

with A1 A2 A3 show ?thesis

by auto

qed

The range of the homomorphism difference of a composition of two almost
homomorphisms is finite. This is the essential condition to show that a
composition of almost homomorphisms is an almost homomorphism.

lemma (in group1) Group_ZF_3_4_L5:

assumes A1: "s∈AH" "r∈AH"
shows "{δ(Composition(G)‘〈 s,r〉,x). x ∈ G×G} ∈ Fin(G)"

proof -

from A1 have
"∀ x∈G×G. 〈 r‘(fst(x)),r‘(snd(x))〉 ∈ G×G"
using Group_ZF_3_2_L4B by simp

moreover from A1 have
"{δ(s,x). x∈G×G} ∈ Fin(G)"

using AlmostHoms_def by simp

ultimately have
"{δ(s,〈 r‘(fst(x)),r‘(snd(x))〉). x∈G×G} ∈ Fin(G)"

by (rule Finite1_L6B)

moreover have "{s‘(δ(r,x)). x∈G×G} ∈ Fin(G)"

proof -

from A1 have "∀ m∈G. s‘(m) ∈ G"

using AlmostHoms_def apply_funtype by auto

moreover from A1 have "{δ(r,x). x∈G×G} ∈ Fin(G)"

using AlmostHoms_def by simp

ultimately show ?thesis

by (rule Finite1_L6C)

qed
ultimately have
"{δ(s,〈 r‘(fst(x)),r‘(snd(x))〉)·s‘(δ(r,x)). x∈G×G} ∈ Fin(G)"

using group_oper_assocA Finite1_L15 by simp

moreover have
"{δ(s,〈 (r‘(fst(x))·r‘(snd(x))),δ(r,x)〉). x∈G×G} ∈ Fin(G)"

proof -

from A1 have
"∀ x∈G×G. 〈 (r‘(fst(x))·r‘(snd(x))),δ(r,x)〉 ∈ G×G"

using Group_ZF_3_2_L4B by simp
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moreover from A1 have
"{δ(s,x). x∈G×G} ∈ Fin(G)"

using AlmostHoms_def by simp

ultimately show ?thesis by (rule Finite1_L6B)

qed
ultimately have
"{δ(s,〈 r‘(fst(x)),r‘(snd(x))〉)·s‘(δ(r,x))·
δ(s,〈 (r‘(fst(x))·r‘(snd(x))),δ(r,x)〉). x∈G×G} ∈ Fin(G)"

using group_oper_assocA Finite1_L15 by simp

moreover from A1 have "{δ(s◦r,x). x∈G×G} =

{δ(s,〈 r‘(fst(x)),r‘(snd(x))〉)·s‘(δ(r,x))·
δ(s,〈 (r‘(fst(x))·r‘(snd(x))),δ(r,x)〉). x∈G×G}"
using Group_ZF_3_4_L4 by simp

ultimately have "{δ(s◦r,x). x∈G×G} ∈ Fin(G)" by simp

with A1 show ?thesis using restrict AlHomOp2_def

by simp

qed

Composition of almost homomorphisms is an almost homomorphism.

theorem (in group1) Group_ZF_3_4_T1:

assumes A1: "s∈AH" "r∈AH"
shows "Composition(G)‘〈 s,r〉 ∈ AH" "s◦r ∈ AH"

proof -

from A1 have "〈 s,r〉 ∈ (G→G)×(G→G)"

using AlmostHoms_def by simp

then have "Composition(G)‘〈 s,r〉 : G→G"

using func_ZF_5_L1 apply_funtype by blast

with A1 show "Composition(G)‘〈 s,r〉 ∈ AH"

using Group_ZF_3_4_L5 AlmostHoms_def

by simp

with A1 show "s◦r ∈ AH" using AlHomOp2_def restrict

by simp

qed

The set of almost homomorphisms is closed under composition. The second
operation on almost homomorphisms is associative.

lemma (in group1) Group_ZF_3_4_L6: shows
"AH {is closed under} Composition(G)"

"AlHomOp2(G,P) {is associative on} AH"

proof -

show "AH {is closed under} Composition(G)"

using Group_ZF_3_4_T1 IsOpClosed_def by simp

moreover have "AH ⊆ G→G" using AlmostHoms_def

by auto

moreover have
"Composition(G) {is associative on} (G→G)"

using func_ZF_5_L5 by simp

ultimately show "AlHomOp2(G,P) {is associative on} AH"

using func_ZF_4_L3 AlHomOp2_def by simp
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qed

Type information related to the situation of two almost homomorphisms.

lemma (in group1) Group_ZF_3_4_L7:

assumes A1: "s∈AH" "r∈AH" and A2: "n∈G"
shows
"s‘(n) ∈ G" "(r‘(n))−1 ∈ G"

"s‘(n)·(r‘(n))−1 ∈ G" "s‘(r‘(n)) ∈ G"

proof -

from A1 A2 show
"s‘(n) ∈ G"

"(r‘(n))−1 ∈ G"

"s‘(r‘(n)) ∈ G"

"s‘(n)·(r‘(n))−1 ∈ G"

using AlmostHoms_def apply_type

group0_2_L1 monoid0.group0_1_L1 inverse_in_group

by auto

qed

Type information related to the situation of three almost homomorphisms.

lemma (in group1) Group_ZF_3_4_L8:

assumes A1: "s∈AH" "r∈AH" "q∈AH" and A2: "n∈G"
shows
"q‘(n)∈G"
"s‘(r‘(n)) ∈ G"

"r‘(n)·(q‘(n))−1 ∈ G"

"s‘(r‘(n)·(q‘(n))−1) ∈ G"

"δ(s,〈 q‘(n),r‘(n)·(q‘(n))−1〉) ∈ G"

proof -

from A1 A2 show
"q‘(n)∈ G" "s‘(r‘(n)) ∈ G" "r‘(n)·(q‘(n))−1 ∈ G"

using AlmostHoms_def apply_type

group0_2_L1 monoid0.group0_1_L1 inverse_in_group

by auto

with A1 A2 show "s‘(r‘(n)·(q‘(n))−1) ∈ G"

"δ(s,〈 q‘(n),r‘(n)·(q‘(n))−1〉) ∈ G"

using AlmostHoms_def apply_type Group_ZF_3_2_L4A

by auto

qed

A formula useful in showing that the composition of almost homomorphisms
is congruent with respect to the quotient group relation.

lemma (in group1) Group_ZF_3_4_L9:

assumes A1: "s1 ∈ AH" "r1 ∈ AH" "s2 ∈ AH" "r2 ∈ AH"

and A2: "n∈G"
shows "(s1◦r1)‘(n)·((s2◦r2)‘(n))−1 =

s1‘(r2‘(n))· (s2‘(r2‘(n)))−1·s1‘(r1‘(n)·(r2‘(n))−1)·
δ(s1,〈 r2‘(n),r1‘(n)·(r2‘(n))−1〉)"

proof -
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from A1 A2 isAbelian have
"(s1◦r1)‘(n)·((s2◦r2)‘(n))−1 =

s1‘(r2‘(n)·(r1‘(n)·(r2‘(n))−1))·(s2‘(r2‘(n)))−1"

using Group_ZF_3_4_L2 Group_ZF_3_4_L7 group0_4_L6A

group_oper_assoc by simp

with A1 A2 have "(s1◦r1)‘(n)·((s2◦r2)‘(n))−1 = s1‘(r2‘(n))·
s1‘(r1‘(n)·(r2‘(n))−1)·δ(s1,〈 r2‘(n),r1‘(n)·(r2‘(n))−1〉)·
(s2‘(r2‘(n)))−1"

using Group_ZF_3_4_L8 Group_ZF_3_4_L1 by simp

with A1 A2 isAbelian show ?thesis using
Group_ZF_3_4_L8 group0_4_L7 by simp

qed

The next lemma shows a formula that translates an expression in terms of
the first group operation on almost homomorphisms and the group inverse
in the group of almost homomorphisms to an expression using only the
underlying group operations.

lemma (in group1) Group_ZF_3_4_L10: assumes A1: "s ∈ AH" "r ∈ AH"

and A2: "n ∈ G"

shows "(s·(GroupInv(AH,Op1)‘(r)))‘(n) = s‘(n)·(r‘(n))−1"

proof -

from A1 A2 show ?thesis

using isAbelian Group_ZF_3_2_L13 Group_ZF_3_2_L12 Group_ZF_3_2_L14

by simp

qed

A neccessary condition for two a. h. to be almost equal.

lemma (in group1) Group_ZF_3_4_L11:

assumes A1: "s≈r"
shows "{s‘(n)·(r‘(n))−1. n∈G} ∈ Fin(G)"

proof -

from A1 have "s∈AH" "r∈AH"
using QuotientGroupRel_def by auto

moreover from A1 have
"{(s·(GroupInv(AH,Op1)‘(r)))‘(n). n∈G} ∈ Fin(G)"

using QuotientGroupRel_def Finite1_L18 by simp

ultimately show ?thesis

using Group_ZF_3_4_L10 by simp

qed

A sufficient condition for two a. h. to be almost equal.

lemma (in group1) Group_ZF_3_4_L12: assumes A1: "s∈AH" "r∈AH"
and A2: "{s‘(n)·(r‘(n))−1. n∈G} ∈ Fin(G)"

shows "s≈r"
proof -

from groupAssum isAbelian A1 A2 show ?thesis

using Group_ZF_3_2_L15 AlmostHoms_def

Group_ZF_3_4_L10 Finite1_L19 QuotientGroupRel_def
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by simp

qed

Another sufficient consdition for two a.h. to be almost equal. It is actually
just an expansion of the definition of the quotient group relation.

lemma (in group1) Group_ZF_3_4_L12A: assumes "s∈AH" "r∈AH"
and "s·(GroupInv(AH,Op1)‘(r)) ∈ FR"

shows "s≈r" "r≈s"
proof -

from assms show "s≈r" using assms QuotientGroupRel_def

by simp

then show "r≈s" by (rule Group_ZF_3_3_L3A)

qed

Another necessary condition for two a.h. to be almost equal. It is actually
just an expansion of the definition of the quotient group relation.

lemma (in group1) Group_ZF_3_4_L12B: assumes "s≈r"
shows "s·(GroupInv(AH,Op1)‘(r)) ∈ FR"

using assms QuotientGroupRel_def by simp

The next lemma states the essential condition for the composition of a. h.
to be congruent with respect to the quotient group relation for the subgroup
of finite range functions.

lemma (in group1) Group_ZF_3_4_L13:

assumes A1: "s1≈s2" "r1≈r2"
shows "(s1◦r1) ≈ (s2◦r2)"

proof -

have "{s1‘(r2‘(n))· (s2‘(r2‘(n)))−1. n∈G} ∈ Fin(G)"

proof -

from A1 have "∀ n∈G. r2‘(n) ∈ G"

using QuotientGroupRel_def AlmostHoms_def apply_funtype

by auto

moreover from A1 have "{s1‘(n)·(s2‘(n))−1. n∈G} ∈ Fin(G)"

using Group_ZF_3_4_L11 by simp

ultimately show ?thesis by (rule Finite1_L6B)

qed
moreover have "{s1‘(r1‘(n)·(r2‘(n))−1). n ∈ G} ∈ Fin(G)"

proof -

from A1 have "∀ n∈G. s1‘(n)∈G"
using QuotientGroupRel_def AlmostHoms_def apply_funtype

by auto

moreover from A1 have "{r1‘(n)·(r2‘(n))−1. n∈G} ∈ Fin(G)"

using Group_ZF_3_4_L11 by simp

ultimately show ?thesis by (rule Finite1_L6C)

qed
ultimately have
"{s1‘(r2‘(n))· (s2‘(r2‘(n)))−1·s1‘(r1‘(n)·(r2‘(n))−1).

n∈G} ∈ Fin(G)"
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using group_oper_assocA Finite1_L15 by simp

moreover have
"{δ(s1,〈 r2‘(n),r1‘(n)·(r2‘(n))−1〉). n∈G} ∈ Fin(G)"

proof -

from A1 have "∀ n∈G. 〈 r2‘(n),r1‘(n)·(r2‘(n))−1〉 ∈ G×G"
using QuotientGroupRel_def Group_ZF_3_4_L7 by auto

moreover from A1 have "{δ(s1,x). x ∈ G×G} ∈ Fin(G)"

using QuotientGroupRel_def AlmostHoms_def by simp

ultimately show ?thesis by (rule Finite1_L6B)

qed
ultimately have
"{s1‘(r2‘(n))· (s2‘(r2‘(n)))−1·s1‘(r1‘(n)·(r2‘(n))−1)·
δ(s1,〈 r2‘(n),r1‘(n)·(r2‘(n))−1〉). n∈G} ∈ Fin(G)"

using group_oper_assocA Finite1_L15 by simp

with A1 show ?thesis using
QuotientGroupRel_def Group_ZF_3_4_L9

Group_ZF_3_4_T1 Group_ZF_3_4_L12 by simp

qed

Composition of a. h. to is congruent with respect to the quotient group
relation for the subgroup of finite range functions. Recall that if an operation
say ”◦” on X is congruent with respect to an equivalence relation R then we
can define the operation on the quotient space X/R by [s]R ◦ [r]R := [s ◦ r]R
and this definition will be correct i.e. it will not depend on the choice of
representants for the classes [x] and [y]. This is why we want it here.

lemma (in group1) Group_ZF_3_4_L13A: shows
"Congruent2(QuotientGroupRel(AH,Op1,FR),Op2)"

proof -

show ?thesis using Group_ZF_3_4_L13 Congruent2_def

by simp

qed

The homomorphism difference for the identity function is equal to the neu-
tral element of the group (denoted e in the group1 context).

lemma (in group1) Group_ZF_3_4_L14: assumes A1: "x ∈ G×G"
shows "δ(id(G),x) = 1"

proof -

from A1 show ?thesis using
group0_2_L1 monoid0.group0_1_L1 HomDiff_def id_conv group0_2_L6

by simp

qed

The identity function (I(x) = x) on G is an almost homomorphism.

lemma (in group1) Group_ZF_3_4_L15: shows "id(G) ∈ AH"

proof -

have "G×G 6= 0" using group0_2_L1 monoid0.group0_1_L3A

by blast

then show ?thesis using Group_ZF_3_4_L14 group0_2_L2
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id_type AlmostHoms_def by simp

qed

Almost homomorphisms form a monoid with composition. The identity
function on the group is the neutral element there.

lemma (in group1) Group_ZF_3_4_L16:

shows
"IsAmonoid(AH,Op2)"

"monoid0(AH,Op2)"

"id(G) = TheNeutralElement(AH,Op2)"

proof-
let ?i = "TheNeutralElement(G→G,Composition(G))"

have
"IsAmonoid(G→G,Composition(G))"

"monoid0(G→G,Composition(G))"

using monoid0_def Group_ZF_2_5_L2 by auto

moreover have "AH {is closed under} Composition(G)"

using Group_ZF_3_4_L6 by simp

moreover have "AH ⊆ G→G"

using AlmostHoms_def by auto

moreover have "?i ∈ AH"

using Group_ZF_2_5_L2 Group_ZF_3_4_L15 by simp

moreover have "id(G) = ?i"

using Group_ZF_2_5_L2 by simp

ultimately show
"IsAmonoid(AH,Op2)"

"monoid0(AH,Op2)"

"id(G) = TheNeutralElement(AH,Op2)"

using monoid0.group0_1_T1 group0_1_L6 AlHomOp2_def monoid0_def

by auto

qed

We can project the monoid of almost homomorphisms with composition to
the group of almost homomorphisms divided by the subgroup of finite range
functions. The class of the identity function is the neutral element of the
quotient (monoid).

theorem (in group1) Group_ZF_3_4_T2:

assumes A1: "R = QuotientGroupRel(AH,Op1,FR)"

shows
"IsAmonoid(AH//R,ProjFun2(AH,R,Op2))"

"R‘‘{id(G)} = TheNeutralElement(AH//R,ProjFun2(AH,R,Op2))"

proof -

have "group0(AH,Op1)" using Group_ZF_3_2_L10A group0_def

by simp

with A1 groupAssum isAbelian show
"IsAmonoid(AH//R,ProjFun2(AH,R,Op2))"

"R‘‘{id(G)} = TheNeutralElement(AH//R,ProjFun2(AH,R,Op2))"

using Group_ZF_3_3_L2 group0.Group_ZF_2_4_L3 Group_ZF_3_4_L13A

Group_ZF_3_4_L16 monoid0.Group_ZF_2_2_T1 Group_ZF_2_2_L1
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by auto

qed

30.5 Shifting almost homomorphisms

In this this section we consider what happens if we multiply an almost
homomorphism by a group element. We show that the resulting function is
also an a. h., and almost equal to the original one. This is used only for
slopes (integer a.h.) in Int_ZF_2 where we need to correct a positive slopes
by adding a constant, so that it is at least 2 on positive integers.

If s is an almost homomorphism and c is some constant from the group,
then s · c is an almost homomorphism.

lemma (in group1) Group_ZF_3_5_L1:

assumes A1: "s ∈ AH" and A2: "c∈G" and
A3: "r = {〈x,s‘(x)·c〉. x∈G}"
shows
"∀ x∈G. r‘(x) = s‘(x)·c"
"r ∈ AH"

"s ≈ r"

proof -

from A1 A2 A3 have I: "r:G→G"

using AlmostHoms_def apply_funtype group_op_closed

ZF_fun_from_total by auto

with A3 show II: "∀ x∈G. r‘(x) = s‘(x)·c"
using ZF_fun_from_tot_val by simp

with isAbelian A1 A2 have III:

"∀ p ∈ G×G. δ(r,p) = δ(s,p)·c−1"

using group_op_closed AlmostHoms_def apply_funtype

HomDiff_def group0_4_L7 by auto

have "{δ(r,p). p ∈ G×G} ∈ Fin(G)"

proof -

from A1 A2 have
"{δ(s,p). p ∈ G×G} ∈ Fin(G)" "c−1∈G"
using AlmostHoms_def inverse_in_group by auto

then have "{δ(s,p)·c−1. p ∈ G×G} ∈ Fin(G)"

using group_oper_assocA Finite1_L16AA

by simp

moreover from III have
"{δ(r,p). p ∈ G×G} = {δ(s,p)·c−1. p ∈ G×G}"
by (rule ZF1_1_L4B)

ultimately show ?thesis by simp

qed
with I show IV: "r ∈ AH" using AlmostHoms_def

by simp

from isAbelian A1 A2 I II have
"∀ n ∈ G. s‘(n)·(r‘(n))−1 = c−1"

using AlmostHoms_def apply_funtype group0_4_L6AB
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by auto

then have "{s‘(n)·(r‘(n))−1. n∈G} = {c−1. n∈G}"
by (rule ZF1_1_L4B)

with A1 A2 IV show "s ≈ r"

using group0_2_L1 monoid0.group0_1_L3A

inverse_in_group Group_ZF_3_4_L12 by simp

qed

end

31 Direct product

theory DirectProduct_ZF imports func_ZF

begin

This theory considers the direct product of binary operations. Contributed
by Seo Sanghyeon.

31.1 Definition

In group theory the notion of direct product provides a natural way of
creating a new group from two given groups.

Given (G, ·) and (H, ◦) a new operation (G × H,×) is defined as (g, h) ×
(g′, h′) = (g · g′, h ◦ h′).
definition
"DirectProduct(P,Q,G,H) ≡
{〈x,〈P‘〈fst(fst(x)),fst(snd(x))〉 , Q‘〈snd(fst(x)),snd(snd(x))〉〉〉.
x ∈ (G×H)×(G×H)}"

We define a context called direct0 which holds an assumption that P,Q are
binary operations on G,H, resp. and denotes R as the direct product of
(G,P ) and (H,Q).

locale direct0 =

fixes P Q G H

assumes Pfun: "P : G×G→G"

assumes Qfun: "Q : H×H→H"

fixes R

defines Rdef [simp]: "R ≡ DirectProduct(P,Q,G,H)"

The direct product of binary operations is a binary operation.

lemma (in direct0) DirectProduct_ZF_1_L1:

shows "R : (G×H)×(G×H)→G×H"
proof -

from Pfun Qfun have "∀ x∈(G×H)×(G×H).
〈P‘〈fst(fst(x)),fst(snd(x))〉,Q‘〈snd(fst(x)),snd(snd(x))〉〉 ∈ G×H"
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by auto

then show ?thesis using ZF_fun_from_total DirectProduct_def

by simp

qed

And it has the intended value.

lemma (in direct0) DirectProduct_ZF_1_L2:

shows "∀ x∈(G×H). ∀ y∈(G×H).
R‘〈x,y〉 = 〈P‘〈fst(x),fst(y)〉,Q‘〈snd(x),snd(y)〉〉"
using DirectProduct_def DirectProduct_ZF_1_L1 ZF_fun_from_tot_val

by simp

And the value belongs to the set the operation is defined on.

lemma (in direct0) DirectProduct_ZF_1_L3:

shows "∀ x∈(G×H). ∀ y∈(G×H). R‘〈x,y〉 ∈ G×H"
using DirectProduct_ZF_1_L1 by simp

31.2 Associative and commutative operations

If P and Q are both associative or commutative operations, the direct prod-
uct of P and Q has the same property.

Direct product of commutative operations is commutative.

lemma (in direct0) DirectProduct_ZF_2_L1:

assumes "P {is commutative on} G" and "Q {is commutative on} H"

shows "R {is commutative on} G×H"
proof -

from assms have "∀ x∈(G×H). ∀ y∈(G×H). R‘〈x,y〉 = R‘〈y,x〉"
using DirectProduct_ZF_1_L2 IsCommutative_def by simp

then show ?thesis using IsCommutative_def by simp

qed

Direct product of associative operations is associative.

lemma (in direct0) DirectProduct_ZF_2_L2:

assumes "P {is associative on} G" and "Q {is associative on} H"

shows "R {is associative on} G×H"
proof -

have "∀ x∈G×H. ∀ y∈G×H. ∀ z∈G×H. R‘〈R‘〈x,y〉,z〉 =

〈P‘〈P‘〈fst(x),fst(y)〉,fst(z)〉,Q‘〈Q‘〈snd(x),snd(y)〉,snd(z)〉〉"
using DirectProduct_ZF_1_L2 DirectProduct_ZF_1_L3

by auto

moreover have "∀ x∈G×H. ∀ y∈G×H. ∀ z∈G×H. R‘〈x,R‘〈y,z〉〉 =

〈P‘〈fst(x),P‘〈fst(y),fst(z)〉〉,Q‘〈snd(x),Q‘〈snd(y),snd(z)〉〉〉"
using DirectProduct_ZF_1_L2 DirectProduct_ZF_1_L3 by auto

ultimately have "∀ x∈G×H. ∀ y∈G×H. ∀ z∈G×H. R‘〈R‘〈x,y〉,z〉 = R‘〈x,R‘〈y,z〉〉"
using assms IsAssociative_def by simp

then show ?thesis

using DirectProduct_ZF_1_L1 IsAssociative_def by simp
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qed

end

32 Ordered groups - introduction

theory OrderedGroup_ZF imports Group_ZF_1 AbelianGroup_ZF Order_ZF Finite_ZF_1

begin

This theory file defines and shows the basic properties of (partially or lin-
early) ordered groups. We define the set of nonnegative elements and the
absolute value function. We show that in linearly ordered groups finite sets
are bounded and provide a sufficient condition for bounded sets to be finite.
This allows to show in Int_ZF_IML.thy that subsets of integers are bounded
iff they are finite.

32.1 Ordered groups

This section defines ordered groups and various related notions.

An ordered group is a group equipped with a partial order that is ”transla-
tion invariant”, that is if a ≤ b then a · g ≤ b · g and g · a ≤ g · b.
definition
"IsAnOrdGroup(G,P,r) ≡
(IsAgroup(G,P) ∧ r⊆G×G ∧ IsPartOrder(G,r) ∧ (∀ g∈G. ∀ a b.

〈 a,b〉 ∈ r −→ 〈 P‘〈 a,g〉,P‘〈 b,g〉 〉 ∈ r ∧ 〈 P‘〈 g,a〉,P‘〈 g,b〉 〉 ∈ r )

)"

We define the set of nonnegative elements in the obvious way as G+ = {x ∈
G : 1 ≤ x}.
definition
"Nonnegative(G,P,r) ≡ {x∈G. 〈 TheNeutralElement(G,P),x〉 ∈ r}"

The PositiveSet(G,P,r) is a set similar to Nonnegative(G,P,r), but without
the unit.

definition
"PositiveSet(G,P,r) ≡
{x∈G. 〈 TheNeutralElement(G,P),x〉 ∈ r ∧ TheNeutralElement(G,P)6= x}"

We also define the absolute value as a ZF-function that is the identity on
G+ and the group inverse on the rest of the group.

definition
"AbsoluteValue(G,P,r) ≡ id(Nonnegative(G,P,r)) ∪
restrict(GroupInv(G,P),G - Nonnegative(G,P,r))"
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The odd functions are defined as those having property f(a−1) = (f(a))−1.
This looks a bit strange in the multiplicative notation, I have to admit. For
linearly oredered groups a function f defined on the set of positive elements
iniquely defines an odd function of the whole group. This function is called
an odd extension of f

definition
"OddExtension(G,P,r,f) ≡
(f ∪ {〈a, GroupInv(G,P)‘(f‘(GroupInv(G,P)‘(a)))〉.
a ∈ GroupInv(G,P)‘‘(PositiveSet(G,P,r))} ∪
{〈TheNeutralElement(G,P),TheNeutralElement(G,P)〉})"

We will use a similar notation for ordered groups as for the generic groups.
G+ denotes the set of nonnegative elements (that satisfy 1 ≤ a) and G+ is
the set of (strictly) positive elements. -A is the set inverses of elements from
A. I hope that using additive notation for this notion is not too shocking
here. The symbol f° denotes the odd extension of f . For a function defined
on G+ this is the unique odd function on G that is equal to f on G+.

locale group3 =

fixes G and P and r

assumes ordGroupAssum: "IsAnOrdGroup(G,P,r)"

fixes unit ("1")
defines unit_def [simp]: "1 ≡ TheNeutralElement(G,P)"

fixes groper (infixl "·" 70)

defines groper_def [simp]: "a · b ≡ P‘〈 a,b〉"

fixes inv ("_−1 " [90] 91)

defines inv_def [simp]: "x−1 ≡ GroupInv(G,P)‘(x)"

fixes lesseq (infix "≤" 68)

defines lesseq_def [simp]: "a ≤ b ≡ 〈 a,b〉 ∈ r"

fixes sless (infix "<" 68)

defines sless_def [simp]: "a < b ≡ a≤b ∧ a6=b"

fixes nonnegative ("G+")

defines nonnegative_def [simp]: "G+ ≡ Nonnegative(G,P,r)"

fixes positive ("G+")

defines positive_def [simp]: "G+ ≡ PositiveSet(G,P,r)"

fixes setinv ("- _" 72)

defines setninv_def [simp]: "-A ≡ GroupInv(G,P)‘‘(A)"

fixes abs ("| _ |")
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defines abs_def [simp]: "|a| ≡ AbsoluteValue(G,P,r)‘(a)"

fixes oddext ("_ °")

defines oddext_def [simp]: "f° ≡ OddExtension(G,P,r,f)"

In group3 context we can use the theorems proven in the group0 context.

lemma (in group3) OrderedGroup_ZF_1_L1: shows "group0(G,P)"

using ordGroupAssum IsAnOrdGroup_def group0_def by simp

Ordered group (carrier) is not empty. This is a property of monoids, but it
is good to have it handy in the group3 context.

lemma (in group3) OrderedGroup_ZF_1_L1A: shows "G 6=0"

using OrderedGroup_ZF_1_L1 group0.group0_2_L1 monoid0.group0_1_L3A

by blast

The next lemma is just to see the definition of the nonnegative set in our
notation.

lemma (in group3) OrderedGroup_ZF_1_L2:

shows "g∈G+ ←→ 1≤g"
using ordGroupAssum IsAnOrdGroup_def Nonnegative_def

by auto

The next lemma is just to see the definition of the positive set in our notation.

lemma (in group3) OrderedGroup_ZF_1_L2A:

shows "g∈G+ ←→ (1≤g ∧ g6=1)"
using ordGroupAssum IsAnOrdGroup_def PositiveSet_def

by auto

For total order if g is not in G+, then it has to be less or equal the unit.

lemma (in group3) OrderedGroup_ZF_1_L2B:

assumes A1: "r {is total on} G" and A2: "a∈G-G+"
shows "a≤1"

proof -

from A2 have "a∈G" "1 ∈ G" "¬(1≤a)"
using OrderedGroup_ZF_1_L1 group0.group0_2_L2 OrderedGroup_ZF_1_L2

by auto

with A1 show ?thesis using IsTotal_def by auto

qed

The group order is reflexive.

lemma (in group3) OrderedGroup_ZF_1_L3: assumes "g∈G"
shows "g≤g"
using ordGroupAssum assms IsAnOrdGroup_def IsPartOrder_def refl_def

by simp

1 is nonnegative.
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lemma (in group3) OrderedGroup_ZF_1_L3A: shows "1∈G+"
using OrderedGroup_ZF_1_L2 OrderedGroup_ZF_1_L3

OrderedGroup_ZF_1_L1 group0.group0_2_L2 by simp

In this context a ≤ b implies that both a and b belong to G.

lemma (in group3) OrderedGroup_ZF_1_L4:

assumes "a≤b" shows "a∈G" "b∈G"
using ordGroupAssum assms IsAnOrdGroup_def by auto

It is good to have transitivity handy.

lemma (in group3) Group_order_transitive:

assumes A1: "a≤b" "b≤c" shows "a≤c"
proof -

from ordGroupAssum have "trans(r)"

using IsAnOrdGroup_def IsPartOrder_def

by simp

moreover from A1 have "〈 a,b〉 ∈ r ∧ 〈 b,c〉 ∈ r" by simp

ultimately have "〈 a,c〉 ∈ r" by (rule Fol1_L3)

thus ?thesis by simp

qed

The order in an ordered group is antisymmetric.

lemma (in group3) group_order_antisym:

assumes A1: "a≤b" "b≤a" shows "a=b"

proof -

from ordGroupAssum A1 have
"antisym(r)" "〈 a,b〉 ∈ r" "〈 b,a〉 ∈ r"

using IsAnOrdGroup_def IsPartOrder_def by auto

then show "a=b" by (rule Fol1_L4)

qed

Transitivity for the strict order: if a < b and b ≤ c, then a < c.

lemma (in group3) OrderedGroup_ZF_1_L4A:

assumes A1: "a<b" and A2: "b≤c"
shows "a<c"

proof -

from A1 A2 have "a≤b" "b≤c" by auto

then have "a≤c" by (rule Group_order_transitive)

moreover from A1 A2 have "a 6=c" using group_order_antisym by auto

ultimately show "a<c" by simp

qed

Another version of transitivity for the strict order: if a ≤ b and b < c, then
a < c.

lemma (in group3) group_strict_ord_transit:

assumes A1: "a≤b" and A2: "b<c"

shows "a<c"

proof -
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from A1 A2 have "a≤b" "b≤c" by auto

then have "a≤c" by (rule Group_order_transitive)

moreover from A1 A2 have "a 6=c" using group_order_antisym by auto

ultimately show "a<c" by simp

qed

Strict order is preserved by translations.

lemma (in group3) group_strict_ord_transl_inv:

assumes "a<b" and "c∈G"
shows
"a·c < b·c"
"c·a < c·b"
using ordGroupAssum assms IsAnOrdGroup_def

OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L1 group0.group0_2_L19

by auto

If the group order is total, then the group is ordered linearly.

lemma (in group3) group_ord_total_is_lin:

assumes "r {is total on} G"

shows "IsLinOrder(G,r)"

using assms ordGroupAssum IsAnOrdGroup_def Order_ZF_1_L3

by simp

For linearly ordered groups elements in the nonnegative set are greater than
those in the complement.

lemma (in group3) OrderedGroup_ZF_1_L4B:

assumes "r {is total on} G"

and "a∈G+" and "b ∈ G-G+"

shows "b≤a"
proof -

from assms have "b≤1" "1≤a"
using OrderedGroup_ZF_1_L2 OrderedGroup_ZF_1_L2B by auto

then show ?thesis by (rule Group_order_transitive)

qed

If a ≤ 1 and a 6= 1, then a ∈ G \G+.

lemma (in group3) OrderedGroup_ZF_1_L4C:

assumes A1: "a≤1" and A2: "a6=1"
shows "a ∈ G-G+"

proof -

{ assume "a /∈ G-G+"

with ordGroupAssum A1 A2 have False

using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L2

OrderedGroup_ZF_1_L4 IsAnOrdGroup_def IsPartOrder_def antisym_def

by auto

} thus ?thesis by auto

qed

An element smaller than an element in G \G+ is in G \G+.
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lemma (in group3) OrderedGroup_ZF_1_L4D:

assumes A1: "a∈G-G+" and A2: "b≤a"
shows "b∈G-G+"

proof -

{ assume "b /∈ G - G+"

with A2 have "1≤b" "b≤a"
using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L2 by auto

then have "1≤a" by (rule Group_order_transitive)

with A1 have False using OrderedGroup_ZF_1_L2 by simp

} thus ?thesis by auto

qed

The nonnegative set is contained in the group.

lemma (in group3) OrderedGroup_ZF_1_L4E: shows "G+ ⊆ G"

using OrderedGroup_ZF_1_L2 OrderedGroup_ZF_1_L4 by auto

Taking the inverse on both sides reverses the inequality.

lemma (in group3) OrderedGroup_ZF_1_L5:

assumes A1: "a≤b" shows "b−1≤a−1"

proof -

from A1 have T1: "a∈G" "b∈G" "a−1∈G" "b−1∈G"
using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L1

group0.inverse_in_group by auto

with A1 ordGroupAssum have "a·a−1≤b·a−1" using IsAnOrdGroup_def

by simp

with T1 ordGroupAssum have "b−1·1≤b−1·(b·a−1)"

using OrderedGroup_ZF_1_L1 group0.group0_2_L6 IsAnOrdGroup_def

by simp

with T1 show ?thesis using
OrderedGroup_ZF_1_L1 group0.group0_2_L2 group0.group_oper_assoc

group0.group0_2_L6 by simp

qed

If an element is smaller that the unit, then its inverse is greater.

lemma (in group3) OrderedGroup_ZF_1_L5A:

assumes A1: "a≤1" shows "1≤a−1"

proof -

from A1 have "1−1≤a−1" using OrderedGroup_ZF_1_L5

by simp

then show ?thesis using OrderedGroup_ZF_1_L1 group0.group_inv_of_one

by simp

qed

If an the inverse of an element is greater that the unit, then the element is
smaller.

lemma (in group3) OrderedGroup_ZF_1_L5AA:

assumes A1: "a∈G" and A2: "1≤a−1"
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shows "a≤1"
proof -

from A2 have "(a−1)−1≤1−1" using OrderedGroup_ZF_1_L5

by simp

with A1 show "a≤1"
using OrderedGroup_ZF_1_L1 group0.group_inv_of_inv group0.group_inv_of_one

by simp

qed

If an element is nonnegative, then the inverse is not greater that the unit.
Also shows that nonnegative elements cannot be negative

lemma (in group3) OrderedGroup_ZF_1_L5AB:

assumes A1: "1≤a" shows "a−1≤1" and "¬(a≤1 ∧ a 6=1)"
proof -

from A1 have "a−1≤1−1"

using OrderedGroup_ZF_1_L5 by simp

then show "a−1≤1" using OrderedGroup_ZF_1_L1 group0.group_inv_of_one

by simp

{ assume "a≤1" and "a 6=1"
with A1 have False using group_order_antisym

by blast

} then show "¬(a≤1 ∧ a 6=1)" by auto

qed

If two elements are greater or equal than the unit, then the inverse of one
is not greater than the other.

lemma (in group3) OrderedGroup_ZF_1_L5AC:

assumes A1: "1≤a" "1≤b"
shows "a−1 ≤ b"

proof -

from A1 have "a−1≤1" "1≤b"
using OrderedGroup_ZF_1_L5AB by auto

then show "a−1 ≤ b" by (rule Group_order_transitive)

qed

32.2 Inequalities

This section developes some simple tools to deal with inequalities.

Taking negative on both sides reverses the inequality, case with an inverse
on one side.

lemma (in group3) OrderedGroup_ZF_1_L5AD:

assumes A1: "b ∈ G" and A2: "a≤b−1"

shows "b ≤ a−1"

proof -

from A2 have "(b−1)−1 ≤ a−1"

using OrderedGroup_ZF_1_L5 by simp

with A1 show "b ≤ a−1"
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using OrderedGroup_ZF_1_L1 group0.group_inv_of_inv

by simp

qed

We can cancel the same element on both sides of an inequality.

lemma (in group3) OrderedGroup_ZF_1_L5AE:

assumes A1: "a∈G" "b∈G" "c∈G" and A2: "a·b ≤ a·c"
shows "b≤c"

proof -

from ordGroupAssum A1 A2 have "a−1·(a·b) ≤ a−1·(a·c)"
using OrderedGroup_ZF_1_L1 group0.inverse_in_group

IsAnOrdGroup_def by simp

with A1 show "b≤c"
using OrderedGroup_ZF_1_L1 group0.inv_cancel_two

by simp

qed

We can cancel the same element on both sides of an inequality, a version
with an inverse on both sides.

lemma (in group3) OrderedGroup_ZF_1_L5AF:

assumes A1: "a∈G" "b∈G" "c∈G" and A2: "a·b−1 ≤ a·c−1"

shows "c≤b"
proof -

from A1 A2 have "(c−1)−1 ≤ (b−1)−1"

using OrderedGroup_ZF_1_L1 group0.inverse_in_group

OrderedGroup_ZF_1_L5AE OrderedGroup_ZF_1_L5 by simp

with A1 show "c≤b"
using OrderedGroup_ZF_1_L1 group0.group_inv_of_inv by simp

qed

Taking negative on both sides reverses the inequality, another case with an
inverse on one side.

lemma (in group3) OrderedGroup_ZF_1_L5AG:

assumes A1: "a ∈ G" and A2: "a−1≤b"
shows "b−1 ≤ a"

proof -

from A2 have "b−1 ≤ (a−1)−1"

using OrderedGroup_ZF_1_L5 by simp

with A1 show "b−1 ≤ a"

using OrderedGroup_ZF_1_L1 group0.group_inv_of_inv

by simp

qed

We can multiply the sides of two inequalities.

lemma (in group3) OrderedGroup_ZF_1_L5B:

assumes A1: "a≤b" and A2: "c≤d"
shows "a·c ≤ b·d"

proof -

318



from A1 A2 have "c∈G" "b∈G" using OrderedGroup_ZF_1_L4 by auto

with A1 A2 ordGroupAssum have "a·c≤ b·c" "b·c≤b·d"
using IsAnOrdGroup_def by auto

then show "a·c ≤ b·d" by (rule Group_order_transitive)

qed

We can replace first of the factors on one side of an inequality with a greater
one.

lemma (in group3) OrderedGroup_ZF_1_L5C:

assumes A1: "c∈G" and A2: "a≤b·c" and A3: "b≤b1"
shows "a≤b1·c"

proof -

from A1 A3 have "b·c ≤ b1·c"
using OrderedGroup_ZF_1_L3 OrderedGroup_ZF_1_L5B by simp

with A2 show "a≤b1·c" by (rule Group_order_transitive)

qed

We can replace second of the factors on one side of an inequality with a
greater one.

lemma (in group3) OrderedGroup_ZF_1_L5D:

assumes A1: "b∈G" and A2: "a ≤ b·c" and A3: "c≤b1"
shows "a ≤ b·b1"

proof -

from A1 A3 have "b·c ≤ b·b1"
using OrderedGroup_ZF_1_L3 OrderedGroup_ZF_1_L5B by auto

with A2 show "a≤b·b1" by (rule Group_order_transitive)

qed

We can replace factors on one side of an inequality with greater ones.

lemma (in group3) OrderedGroup_ZF_1_L5E:

assumes A1: "a ≤ b·c" and A2: "b≤b1" "c≤c1"
shows "a ≤ b1·c1"

proof -

from A2 have "b·c ≤ b1·c1" using OrderedGroup_ZF_1_L5B

by simp

with A1 show "a≤b1·c1" by (rule Group_order_transitive)

qed

We don’t decrease an element of the group by multiplying by one that is
nonnegative.

lemma (in group3) OrderedGroup_ZF_1_L5F:

assumes A1: "1≤a" and A2: "b∈G"
shows "b≤a·b" "b≤b·a"

proof -

from ordGroupAssum A1 A2 have
"1·b≤a·b" "b·1≤b·a"
using IsAnOrdGroup_def by auto

with A2 show "b≤a·b" "b≤b·a"
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using OrderedGroup_ZF_1_L1 group0.group0_2_L2

by auto

qed

We can multiply the right hand side of an inequality by a nonnegative ele-
ment.

lemma (in group3) OrderedGroup_ZF_1_L5G: assumes A1: "a≤b"
and A2: "1≤c" shows "a≤b·c" "a≤c·b"

proof -

from A1 A2 have I: "b≤b·c" and II: "b≤c·b"
using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L5F by auto

from A1 I show "a≤b·c" by (rule Group_order_transitive)

from A1 II show "a≤c·b" by (rule Group_order_transitive)

qed

We can put two elements on the other side of inequality, changing their sign.

lemma (in group3) OrderedGroup_ZF_1_L5H:

assumes A1: "a∈G" "b∈G" and A2: "a·b−1 ≤ c"

shows
"a ≤ c·b"
"c−1·a ≤ b"

proof -

from A2 have T: "c∈G" "c−1 ∈ G"

using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L1

group0.inverse_in_group by auto

from ordGroupAssum A1 A2 have "a·b−1·b ≤ c·b"
using IsAnOrdGroup_def by simp

with A1 show "a ≤ c·b"
using OrderedGroup_ZF_1_L1 group0.inv_cancel_two

by simp

with ordGroupAssum A2 T have "c−1·a ≤ c−1·(c·b)"
using IsAnOrdGroup_def by simp

with A1 T show "c−1·a ≤ b"

using OrderedGroup_ZF_1_L1 group0.inv_cancel_two

by simp

qed

We can multiply the sides of one inequality by inverse of another.

lemma (in group3) OrderedGroup_ZF_1_L5I:

assumes "a≤b" and "c≤d"
shows "a·d−1 ≤ b·c−1"

using assms OrderedGroup_ZF_1_L5 OrderedGroup_ZF_1_L5B

by simp

We can put an element on the other side of an inequality changing its sign,
version with the inverse.

lemma (in group3) OrderedGroup_ZF_1_L5J:

assumes A1: "a∈G" "b∈G" and A2: "c ≤ a·b−1"
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shows "c·b ≤ a"

proof -

from ordGroupAssum A1 A2 have "c·b ≤ a·b−1·b"
using IsAnOrdGroup_def by simp

with A1 show "c·b ≤ a"

using OrderedGroup_ZF_1_L1 group0.inv_cancel_two

by simp

qed

We can put an element on the other side of an inequality changing its sign,
version with the inverse.

lemma (in group3) OrderedGroup_ZF_1_L5JA:

assumes A1: "a∈G" "b∈G" and A2: "c ≤ a−1·b"
shows "a·c≤ b"

proof -

from ordGroupAssum A1 A2 have "a·c ≤ a·(a−1·b)"
using IsAnOrdGroup_def by simp

with A1 show "a·c≤ b"

using OrderedGroup_ZF_1_L1 group0.inv_cancel_two

by simp

qed

A special case of OrderedGroup_ZF_1_L5J where c = 1.

corollary (in group3) OrderedGroup_ZF_1_L5K:

assumes A1: "a∈G" "b∈G" and A2: "1 ≤ a·b−1"

shows "b ≤ a"

proof -

from A1 A2 have "1·b ≤ a"

using OrderedGroup_ZF_1_L5J by simp

with A1 show "b ≤ a"

using OrderedGroup_ZF_1_L1 group0.group0_2_L2

by simp

qed

A special case of OrderedGroup_ZF_1_L5JA where c = 1.

corollary (in group3) OrderedGroup_ZF_1_L5KA:

assumes A1: "a∈G" "b∈G" and A2: "1 ≤ a−1·b"
shows "a ≤ b"

proof -

from A1 A2 have "a·1 ≤ b"

using OrderedGroup_ZF_1_L5JA by simp

with A1 show "a ≤ b"

using OrderedGroup_ZF_1_L1 group0.group0_2_L2

by simp

qed

If the order is total, the elements that do not belong to the positive set are
negative. We also show here that the group inverse of an element that does
not belong to the nonnegative set does belong to the nonnegative set.
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lemma (in group3) OrderedGroup_ZF_1_L6:

assumes A1: "r {is total on} G" and A2: "a∈G-G+"
shows "a≤1" "a−1 ∈ G+" "restrict(GroupInv(G,P),G-G+)‘(a) ∈ G+"

proof -

from A2 have T1: "a∈G" "a/∈G+" "1∈G"
using OrderedGroup_ZF_1_L1 group0.group0_2_L2 by auto

with A1 show "a≤1" using OrderedGroup_ZF_1_L2 IsTotal_def

by auto

then show "a−1 ∈ G+" using OrderedGroup_ZF_1_L5A OrderedGroup_ZF_1_L2

by simp

with A2 show "restrict(GroupInv(G,P),G-G+)‘(a) ∈ G+"

using restrict by simp

qed

If a property is invariant with respect to taking the inverse and it is true on
the nonnegative set, than it is true on the whole group.

lemma (in group3) OrderedGroup_ZF_1_L7:

assumes A1: "r {is total on} G"

and A2: "∀ a∈G+.∀ b∈G+. Q(a,b)"

and A3: "∀ a∈G.∀ b∈G. Q(a,b)−→Q(a−1,b)"

and A4: "∀ a∈G.∀ b∈G. Q(a,b)−→Q(a,b−1)"

and A5: "a∈G" "b∈G"
shows "Q(a,b)"

proof -

{ assume A6: "a∈G+" have "Q(a,b)"

proof -

{ assume "b∈G+"
with A6 A2 have "Q(a,b)" by simp }

moreover
{ assume "b/∈G+"

with A1 A2 A4 A5 A6 have "Q(a,(b−1)−1)"

using OrderedGroup_ZF_1_L6 OrderedGroup_ZF_1_L1 group0.inverse_in_group

by simp

with A5 have "Q(a,b)" using OrderedGroup_ZF_1_L1 group0.group_inv_of_inv

by simp }
ultimately show "Q(a,b)" by auto

qed }
moreover
{ assume "a/∈G+"

with A1 A5 have T1: "a−1 ∈ G+" using OrderedGroup_ZF_1_L6 by simp

have "Q(a,b)"

proof -

{ assume "b∈G+"
with A2 A3 A5 T1 have "Q((a−1)−1,b)"

using OrderedGroup_ZF_1_L1 group0.inverse_in_group by simp

with A5 have "Q(a,b)" using OrderedGroup_ZF_1_L1 group0.group_inv_of_inv

by simp }
moreover
{ assume "b/∈G+"
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with A1 A2 A3 A4 A5 T1 have "Q((a−1)−1,(b−1)−1)"

using OrderedGroup_ZF_1_L6 OrderedGroup_ZF_1_L1 group0.inverse_in_group

by simp

with A5 have "Q(a,b)" using OrderedGroup_ZF_1_L1 group0.group_inv_of_inv

by simp }
ultimately show "Q(a,b)" by auto

qed }
ultimately show "Q(a,b)" by auto

qed

A lemma about splitting the ordered group ”plane” into 6 subsets. Useful
for proofs by cases.

lemma (in group3) OrdGroup_6cases: assumes A1: "r {is total on} G"

and A2: "a∈G" "b∈G"
shows
"1≤a ∧ 1≤b ∨ a≤1 ∧ b≤1 ∨
a≤1 ∧ 1≤b ∧ 1 ≤ a·b ∨ a≤1 ∧ 1≤b ∧ a·b ≤ 1 ∨
1≤a ∧ b≤1 ∧ 1 ≤ a·b ∨ 1≤a ∧ b≤1 ∧ a·b ≤ 1"

proof -

from A1 A2 have
"1≤a ∨ a≤1"
"1≤b ∨ b≤1"
"1 ≤ a·b ∨ a·b ≤ 1"
using OrderedGroup_ZF_1_L1 group0.group_op_closed group0.group0_2_L2

IsTotal_def by auto

then show ?thesis by auto

qed

The next lemma shows what happens when one element of a totally ordered
group is not greater or equal than another.

lemma (in group3) OrderedGroup_ZF_1_L8:

assumes A1: "r {is total on} G"

and A2: "a∈G" "b∈G"
and A3: "¬(a≤b)"
shows "b ≤ a" "a−1 ≤ b−1" "a 6=b" "b<a"

proof -

from A1 A2 A3 show I: "b ≤ a" using IsTotal_def

by auto

then show "a−1 ≤ b−1" using OrderedGroup_ZF_1_L5 by simp

from A2 have "a ≤ a" using OrderedGroup_ZF_1_L3 by simp

with I A3 show "a6=b" "b < a" by auto

qed

If one element is greater or equal and not equal to another, then it is not
smaller or equal.

lemma (in group3) OrderedGroup_ZF_1_L8AA:

assumes A1: "a≤b" and A2: "a6=b"
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shows "¬(b≤a)"
proof -

{ note A1

moreover assume "b≤a"
ultimately have "a=b" by (rule group_order_antisym)

with A2 have False by simp

} thus "¬(b≤a)" by auto

qed

A special case of OrderedGroup_ZF_1_L8 when one of the elements is the unit.

corollary (in group3) OrderedGroup_ZF_1_L8A:

assumes A1: "r {is total on} G"

and A2: "a∈G" and A3: "¬(1≤a)"
shows "1 ≤ a−1" "1 6=a" "a≤1"

proof -

from A1 A2 A3 have I:

"r {is total on} G"

"1∈G" "a∈G"
"¬(1≤a)"

using OrderedGroup_ZF_1_L1 group0.group0_2_L2

by auto

then have "1−1 ≤ a−1"

by (rule OrderedGroup_ZF_1_L8)

then show "1 ≤ a−1"

using OrderedGroup_ZF_1_L1 group0.group_inv_of_one by simp

from I show "1 6=a" by (rule OrderedGroup_ZF_1_L8)

from A1 I show "a≤1" using IsTotal_def

by auto

qed

A negative element can not be nonnegative.

lemma (in group3) OrderedGroup_ZF_1_L8B:

assumes A1: "a≤1" and A2: "a6=1" shows "¬(1≤a)"
proof -

{ assume "1≤a"
with A1 have "a=1" using group_order_antisym

by auto

with A2 have False by simp

} thus ?thesis by auto

qed

An element is greater or equal than another iff the difference is nonpositive.

lemma (in group3) OrderedGroup_ZF_1_L9:

assumes A1: "a∈G" "b∈G"
shows "a≤b ←→ a·b−1 ≤ 1"

proof
assume "a ≤ b"

with ordGroupAssum A1 have "a·b−1 ≤ b·b−1"

using OrderedGroup_ZF_1_L1 group0.inverse_in_group
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IsAnOrdGroup_def by simp

with A1 show "a·b−1 ≤ 1"
using OrderedGroup_ZF_1_L1 group0.group0_2_L6

by simp

next assume A2: "a·b−1 ≤ 1"
with ordGroupAssum A1 have "a·b−1·b ≤ 1·b"

using IsAnOrdGroup_def by simp

with A1 show "a ≤ b"

using OrderedGroup_ZF_1_L1

group0.inv_cancel_two group0.group0_2_L2

by simp

qed

We can move an element to the other side of an inequality.

lemma (in group3) OrderedGroup_ZF_1_L9A:

assumes A1: "a∈G" "b∈G" "c∈G"
shows "a·b ≤ c ←→ a ≤ c·b−1"

proof
assume "a·b ≤ c"

with ordGroupAssum A1 have "a·b·b−1 ≤ c·b−1"

using OrderedGroup_ZF_1_L1 group0.inverse_in_group IsAnOrdGroup_def

by simp

with A1 show "a ≤ c·b−1"

using OrderedGroup_ZF_1_L1 group0.inv_cancel_two by simp

next assume "a ≤ c·b−1"

with ordGroupAssum A1 have "a·b ≤ c·b−1·b"
using OrderedGroup_ZF_1_L1 group0.inverse_in_group IsAnOrdGroup_def

by simp

with A1 show "a·b ≤ c"

using OrderedGroup_ZF_1_L1 group0.inv_cancel_two by simp

qed

A one side version of the previous lemma with weaker assuptions.

lemma (in group3) OrderedGroup_ZF_1_L9B:

assumes A1: "a∈G" "b∈G" and A2: "a·b−1 ≤ c"

shows "a ≤ c·b"
proof -

from A1 A2 have "a∈G" "b−1∈G" "c∈G"
using OrderedGroup_ZF_1_L1 group0.inverse_in_group

OrderedGroup_ZF_1_L4 by auto

with A1 A2 show "a ≤ c·b"
using OrderedGroup_ZF_1_L9A OrderedGroup_ZF_1_L1

group0.group_inv_of_inv by simp

qed

We can put en element on the other side of inequality, changing its sign.

lemma (in group3) OrderedGroup_ZF_1_L9C:

assumes A1: "a∈G" "b∈G" and A2: "c≤a·b"
shows
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"c·b−1 ≤ a"

"a−1·c ≤ b"

proof -

from ordGroupAssum A1 A2 have
"c·b−1 ≤ a·b·b−1"

"a−1·c ≤ a−1·(a·b)"
using OrderedGroup_ZF_1_L1 group0.inverse_in_group IsAnOrdGroup_def

by auto

with A1 show
"c·b−1 ≤ a"

"a−1·c ≤ b"

using OrderedGroup_ZF_1_L1 group0.inv_cancel_two

by auto

qed

If an element is greater or equal than another then the difference is nonneg-
ative.

lemma (in group3) OrderedGroup_ZF_1_L9D: assumes A1: "a≤b"
shows "1 ≤ b·a−1"

proof -

from A1 have T: "a∈G" "b∈G" "a−1 ∈ G"

using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L1

group0.inverse_in_group by auto

with ordGroupAssum A1 have "a·a−1 ≤ b·a−1"

using IsAnOrdGroup_def by simp

with T show "1 ≤ b·a−1"

using OrderedGroup_ZF_1_L1 group0.group0_2_L6

by simp

qed

If an element is greater than another then the difference is positive.

lemma (in group3) OrderedGroup_ZF_1_L9E:

assumes A1: "a≤b" "a6=b"

shows "1 ≤ b·a−1" "1 6= b·a−1" "b·a−1 ∈ G+"

proof -

from A1 have T: "a∈G" "b∈G" using OrderedGroup_ZF_1_L4

by auto

from A1 show I: "1 ≤ b·a−1" using OrderedGroup_ZF_1_L9D

by simp

{ assume "b·a−1 = 1"
with T have "a=b"

using OrderedGroup_ZF_1_L1 group0.group0_2_L11A

by auto

with A1 have False by simp

} then show "1 6= b·a−1" by auto

then have "b·a−1 6= 1" by auto

with I show "b·a−1 ∈ G+" using OrderedGroup_ZF_1_L2A

by simp

qed
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If the difference is nonnegative, then a ≤ b.
lemma (in group3) OrderedGroup_ZF_1_L9F:

assumes A1: "a∈G" "b∈G" and A2: "1 ≤ b·a−1"

shows "a≤b"
proof -

from A1 A2 have "1·a ≤ b"

using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L9A

by simp

with A1 show "a≤b"
using OrderedGroup_ZF_1_L1 group0.group0_2_L2

by simp

qed

If we increase the middle term in a product, the whole product increases.

lemma (in group3) OrderedGroup_ZF_1_L10:

assumes "a∈G" "b∈G" and "c≤d"
shows "a·c·b ≤ a·d·b"
using ordGroupAssum assms IsAnOrdGroup_def by simp

A product of (strictly) positive elements is not the unit.

lemma (in group3) OrderedGroup_ZF_1_L11:

assumes A1: "1≤a" "1≤b"
and A2: "1 6= a" "1 6= b"

shows "1 6= a·b"
proof -

from A1 have T1: "a∈G" "b∈G"
using OrderedGroup_ZF_1_L4 by auto

{ assume "1 = a·b"
with A1 T1 have "a≤1" "1≤a"

using OrderedGroup_ZF_1_L1 group0.group0_2_L9 OrderedGroup_ZF_1_L5AA

by auto

then have "a = 1" by (rule group_order_antisym)

with A2 have False by simp

} then show "1 6= a·b" by auto

qed

A product of nonnegative elements is nonnegative.

lemma (in group3) OrderedGroup_ZF_1_L12:

assumes A1: "1 ≤ a" "1 ≤ b"

shows "1 ≤ a·b"
proof -

from A1 have "1·1 ≤ a·b"
using OrderedGroup_ZF_1_L5B by simp

then show "1 ≤ a·b"
using OrderedGroup_ZF_1_L1 group0.group0_2_L2

by simp

qed
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If a is not greater than b, then 1 is not greater than b · a−1.

lemma (in group3) OrderedGroup_ZF_1_L12A:

assumes A1: "a≤b" shows "1 ≤ b·a−1"

proof -

from A1 have T: "1 ∈ G" "a∈G" "b∈G"
using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L1 group0.group0_2_L2

by auto

with A1 have "1·a ≤ b"

using OrderedGroup_ZF_1_L1 group0.group0_2_L2

by simp

with T show "1 ≤ b·a−1" using OrderedGroup_ZF_1_L9A

by simp

qed

We can move an element to the other side of a strict inequality.

lemma (in group3) OrderedGroup_ZF_1_L12B:

assumes A1: "a∈G" "b∈G" and A2: "a·b−1 < c"

shows "a < c·b"
proof -

from A1 A2 have "a·b−1·b < c·b"
using group_strict_ord_transl_inv by auto

moreover from A1 have "a·b−1·b = a"

using OrderedGroup_ZF_1_L1 group0.inv_cancel_two

by simp

ultimately show "a < c·b"
by auto

qed

We can multiply the sides of two inequalities, first of them strict and we get
a strict inequality.

lemma (in group3) OrderedGroup_ZF_1_L12C:

assumes A1: "a<b" and A2: "c≤d"
shows "a·c < b·d"

proof -

from A1 A2 have T: "a∈G" "b∈G" "c∈G" "d∈G"
using OrderedGroup_ZF_1_L4 by auto

with ordGroupAssum A2 have "a·c ≤ a·d"
using IsAnOrdGroup_def by simp

moreover from A1 T have "a·d < b·d"
using group_strict_ord_transl_inv by simp

ultimately show "a·c < b·d"
by (rule group_strict_ord_transit)

qed

We can multiply the sides of two inequalities, second of them strict and we
get a strict inequality.

lemma (in group3) OrderedGroup_ZF_1_L12D:

assumes A1: "a≤b" and A2: "c<d"
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shows "a·c < b·d"
proof -

from A1 A2 have T: "a∈G" "b∈G" "c∈G" "d∈G"
using OrderedGroup_ZF_1_L4 by auto

with A2 have "a·c < a·d"
using group_strict_ord_transl_inv by simp

moreover from ordGroupAssum A1 T have "a·d ≤ b·d"
using IsAnOrdGroup_def by simp

ultimately show "a·c < b·d"
by (rule OrderedGroup_ZF_1_L4A)

qed

32.3 The set of positive elements

In this section we study G+ - the set of elements that are (strictly) greater
than the unit. The most important result is that every linearly ordered
group can decomposed into {1}, G+ and the set of those elements a ∈ G
such that a−1 ∈G+. Another property of linearly ordered groups that we
prove here is that if G+ 6= ∅, then it is infinite. This allows to show that
nontrivial linearly ordered groups are infinite.

The positive set is closed under the group operation.

lemma (in group3) OrderedGroup_ZF_1_L13: shows "G+ {is closed under}

P"

proof -

{ fix a b assume "a∈G+" "b∈G+"
then have T1: "1 ≤ a·b" and "1 6= a·b"

using PositiveSet_def OrderedGroup_ZF_1_L11 OrderedGroup_ZF_1_L12

by auto

moreover from T1 have "a·b ∈ G"

using OrderedGroup_ZF_1_L4 by simp

ultimately have "a·b ∈ G+" using PositiveSet_def by simp

} then show "G+ {is closed under} P" using IsOpClosed_def

by simp

qed

For totally ordered groups every nonunit element is positive or its inverse is
positive.

lemma (in group3) OrderedGroup_ZF_1_L14:

assumes A1: "r {is total on} G" and A2: "a∈G"
shows "a=1 ∨ a∈G+ ∨ a−1∈G+"

proof -

{ assume A3: "a6=1"
moreover from A1 A2 have "a≤1 ∨ 1≤a"

using IsTotal_def OrderedGroup_ZF_1_L1 group0.group0_2_L2

by simp

moreover from A3 A2 have T1: "a−1 6= 1"
using OrderedGroup_ZF_1_L1 group0.group0_2_L8B
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by simp

ultimately have "a−1∈G+ ∨ a∈G+"
using OrderedGroup_ZF_1_L5A OrderedGroup_ZF_1_L2A

by auto

} thus "a=1 ∨ a∈G+ ∨ a−1∈G+" by auto

qed

If an element belongs to the positive set, then it is not the unit and its
inverse does not belong to the positive set.

lemma (in group3) OrderedGroup_ZF_1_L15:

assumes A1: "a∈G+" shows "a 6=1" "a−1 /∈G+"
proof -

from A1 show T1: "a6=1" using PositiveSet_def by auto

{ assume "a−1 ∈ G+"

with A1 have "a≤1" "1≤a"
using OrderedGroup_ZF_1_L5AA PositiveSet_def by auto

then have "a=1" by (rule group_order_antisym)

with T1 have False by simp

} then show "a−1 /∈G+" by auto

qed

If a−1 is positive, then a can not be positive or the unit.

lemma (in group3) OrderedGroup_ZF_1_L16:

assumes A1: "a∈G" and A2: "a−1∈G+" shows "a 6=1" "a/∈G+"
proof -

from A2 have "a−1 6=1" "(a−1)−1 /∈ G+"

using OrderedGroup_ZF_1_L15 by auto

with A1 show "a 6=1" "a/∈G+"
using OrderedGroup_ZF_1_L1 group0.group0_2_L8C group0.group_inv_of_inv

by auto

qed

For linearly ordered groups each element is either the unit, positive or its
inverse is positive.

lemma (in group3) OrdGroup_decomp:

assumes A1: "r {is total on} G" and A2: "a∈G"
shows "Exactly_1_of_3_holds (a=1,a∈G+,a−1∈G+)"

proof -

from A1 A2 have "a=1 ∨ a∈G+ ∨ a−1∈G+"
using OrderedGroup_ZF_1_L14 by simp

moreover from A2 have "a=1 −→ (a/∈G+ ∧ a−1 /∈G+)"
using OrderedGroup_ZF_1_L1 group0.group_inv_of_one

PositiveSet_def by simp

moreover from A2 have "a∈G+ −→ (a 6=1 ∧ a−1 /∈G+)"
using OrderedGroup_ZF_1_L15 by simp

moreover from A2 have "a−1∈G+ −→ (a 6=1 ∧ a/∈G+)"
using OrderedGroup_ZF_1_L16 by simp
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ultimately show "Exactly_1_of_3_holds (a=1,a∈G+,a−1∈G+)"
by (rule Fol1_L5)

qed

A if a is a nonunit element that is not positive, then a−1 is is positive. This
is useful for some proofs by cases.

lemma (in group3) OrdGroup_cases:

assumes A1: "r {is total on} G" and A2: "a∈G"
and A3: "a6=1" "a/∈G+"
shows "a−1 ∈ G+"

proof -

from A1 A2 have "a=1 ∨ a∈G+ ∨ a−1∈G+"
using OrderedGroup_ZF_1_L14 by simp

with A3 show "a−1 ∈ G+" by auto

qed

Elements from G \G+ are not greater that the unit.

lemma (in group3) OrderedGroup_ZF_1_L17:

assumes A1: "r {is total on} G" and A2: "a ∈ G-G+"

shows "a≤1"
proof -

{ assume "a=1"
with A2 have "a≤1" using OrderedGroup_ZF_1_L3 by simp }

moreover
{ assume "a 6=1"

with A1 A2 have "a≤1"
using PositiveSet_def OrderedGroup_ZF_1_L8A

by auto }
ultimately show "a≤1" by auto

qed

The next lemma allows to split proofs that something holds for all a ∈ G
into cases a = 1, a ∈ G+, −a ∈ G+.

lemma (in group3) OrderedGroup_ZF_1_L18:

assumes A1: "r {is total on} G" and A2: "b∈G"
and A3: "Q(1)" and A4: "∀ a∈G+. Q(a)" and A5: "∀ a∈G+. Q(a−1)"

shows "Q(b)"

proof -

from A1 A2 A3 A4 A5 have "Q(b) ∨ Q((b−1)−1)"

using OrderedGroup_ZF_1_L14 by auto

with A2 show "Q(b)" using OrderedGroup_ZF_1_L1 group0.group_inv_of_inv

by simp

qed

All elements greater or equal than an element of G+ belong to G+.

lemma (in group3) OrderedGroup_ZF_1_L19:

assumes A1: "a ∈ G+" and A2: "a≤b"
shows "b ∈ G+"
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proof -

from A1 have I: "1≤a" and II: "a6=1"
using OrderedGroup_ZF_1_L2A by auto

from I A2 have "1≤b" by (rule Group_order_transitive)

moreover have "b 6=1"
proof -

{ assume "b=1"
with I A2 have "1≤a" "a≤1"

by auto

then have "1=a" by (rule group_order_antisym)

with II have False by simp

} then show "b6=1" by auto

qed
ultimately show "b ∈ G+"

using OrderedGroup_ZF_1_L2A by simp

qed

The inverse of an element of G+ cannot be in G+.

lemma (in group3) OrderedGroup_ZF_1_L20:

assumes A1: "r {is total on} G" and A2: "a ∈ G+"

shows "a−1 /∈ G+"

proof -

from A2 have "a∈G" using PositiveSet_def

by simp

with A1 have "Exactly_1_of_3_holds (a=1,a∈G+,a−1∈G+)"
using OrdGroup_decomp by simp

with A2 show "a−1 /∈ G+" by (rule Fol1_L7)

qed

The set of positive elements of a nontrivial linearly ordered group is not
empty.

lemma (in group3) OrderedGroup_ZF_1_L21:

assumes A1: "r {is total on} G" and A2: "G 6= {1}"
shows "G+ 6= 0"

proof -

have "1 ∈ G" using OrderedGroup_ZF_1_L1 group0.group0_2_L2

by simp

with A2 obtain a where "a∈G" "a6=1" by auto

with A1 have "a∈G+ ∨ a−1∈G+"
using OrderedGroup_ZF_1_L14 by auto

then show "G+ 6= 0" by auto

qed

If b ∈G+, then a < a · b. Multiplying a by a positive elemnt increases a.

lemma (in group3) OrderedGroup_ZF_1_L22:

assumes A1: "a∈G" "b∈G+"
shows "a≤a·b" "a 6= a·b" "a·b ∈ G"

proof -

from ordGroupAssum A1 have "a·1 ≤ a·b"
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using OrderedGroup_ZF_1_L2A IsAnOrdGroup_def

by simp

with A1 show "a≤a·b"
using OrderedGroup_ZF_1_L1 group0.group0_2_L2

by simp

then show "a·b ∈ G"

using OrderedGroup_ZF_1_L4 by simp

{ from A1 have "a∈G" "b∈G"
using PositiveSet_def by auto

moreover assume "a = a·b"
ultimately have "b = 1"

using OrderedGroup_ZF_1_L1 group0.group0_2_L7

by simp

with A1 have False using PositiveSet_def

by simp

} then show "a 6= a·b" by auto

qed

If G is a nontrivial linearly ordered hroup, then for every element of G we
can find one in G+ that is greater or equal.

lemma (in group3) OrderedGroup_ZF_1_L23:

assumes A1: "r {is total on} G" and A2: "G 6= {1}"
and A3: "a∈G"
shows "∃ b∈G+. a≤b"

proof -

{ assume A4: "a∈G+" then have "a≤a"
using PositiveSet_def OrderedGroup_ZF_1_L3

by simp

with A4 have "∃ b∈G+. a≤b" by auto }
moreover
{ assume "a/∈G+"

with A1 A3 have I: "a≤1" using OrderedGroup_ZF_1_L17

by simp

from A1 A2 obtain b where II: "b∈G+"
using OrderedGroup_ZF_1_L21 by auto

then have "1≤b" using PositiveSet_def by simp

with I have "a≤b" by (rule Group_order_transitive)

with II have "∃ b∈G+. a≤b" by auto }
ultimately show ?thesis by auto

qed

The G+ is G+ plus the unit.

lemma (in group3) OrderedGroup_ZF_1_L24: shows "G+ = G+∪{1}"
using OrderedGroup_ZF_1_L2 OrderedGroup_ZF_1_L2A OrderedGroup_ZF_1_L3A

by auto

What is −G+, really?

lemma (in group3) OrderedGroup_ZF_1_L25: shows
"(-G+) = {a−1. a∈G+}"
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"(-G+) ⊆ G"

proof -

from ordGroupAssum have I: "GroupInv(G,P) : G→G"

using IsAnOrdGroup_def group0_2_T2 by simp

moreover have "G+ ⊆ G" using PositiveSet_def by auto

ultimately show
"(-G+) = {a−1. a∈G+}"
"(-G+) ⊆ G"

using func_imagedef func1_1_L6 by auto

qed

If the inverse of a is in G+, then a is in the inverse of G+.

lemma (in group3) OrderedGroup_ZF_1_L26:

assumes A1: "a∈G" and A2: "a−1 ∈ G+"

shows "a ∈ (-G+)"

proof -

from A1 have "a−1 ∈ G" "a = (a−1)−1" using OrderedGroup_ZF_1_L1

group0.inverse_in_group group0.group_inv_of_inv

by auto

with A2 show "a ∈ (-G+)" using OrderedGroup_ZF_1_L25

by auto

qed

If a is in the inverse of G+, then its inverse is in G+.

lemma (in group3) OrderedGroup_ZF_1_L27:

assumes "a ∈ (-G+)"

shows "a−1 ∈ G+"

using assms OrderedGroup_ZF_1_L25 PositiveSet_def

OrderedGroup_ZF_1_L1 group0.group_inv_of_inv

by auto

A linearly ordered group can be decomposed into G+, {1} and −G+

lemma (in group3) OrdGroup_decomp2:

assumes A1: "r {is total on} G"

shows
"G = G+ ∪ (-G+)∪ {1}"
"G+∩(-G+) = 0"

"1 /∈ G+∪(-G+)"
proof -

{ fix a assume A2: "a∈G"
with A1 have "a∈G+ ∨ a−1∈G+ ∨ a=1"

using OrderedGroup_ZF_1_L14 by auto

with A2 have "a∈G+ ∨ a∈(-G+) ∨ a=1"
using OrderedGroup_ZF_1_L26 by auto

then have "a ∈ (G+ ∪ (-G+)∪ {1})"
by auto

} then have "G ⊆ G+ ∪ (-G+)∪ {1}"
by auto

moreover have "G+ ∪ (-G+)∪ {1} ⊆ G"
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using OrderedGroup_ZF_1_L25 PositiveSet_def

OrderedGroup_ZF_1_L1 group0.group0_2_L2

by auto

ultimately show "G = G+ ∪ (-G+)∪ {1}" by auto

{ let ?A = "G+∩(-G+)"
assume "G+∩(-G+) 6= 0"

then have "?A6=0" by simp

then obtain a where "a∈?A" by blast

then have False using OrderedGroup_ZF_1_L15 OrderedGroup_ZF_1_L27

by auto

} then show "G+∩(-G+) = 0" by auto

show "1 /∈ G+∪(-G+)"
using OrderedGroup_ZF_1_L27

OrderedGroup_ZF_1_L1 group0.group_inv_of_one

OrderedGroup_ZF_1_L2A by auto

qed

If a · b−1 is nonnegative, then b ≤ a. This maybe used to recover the order
from the set of nonnegative elements and serve as a way to define order by
prescibing that set (see the ”Alternative definitions” section).

lemma (in group3) OrderedGroup_ZF_1_L28:

assumes A1: "a∈G" "b∈G" and A2: "a·b−1 ∈ G+"

shows "b≤a"
proof -

from A2 have "1 ≤ a·b−1" using OrderedGroup_ZF_1_L2

by simp

with A1 show "b≤a" using OrderedGroup_ZF_1_L5K

by simp

qed

A special case of OrderedGroup_ZF_1_L28 when a · b−1 is positive.

corollary (in group3) OrderedGroup_ZF_1_L29:

assumes A1: "a∈G" "b∈G" and A2: "a·b−1 ∈ G+"

shows "b≤a" "b6=a"

proof -

from A2 have "1 ≤ a·b−1" and I: "a·b−1 6= 1"
using OrderedGroup_ZF_1_L2A by auto

with A1 show "b≤a" using OrderedGroup_ZF_1_L5K

by simp

from A1 I show "b 6=a"

using OrderedGroup_ZF_1_L1 group0.group0_2_L6

by auto

qed

A bit stronger that OrderedGroup_ZF_1_L29, adds case when two elements
are equal.

lemma (in group3) OrderedGroup_ZF_1_L30:

assumes "a∈G" "b∈G" and "a=b ∨ b·a−1 ∈ G+"
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shows "a≤b"
using assms OrderedGroup_ZF_1_L3 OrderedGroup_ZF_1_L29

by auto

A different take on decomposition: we can have a = b or a < b or b < a.

lemma (in group3) OrderedGroup_ZF_1_L31:

assumes A1: "r {is total on} G" and A2: "a∈G" "b∈G"
shows "a=b ∨ (a≤b ∧ a6=b) ∨ (b≤a ∧ b6=a)"

proof -

from A2 have "a·b−1 ∈ G" using OrderedGroup_ZF_1_L1

group0.inverse_in_group group0.group_op_closed

by simp

with A1 have "a·b−1 = 1 ∨ a·b−1 ∈ G+ ∨ (a·b−1)−1 ∈ G+"

using OrderedGroup_ZF_1_L14 by simp

moreover
{ assume "a·b−1 = 1"

then have "a·b−1·b = 1·b" by simp

with A2 have "a=b ∨ (a≤b ∧ a 6=b) ∨ (b≤a ∧ b6=a)"

using OrderedGroup_ZF_1_L1

group0.inv_cancel_two group0.group0_2_L2 by auto }
moreover
{ assume "a·b−1 ∈ G+"

with A2 have "a=b ∨ (a≤b ∧ a 6=b) ∨ (b≤a ∧ b6=a)"

using OrderedGroup_ZF_1_L29 by auto }
moreover
{ assume "(a·b−1)−1 ∈ G+"

with A2 have "b·a−1 ∈ G+" using OrderedGroup_ZF_1_L1

group0.group0_2_L12 by simp

with A2 have "a=b ∨ (a≤b ∧ a6=b) ∨ (b≤a ∧ b6=a)"

using OrderedGroup_ZF_1_L29 by auto }
ultimately show "a=b ∨ (a≤b ∧ a6=b) ∨ (b≤a ∧ b6=a)"

by auto

qed

32.4 Intervals and bounded sets

Intervals here are the closed intervals of the form {x ∈ G.a ≤ x ≤ b}.

A bounded set can be translated to put it in G+ and then it is still bounded
above.

lemma (in group3) OrderedGroup_ZF_2_L1:

assumes A1: "∀ g∈A. L≤g ∧ g≤M"
and A2: "S = RightTranslation(G,P,L−1)"

and A3: "a ∈ S‘‘(A)"

shows "a ≤ M·L−1" "1≤a"
proof -

from A3 have "A 6=0" using func1_1_L13A by fast

then obtain g where "g∈A" by auto

with A1 have T1: "L∈G" "M∈G" "L−1∈G"
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using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L1

group0.inverse_in_group by auto

with A2 have "S : G→G" using OrderedGroup_ZF_1_L1 group0.group0_5_L1

by simp

moreover from A1 have T2: "A⊆G" using OrderedGroup_ZF_1_L4 by auto

ultimately have "S‘‘(A) = {S‘(b). b∈A}" using func_imagedef

by simp

with A3 obtain b where T3: "b∈A" "a = S‘(b)" by auto

with A1 ordGroupAssum T1 have "b·L−1≤M·L−1" "L·L−1≤b·L−1"

using IsAnOrdGroup_def by auto

with T3 A2 T1 T2 show "a≤M·L−1" "1≤a"
using OrderedGroup_ZF_1_L1 group0.group0_5_L2 group0.group0_2_L6

by auto

qed

Every bounded set is an image of a subset of an interval that starts at 1.

lemma (in group3) OrderedGroup_ZF_2_L2:

assumes A1: "IsBounded(A,r)"

shows "∃ B.∃ g∈G+.∃ T∈G→G. A = T‘‘(B) ∧ B ⊆ Interval(r,1,g)"
proof -

{ assume A2: "A=0"

let ?B = "0"

let ?g = "1"
let ?T = "ConstantFunction(G,1)"
have "?g∈G+" using OrderedGroup_ZF_1_L3A by simp

moreover have "?T : G→G"

using func1_3_L1 OrderedGroup_ZF_1_L1 group0.group0_2_L2 by simp

moreover from A2 have "A = T‘‘(?B)" by simp

moreover have "?B ⊆ Interval(r,1,?g)" by simp

ultimately have
"∃ B.∃ g∈G+.∃ T∈G→G. A = T‘‘(B) ∧ B ⊆ Interval(r,1,g)"
by auto }

moreover
{ assume A3: "A6=0"

with A1 have "∃ L. ∀ x∈A. L≤x" and "∃ U. ∀ x∈A. x≤U"
using IsBounded_def IsBoundedBelow_def IsBoundedAbove_def

by auto

then obtain L U where D1: "∀ x∈A. L≤x ∧ x≤U "

by auto

with A3 have T1: "A⊆G" using OrderedGroup_ZF_1_L4 by auto

from A3 obtain a where "a∈A" by auto

with D1 have T2: "L≤a" "a≤U" by auto

then have T3: "L∈G" "L−1∈ G" "U∈G"
using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L1

group0.inverse_in_group by auto

let ?T = "RightTranslation(G,P,L)"

let ?B = "RightTranslation(G,P,L−1)‘‘(A)"

let ?g = "U·L−1"

have "?g∈G+"

337



proof -

from T2 have "L≤U" using Group_order_transitive by fast

with ordGroupAssum T3 have "L·L−1≤?g"
using IsAnOrdGroup_def by simp

with T3 show ?thesis using OrderedGroup_ZF_1_L1 group0.group0_2_L6

OrderedGroup_ZF_1_L2 by simp

qed
moreover from T3 have "?T : G→G"

using OrderedGroup_ZF_1_L1 group0.group0_5_L1

by simp

moreover have "A = ?T‘‘(?B)"

proof -

from T3 T1 have "?T‘‘(?B) = {a·L−1·L. a∈A}"
using OrderedGroup_ZF_1_L1 group0.group0_5_L6

by simp

moreover from T3 T1 have "∀ a∈A. a·L−1·L = a·(L−1·L)"
using OrderedGroup_ZF_1_L1 group0.group_oper_assoc by auto

ultimately have "?T‘‘(?B) = {a·(L−1·L). a∈A}" by simp

with T3 have "?T‘‘(?B) = {a·1. a∈A}"
using OrderedGroup_ZF_1_L1 group0.group0_2_L6 by simp

moreover from T1 have "∀ a∈A. a·1=a"
using OrderedGroup_ZF_1_L1 group0.group0_2_L2 by auto

ultimately show ?thesis by simp

qed
moreover have "?B ⊆ Interval(r,1,?g)"
proof

fix y assume A4: "y ∈ ?B"

let ?S = "RightTranslation(G,P,L−1)"

from D1 have T4: "∀ x∈A. L≤x ∧ x≤U" by simp

moreover have T5: "?S = RightTranslation(G,P,L−1)"

by simp

moreover from A4 have T6: "y ∈ ?S‘‘(A)" by simp

ultimately have "y≤U·L−1" using OrderedGroup_ZF_2_L1

by blast

moreover from T4 T5 T6 have "1≤y" by (rule OrderedGroup_ZF_2_L1)

ultimately show "y ∈ Interval(r,1,?g)" using Interval_def by auto

qed
ultimately have
"∃ B.∃ g∈G+.∃ T∈G→G. A = T‘‘(B) ∧ B ⊆ Interval(r,1,g)"
by auto }

ultimately show ?thesis by auto

qed

If every interval starting at 1 is finite, then every bounded set is finite. I
find it interesting that this does not require the group to be linearly ordered
(the order to be total).

theorem (in group3) OrderedGroup_ZF_2_T1:

assumes A1: "∀ g∈G+. Interval(r,1,g) ∈ Fin(G)"

and A2: "IsBounded(A,r)"
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shows "A ∈ Fin(G)"

proof -

from A2 have
"∃ B.∃ g∈G+.∃ T∈G→G. A = T‘‘(B) ∧ B ⊆ Interval(r,1,g)"
using OrderedGroup_ZF_2_L2 by simp

then obtain B g T where D1: "g∈G+" "B ⊆ Interval(r,1,g)"
and D2: "T : G→G" "A = T‘‘(B)" by auto

from D1 A1 have "B∈Fin(G)" using Fin_subset_lemma by blast

with D2 show ?thesis using Finite1_L6A by simp

qed

In linearly ordered groups finite sets are bounded.

theorem (in group3) ord_group_fin_bounded:

assumes "r {is total on} G" and "B∈Fin(G)"
shows "IsBounded(B,r)"

using ordGroupAssum assms IsAnOrdGroup_def IsPartOrder_def Finite_ZF_1_T1

by simp

For nontrivial linearly ordered groups if for every element G we can find one
in A that is greater or equal (not necessarily strictly greater), then A can
neither be finite nor bounded above.

lemma (in group3) OrderedGroup_ZF_2_L2A:

assumes A1: "r {is total on} G" and A2: "G 6= {1}"
and A3: "∀ a∈G. ∃ b∈A. a≤b"
shows
"∀ a∈G. ∃ b∈A. a6=b ∧ a≤b"
"¬IsBoundedAbove(A,r)"
"A /∈ Fin(G)"

proof -

{ fix a

from A1 A2 obtain c where "c ∈ G+"

using OrderedGroup_ZF_1_L21 by auto

moreover assume "a∈G"
ultimately have
"a·c ∈ G" and I: "a < a·c"
using OrderedGroup_ZF_1_L22 by auto

with A3 obtain b where II: "b∈A" and III: "a·c ≤ b"

by auto

moreover from I III have "a<b" by (rule OrderedGroup_ZF_1_L4A)

ultimately have "∃ b∈A. a6=b ∧ a≤b" by auto

} thus "∀ a∈G. ∃ b∈A. a 6=b ∧ a≤b" by simp

with ordGroupAssum A1 show
"¬IsBoundedAbove(A,r)"
"A /∈ Fin(G)"

using IsAnOrdGroup_def IsPartOrder_def

OrderedGroup_ZF_1_L1A Order_ZF_3_L14 Finite_ZF_1_1_L3

by auto

qed
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Nontrivial linearly ordered groups are infinite. Recall that Fin(A) is the
collection of finite subsets of A. In this lemma we show that G /∈ Fin(G),
that is that G is not a finite subset of itself. This is a way of saying that
G is infinite. We also show that for nontrivial linearly ordered groups G+ is
infinite.

theorem (in group3) Linord_group_infinite:

assumes A1: "r {is total on} G" and A2: "G 6= {1}"
shows
"G+ /∈ Fin(G)"

"G /∈ Fin(G)"

proof -

from A1 A2 show I: "G+ /∈ Fin(G)"

using OrderedGroup_ZF_1_L23 OrderedGroup_ZF_2_L2A

by simp

{ assume "G ∈ Fin(G)"

moreover have "G+ ⊆ G" using PositiveSet_def by auto

ultimately have "G+ ∈ Fin(G)" using Fin_subset_lemma

by blast

with I have False by simp

} then show "G /∈ Fin(G)" by auto

qed

A property of nonempty subsets of linearly ordered groups that don’t have
a maximum: for any element in such subset we can find one that is strictly
greater.

lemma (in group3) OrderedGroup_ZF_2_L2B:

assumes A1: "r {is total on} G" and A2: "A⊆G" and
A3: "¬HasAmaximum(r,A)" and A4: "x∈A"
shows "∃ y∈A. x<y"

proof -

from ordGroupAssum assms have
"antisym(r)"

"r {is total on} G"

"A⊆G" "¬HasAmaximum(r,A)" "x∈A"
using IsAnOrdGroup_def IsPartOrder_def

by auto

then have "∃ y∈A. 〈x,y〉 ∈ r ∧ y 6=x"

using Order_ZF_4_L16 by simp

then show "∃ y∈A. x<y" by auto

qed

In linearly ordered groups G \G+ is bounded above.

lemma (in group3) OrderedGroup_ZF_2_L3:

assumes A1: "r {is total on} G" shows "IsBoundedAbove(G-G+,r)"

proof -

from A1 have "∀ a∈G-G+. a≤1"
using OrderedGroup_ZF_1_L17 by simp

then show "IsBoundedAbove(G-G+,r)"
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using IsBoundedAbove_def by auto

qed

In linearly ordered groups if A ∩G+ is finite, then A is bounded above.

lemma (in group3) OrderedGroup_ZF_2_L4:

assumes A1: "r {is total on} G" and A2: "A⊆G"
and A3: "A ∩ G+ ∈ Fin(G)"

shows "IsBoundedAbove(A,r)"

proof -

have "A ∩ (G-G+) ⊆ G-G+" by auto

with A1 have "IsBoundedAbove(A ∩ (G-G+),r)"

using OrderedGroup_ZF_2_L3 Order_ZF_3_L13

by blast

moreover from A1 A3 have "IsBoundedAbove(A ∩ G+,r)"

using ord_group_fin_bounded IsBounded_def

by simp

moreover from A1 ordGroupAssum have
"r {is total on} G" "trans(r)" "r⊆G×G"
using IsAnOrdGroup_def IsPartOrder_def by auto

ultimately have "IsBoundedAbove(A ∩ (G-G+) ∪ A ∩ G+,r)"

using Order_ZF_3_L3 by simp

moreover from A2 have "A = A ∩ (G-G+) ∪ A ∩ G+"

by auto

ultimately show "IsBoundedAbove(A,r)" by simp

qed

If a set −A ⊆ G is bounded above, then A is bounded below.

lemma (in group3) OrderedGroup_ZF_2_L5:

assumes A1: "A⊆G" and A2: "IsBoundedAbove(-A,r)"

shows "IsBoundedBelow(A,r)"

proof -

{ assume "A = 0" then have "IsBoundedBelow(A,r)"

using IsBoundedBelow_def by auto }
moreover
{ assume A3: "A6=0"

from ordGroupAssum have I: "GroupInv(G,P) : G→G"

using IsAnOrdGroup_def group0_2_T2 by simp

with A1 A2 A3 obtain u where D: "∀ a∈(-A). a≤u"
using func1_1_L15A IsBoundedAbove_def by auto

{ fix b assume "b∈A"
with A1 I D have "b−1 ≤ u" and T: "b∈G"

using func_imagedef by auto

then have "u−1≤(b−1)−1" using OrderedGroup_ZF_1_L5

by simp

with T have "u−1≤b"
using OrderedGroup_ZF_1_L1 group0.group_inv_of_inv

by simp

} then have "∀ b∈A. 〈u−1,b〉 ∈ r" by simp

then have "IsBoundedBelow(A,r)"
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using Order_ZF_3_L9 by blast }
ultimately show ?thesis by auto

qed

If a ≤ b, then the image of the interval a..b by any function is nonempty.

lemma (in group3) OrderedGroup_ZF_2_L6:

assumes "a≤b" and "f:G→G"

shows "f‘‘(Interval(r,a,b)) 6= 0"

using ordGroupAssum assms OrderedGroup_ZF_1_L4

Order_ZF_2_L6 Order_ZF_2_L2A

IsAnOrdGroup_def IsPartOrder_def func1_1_L15A

by auto

end

33 More on ordered groups

theory OrderedGroup_ZF_1 imports OrderedGroup_ZF

begin

In this theory we continue the OrderedGroup_ZF theory development.

33.1 Absolute value and the triangle inequality

The goal of this section is to prove the triangle inequality for ordered groups.

Absolute value maps G into G.

lemma (in group3) OrderedGroup_ZF_3_L1:

shows "AbsoluteValue(G,P,r) : G→G"

proof -

let ?f = "id(G+)"

let ?g = "restrict(GroupInv(G,P),G-G+)"

have "?f : G+→G+" using id_type by simp

then have "?f : G+→G" using OrderedGroup_ZF_1_L4E fun_weaken_type

by blast

moreover have "?g : G-G+→G"

proof -

from ordGroupAssum have "GroupInv(G,P) : G→G"

using IsAnOrdGroup_def group0_2_T2 by simp

moreover have "G-G+ ⊆ G" by auto

ultimately show ?thesis using restrict_type2 by simp

qed
moreover have "G+∩(G-G+) = 0" by blast

ultimately have "?f ∪ ?g : G+∪(G-G+)→G∪G"
by (rule fun_disjoint_Un)

moreover have "G+∪(G-G+) = G" using OrderedGroup_ZF_1_L4E

by auto
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ultimately show "AbsoluteValue(G,P,r) : G→G"

using AbsoluteValue_def by simp

qed

If a ∈ G+, then |a| = a.

lemma (in group3) OrderedGroup_ZF_3_L2:

assumes A1: "a∈G+" shows "|a| = a"

proof -

from ordGroupAssum have "GroupInv(G,P) : G→G"

using IsAnOrdGroup_def group0_2_T2 by simp

with A1 show ?thesis using
func1_1_L1 OrderedGroup_ZF_1_L4E fun_disjoint_apply1

AbsoluteValue_def id_conv by simp

qed

The absolute value of the unit is the unit. In the additive totation that
would be |0| = 0.

lemma (in group3) OrderedGroup_ZF_3_L2A:

shows "|1| = 1" using OrderedGroup_ZF_1_L3A OrderedGroup_ZF_3_L2

by simp

If a is positive, then |a| = a.

lemma (in group3) OrderedGroup_ZF_3_L2B:

assumes "a∈G+" shows "|a| = a"

using assms PositiveSet_def Nonnegative_def OrderedGroup_ZF_3_L2

by auto

If a ∈ G \G+, then |a| = a−1.

lemma (in group3) OrderedGroup_ZF_3_L3:

assumes A1: "a ∈ G-G+" shows "|a| = a−1"

proof -

have "domain(id(G+)) = G+"

using id_type func1_1_L1 by auto

with A1 show ?thesis using fun_disjoint_apply2 AbsoluteValue_def

restrict by simp

qed

For elements that not greater than the unit, the absolute value is the inverse.

lemma (in group3) OrderedGroup_ZF_3_L3A:

assumes A1: "a≤1"
shows "|a| = a−1"

proof -

{ assume "a=1" then have "|a| = a−1"

using OrderedGroup_ZF_3_L2A OrderedGroup_ZF_1_L1 group0.group_inv_of_one

by simp }
moreover
{ assume "a 6=1"

with A1 have "|a| = a−1" using OrderedGroup_ZF_1_L4C OrderedGroup_ZF_3_L3
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by simp }
ultimately show "|a| = a−1" by blast

qed

In linearly ordered groups the absolute value of any element is in G+.

lemma (in group3) OrderedGroup_ZF_3_L3B:

assumes A1: "r {is total on} G" and A2: "a∈G"
shows "|a| ∈ G+"

proof -

{ assume "a ∈ G+" then have "|a| ∈ G+"

using OrderedGroup_ZF_3_L2 by simp }
moreover
{ assume "a /∈ G+"

with A1 A2 have "|a| ∈ G+" using OrderedGroup_ZF_3_L3

OrderedGroup_ZF_1_L6 by simp }
ultimately show "|a| ∈ G+" by blast

qed

For linearly ordered groups (where the order is total), the absolute value
maps the group into the positive set.

lemma (in group3) OrderedGroup_ZF_3_L3C:

assumes A1: "r {is total on} G"

shows "AbsoluteValue(G,P,r) : G→G+"

proof-
have "AbsoluteValue(G,P,r) : G→G" using OrderedGroup_ZF_3_L1

by simp

moreover from A1 have T2:

"∀ g∈G. AbsoluteValue(G,P,r)‘(g) ∈ G+"

using OrderedGroup_ZF_3_L3B by simp

ultimately show ?thesis by (rule func1_1_L1A)

qed

If the absolute value is the unit, then the elemnent is the unit.

lemma (in group3) OrderedGroup_ZF_3_L3D:

assumes A1: "a∈G" and A2: "|a| = 1"
shows "a = 1"

proof -

{ assume "a ∈ G+"

with A2 have "a = 1" using OrderedGroup_ZF_3_L2 by simp }
moreover
{ assume "a /∈ G+"

with A1 A2 have "a = 1" using
OrderedGroup_ZF_3_L3 OrderedGroup_ZF_1_L1 group0.group0_2_L8A

by auto }
ultimately show "a = 1" by blast

qed

In linearly ordered groups the unit is not greater than the absolute value of
any element.
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lemma (in group3) OrderedGroup_ZF_3_L3E:

assumes "r {is total on} G" and "a∈G"
shows "1 ≤ |a|"

using assms OrderedGroup_ZF_3_L3B OrderedGroup_ZF_1_L2 by simp

If b is greater than both a and a−1, then b is greater than |a|.
lemma (in group3) OrderedGroup_ZF_3_L4:

assumes A1: "a≤b" and A2: "a−1≤ b"

shows "|a|≤ b"

proof -

{ assume "a∈G+"
with A1 have "|a|≤ b" using OrderedGroup_ZF_3_L2 by simp }

moreover
{ assume "a/∈G+"

with A1 A2 have "|a|≤ b"

using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_3_L3 by simp }
ultimately show "|a|≤ b" by blast

qed

In linearly ordered groups a ≤ |a|.
lemma (in group3) OrderedGroup_ZF_3_L5:

assumes A1: "r {is total on} G" and A2: "a∈G"
shows "a ≤ |a|"

proof -

{ assume "a ∈ G+"

with A2 have "a ≤ |a|"

using OrderedGroup_ZF_3_L2 OrderedGroup_ZF_1_L3 by simp }
moreover
{ assume "a /∈ G+"

with A1 A2 have "a ≤ |a|"

using OrderedGroup_ZF_3_L3B OrderedGroup_ZF_1_L4B by simp }
ultimately show "a ≤ |a|" by blast

qed

a−1 ≤ |a| (in additive notation it would be −a ≤ |a|.
lemma (in group3) OrderedGroup_ZF_3_L6:

assumes A1: "a∈G" shows "a−1 ≤ |a|"

proof -

{ assume "a ∈ G+"

then have T1: "1≤a" and T2: "|a| = a" using OrderedGroup_ZF_1_L2

OrderedGroup_ZF_3_L2 by auto

then have "a−1≤1−1" using OrderedGroup_ZF_1_L5 by simp

then have T3: "a−1≤1"
using OrderedGroup_ZF_1_L1 group0.group_inv_of_one by simp

from T3 T1 have "a−1≤a" by (rule Group_order_transitive)

with T2 have "a−1 ≤ |a|" by simp }
moreover
{ assume A2: "a /∈ G+"
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from A1 have "|a| ∈ G"

using OrderedGroup_ZF_3_L1 apply_funtype by auto

with ordGroupAssum have "|a| ≤ |a|"

using IsAnOrdGroup_def IsPartOrder_def refl_def by simp

with A1 A2 have "a−1 ≤ |a|" using OrderedGroup_ZF_3_L3 by simp }
ultimately show "a−1 ≤ |a|" by blast

qed

Some inequalities about the product of two elements of a linearly ordered
group and its absolute value.

lemma (in group3) OrderedGroup_ZF_3_L6A:

assumes "r {is total on} G" and "a∈G" "b∈G"
shows
"a·b ≤|a|·|b|"
"a·b−1 ≤|a|·|b|"
"a−1·b ≤|a|·|b|"
"a−1·b−1 ≤|a|·|b|"
using assms OrderedGroup_ZF_3_L5 OrderedGroup_ZF_3_L6

OrderedGroup_ZF_1_L5B by auto

|a−1| ≤ |a|.
lemma (in group3) OrderedGroup_ZF_3_L7:

assumes "r {is total on} G" and "a∈G"
shows "|a−1|≤|a|"
using assms OrderedGroup_ZF_3_L5 OrderedGroup_ZF_1_L1 group0.group_inv_of_inv

OrderedGroup_ZF_3_L6 OrderedGroup_ZF_3_L4 by simp

|a−1| = |a|.
lemma (in group3) OrderedGroup_ZF_3_L7A:

assumes A1: "r {is total on} G" and A2: "a∈G"
shows "|a−1| = |a|"

proof -

from A2 have "a−1∈G" using OrderedGroup_ZF_1_L1 group0.inverse_in_group

by simp

with A1 have "|(a−1)−1| ≤ |a−1|" using OrderedGroup_ZF_3_L7 by simp

with A1 A2 have "|a−1| ≤ |a|" "|a| ≤ |a−1|"

using OrderedGroup_ZF_1_L1 group0.group_inv_of_inv OrderedGroup_ZF_3_L7

by auto

then show ?thesis by (rule group_order_antisym)

qed

|a · b−1| = |b · a−1|. It doesn’t look so strange in the additive notation:
|a− b| = |b− a|.
lemma (in group3) OrderedGroup_ZF_3_L7B:

assumes A1: "r {is total on} G" and A2: "a∈G" "b∈G"
shows "|a·b−1| = |b·a−1|"

proof -

from A1 A2 have "|(a·b−1)−1| = |a·b−1|" using
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OrderedGroup_ZF_1_L1 group0.inverse_in_group group0.group0_2_L1

monoid0.group0_1_L1 OrderedGroup_ZF_3_L7A by simp

moreover from A2 have "(a·b−1)−1 = b·a−1"

using OrderedGroup_ZF_1_L1 group0.group0_2_L12 by simp

ultimately show ?thesis by simp

qed

Triangle inequality for linearly ordered abelian groups. It would be nice to
drop commutativity or give an example that shows we can’t do that.

theorem (in group3) OrdGroup_triangle_ineq:

assumes A1: "P {is commutative on} G"

and A2: "r {is total on} G" and A3: "a∈G" "b∈G"
shows "|a·b| ≤ |a|·|b|"

proof -

from A1 A2 A3 have
"a ≤ |a|" "b ≤ |b|" "a−1 ≤ |a|" "b−1 ≤ |b|"

using OrderedGroup_ZF_3_L5 OrderedGroup_ZF_3_L6 by auto

then have "a·b ≤ |a|·|b|" "a−1·b−1 ≤ |a|·|b|"
using OrderedGroup_ZF_1_L5B by auto

with A1 A3 show "|a·b| ≤ |a|·|b|"
using OrderedGroup_ZF_1_L1 group0.group_inv_of_two IsCommutative_def

OrderedGroup_ZF_3_L4 by simp

qed

We can multiply the sides of an inequality with absolute value.

lemma (in group3) OrderedGroup_ZF_3_L7C:

assumes A1: "P {is commutative on} G"

and A2: "r {is total on} G" and A3: "a∈G" "b∈G"
and A4: "|a| ≤ c" "|b| ≤ d"

shows "|a·b| ≤ c·d"
proof -

from A1 A2 A3 A4 have "|a·b| ≤ |a|·|b|"
using OrderedGroup_ZF_1_L4 OrdGroup_triangle_ineq

by simp

moreover from A4 have "|a|·|b| ≤ c·d"
using OrderedGroup_ZF_1_L5B by simp

ultimately show ?thesis by (rule Group_order_transitive)

qed

A version of the OrderedGroup_ZF_3_L7C but with multiplying by the inverse.

lemma (in group3) OrderedGroup_ZF_3_L7CA:

assumes "P {is commutative on} G"

and "r {is total on} G" and "a∈G" "b∈G"
and "|a| ≤ c" "|b| ≤ d"

shows "|a·b−1| ≤ c·d"
using assms OrderedGroup_ZF_1_L1 group0.inverse_in_group

OrderedGroup_ZF_3_L7A OrderedGroup_ZF_3_L7C by simp
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Triangle inequality with three integers.

lemma (in group3) OrdGroup_triangle_ineq3:

assumes A1: "P {is commutative on} G"

and A2: "r {is total on} G" and A3: "a∈G" "b∈G" "c∈G"
shows "|a·b·c| ≤ |a|·|b|·|c|"

proof -

from A3 have T: "a·b ∈ G" "|c| ∈ G"

using OrderedGroup_ZF_1_L1 group0.group_op_closed

OrderedGroup_ZF_3_L1 apply_funtype by auto

with A1 A2 A3 have "|a·b·c| ≤ |a·b|·|c|"
using OrdGroup_triangle_ineq by simp

moreover from ordGroupAssum A1 A2 A3 T have
"|a·b|·|c| ≤ |a|·|b|·|c|"
using OrdGroup_triangle_ineq IsAnOrdGroup_def by simp

ultimately show "|a·b·c| ≤ |a|·|b|·|c|"
by (rule Group_order_transitive)

qed

Some variants of the triangle inequality.

lemma (in group3) OrderedGroup_ZF_3_L7D:

assumes A1: "P {is commutative on} G"

and A2: "r {is total on} G" and A3: "a∈G" "b∈G"
and A4: "|a·b−1| ≤ c"

shows
"|a| ≤ c·|b|"
"|a| ≤ |b|·c"
"c−1·a ≤ b"

"a·c−1 ≤ b"

"a ≤ b·c"
proof -

from A3 A4 have
T: "a·b−1 ∈ G" "|b| ∈ G" "c∈G" "c−1 ∈ G"

using OrderedGroup_ZF_1_L1

group0.inverse_in_group group0.group0_2_L1 monoid0.group0_1_L1

OrderedGroup_ZF_3_L1 apply_funtype OrderedGroup_ZF_1_L4

by auto

from A3 have "|a| = |a·b−1·b|"
using OrderedGroup_ZF_1_L1 group0.inv_cancel_two

by simp

with A1 A2 A3 T have "|a| ≤ |a·b−1|·|b|"
using OrdGroup_triangle_ineq by simp

with T A4 show "|a| ≤ c·|b|" using OrderedGroup_ZF_1_L5C

by blast

with T A1 show "|a| ≤ |b|·c"
using IsCommutative_def by simp

from A2 T have "a·b−1 ≤ |a·b−1|"

using OrderedGroup_ZF_3_L5 by simp

moreover note A4

ultimately have I: "a·b−1 ≤ c"
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by (rule Group_order_transitive)

with A3 show "c−1·a ≤ b"

using OrderedGroup_ZF_1_L5H by simp

with A1 A3 T show "a·c−1 ≤ b"

using IsCommutative_def by simp

from A1 A3 T I show "a ≤ b·c"
using OrderedGroup_ZF_1_L5H IsCommutative_def

by auto

qed

Some more variants of the triangle inequality.

lemma (in group3) OrderedGroup_ZF_3_L7E:

assumes A1: "P {is commutative on} G"

and A2: "r {is total on} G" and A3: "a∈G" "b∈G"
and A4: "|a·b−1| ≤ c"

shows "b·c−1 ≤ a"

proof -

from A3 have "a·b−1 ∈ G"

using OrderedGroup_ZF_1_L1

group0.inverse_in_group group0.group_op_closed

by auto

with A2 have "|(a·b−1)−1| = |a·b−1|"

using OrderedGroup_ZF_3_L7A by simp

moreover from A3 have "(a·b−1)−1 = b·a−1"

using OrderedGroup_ZF_1_L1 group0.group0_2_L12

by simp

ultimately have "|b·a−1| = |a·b−1|"

by simp

with A1 A2 A3 A4 show "b·c−1 ≤ a"

using OrderedGroup_ZF_3_L7D by simp

qed

An application of the triangle inequality with four group elements.

lemma (in group3) OrderedGroup_ZF_3_L7F:

assumes A1: "P {is commutative on} G"

and A2: "r {is total on} G" and
A3: "a∈G" "b∈G" "c∈G" "d∈G"
shows "|a·c−1| ≤ |a·b|·|c·d|·|b·d−1|"

proof -

from A3 have T:

"a·c−1 ∈ G" "a·b ∈ G" "c·d ∈ G" "b·d−1 ∈ G"

"(c·d)−1 ∈ G" "(b·d−1)−1 ∈ G"

using OrderedGroup_ZF_1_L1

group0.inverse_in_group group0.group_op_closed

by auto

with A1 A2 have "|(a·b)·(c·d)−1·(b·d−1)−1| ≤ |a·b|·|(c·d)−1|·|(b·d−1)−1|"

using OrdGroup_triangle_ineq3 by simp

moreover from A2 T have "|(c·d)−1| =|c·d|" and "|(b·d−1)−1| = |b·d−1|"

using OrderedGroup_ZF_3_L7A by auto
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moreover from A1 A3 have "(a·b)·(c·d)−1·(b·d−1)−1 = a·c−1"

using OrderedGroup_ZF_1_L1 group0.group0_4_L8

by simp

ultimately show "|a·c−1| ≤ |a·b|·|c·d|·|b·d−1|"

by simp

qed

|a| ≤ L implies L−1 ≤ a (it would be −L ≤ a in the additive notation).

lemma (in group3) OrderedGroup_ZF_3_L8:

assumes A1: "a∈G" and A2: "|a|≤L"
shows
"L−1≤a"

proof -

from A1 have I: "a−1 ≤ |a|" using OrderedGroup_ZF_3_L6 by simp

from I A2 have "a−1 ≤ L" by (rule Group_order_transitive)

then have "L−1≤(a−1)−1" using OrderedGroup_ZF_1_L5 by simp

with A1 show "L−1≤a" using OrderedGroup_ZF_1_L1 group0.group_inv_of_inv

by simp

qed

In linearly ordered groups |a| ≤ L implies a ≤ L (it would be a ≤ L in the
additive notation).

lemma (in group3) OrderedGroup_ZF_3_L8A:

assumes A1: "r {is total on} G"

and A2: "a∈G" and A3: "|a|≤L"
shows
"a≤L"
"1≤L"

proof -

from A1 A2 have I: "a ≤ |a|" using OrderedGroup_ZF_3_L5 by simp

from I A3 show "a≤L" by (rule Group_order_transitive)

from A1 A2 A3 have "1 ≤ |a|" "|a|≤L"
using OrderedGroup_ZF_3_L3B OrderedGroup_ZF_1_L2 by auto

then show "1≤L" by (rule Group_order_transitive)

qed

A somewhat generalized version of the above lemma.

lemma (in group3) OrderedGroup_ZF_3_L8B:

assumes A1: "a∈G" and A2: "|a|≤L" and A3: "1≤c"
shows "(L·c)−1 ≤ a"

proof -

from A1 A2 A3 have "c−1·L−1 ≤ 1·a"
using OrderedGroup_ZF_3_L8 OrderedGroup_ZF_1_L5AB

OrderedGroup_ZF_1_L5B by simp

with A1 A2 A3 show "(L·c)−1 ≤ a"

using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_1_L1

group0.group_inv_of_two group0.group0_2_L2

by simp

qed
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If b is between a and a · c, then b · a−1 ≤ c.
lemma (in group3) OrderedGroup_ZF_3_L8C:

assumes A1: "a≤b" and A2: "c∈G" and A3: "b≤c·a"
shows "|b·a−1| ≤ c"

proof -

from A1 A2 A3 have "b·a−1 ≤ c"

using OrderedGroup_ZF_1_L9C OrderedGroup_ZF_1_L4

by simp

moreover have "(b·a−1)−1 ≤ c"

proof -

from A1 have T: "a∈G" "b∈G"
using OrderedGroup_ZF_1_L4 by auto

with A1 have "a·b−1 ≤ 1"
using OrderedGroup_ZF_1_L9 by blast

moreover
from A1 A3 have "a≤c·a"

by (rule Group_order_transitive)

with ordGroupAssum T have "a·a−1 ≤ c·a·a−1"

using OrderedGroup_ZF_1_L1 group0.inverse_in_group

IsAnOrdGroup_def by simp

with T A2 have "1 ≤ c"

using OrderedGroup_ZF_1_L1

group0.group0_2_L6 group0.inv_cancel_two

by simp

ultimately have "a·b−1 ≤ c"

by (rule Group_order_transitive)

with T show "(b·a−1)−1 ≤ c"

using OrderedGroup_ZF_1_L1 group0.group0_2_L12

by simp

qed
ultimately show "|b·a−1| ≤ c"

using OrderedGroup_ZF_3_L4 by simp

qed

For linearly ordered groups if the absolute values of elements in a set are
bounded, then the set is bounded.

lemma (in group3) OrderedGroup_ZF_3_L9:

assumes A1: "r {is total on} G"

and A2: "A⊆G" and A3: "∀ a∈A. |a| ≤ L"

shows "IsBounded(A,r)"

proof -

from A1 A2 A3 have
"∀ a∈A. a≤L" "∀ a∈A. L−1≤a"
using OrderedGroup_ZF_3_L8 OrderedGroup_ZF_3_L8A by auto

then show "IsBounded(A,r)" using
IsBoundedAbove_def IsBoundedBelow_def IsBounded_def

by auto

qed
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A slightly more general version of the previous lemma, stating the same fact
for a set defined by separation.

lemma (in group3) OrderedGroup_ZF_3_L9A:

assumes A1: "r {is total on} G"

and A2: "∀ x∈X. b(x)∈G ∧ |b(x)|≤L"
shows "IsBounded({b(x). x∈X},r)"

proof -

from A2 have "{b(x). x∈X} ⊆ G" "∀ a∈{b(x). x∈X}. |a| ≤ L"

by auto

with A1 show ?thesis using OrderedGroup_ZF_3_L9 by blast

qed

A special form of the previous lemma stating a similar fact for an image of
a set by a function with values in a linearly ordered group.

lemma (in group3) OrderedGroup_ZF_3_L9B:

assumes A1: "r {is total on} G"

and A2: "f:X→G" and A3: "A⊆X"
and A4: "∀ x∈A. |f‘(x)| ≤ L"

shows "IsBounded(f‘‘(A),r)"

proof -

from A2 A3 A4 have "∀ x∈A. f‘(x) ∈ G ∧ |f‘(x)| ≤ L"

using apply_funtype by auto

with A1 have "IsBounded({f‘(x). x∈A},r)"
by (rule OrderedGroup_ZF_3_L9A)

with A2 A3 show "IsBounded(f‘‘(A),r)"

using func_imagedef by simp

qed

For linearly ordered groups if l ≤ a ≤ u then |a| is smaller than the greater
of |l|, |u|.
lemma (in group3) OrderedGroup_ZF_3_L10:

assumes A1: "r {is total on} G"

and A2: "l≤a" "a≤u"
shows
"|a| ≤ GreaterOf(r,|l|,|u|)"

proof -

from A2 have T1: "|l| ∈ G" "|a| ∈ G" "|u| ∈ G"

using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_3_L1 apply_funtype

by auto

{ assume A3: "a∈G+"
with A2 have "1≤a" "a≤u"

using OrderedGroup_ZF_1_L2 by auto

then have "1≤u" by (rule Group_order_transitive)

with A2 A3 have "|a|≤|u|"
using OrderedGroup_ZF_1_L2 OrderedGroup_ZF_3_L2 by simp

moreover from A1 T1 have "|u| ≤ GreaterOf(r,|l|,|u|)"

using Order_ZF_3_L2 by simp

ultimately have "|a| ≤ GreaterOf(r,|l|,|u|)"
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by (rule Group_order_transitive) }
moreover
{ assume A4: "a/∈G+"

with A2 have T2:

"l∈G" "|l| ∈ G" "|a| ∈ G" "|u| ∈ G" "a ∈ G-G+"

using OrderedGroup_ZF_1_L4 OrderedGroup_ZF_3_L1 apply_funtype

by auto

with A2 have "l ∈ G-G+" using OrderedGroup_ZF_1_L4D by fast

with T2 A2 have "|a| ≤ |l|"

using OrderedGroup_ZF_3_L3 OrderedGroup_ZF_1_L5

by simp

moreover from A1 T2 have "|l| ≤ GreaterOf(r,|l|,|u|)"

using Order_ZF_3_L2 by simp

ultimately have "|a| ≤ GreaterOf(r,|l|,|u|)"

by (rule Group_order_transitive) }
ultimately show ?thesis by blast

qed

For linearly ordered groups if a set is bounded then the absolute values are
bounded.

lemma (in group3) OrderedGroup_ZF_3_L10A:

assumes A1: "r {is total on} G"

and A2: "IsBounded(A,r)"

shows "∃ L. ∀ a∈A. |a| ≤ L"

proof -

{ assume "A = 0" then have ?thesis by auto }
moreover
{ assume A3: "A6=0"

with A2 have "∃ u. ∀ g∈A. g≤u" and "∃ l.∀ g∈A. l≤g"
using IsBounded_def IsBoundedAbove_def IsBoundedBelow_def

by auto

then obtain u l where "∀ g∈A. l≤g ∧ g≤u"
by auto

with A1 have "∀ a∈A. |a| ≤ GreaterOf(r,|l|,|u|)"

using OrderedGroup_ZF_3_L10 by simp

then have ?thesis by auto }
ultimately show ?thesis by blast

qed

A slightly more general version of the previous lemma, stating the same fact
for a set defined by separation.

lemma (in group3) OrderedGroup_ZF_3_L11:

assumes "r {is total on} G"

and "IsBounded({b(x).x∈X},r)"
shows "∃ L. ∀ x∈X. |b(x)| ≤ L"

using assms OrderedGroup_ZF_3_L10A by blast

Absolute values of elements of a finite image of a nonempty set are bounded
by an element of the group.
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lemma (in group3) OrderedGroup_ZF_3_L11A:

assumes A1: "r {is total on} G"

and A2: "X6=0" and A3: "{b(x). x∈X} ∈ Fin(G)"

shows "∃ L∈G. ∀ x∈X. |b(x)| ≤ L"

proof -

from A1 A3 have "∃ L. ∀ x∈X. |b(x)| ≤ L"

using ord_group_fin_bounded OrderedGroup_ZF_3_L11

by simp

then obtain L where I: "∀ x∈X. |b(x)| ≤ L"

using OrderedGroup_ZF_3_L11 by auto

from A2 obtain x where "x∈X" by auto

with I show ?thesis using OrderedGroup_ZF_1_L4

by blast

qed

In totally oredered groups the absolute value of a nonunit element is in G+.

lemma (in group3) OrderedGroup_ZF_3_L12:

assumes A1: "r {is total on} G"

and A2: "a∈G" and A3: "a6=1"
shows "|a| ∈ G+"

proof -

from A1 A2 have "|a| ∈ G" "1 ≤ |a|"

using OrderedGroup_ZF_3_L1 apply_funtype

OrderedGroup_ZF_3_L3B OrderedGroup_ZF_1_L2

by auto

moreover from A2 A3 have "|a| 6= 1"
using OrderedGroup_ZF_3_L3D by auto

ultimately show "|a| ∈ G+"

using PositiveSet_def by auto

qed

33.2 Maximum absolute value of a set

Quite often when considering inequalities we prefer to talk about the abso-
lute values instead of raw elements of a set. This section formalizes some
material that is useful for that.

If a set has a maximum and minimum, then the greater of the absolute
value of the maximum and minimum belongs to the image of the set by the
absolute value function.

lemma (in group3) OrderedGroup_ZF_4_L1:

assumes "A ⊆ G"

and "HasAmaximum(r,A)" "HasAminimum(r,A)"

and "M = GreaterOf(r,|Minimum(r,A)|,|Maximum(r,A)|)"

shows "M ∈ AbsoluteValue(G,P,r)‘‘(A)"

using ordGroupAssum assms IsAnOrdGroup_def IsPartOrder_def

Order_ZF_4_L3 Order_ZF_4_L4 OrderedGroup_ZF_3_L1

func_imagedef GreaterOf_def by auto
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If a set has a maximum and minimum, then the greater of the absolute value
of the maximum and minimum bounds absolute values of all elements of the
set.

lemma (in group3) OrderedGroup_ZF_4_L2:

assumes A1: "r {is total on} G"

and A2: "HasAmaximum(r,A)" "HasAminimum(r,A)"

and A3: "a∈A"
shows "|a|≤ GreaterOf(r,|Minimum(r,A)|,|Maximum(r,A)|)"

proof -

from ordGroupAssum A2 A3 have
"Minimum(r,A)≤ a" "a≤ Maximum(r,A)"

using IsAnOrdGroup_def IsPartOrder_def Order_ZF_4_L3 Order_ZF_4_L4

by auto

with A1 show ?thesis by (rule OrderedGroup_ZF_3_L10)

qed

If a set has a maximum and minimum, then the greater of the absolute value
of the maximum and minimum bounds absolute values of all elements of the
set. In this lemma the absolute values of ekements of a set are represented
as the elements of the image of the set by the absolute value function.

lemma (in group3) OrderedGroup_ZF_4_L3:

assumes "r {is total on} G" and "A ⊆ G"

and "HasAmaximum(r,A)" "HasAminimum(r,A)"

and "b ∈ AbsoluteValue(G,P,r)‘‘(A)"

shows "b≤ GreaterOf(r,|Minimum(r,A)|,|Maximum(r,A)|)"

using assms OrderedGroup_ZF_3_L1 func_imagedef OrderedGroup_ZF_4_L2

by auto

If a set has a maximum and minimum, then the set of absolute values also
has a maximum.

lemma (in group3) OrderedGroup_ZF_4_L4:

assumes A1: "r {is total on} G" and A2: "A ⊆ G"

and A3: "HasAmaximum(r,A)" "HasAminimum(r,A)"

shows "HasAmaximum(r,AbsoluteValue(G,P,r)‘‘(A))"

proof -

let ?M = "GreaterOf(r,|Minimum(r,A)|,|Maximum(r,A)|)"

from A2 A3 have "?M ∈ AbsoluteValue(G,P,r)‘‘(A)"

using OrderedGroup_ZF_4_L1 by simp

moreover from A1 A2 A3 have
"∀ b ∈ AbsoluteValue(G,P,r)‘‘(A). b ≤ ?M"

using OrderedGroup_ZF_4_L3 by simp

ultimately show ?thesis using HasAmaximum_def by auto

qed

If a set has a maximum and a minimum, then all absolute values are bounded
by the maximum of the set of absolute values.

lemma (in group3) OrderedGroup_ZF_4_L5:
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assumes A1: "r {is total on} G" and A2: "A ⊆ G"

and A3: "HasAmaximum(r,A)" "HasAminimum(r,A)"

and A4: "a∈A"
shows "|a| ≤ Maximum(r,AbsoluteValue(G,P,r)‘‘(A))"

proof -

from A2 A4 have "|a| ∈ AbsoluteValue(G,P,r)‘‘(A)"

using OrderedGroup_ZF_3_L1 func_imagedef by auto

with ordGroupAssum A1 A2 A3 show ?thesis using
IsAnOrdGroup_def IsPartOrder_def OrderedGroup_ZF_4_L4

Order_ZF_4_L3 by simp

qed

33.3 Alternative definitions

Sometimes it is usful to define the order by prescibing the set of positive
or nonnegative elements. This section deals with two such definitions. One
takes a subset H of G that is closed under the group operation, 1 /∈ H and
for every a ∈ H we have either a ∈ H or a−1 ∈ H. Then the order is defined
as a ≤ b iff a = b or a−1b ∈ H. For abelian groups this makes a linearly
ordered group. We will refer to order defined this way in the comments
as the order defined by a positive set. The context used in this section is
the group0 context defined in Group_ZF theory. Recall that f in that context
denotes the group operation (unlike in the previous sections where the group
operation was denoted P.

The order defined by a positive set is the same as the order defined by a
nonnegative set.

lemma (in group0) OrderedGroup_ZF_5_L1:

assumes A1: "r = {p ∈ G×G. fst(p) = snd(p) ∨ fst(p)−1·snd(p) ∈ H}"

shows "〈a,b〉 ∈ r ←→ a∈G ∧ b∈G ∧ a−1·b ∈ H ∪ {1}"
proof

assume "〈a,b〉 ∈ r"

with A1 show "a∈G ∧ b∈G ∧ a−1·b ∈ H ∪ {1}"
using group0_2_L6 by auto

next assume "a∈G ∧ b∈G ∧ a−1·b ∈ H ∪ {1}"
then have "a∈G ∧ b∈G ∧ b=(a−1)−1 ∨ a∈G ∧ b∈G ∧ a−1·b ∈ H"

using inverse_in_group group0_2_L9 by auto

with A1 show "〈a,b〉 ∈ r" using group_inv_of_inv

by auto

qed

The relation defined by a positive set is antisymmetric.

lemma (in group0) OrderedGroup_ZF_5_L2:

assumes A1: "r = {p ∈ G×G. fst(p) = snd(p) ∨ fst(p)−1·snd(p) ∈ H}"

and A2: "∀ a∈G. a 6=1 −→ (a∈H) Xor (a−1∈H)"
shows "antisym(r)"

proof -
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{ fix a b assume A3: "〈a,b〉 ∈ r" "〈b,a〉 ∈ r"

with A1 have T: "a∈G" "b∈G" by auto

{ assume A4: "a6=b"

with A1 A3 have "a−1·b ∈ G" "a−1·b ∈ H" "(a−1·b)−1 ∈ H"

using inverse_in_group group0_2_L1 monoid0.group0_1_L1 group0_2_L12

by auto

with A2 have "a−1·b = 1" using Xor_def by auto

with T A4 have False using group0_2_L11 by auto

} then have "a=b" by auto

} then show "antisym(r)" by (rule antisymI)

qed

The relation defined by a positive set is transitive.

lemma (in group0) OrderedGroup_ZF_5_L3:

assumes A1: "r = {p ∈ G×G. fst(p) = snd(p) ∨ fst(p)−1·snd(p) ∈ H}"

and A2: "H⊆G" "H {is closed under} P"

shows "trans(r)"

proof -

{ fix a b c assume "〈a,b〉 ∈ r" "〈b,c〉 ∈ r"

with A1 have
"a∈G ∧ b∈G ∧ a−1·b ∈ H ∪ {1}"
"b∈G ∧ c∈G ∧ b−1·c ∈ H ∪ {1}"
using OrderedGroup_ZF_5_L1 by auto

with A2 have
I: "a∈G" "b∈G" "c∈G"
and "(a−1·b)·(b−1·c) ∈ H ∪ {1}"
using inverse_in_group group0_2_L17 IsOpClosed_def

by auto

moreover from I have "a−1·c = (a−1·b)·(b−1·c)"
by (rule group0_2_L14A)

ultimately have "〈a,c〉 ∈ G×G" "a−1·c ∈ H ∪ {1}"
by auto

with A1 have "〈a,c〉 ∈ r" using OrderedGroup_ZF_5_L1

by auto

} then have "∀ a b c. 〈a, b〉 ∈ r ∧ 〈b, c〉 ∈ r −→ 〈a, c〉 ∈ r"

by blast

then show "trans(r)" by (rule Fol1_L2)

qed

The relation defined by a positive set is translation invariant. With our
definition this step requires the group to be abelian.

lemma (in group0) OrderedGroup_ZF_5_L4:

assumes A1: "r = {p ∈ G×G. fst(p) = snd(p) ∨ fst(p)−1·snd(p) ∈ H}"

and A2: "P {is commutative on} G"

and A3: "〈a,b〉 ∈ r" and A4: "c∈G"
shows "〈a·c,b·c〉 ∈ r ∧ 〈c·a,c·b〉 ∈ r"

proof
from A1 A3 A4 have
I: "a∈G" "b∈G" "a·c ∈ G" "b·c ∈ G"
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and II: "a−1·b ∈ H ∪ {1}"
using OrderedGroup_ZF_5_L1 group_op_closed

by auto

with A2 A4 have "(a·c)−1·(b·c) ∈ H ∪ {1}"
using group0_4_L6D by simp

with A1 I show "〈a·c,b·c〉 ∈ r" using OrderedGroup_ZF_5_L1

by auto

with A2 A4 I show "〈c·a,c·b〉 ∈ r"

using IsCommutative_def by simp

qed

If H ⊆ G is closed under the group operation 1 /∈ H and for every a ∈ H
we have either a ∈ H or a−1 ∈ H, then the relation ”≤” defined by a ≤ b⇔
a−1b ∈ H orders the group G. In such order H may be the set of positive
or nonnegative elements.

lemma (in group0) OrderedGroup_ZF_5_L5:

assumes A1: "P {is commutative on} G"

and A2: "H⊆G" "H {is closed under} P"

and A3: "∀ a∈G. a 6=1 −→ (a∈H) Xor (a−1∈H)"
and A4: "r = {p ∈ G×G. fst(p) = snd(p) ∨ fst(p)−1·snd(p) ∈ H}"

shows
"IsAnOrdGroup(G,P,r)"

"r {is total on} G"

"Nonnegative(G,P,r) = PositiveSet(G,P,r) ∪ {1}"
proof -

from groupAssum A2 A3 A4 have
"IsAgroup(G,P)" "r ⊆ G×G" "IsPartOrder(G,r)"

using refl_def OrderedGroup_ZF_5_L2 OrderedGroup_ZF_5_L3

IsPartOrder_def by auto

moreover from A1 A4 have
"∀ g∈G. ∀ a b. 〈 a,b〉 ∈ r −→ 〈a·g,b·g〉 ∈ r ∧ 〈g·a,g·b〉 ∈ r"

using OrderedGroup_ZF_5_L4 by blast

ultimately show "IsAnOrdGroup(G,P,r)"

using IsAnOrdGroup_def by simp

then show "Nonnegative(G,P,r) = PositiveSet(G,P,r) ∪ {1}"
using group3_def group3.OrderedGroup_ZF_1_L24

by simp

{ fix a b

assume T: "a∈G" "b∈G"
then have T1: "a−1·b ∈ G"

using inverse_in_group group_op_closed by simp

{ assume "〈 a,b〉 /∈ r"

with A4 T have I: "a6=b" and II: "a−1·b /∈ H"

by auto

from A3 T T1 I have "(a−1·b ∈ H) Xor ((a−1·b)−1 ∈ H)"

using group0_2_L11 by auto

with A4 T II have "〈 b,a〉 ∈ r"

using Xor_def group0_2_L12 by simp

} then have "〈 a,b〉 ∈ r ∨ 〈 b,a〉 ∈ r" by auto
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} then show "r {is total on} G" using IsTotal_def

by simp

qed

If the set defined as in OrderedGroup_ZF_5_L4 does not contain the neutral
element, then it is the positive set for the resulting order.

lemma (in group0) OrderedGroup_ZF_5_L6:

assumes "P {is commutative on} G"

and "H⊆G" and "1 /∈ H"

and "r = {p ∈ G×G. fst(p) = snd(p) ∨ fst(p)−1·snd(p) ∈ H}"

shows "PositiveSet(G,P,r) = H"

using assms group_inv_of_one group0_2_L2 PositiveSet_def

by auto

The next definition describes how we construct an order relation from the
prescribed set of positive elements.

definition
"OrderFromPosSet(G,P,H) ≡
{p ∈ G×G. fst(p) = snd(p) ∨ P‘〈GroupInv(G,P)‘(fst(p)),snd(p)〉 ∈ H }"

The next theorem rephrases lemmas OrderedGroup_ZF_5_L5 and OrderedGroup_ZF_5_L6

using the definition of the order from the positive set OrderFromPosSet. To
summarize, this is what it says: Suppose that H ⊆ G is a set closed under
that group operation such that 1 /∈ H and for every nonunit group element a
either a ∈ H or a−1 ∈ H. Define the order as a ≤ b iff a = b or a−1 · b ∈ H.
Then this order makes G into a linearly ordered group such H is the set
of positive elements (and then of course H ∪ {1} is the set of nonnegative
elements).

theorem (in group0) Group_ord_by_positive_set:

assumes "P {is commutative on} G"

and "H⊆G" "H {is closed under} P" "1 /∈ H"

and "∀ a∈G. a 6=1 −→ (a∈H) Xor (a−1∈H)"
shows
"IsAnOrdGroup(G,P,OrderFromPosSet(G,P,H))"

"OrderFromPosSet(G,P,H) {is total on} G"

"PositiveSet(G,P,OrderFromPosSet(G,P,H)) = H"

"Nonnegative(G,P,OrderFromPosSet(G,P,H)) = H ∪ {1}"
using assms OrderFromPosSet_def OrderedGroup_ZF_5_L5 OrderedGroup_ZF_5_L6

by auto

33.4 Odd Extensions

In this section we verify properties of odd extensions of functions defined on
G+. An odd extension of a function f : G+ → G is a function f◦ : G → G
defined by f◦(x) = f(x) if x ∈ G+, f(1) = 1 and f◦(x) = (f(x−1))−1 for
x < 1. Such function is the unique odd function that is equal to f when
restricted to G+.
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The next lemma is just to see the definition of the odd extension in the
notation used in the group1 context.

lemma (in group3) OrderedGroup_ZF_6_L1:

shows "f° = f ∪ {〈a, (f‘(a−1))−1〉. a ∈ -G+} ∪ {〈1,1〉}"
using OddExtension_def by simp

A technical lemma that states that from a function defined on G+ with values
in G we have (f(a−1))−1 ∈ G.

lemma (in group3) OrderedGroup_ZF_6_L2:

assumes "f: G+→G" and "a∈-G+"
shows
"f‘(a−1) ∈ G"

"(f‘(a−1))−1 ∈ G"

using assms OrderedGroup_ZF_1_L27 apply_funtype

OrderedGroup_ZF_1_L1 group0.inverse_in_group

by auto

The main theorem about odd extensions. It basically says that the odd
extension of a function is what we want to to be.

lemma (in group3) odd_ext_props:

assumes A1: "r {is total on} G" and A2: "f: G+→G"

shows
"f° : G → G"

"∀ a∈G+. (f°)‘(a) = f‘(a)"

"∀ a∈(-G+). (f°)‘(a) = (f‘(a−1))−1"

"(f°)‘(1) = 1"
proof -

from A1 A2 have I:

"f: G+→G"

"∀ a∈-G+. (f‘(a−1))−1 ∈ G"

"G+∩(-G+) = 0"

"1 /∈ G+∪(-G+)"
"f° = f ∪ {〈a, (f‘(a−1))−1〉. a ∈ -G+} ∪ {〈1,1〉}"
using OrderedGroup_ZF_6_L2 OrdGroup_decomp2 OrderedGroup_ZF_6_L1

by auto

then have "f°: G+ ∪ (-G+) ∪ {1} →G∪G∪{1}"
by (rule func1_1_L11E)

moreover from A1 have
"G+ ∪ (-G+) ∪ {1} = G"

"G∪G∪{1} = G"

using OrdGroup_decomp2 OrderedGroup_ZF_1_L1 group0.group0_2_L2

by auto

ultimately show "f° : G → G" by simp

from I show "∀ a∈G+. (f°)‘(a) = f‘(a)"

by (rule func1_1_L11E)

from I show "∀ a∈(-G+). (f°)‘(a) = (f‘(a−1))−1"

by (rule func1_1_L11E)

from I show "(f°)‘(1) = 1"
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by (rule func1_1_L11E)

qed

Odd extensions are odd, of course.

lemma (in group3) oddext_is_odd:

assumes A1: "r {is total on} G" and A2: "f: G+→G"

and A3: "a∈G"
shows "(f°)‘(a−1) = ((f°)‘(a))−1"

proof -

from A1 A3 have "a∈G+ ∨ a ∈ (-G+) ∨ a=1"
using OrdGroup_decomp2 by blast

moreover
{ assume "a∈G+"

with A1 A2 have "a−1 ∈ -G+" and "(f°)‘(a) = f‘(a)"

using OrderedGroup_ZF_1_L25 odd_ext_props by auto

with A1 A2 have
"(f°)‘(a−1) = (f‘((a−1)−1))−1" and "(f‘(a))−1 = ((f°)‘(a))−1"

using odd_ext_props by auto

with A3 have "(f°)‘(a−1) = ((f°)‘(a))−1"

using OrderedGroup_ZF_1_L1 group0.group_inv_of_inv

by simp }
moreover
{ assume A4: "a ∈ -G+"

with A1 A2 have "a−1 ∈ G+" and "(f°)‘(a) = (f‘(a−1))−1"

using OrderedGroup_ZF_1_L27 odd_ext_props

by auto

with A1 A2 A4 have "(f°)‘(a−1) = ((f°)‘(a))−1"

using odd_ext_props OrderedGroup_ZF_6_L2

OrderedGroup_ZF_1_L1 group0.group_inv_of_inv

by simp }
moreover
{ assume "a = 1"

with A1 A2 have "(f°)‘(a−1) = ((f°)‘(a))−1"

using OrderedGroup_ZF_1_L1 group0.group_inv_of_one

odd_ext_props by simp

}
ultimately show "(f°)‘(a−1) = ((f°)‘(a))−1"

by auto

qed

Another way of saying that odd extensions are odd.

lemma (in group3) oddext_is_odd_alt:

assumes A1: "r {is total on} G" and A2: "f: G+→G"

and A3: "a∈G"
shows "((f°)‘(a−1))−1 = (f°)‘(a)"

proof -

from A1 A2 have
"f° : G → G"

"∀ a∈G. (f°)‘(a−1) = ((f°)‘(a))−1"
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using odd_ext_props oddext_is_odd by auto

then have "∀ a∈G. ((f°)‘(a−1))−1 = (f°)‘(a)"

using OrderedGroup_ZF_1_L1 group0.group0_6_L2 by simp

with A3 show "((f°)‘(a−1))−1 = (f°)‘(a)" by simp

qed

33.5 Functions with infinite limits

In this section we consider functions f : G → G with the property that for
f(x) is arbitrarily large for large enough x. More precisely, for every a ∈ G
there exist b ∈ G+ such that for every x ≥ b we have f(x) ≥ a. In a sense
this means that limx→∞ f(x) = ∞, hence the title of this section. We also
prove dual statements for functions such that limx→−∞ f(x) = −∞.

If an image of a set by a function with infinite positive limit is bounded
above, then the set itself is bounded above.

lemma (in group3) OrderedGroup_ZF_7_L1:

assumes A1: "r {is total on} G" and A2: "G 6= {1}" and
A3: "f:G→G" and
A4: "∀ a∈G.∃ b∈G+.∀ x. b≤x −→ a ≤ f‘(x)" and
A5: "A⊆G" and
A6: "IsBoundedAbove(f‘‘(A),r)"

shows "IsBoundedAbove(A,r)"

proof -

{ assume "¬IsBoundedAbove(A,r)"
then have I: "∀ u. ∃ x∈A. ¬(x≤u)"

using IsBoundedAbove_def by auto

have "∀ a∈G. ∃ y∈f‘‘(A). a≤y"
proof -

{ fix a assume "a∈G"
with A4 obtain b where
II: "b∈G+" and III: "∀ x. b≤x −→ a ≤ f‘(x)"

by auto

from I obtain x where IV: "x∈A" and "¬(x≤b)"
by auto

with A1 A5 II have
"r {is total on} G"

"x∈G" "b∈G" "¬(x≤b)"
using PositiveSet_def by auto

with III have "a ≤ f‘(x)"

using OrderedGroup_ZF_1_L8 by blast

with A3 A5 IV have "∃ y∈f‘‘(A). a≤y"
using func_imagedef by auto

} thus ?thesis by simp

qed
with A1 A2 A6 have False using OrderedGroup_ZF_2_L2A

by simp

} thus ?thesis by auto
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qed

If an image of a set defined by separation by a function with infinite positive
limit is bounded above, then the set itself is bounded above.

lemma (in group3) OrderedGroup_ZF_7_L2:

assumes A1: "r {is total on} G" and A2: "G 6= {1}" and
A3: "X6=0" and A4: "f:G→G" and
A5: "∀ a∈G.∃ b∈G+.∀ y. b≤y −→ a ≤ f‘(y)" and
A6: "∀ x∈X. b(x) ∈ G ∧ f‘(b(x)) ≤ U"

shows "∃ u.∀ x∈X. b(x) ≤ u"

proof -

let ?A = "{b(x). x∈X}"
from A6 have I: "?A⊆G" by auto

moreover note assms

moreover have "IsBoundedAbove(f‘‘(?A),r)"

proof -

from A4 A6 I have "∀ z∈f‘‘(?A). 〈z,U〉 ∈ r"

using func_imagedef by simp

then show "IsBoundedAbove(f‘‘(?A),r)"

by (rule Order_ZF_3_L10)

qed
ultimately have "IsBoundedAbove(?A,r)" using OrderedGroup_ZF_7_L1

by simp

with A3 have "∃ u.∀ y∈?A. y ≤ u"

using IsBoundedAbove_def by simp

then show "∃ u.∀ x∈X. b(x) ≤ u" by auto

qed

If the image of a set defined by separation by a function with infinite negative
limit is bounded below, then the set itself is bounded above. This is dual to
OrderedGroup_ZF_7_L2.

lemma (in group3) OrderedGroup_ZF_7_L3:

assumes A1: "r {is total on} G" and A2: "G 6= {1}" and
A3: "X6=0" and A4: "f:G→G" and
A5: "∀ a∈G.∃ b∈G+.∀ y. b≤y −→ f‘(y−1) ≤ a" and
A6: "∀ x∈X. b(x) ∈ G ∧ L ≤ f‘(b(x))"

shows "∃ l.∀ x∈X. l ≤ b(x)"

proof -

let ?g = "GroupInv(G,P) O f O GroupInv(G,P)"

from ordGroupAssum have I: "GroupInv(G,P) : G→G"

using IsAnOrdGroup_def group0_2_T2 by simp

with A4 have II: "∀ x∈G. ?g‘(x) = (f‘(x−1))−1"

using func1_1_L18 by simp

note A1 A2 A3

moreover from A4 I have "?g : G→G"

using comp_fun by blast

moreover have "∀ a∈G.∃ b∈G+.∀ y. b≤y −→ a ≤ ?g‘(y)"

proof -

{ fix a assume A7: "a∈G"
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then have "a−1 ∈ G"

using OrderedGroup_ZF_1_L1 group0.inverse_in_group

by simp

with A5 obtain b where
III: "b∈G+" and "∀ y. b≤y −→ f‘(y−1) ≤ a−1"

by auto

with II A7 have "∀ y. b≤y −→ a ≤ ?g‘(y)"

using OrderedGroup_ZF_1_L5AD OrderedGroup_ZF_1_L4

by simp

with III have "∃ b∈G+.∀ y. b≤y −→ a ≤ ?g‘(y)"

by auto

} then show "∀ a∈G.∃ b∈G+.∀ y. b≤y −→ a ≤ ?g‘(y)"

by simp

qed
moreover have "∀ x∈X. b(x)−1 ∈ G ∧ ?g‘(b(x)−1) ≤ L−1"

proof-
{ fix x assume "x∈X"

with A6 have
T: "b(x) ∈ G" "b(x)−1 ∈ G" and "L ≤ f‘(b(x))"

using OrderedGroup_ZF_1_L1 group0.inverse_in_group

by auto

then have "(f‘(b(x)))−1 ≤ L−1"

using OrderedGroup_ZF_1_L5 by simp

moreover from II T have "(f‘(b(x)))−1 = ?g‘(b(x)−1)"

using OrderedGroup_ZF_1_L1 group0.group_inv_of_inv

by simp

ultimately have "?g‘(b(x)−1) ≤ L−1" by simp

with T have "b(x)−1 ∈ G ∧ ?g‘(b(x)−1) ≤ L−1"

by simp

} then show "∀ x∈X. b(x)−1 ∈ G ∧ ?g‘(b(x)−1) ≤ L−1"

by simp

qed
ultimately have "∃ u.∀ x∈X. (b(x))−1 ≤ u"

by (rule OrderedGroup_ZF_7_L2)

then have "∃ u.∀ x∈X. u−1 ≤ (b(x)−1)−1"

using OrderedGroup_ZF_1_L5 by auto

with A6 show "∃ l.∀ x∈X. l ≤ b(x)"

using OrderedGroup_ZF_1_L1 group0.group_inv_of_inv

by auto

qed

The next lemma combines OrderedGroup_ZF_7_L2 and OrderedGroup_ZF_7_L3

to show that if an image of a set defined by separation by a function with
infinite limits is bounded, then the set itself i bounded.

lemma (in group3) OrderedGroup_ZF_7_L4:

assumes A1: "r {is total on} G" and A2: "G 6= {1}" and
A3: "X6=0" and A4: "f:G→G" and
A5: "∀ a∈G.∃ b∈G+.∀ y. b≤y −→ a ≤ f‘(y)" and
A6: "∀ a∈G.∃ b∈G+.∀ y. b≤y −→ f‘(y−1) ≤ a" and
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A7: "∀ x∈X. b(x) ∈ G ∧ L ≤ f‘(b(x)) ∧ f‘(b(x)) ≤ U"

shows "∃ M.∀ x∈X. |b(x)| ≤ M"

proof -

from A7 have
I: "∀ x∈X. b(x) ∈ G ∧ f‘(b(x)) ≤ U" and
II: "∀ x∈X. b(x) ∈ G ∧ L ≤ f‘(b(x))"

by auto

from A1 A2 A3 A4 A5 I have "∃ u.∀ x∈X. b(x) ≤ u"

by (rule OrderedGroup_ZF_7_L2)

moreover from A1 A2 A3 A4 A6 II have "∃ l.∀ x∈X. l ≤ b(x)"

by (rule OrderedGroup_ZF_7_L3)

ultimately have "∃ u l. ∀ x∈X. l≤b(x) ∧ b(x) ≤ u"

by auto

with A1 have "∃ u l.∀ x∈X. |b(x)| ≤ GreaterOf(r,|l|,|u|)"

using OrderedGroup_ZF_3_L10 by blast

then show "∃ M.∀ x∈X. |b(x)| ≤ M"

by auto

qed

end

34 Rings - introduction

theory Ring_ZF imports AbelianGroup_ZF

begin

This theory file covers basic facts about rings.

34.1 Definition and basic properties

In this section we define what is a ring and list the basic properties of rings.

We say that three sets (R,A,M) form a ring if (R,A) is an abelian group,
(R,M) is a monoid and A is distributive with respect to M on R. A rep-
resents the additive operation on R. As such it is a subset of (R × R) × R
(recall that in ZF set theory functions are sets). Similarly M represents the
multiplicative operation on R and is also a subset of (R×R)×R. We don’t
require the multiplicative operation to be commutative in the definition of
a ring.

definition
"IsAring(R,A,M) ≡ IsAgroup(R,A) ∧ (A {is commutative on} R) ∧
IsAmonoid(R,M) ∧ IsDistributive(R,A,M)"

We also define the notion of having no zero divisors. In standard notation
the ring has no zero divisors if for all a, b ∈ R we have a · b = 0 implies a = 0
or b = 0.

365



definition
"HasNoZeroDivs(R,A,M) ≡ (∀ a∈R. ∀ b∈R.
M‘〈 a,b〉 = TheNeutralElement(R,A) −→
a = TheNeutralElement(R,A) ∨ b = TheNeutralElement(R,A))"

Next we define a locale that will be used when considering rings.

locale ring0 =

fixes R and A and M

assumes ringAssum: "IsAring(R,A,M)"

fixes ringa (infixl "+" 90)

defines ringa_def [simp]: "a+b ≡ A‘〈 a,b〉"

fixes ringminus ("- _" 89)

defines ringminus_def [simp]: "(-a) ≡ GroupInv(R,A)‘(a)"

fixes ringsub (infixl "-" 90)

defines ringsub_def [simp]: "a-b ≡ a+(-b)"

fixes ringm (infixl "·" 95)

defines ringm_def [simp]: "a·b ≡ M‘〈 a,b〉"

fixes ringzero ("0")
defines ringzero_def [simp]: "0 ≡ TheNeutralElement(R,A)"

fixes ringone ("1")
defines ringone_def [simp]: "1 ≡ TheNeutralElement(R,M)"

fixes ringtwo ("2")
defines ringtwo_def [simp]: "2 ≡ 1+1"

fixes ringsq ("_2" [96] 97)

defines ringsq_def [simp]: "a2 ≡ a·a"

In the ring0 context we can use theorems proven in some other contexts.

lemma (in ring0) Ring_ZF_1_L1: shows
"monoid0(R,M)"

"group0(R,A)"

"A {is commutative on} R"

using ringAssum IsAring_def group0_def monoid0_def by auto

The additive operation in a ring is distributive with respect to the multi-
plicative operation.

lemma (in ring0) ring_oper_distr: assumes A1: "a∈R" "b∈R" "c∈R"
shows
"a·(b+c) = a·b + a·c"
"(b+c)·a = b·a + c·a"
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using ringAssum assms IsAring_def IsDistributive_def by auto

Zero and one of the ring are elements of the ring. The negative of zero is
zero.

lemma (in ring0) Ring_ZF_1_L2:

shows "0∈R" "1∈R" "(-0) = 0"
using Ring_ZF_1_L1 group0.group0_2_L2 monoid0.unit_is_neutral

group0.group_inv_of_one by auto

The next lemma lists some properties of a ring that require one element of
a ring.

lemma (in ring0) Ring_ZF_1_L3: assumes "a∈R"
shows
"(-a) ∈ R"

"(-(-a)) = a"

"a+0 = a"

"0+a = a"

"a·1 = a"

"1·a = a"

"a-a = 0"
"a-0 = a"

"2·a = a+a"

"(-a)+a = 0"
using assms Ring_ZF_1_L1 group0.inverse_in_group group0.group_inv_of_inv

group0.group0_2_L6 group0.group0_2_L2 monoid0.unit_is_neutral

Ring_ZF_1_L2 ring_oper_distr

by auto

Properties that require two elements of a ring.

lemma (in ring0) Ring_ZF_1_L4: assumes A1: "a∈R" "b∈R"
shows
"a+b ∈ R"

"a-b ∈ R"

"a·b ∈ R"

"a+b = b+a"

using ringAssum assms Ring_ZF_1_L1 Ring_ZF_1_L3

group0.group0_2_L1 monoid0.group0_1_L1

IsAring_def IsCommutative_def

by auto

Cancellation of an element on both sides of equality. This is a property of
groups, written in the (additive) notation we use for the additive operation
in rings.

lemma (in ring0) ring_cancel_add:

assumes A1: "a∈R" "b∈R" and A2: "a + b = a"

shows "b = 0"
using assms Ring_ZF_1_L1 group0.group0_2_L7 by simp
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Any element of a ring multiplied by zero is zero.

lemma (in ring0) Ring_ZF_1_L6:

assumes A1: "x∈R" shows "0·x = 0" "x·0 = 0"
proof -

let ?a = "x·1"
let ?b = "x·0"
let ?c = "1·x"
let ?d = "0·x"
from A1 have
"?a + ?b = x·(1 + 0)" "?c + ?d = (1 + 0)·x"
using Ring_ZF_1_L2 ring_oper_distr by auto

moreover have "x·(1 + 0) = ?a" "(1 + 0)·x = ?c"

using Ring_ZF_1_L2 Ring_ZF_1_L3 by auto

ultimately have "?a + ?b = ?a" and T1: "?c + ?d = ?c"

by auto

moreover from A1 have
"?a ∈ R" "?b ∈ R" and T2: "?c ∈ R" "?d ∈ R"

using Ring_ZF_1_L2 Ring_ZF_1_L4 by auto

ultimately have "?b = 0" using ring_cancel_add

by blast

moreover from T2 T1 have "?d = 0" using ring_cancel_add

by blast

ultimately show "x·0 = 0" "0·x = 0" by auto

qed

Negative can be pulled out of a product.

lemma (in ring0) Ring_ZF_1_L7:

assumes A1: "a∈R" "b∈R"
shows
"(-a)·b = -(a·b)"
"a·(-b) = -(a·b)"
"(-a)·b = a·(-b)"

proof -

from A1 have I:

"a·b ∈ R" "(-a) ∈ R" "((-a)·b) ∈ R"

"(-b) ∈ R" "a·(-b) ∈ R"

using Ring_ZF_1_L3 Ring_ZF_1_L4 by auto

moreover have "(-a)·b + a·b = 0"
and II: "a·(-b) + a·b = 0"

proof -

from A1 I have
"(-a)·b + a·b = ((-a)+ a)·b"
"a·(-b) + a·b= a·((-b)+b)"
using ring_oper_distr by auto

moreover from A1 have
"((-a)+ a)·b = 0"
"a·((-b)+b) = 0"
using Ring_ZF_1_L1 group0.group0_2_L6 Ring_ZF_1_L6

by auto
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ultimately show
"(-a)·b + a·b = 0"
"a·(-b) + a·b = 0"
by auto

qed
ultimately show "(-a)·b = -(a·b)"

using Ring_ZF_1_L1 group0.group0_2_L9 by simp

moreover from I II show "a·(-b) = -(a·b)"
using Ring_ZF_1_L1 group0.group0_2_L9 by simp

ultimately show "(-a)·b = a·(-b)" by simp

qed

Minus times minus is plus.

lemma (in ring0) Ring_ZF_1_L7A: assumes "a∈R" "b∈R"
shows "(-a)·(-b) = a·b"
using assms Ring_ZF_1_L3 Ring_ZF_1_L7 Ring_ZF_1_L4

by simp

Subtraction is distributive with respect to multiplication.

lemma (in ring0) Ring_ZF_1_L8: assumes "a∈R" "b∈R" "c∈R"
shows
"a·(b-c) = a·b - a·c"
"(b-c)·a = b·a - c·a"
using assms Ring_ZF_1_L3 ring_oper_distr Ring_ZF_1_L7 Ring_ZF_1_L4

by auto

Other basic properties involving two elements of a ring.

lemma (in ring0) Ring_ZF_1_L9: assumes "a∈R" "b∈R"
shows
"(-b)-a = (-a)-b"

"(-(a+b)) = (-a)-b"

"(-(a-b)) = ((-a)+b)"

"a-(-b) = a+b"

using assms ringAssum IsAring_def

Ring_ZF_1_L1 group0.group0_4_L4 group0.group_inv_of_inv

by auto

If the difference of two element is zero, then those elements are equal.

lemma (in ring0) Ring_ZF_1_L9A:

assumes A1: "a∈R" "b∈R" and A2: "a-b = 0"
shows "a=b"

proof -

from A1 A2 have
"group0(R,A)"

"a∈R" "b∈R"
"A‘〈a,GroupInv(R,A)‘(b)〉 = TheNeutralElement(R,A)"

using Ring_ZF_1_L1 by auto

then show "a=b" by (rule group0.group0_2_L11A)
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qed

Other basic properties involving three elements of a ring.

lemma (in ring0) Ring_ZF_1_L10:

assumes "a∈R" "b∈R" "c∈R"
shows
"a+(b+c) = a+b+c"

"a-(b+c) = a-b-c"

"a-(b-c) = a-b+c"

using assms ringAssum Ring_ZF_1_L1 group0.group_oper_assoc

IsAring_def group0.group0_4_L4A by auto

Another property with three elements.

lemma (in ring0) Ring_ZF_1_L10A:

assumes A1: "a∈R" "b∈R" "c∈R"
shows "a+(b-c) = a+b-c"

using assms Ring_ZF_1_L3 Ring_ZF_1_L10 by simp

Associativity of addition and multiplication.

lemma (in ring0) Ring_ZF_1_L11:

assumes "a∈R" "b∈R" "c∈R"
shows
"a+b+c = a+(b+c)"

"a·b·c = a·(b·c)"
using assms ringAssum Ring_ZF_1_L1 group0.group_oper_assoc

IsAring_def IsAmonoid_def IsAssociative_def

by auto

An interpretation of what it means that a ring has no zero divisors.

lemma (in ring0) Ring_ZF_1_L12:

assumes "HasNoZeroDivs(R,A,M)"

and "a∈R" "a6=0" "b∈R" "b6=0"
shows "a·b 6=0"
using assms HasNoZeroDivs_def by auto

In rings with no zero divisors we can cancel nonzero factors.

lemma (in ring0) Ring_ZF_1_L12A:

assumes A1: "HasNoZeroDivs(R,A,M)" and A2: "a∈R" "b∈R" "c∈R"
and A3: "a·c = b·c" and A4: "c6=0"
shows "a=b"

proof -

from A2 have T: "a·c ∈ R" "a-b ∈ R"

using Ring_ZF_1_L4 by auto

with A1 A2 A3 have "a-b = 0 ∨ c=0"
using Ring_ZF_1_L3 Ring_ZF_1_L8 HasNoZeroDivs_def

by simp

with A2 A4 have "a∈R" "b∈R" "a-b = 0"
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by auto

then show "a=b" by (rule Ring_ZF_1_L9A)

qed

In rings with no zero divisors if two elements are different, then after mul-
tiplying by a nonzero element they are still different.

lemma (in ring0) Ring_ZF_1_L12B:

assumes A1: "HasNoZeroDivs(R,A,M)"

"a∈R" "b∈R" "c∈R" "a6=b" "c6=0"
shows "a·c 6= b·c"
using A1 Ring_ZF_1_L12A by auto

In rings with no zero divisors multiplying a nonzero element by a nonone
element changes the value.

lemma (in ring0) Ring_ZF_1_L12C:

assumes A1: "HasNoZeroDivs(R,A,M)" and
A2: "a∈R" "b∈R" and A3: "06=a" "16=b"

shows "a 6= a·b"
proof -

{ assume "a = a·b"
with A1 A2 have "a = 0 ∨ b-1 = 0"

using Ring_ZF_1_L3 Ring_ZF_1_L2 Ring_ZF_1_L8

Ring_ZF_1_L3 Ring_ZF_1_L2 Ring_ZF_1_L4 HasNoZeroDivs_def

by simp

with A2 A3 have False

using Ring_ZF_1_L2 Ring_ZF_1_L9A by auto

} then show "a 6= a·b" by auto

qed

If a square is nonzero, then the element is nonzero.

lemma (in ring0) Ring_ZF_1_L13:

assumes "a∈R" and "a2 6= 0"
shows "a 6=0"
using assms Ring_ZF_1_L2 Ring_ZF_1_L6 by auto

Square of an element and its opposite are the same.

lemma (in ring0) Ring_ZF_1_L14:

assumes "a∈R" shows "(-a)2 = ((a)2)"

using assms Ring_ZF_1_L7A by simp

Adding zero to a set that is closed under addition results in a set that is
also closed under addition. This is a property of groups.

lemma (in ring0) Ring_ZF_1_L15:

assumes "H ⊆ R" and "H {is closed under} A"

shows "(H ∪ {0}) {is closed under} A"

using assms Ring_ZF_1_L1 group0.group0_2_L17 by simp

Adding zero to a set that is closed under multiplication results in a set that
is also closed under multiplication.
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lemma (in ring0) Ring_ZF_1_L16:

assumes A1: "H ⊆ R" and A2: "H {is closed under} M"

shows "(H ∪ {0}) {is closed under} M"

using assms Ring_ZF_1_L2 Ring_ZF_1_L6 IsOpClosed_def

by auto

The ring is trivial iff 0 = 1.

lemma (in ring0) Ring_ZF_1_L17: shows "R = {0} ←→ 0=1"
proof

assume "R = {0}"
then show "0=1" using Ring_ZF_1_L2

by blast

next assume A1: "0 = 1"
then have "R ⊆ {0}"

using Ring_ZF_1_L3 Ring_ZF_1_L6 by auto

moreover have "{0} ⊆ R" using Ring_ZF_1_L2 by auto

ultimately show "R = {0}" by auto

qed

The sets {m · x.x ∈ R} and {−m · x.x ∈ R} are the same.

lemma (in ring0) Ring_ZF_1_L18: assumes A1: "m∈R"
shows "{m·x. x∈R} = {(-m)·x. x∈R}"

proof
{ fix a assume "a ∈ {m·x. x∈R}"

then obtain x where "x∈R" and "a = m·x"
by auto

with A1 have "(-x) ∈ R" and "a = (-m)·(-x)"
using Ring_ZF_1_L3 Ring_ZF_1_L7A by auto

then have "a ∈ {(-m)·x. x∈R}"
by auto

} then show "{m·x. x∈R} ⊆ {(-m)·x. x∈R}"
by auto

next
{ fix a assume "a ∈ {(-m)·x. x∈R}"

then obtain x where "x∈R" and "a = (-m)·x"
by auto

with A1 have "(-x) ∈ R" and "a = m·(-x)"
using Ring_ZF_1_L3 Ring_ZF_1_L7 by auto

then have "a ∈ {m·x. x∈R}" by auto

} then show "{(-m)·x. x∈R} ⊆ {m·x. x∈R}"
by auto

qed

34.2 Rearrangement lemmas

In happens quite often that we want to show a fact like (a + b)c + d =
(ac+d− e) + (bc+ e)in rings. This is trivial in romantic math and probably
there is a way to make it trivial in formalized math. However, I don’t know
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any other way than to tediously prove each such rearrangement when it is
needed. This section collects facts of this type.

Rearrangements with two elements of a ring.

lemma (in ring0) Ring_ZF_2_L1: assumes "a∈R" "b∈R"
shows "a+b·a = (b+1)·a"
using assms Ring_ZF_1_L2 ring_oper_distr Ring_ZF_1_L3 Ring_ZF_1_L4

by simp

Rearrangements with two elements and cancelling.

lemma (in ring0) Ring_ZF_2_L1A: assumes "a∈R" "b∈R"
shows
"a-b+b = a"

"a+b-a = b"

"(-a)+b+a = b"

"(-a)+(b+a) = b"

"a+(b-a) = b"

using assms Ring_ZF_1_L1 group0.inv_cancel_two group0.group0_4_L6A

by auto

In commutative rings a−(b+1)c = (a−d−c)+(d−bc). For unknown reasons
we have to use the raw set notation in the proof, otherwise all methods fail.

lemma (in ring0) Ring_ZF_2_L2:

assumes A1: "a∈R" "b∈R" "c∈R" "d∈R"
shows "a-(b+1)·c = (a-d-c)+(d-b·c)"

proof -

let ?B = "b·c"
from ringAssum have "A {is commutative on} R"

using IsAring_def by simp

moreover from A1 have "a∈R" "?B ∈ R" "c∈R" "d∈R"
using Ring_ZF_1_L4 by auto

ultimately have "A‘〈a, GroupInv(R,A)‘(A‘〈?B, c〉)〉 =

A‘〈A‘〈A‘〈a, GroupInv(R, A)‘(d)〉,GroupInv(R, A)‘(c)〉,
A‘〈d,GroupInv(R, A)‘(?B)〉〉"
using Ring_ZF_1_L1 group0.group0_4_L8 by blast

with A1 show ?thesis

using Ring_ZF_1_L2 ring_oper_distr Ring_ZF_1_L3 by simp

qed

Rerrangement about adding linear functions.

lemma (in ring0) Ring_ZF_2_L3:

assumes A1: "a∈R" "b∈R" "c∈R" "d∈R" "x∈R"
shows "(a·x + b) + (c·x + d) = (a+c)·x + (b+d)"

proof -

from A1 have
"group0(R,A)"

"A {is commutative on} R"

"a·x ∈ R" "b∈R" "c·x ∈ R" "d∈R"
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using Ring_ZF_1_L1 Ring_ZF_1_L4 by auto

then have "A‘〈A‘〈 a·x,b〉,A‘〈 c·x,d〉〉 = A‘〈A‘〈 a·x,c·x〉,A‘〈 b,d〉〉"
by (rule group0.group0_4_L8)

with A1 show
"(a·x + b) + (c·x + d) = (a+c)·x + (b+d)"

using ring_oper_distr by simp

qed

Rearrangement with three elements

lemma (in ring0) Ring_ZF_2_L4:

assumes "M {is commutative on} R"

and "a∈R" "b∈R" "c∈R"
shows "a·(b·c) = a·c·b"
using assms IsCommutative_def Ring_ZF_1_L11

by simp

Some other rearrangements with three elements.

lemma (in ring0) ring_rearr_3_elemA:

assumes A1: "M {is commutative on} R" and
A2: "a∈R" "b∈R" "c∈R"
shows
"a·(a·c) - b·(-b·c) = (a·a + b·b)·c"
"a·(-b·c) + b·(a·c) = 0"

proof -

from A2 have T:

"b·c ∈ R" "a·a ∈ R" "b·b ∈ R"

"b·(b·c) ∈ R" "a·(b·c) ∈ R"

using Ring_ZF_1_L4 by auto

with A2 show
"a·(a·c) - b·(-b·c) = (a·a + b·b)·c"
using Ring_ZF_1_L7 Ring_ZF_1_L3 Ring_ZF_1_L11

ring_oper_distr by simp

from A2 T have
"a·(-b·c) + b·(a·c) = (-a·(b·c)) + b·a·c"
using Ring_ZF_1_L7 Ring_ZF_1_L11 by simp

also from A1 A2 T have ". . . = 0"
using IsCommutative_def Ring_ZF_1_L11 Ring_ZF_1_L3

by simp

finally show "a·(-b·c) + b·(a·c) = 0"
by simp

qed

Some rearrangements with four elements. Properties of abelian groups.

lemma (in ring0) Ring_ZF_2_L5:

assumes "a∈R" "b∈R" "c∈R" "d∈R"
shows
"a - b - c - d = a - d - b - c"

"a + b + c - d = a - d + b + c"

"a + b - c - d = a - c + (b - d)"
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"a + b + c + d = a + c + (b + d)"

using assms Ring_ZF_1_L1 group0.rearr_ab_gr_4_elemB

group0.rearr_ab_gr_4_elemA by auto

Two big rearranegements with six elements, useful for proving properties of
complex addition and multiplication.

lemma (in ring0) Ring_ZF_2_L6:

assumes A1: "a∈R" "b∈R" "c∈R" "d∈R" "e∈R" "f∈R"
shows
"a·(c·e - d·f) - b·(c·f + d·e) =

(a·c - b·d)·e - (a·d + b·c)·f"
"a·(c·f + d·e) + b·(c·e - d·f) =

(a·c - b·d)·f + (a·d + b·c)·e"
"a·(c+e) - b·(d+f) = a·c - b·d + (a·e - b·f)"
"a·(d+f) + b·(c+e) = a·d + b·c + (a·f + b·e)"

proof -

from A1 have T:

"c·e ∈ R" "d·f ∈ R" "c·f ∈ R" "d·e ∈ R"

"a·c ∈ R" "b·d ∈ R" "a·d ∈ R" "b·c ∈ R"

"b·f ∈ R" "a·e ∈ R" "b·e ∈ R" "a·f ∈ R"

"a·c·e ∈ R" "a·d·f ∈ R"

"b·c·f ∈ R" "b·d·e ∈ R"

"b·c·e ∈ R" "b·d·f ∈ R"

"a·c·f ∈ R" "a·d·e ∈ R"

"a·c·e - a·d·f ∈ R"

"a·c·e - b·d·e ∈ R"

"a·c·f + a·d·e ∈ R"

"a·c·f - b·d·f ∈ R"

"a·c + a·e ∈ R"

"a·d + a·f ∈ R"

using Ring_ZF_1_L4 by auto

with A1 show "a·(c·e - d·f) - b·(c·f + d·e) =

(a·c - b·d)·e - (a·d + b·c)·f"
using Ring_ZF_1_L8 ring_oper_distr Ring_ZF_1_L11

Ring_ZF_1_L10 Ring_ZF_2_L5 by simp

from A1 T show
"a·(c·f + d·e) + b·(c·e - d·f) =

(a·c - b·d)·f + (a·d + b·c)·e"
using Ring_ZF_1_L8 ring_oper_distr Ring_ZF_1_L11

Ring_ZF_1_L10A Ring_ZF_2_L5 Ring_ZF_1_L10

by simp

from A1 T show
"a·(c+e) - b·(d+f) = a·c - b·d + (a·e - b·f)"
"a·(d+f) + b·(c+e) = a·d + b·c + (a·f + b·e)"
using ring_oper_distr Ring_ZF_1_L10 Ring_ZF_2_L5

by auto

qed

end
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35 More on rings

theory Ring_ZF_1 imports Ring_ZF Group_ZF_3

begin

This theory is devoted to the part of ring theory specific the construction of
real numbers in the Real_ZF_x series of theories. The goal is to show that
classes of almost homomorphisms form a ring.

35.1 The ring of classes of almost homomorphisms

Almost homomorphisms do not form a ring as the regular homomorphisms
do because the lifted group operation is not distributive with respect to
composition – we have s ◦ (r · q) 6= s ◦ r · s ◦ q in general. However, we do
have s ◦ (r · q) ≈ s ◦ r · s ◦ q in the sense of the equivalence relation defined
by the group of finite range functions (that is a normal subgroup of almost
homomorphisms, if the group is abelian). This allows to define a natural
ring structure on the classes of almost homomorphisms.

The next lemma provides a formula useful for proving that two sides of the
distributive law equation for almost homomorphisms are almost equal.

lemma (in group1) Ring_ZF_1_1_L1:

assumes A1: "s∈AH" "r∈AH" "q∈AH" and A2: "n∈G"
shows
"((s◦(r·q))‘(n))·(((s◦r)·(s◦q))‘(n))−1= δ(s,〈 r‘(n),q‘(n)〉)"
"((r·q)◦s)‘(n) = ((r◦s)·(q◦s))‘(n)"

proof -

from groupAssum isAbelian A1 have T1:

"r·q ∈ AH" "s◦r ∈ AH" "s◦q ∈ AH" "(s◦r)·(s◦q) ∈ AH"

"r◦s ∈ AH" "q◦s ∈ AH" "(r◦s)·(q◦s) ∈ AH"

using Group_ZF_3_2_L15 Group_ZF_3_4_T1 by auto

from A1 A2 have T2: "r‘(n) ∈ G" "q‘(n) ∈ G" "s‘(n) ∈ G"

"s‘(r‘(n)) ∈ G" "s‘(q‘(n)) ∈ G" "δ(s,〈 r‘(n),q‘(n)〉) ∈ G"

"s‘(r‘(n))·s‘(q‘(n)) ∈ G" "r‘(s‘(n)) ∈ G" "q‘(s‘(n)) ∈ G"

"r‘(s‘(n))·q‘(s‘(n)) ∈ G"

using AlmostHoms_def apply_funtype Group_ZF_3_2_L4B

group0_2_L1 monoid0.group0_1_L1 by auto

with T1 A1 A2 isAbelian show
"((s◦(r·q))‘(n))·(((s◦r)·(s◦q))‘(n))−1= δ(s,〈 r‘(n),q‘(n)〉)"
"((r·q)◦s)‘(n) = ((r◦s)·(q◦s))‘(n)"
using Group_ZF_3_2_L12 Group_ZF_3_4_L2 Group_ZF_3_4_L1 group0_4_L6A

by auto

qed

The sides of the distributive law equations for almost homomorphisms are
almost equal.

lemma (in group1) Ring_ZF_1_1_L2:
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assumes A1: "s∈AH" "r∈AH" "q∈AH"
shows
"s◦(r·q) ≈ (s◦r)·(s◦q)"
"(r·q)◦s = (r◦s)·(q◦s)"

proof -

from A1 have "∀ n∈G. 〈 r‘(n),q‘(n)〉 ∈ G×G"
using AlmostHoms_def apply_funtype by auto

moreover from A1 have "{δ(s,x). x ∈ G×G} ∈ Fin(G)"

using AlmostHoms_def by simp

ultimately have "{δ(s,〈 r‘(n),q‘(n)〉). n∈G} ∈ Fin(G)"

by (rule Finite1_L6B)

with A1 have
"{((s◦(r·q))‘(n))·(((s◦r)·(s◦q))‘(n))−1. n ∈ G} ∈ Fin(G)"

using Ring_ZF_1_1_L1 by simp

moreover from groupAssum isAbelian A1 A1 have
"s◦(r·q) ∈ AH" "(s◦r)·(s◦q) ∈ AH"

using Group_ZF_3_2_L15 Group_ZF_3_4_T1 by auto

ultimately show "s◦(r·q) ≈ (s◦r)·(s◦q)"
using Group_ZF_3_4_L12 by simp

from groupAssum isAbelian A1 have
"(r·q)◦s : G→G" "(r◦s)·(q◦s) : G→G"

using Group_ZF_3_2_L15 Group_ZF_3_4_T1 AlmostHoms_def

by auto

moreover from A1 have
"∀ n∈G. ((r·q)◦s)‘(n) = ((r◦s)·(q◦s))‘(n)"
using Ring_ZF_1_1_L1 by simp

ultimately show "(r·q)◦s = (r◦s)·(q◦s)"
using fun_extension_iff by simp

qed

The essential condition to show the distributivity for the operations defined
on classes of almost homomorphisms.

lemma (in group1) Ring_ZF_1_1_L3:

assumes A1: "R = QuotientGroupRel(AH,Op1,FR)"

and A2: "a ∈ AH//R" "b ∈ AH//R" "c ∈ AH//R"

and A3: "A = ProjFun2(AH,R,Op1)" "M = ProjFun2(AH,R,Op2)"

shows "M‘〈a,A‘〈 b,c〉〉 = A‘〈M‘〈 a,b〉,M‘〈 a,c〉〉 ∧
M‘〈A‘〈 b,c〉,a〉 = A‘〈M‘〈 b,a〉,M‘〈 c,a〉〉"

proof
from A2 obtain s q r where D1: "s∈AH" "r∈AH" "q∈AH"
"a = R‘‘{s}" "b = R‘‘{q}" "c = R‘‘{r}"

using quotient_def by auto

from A1 have T1:"equiv(AH,R)"

using Group_ZF_3_3_L3 by simp

with A1 A3 D1 groupAssum isAbelian have
"M‘〈 a,A‘〈 b,c〉 〉 = R‘‘{s◦(q·r)}"
using Group_ZF_3_3_L4 EquivClass_1_L10

Group_ZF_3_2_L15 Group_ZF_3_4_L13A by simp

also have "R‘‘{s◦(q·r)} = R‘‘{(s◦q)·(s◦r)}"
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proof -

from T1 D1 have "equiv(AH,R)" "s◦(q·r)≈(s◦q)·(s◦r)"
using Ring_ZF_1_1_L2 by auto

with A1 show ?thesis using equiv_class_eq by simp

qed
also from A1 T1 D1 A3 have
"R‘‘{(s◦q)·(s◦r)} = A‘〈M‘〈 a,b〉,M‘〈 a,c〉〉"
using Group_ZF_3_3_L4 Group_ZF_3_4_T1 EquivClass_1_L10

Group_ZF_3_3_L3 Group_ZF_3_4_L13A EquivClass_1_L10 Group_ZF_3_4_T1

by simp

finally show "M‘〈a,A‘〈 b,c〉〉 = A‘〈M‘〈 a,b〉,M‘〈 a,c〉〉" by simp

from A1 A3 T1 D1 groupAssum isAbelian show
"M‘〈A‘〈 b,c〉,a〉 = A‘〈M‘〈 b,a〉,M‘〈 c,a〉〉"
using Group_ZF_3_3_L4 EquivClass_1_L10 Group_ZF_3_4_L13A

Group_ZF_3_2_L15 Ring_ZF_1_1_L2 Group_ZF_3_4_T1 by simp

qed

The projection of the first group operation on almost homomorphisms is
distributive with respect to the second group operation.

lemma (in group1) Ring_ZF_1_1_L4:

assumes A1: "R = QuotientGroupRel(AH,Op1,FR)"

and A2: "A = ProjFun2(AH,R,Op1)" "M = ProjFun2(AH,R,Op2)"

shows "IsDistributive(AH//R,A,M)"

proof -

from A1 A2 have "∀ a∈(AH//R).∀ b∈(AH//R).∀ c∈(AH//R).
M‘〈a,A‘〈 b,c〉〉 = A‘〈M‘〈 a,b〉, M‘〈 a,c〉〉 ∧
M‘〈A‘〈 b,c〉, a〉 = A‘〈M‘〈 b,a〉,M‘〈 c,a〉〉"

using Ring_ZF_1_1_L3 by simp

then show ?thesis using IsDistributive_def by simp

qed

The classes of almost homomorphisms form a ring.

theorem (in group1) Ring_ZF_1_1_T1:

assumes "R = QuotientGroupRel(AH,Op1,FR)"

and "A = ProjFun2(AH,R,Op1)" "M = ProjFun2(AH,R,Op2)"

shows "IsAring(AH//R,A,M)"

using assms QuotientGroupOp_def Group_ZF_3_3_T1 Group_ZF_3_4_T2

Ring_ZF_1_1_L4 IsAring_def by simp

end

36 Ordered rings

theory OrderedRing_ZF imports Ring_ZF OrderedGroup_ZF_1

begin

In this theory file we consider ordered rings.
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36.1 Definition and notation

This section defines ordered rings and sets up appriopriate notation.

We define ordered ring as a commutative ring with linear order that is
preserved by translations and such that the set of nonnegative elements is
closed under multiplication. Note that this definition does not guarantee
that there are no zero divisors in the ring.

definition
"IsAnOrdRing(R,A,M,r) ≡
( IsAring(R,A,M) ∧ (M {is commutative on} R) ∧
r⊆R×R ∧ IsLinOrder(R,r) ∧
(∀ a b. ∀ c∈R. 〈 a,b〉 ∈ r −→ 〈A‘〈 a,c〉,A‘〈 b,c〉〉 ∈ r) ∧
(Nonnegative(R,A,r) {is closed under} M))"

The next context (locale) defines notation used for ordered rings. We do
that by extending the notation defined in the ring0 locale and adding some
assumptions to make sure we are talking about ordered rings in this context.

locale ring1 = ring0 +

assumes mult_commut: "M {is commutative on} R"

fixes r

assumes ordincl: "r ⊆ R×R"

assumes linord: "IsLinOrder(R,r)"

fixes lesseq (infix "≤" 68)

defines lesseq_def [simp]: "a ≤ b ≡ 〈 a,b〉 ∈ r"

fixes sless (infix "<" 68)

defines sless_def [simp]: "a < b ≡ a≤b ∧ a6=b"

assumes ordgroup: "∀ a b. ∀ c∈R. a≤b −→ a+c ≤ b+c"

assumes pos_mult_closed: "Nonnegative(R,A,r) {is closed under} M"

fixes abs ("| _ |")

defines abs_def [simp]: "|a| ≡ AbsoluteValue(R,A,r)‘(a)"

fixes positiveset ("R+")

defines positiveset_def [simp]: "R+ ≡ PositiveSet(R,A,r)"

The next lemma assures us that we are talking about ordered rings in the
ring1 context.

lemma (in ring1) OrdRing_ZF_1_L1: shows "IsAnOrdRing(R,A,M,r)"

using ring0_def ringAssum mult_commut ordincl linord ordgroup

379



pos_mult_closed IsAnOrdRing_def by simp

We can use theorems proven in the ring1 context whenever we talk about
an ordered ring.

lemma OrdRing_ZF_1_L2: assumes "IsAnOrdRing(R,A,M,r)"

shows "ring1(R,A,M,r)"

using assms IsAnOrdRing_def ring1_axioms.intro ring0_def ring1_def

by simp

In the ring1 context a ≤ b implies that a, b are elements of the ring.

lemma (in ring1) OrdRing_ZF_1_L3: assumes "a≤b"
shows "a∈R" "b∈R"
using assms ordincl by auto

Ordered ring is an ordered group, hence we can use theorems proven in the
group3 context.

lemma (in ring1) OrdRing_ZF_1_L4: shows
"IsAnOrdGroup(R,A,r)"

"r {is total on} R"

"A {is commutative on} R"

"group3(R,A,r)"

proof -

{ fix a b g assume A1: "g∈R" and A2: "a≤b"
with ordgroup have "a+g ≤ b+g"

by simp

moreover from ringAssum A1 A2 have
"a+g = g+a" "b+g = g+b"

using OrdRing_ZF_1_L3 IsAring_def IsCommutative_def by auto

ultimately have
"a+g ≤ b+g" "g+a ≤ g+b"

by auto

} hence
"∀ g∈R. ∀ a b. a≤b −→ a+g ≤ b+g ∧ g+a ≤ g+b"

by simp

with ringAssum ordincl linord show
"IsAnOrdGroup(R,A,r)"

"group3(R,A,r)"

"r {is total on} R"

"A {is commutative on} R"

using IsAring_def Order_ZF_1_L2 IsAnOrdGroup_def group3_def IsLinOrder_def

by auto

qed

The order relation in rings is transitive.

lemma (in ring1) ring_ord_transitive: assumes A1: "a≤b" "b≤c"
shows "a≤c"

proof -

from A1 have
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"group3(R,A,r)" "〈a,b〉 ∈ r" "〈b,c〉 ∈ r"

using OrdRing_ZF_1_L4 by auto

then have "〈a,c〉 ∈ r" by (rule group3.Group_order_transitive)

then show "a≤c" by simp

qed

Transitivity for the strict order: if a < b and b ≤ c, then a < c. Property of
ordered groups.

lemma (in ring1) ring_strict_ord_trans:

assumes A1: "a<b" and A2: "b≤c"
shows "a<c"

proof -

from A1 A2 have
"group3(R,A,r)"

"〈a,b〉 ∈ r ∧ a6=b" "〈b,c〉 ∈ r"

using OrdRing_ZF_1_L4 by auto

then have "〈a,c〉 ∈ r ∧ a6=c" by (rule group3.OrderedGroup_ZF_1_L4A)

then show "a<c" by simp

qed

Another version of transitivity for the strict order: if a ≤ b and b < c, then
a < c. Property of ordered groups.

lemma (in ring1) ring_strict_ord_transit:

assumes A1: "a≤b" and A2: "b<c"

shows "a<c"

proof -

from A1 A2 have
"group3(R,A,r)"

"〈a,b〉 ∈ r" "〈b,c〉 ∈ r ∧ b6=c"

using OrdRing_ZF_1_L4 by auto

then have "〈a,c〉 ∈ r ∧ a6=c" by (rule group3.group_strict_ord_transit)

then show "a<c" by simp

qed

The next lemma shows what happens when one element of an ordered ring
is not greater or equal than another.

lemma (in ring1) OrdRing_ZF_1_L4A: assumes A1: "a∈R" "b∈R"
and A2: "¬(a≤b)"
shows "b ≤ a" "(-a) ≤ (-b)" "a6=b"

proof -

from A1 A2 have I:

"group3(R,A,r)"

"r {is total on} R"

"a ∈ R" "b ∈ R" "〈a, b〉 /∈ r"

using OrdRing_ZF_1_L4 by auto

then have "〈b,a〉 ∈ r" by (rule group3.OrderedGroup_ZF_1_L8)

then show "b ≤ a" by simp

from I have "〈GroupInv(R,A)‘(a),GroupInv(R,A)‘(b)〉 ∈ r"
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by (rule group3.OrderedGroup_ZF_1_L8)

then show "(-a) ≤ (-b)" by simp

from I show "a 6=b" by (rule group3.OrderedGroup_ZF_1_L8)

qed

A special case of OrdRing_ZF_1_L4A when one of the constants is 0. This is
useful for many proofs by cases.

corollary (in ring1) ord_ring_split2: assumes A1: "a∈R"
shows "a≤0 ∨ (0≤a ∧ a6=0)"

proof -

{ from A1 have I: "a∈R" "0∈R"
using Ring_ZF_1_L2 by auto

moreover assume A2: "¬(a≤0)"
ultimately have "0≤a" by (rule OrdRing_ZF_1_L4A)

moreover from I A2 have "a 6=0" by (rule OrdRing_ZF_1_L4A)

ultimately have "0≤a ∧ a6=0" by simp}
then show ?thesis by auto

qed

Taking minus on both sides reverses an inequality.

lemma (in ring1) OrdRing_ZF_1_L4B: assumes "a≤b"
shows "(-b) ≤ (-a)"

using assms OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L5

by simp

The next lemma just expands the condition that requires the set of non-
negative elements to be closed with respect to multiplication. These are
properties of totally ordered groups.

lemma (in ring1) OrdRing_ZF_1_L5:

assumes "0≤a" "0≤b"
shows "0 ≤ a·b"
using pos_mult_closed assms OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L2

IsOpClosed_def by simp

Double nonnegative is nonnegative.

lemma (in ring1) OrdRing_ZF_1_L5A: assumes A1: "0≤a"
shows "0≤2·a"
using assms OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L5G

OrdRing_ZF_1_L3 Ring_ZF_1_L3 by simp

A sufficient (somewhat redundant) condition for a structure to be an ordered
ring. It says that a commutative ring that is a totally ordered group with
respect to the additive operation such that set of nonnegative elements is
closed under multiplication, is an ordered ring.

lemma OrdRing_ZF_1_L6:

assumes
"IsAring(R,A,M)"
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"M {is commutative on} R"

"Nonnegative(R,A,r) {is closed under} M"

"IsAnOrdGroup(R,A,r)"

"r {is total on} R"

shows "IsAnOrdRing(R,A,M,r)"

using assms IsAnOrdGroup_def Order_ZF_1_L3 IsAnOrdRing_def

by simp

a ≤ b iff a− b ≤ 0. This is a fact from OrderedGroup.thy, where it is stated
in multiplicative notation.

lemma (in ring1) OrdRing_ZF_1_L7:

assumes "a∈R" "b∈R"
shows "a≤b ←→ a-b ≤ 0"
using assms OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L9

by simp

Negative times positive is negative.

lemma (in ring1) OrdRing_ZF_1_L8:

assumes A1: "a≤0" and A2: "0≤b"
shows "a·b ≤ 0"

proof -

from A1 A2 have T1: "a∈R" "b∈R" "a·b ∈ R"

using OrdRing_ZF_1_L3 Ring_ZF_1_L4 by auto

from A1 A2 have "0≤(-a)·b"
using OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L5A OrdRing_ZF_1_L5

by simp

with T1 show "a·b ≤ 0"
using Ring_ZF_1_L7 OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L5AA

by simp

qed

We can multiply both sides of an inequality by a nonnegative ring element.
This property is sometimes (not here) used to define ordered rings.

lemma (in ring1) OrdRing_ZF_1_L9:

assumes A1: "a≤b" and A2: "0≤c"
shows
"a·c ≤ b·c"
"c·a ≤ c·b"

proof -

from A1 A2 have T1:

"a∈R" "b∈R" "c∈R" "a·c ∈ R" "b·c ∈ R"

using OrdRing_ZF_1_L3 Ring_ZF_1_L4 by auto

with A1 A2 have "(a-b)·c ≤ 0"
using OrdRing_ZF_1_L7 OrdRing_ZF_1_L8 by simp

with T1 show "a·c ≤ b·c"
using Ring_ZF_1_L8 OrdRing_ZF_1_L7 by simp

with mult_commut T1 show "c·a ≤ c·b"
using IsCommutative_def by simp
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qed

A special case of OrdRing_ZF_1_L9: we can multiply an inequality by a posi-
tive ring element.

lemma (in ring1) OrdRing_ZF_1_L9A:

assumes A1: "a≤b" and A2: "c∈R+"
shows
"a·c ≤ b·c"
"c·a ≤ c·b"

proof -

from A2 have "0 ≤ c" using PositiveSet_def

by simp

with A1 show "a·c ≤ b·c" "c·a ≤ c·b"
using OrdRing_ZF_1_L9 by auto

qed

A square is nonnegative.

lemma (in ring1) OrdRing_ZF_1_L10:

assumes A1: "a∈R" shows "0≤(a2)"
proof -

{ assume "0≤a"
then have "0≤(a2)" using OrdRing_ZF_1_L5 by simp}

moreover
{ assume "¬(0≤a)"

with A1 have "0≤((-a)2)"
using OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L8A

OrdRing_ZF_1_L5 by simp

with A1 have "0≤(a2)" using Ring_ZF_1_L14 by simp }
ultimately show ?thesis by blast

qed

1 is nonnegative.

corollary (in ring1) ordring_one_is_nonneg: shows "0 ≤ 1"
proof -

have "0 ≤ (12)" using Ring_ZF_1_L2 OrdRing_ZF_1_L10

by simp

then show "0 ≤ 1" using Ring_ZF_1_L2 Ring_ZF_1_L3

by simp

qed

In nontrivial rings one is positive.

lemma (in ring1) ordring_one_is_pos: assumes "06=1"
shows "1 ∈ R+"

using assms Ring_ZF_1_L2 ordring_one_is_nonneg PositiveSet_def

by auto

Nonnegative is not negative. Property of ordered groups.

lemma (in ring1) OrdRing_ZF_1_L11: assumes "0≤a"
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shows "¬(a≤0 ∧ a6=0)"
using assms OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L5AB

by simp

A negative element cannot be a square.

lemma (in ring1) OrdRing_ZF_1_L12:

assumes A1: "a≤0" "a 6=0"
shows "¬(∃ b∈R. a = (b2))"

proof -

{ assume "∃ b∈R. a = (b2)"

with A1 have False using OrdRing_ZF_1_L10 OrdRing_ZF_1_L11

by auto

} then show ?thesis by auto

qed

If a ≤ b, then 0 ≤ b− a.

lemma (in ring1) OrdRing_ZF_1_L13: assumes "a≤b"
shows "0 ≤ b-a"

using assms OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L9D

by simp

If a < b, then 0 < b− a.

lemma (in ring1) OrdRing_ZF_1_L14: assumes "a≤b" "a6=b"

shows
"0 ≤ b-a" "0 6= b-a"

"b-a ∈ R+"

using assms OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L9E

by auto

If the difference is nonnegative, then a ≤ b.
lemma (in ring1) OrdRing_ZF_1_L15:

assumes "a∈R" "b∈R" and "0 ≤ b-a"

shows "a≤b"
using assms OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L9F

by simp

A nonnegative number is does not decrease when multiplied by a number
greater or equal 1.

lemma (in ring1) OrdRing_ZF_1_L16:

assumes A1: "0≤a" and A2: "1≤b"
shows "a≤a·b"

proof -

from A1 A2 have T: "a∈R" "b∈R" "a·b ∈ R"

using OrdRing_ZF_1_L3 Ring_ZF_1_L4 by auto

from A1 A2 have "0 ≤ a·(b-1)"
using OrdRing_ZF_1_L13 OrdRing_ZF_1_L5 by simp

with T show "a≤a·b"
using Ring_ZF_1_L8 Ring_ZF_1_L2 Ring_ZF_1_L3 OrdRing_ZF_1_L15
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by simp

qed

We can multiply the right hand side of an inequality between nonnegative
ring elements by an element greater or equal 1.

lemma (in ring1) OrdRing_ZF_1_L17:

assumes A1: "0≤a" and A2: "a≤b" and A3: "1≤c"
shows "a≤b·c"

proof -

from A1 A2 have "0≤b" by (rule ring_ord_transitive)

with A3 have "b≤b·c" using OrdRing_ZF_1_L16

by simp

with A2 show "a≤b·c" by (rule ring_ord_transitive)

qed

Strict order is preserved by translations.

lemma (in ring1) ring_strict_ord_trans_inv:

assumes "a<b" and "c∈R"
shows
"a+c < b+c"

"c+a < c+b"

using assms OrdRing_ZF_1_L4 group3.group_strict_ord_transl_inv

by auto

We can put an element on the other side of a strict inequality, changing its
sign.

lemma (in ring1) OrdRing_ZF_1_L18:

assumes "a∈R" "b∈R" and "a-b < c"

shows "a < c+b"

using assms OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L12B

by simp

We can add the sides of two inequalities, the first of them strict, and we get
a strict inequality. Property of ordered groups.

lemma (in ring1) OrdRing_ZF_1_L19:

assumes "a<b" and "c≤d"
shows "a+c < b+d"

using assms OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L12C

by simp

We can add the sides of two inequalities, the second of them strict and we
get a strict inequality. Property of ordered groups.

lemma (in ring1) OrdRing_ZF_1_L20:

assumes "a≤b" and "c<d"

shows "a+c < b+d"

using assms OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L12D

by simp
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36.2 Absolute value for ordered rings

Absolute value is defined for ordered groups as a function that is the identity
on the nonnegative set and the negative of the element (the inverse in the
multiplicative notation) on the rest. In this section we consider properties
of absolute value related to multiplication in ordered rings.

Absolute value of a product is the product of absolute values: the case when
both elements of the ring are nonnegative.

lemma (in ring1) OrdRing_ZF_2_L1:

assumes "0≤a" "0≤b"
shows "|a·b| = |a|·|b|"
using assms OrdRing_ZF_1_L5 OrdRing_ZF_1_L4

group3.OrderedGroup_ZF_1_L2 group3.OrderedGroup_ZF_3_L2

by simp

The absolue value of an element and its negative are the same.

lemma (in ring1) OrdRing_ZF_2_L2: assumes "a∈R"
shows "|-a| = |a|"

using assms OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_3_L7A by simp

The next lemma states that |a · (−b)| = |(−a) · b| = |(−a) · (−b)| = |a · b|.
lemma (in ring1) OrdRing_ZF_2_L3:

assumes "a∈R" "b∈R"
shows
"|(-a)·b| = |a·b|"
"|a·(-b)| = |a·b|"
"|(-a)·(-b)| = |a·b|"
using assms Ring_ZF_1_L4 Ring_ZF_1_L7 Ring_ZF_1_L7A

OrdRing_ZF_2_L2 by auto

This lemma allows to prove theorems for the case of positive and negative
elements of the ring separately.

lemma (in ring1) OrdRing_ZF_2_L4: assumes "a∈R" and "¬(0≤a)"
shows "0 ≤ (-a)" "0 6=a"

using assms OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L8A

by auto

Absolute value of a product is the product of absolute values.

lemma (in ring1) OrdRing_ZF_2_L5:

assumes A1: "a∈R" "b∈R"
shows "|a·b| = |a|·|b|"

proof -

{ assume A2: "0≤a" have "|a·b| = |a|·|b|"
proof -

{ assume "0≤b"
with A2 have "|a·b| = |a|·|b|"

using OrdRing_ZF_2_L1 by simp }
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moreover
{ assume "¬(0≤b)"

with A1 A2 have "|a·(-b)| = |a|·|-b|"
using OrdRing_ZF_2_L4 OrdRing_ZF_2_L1 by simp

with A1 have "|a·b| = |a|·|b|"
using OrdRing_ZF_2_L2 OrdRing_ZF_2_L3 by simp }

ultimately show ?thesis by blast

qed }
moreover
{ assume "¬(0≤a)"

with A1 have A3: "0 ≤ (-a)"

using OrdRing_ZF_2_L4 by simp

have "|a·b| = |a|·|b|"
proof -

{ assume "0≤b"
with A3 have "|(-a)·b| = |-a|·|b|"

using OrdRing_ZF_2_L1 by simp

with A1 have "|a·b| = |a|·|b|"
using OrdRing_ZF_2_L2 OrdRing_ZF_2_L3 by simp }

moreover
{ assume "¬(0≤b)"

with A1 A3 have "|(-a)·(-b)| = |-a|·|-b|"
using OrdRing_ZF_2_L4 OrdRing_ZF_2_L1 by simp

with A1 have "|a·b| = |a|·|b|"
using OrdRing_ZF_2_L2 OrdRing_ZF_2_L3 by simp }

ultimately show ?thesis by blast

qed }
ultimately show ?thesis by blast

qed

Triangle inequality. Property of linearly ordered abelian groups.

lemma (in ring1) ord_ring_triangle_ineq: assumes "a∈R" "b∈R"
shows "|a+b| ≤ |a|+|b|"

using assms OrdRing_ZF_1_L4 group3.OrdGroup_triangle_ineq

by simp

If a ≤ c and b ≤ c, then a+ b ≤ 2 · c.
lemma (in ring1) OrdRing_ZF_2_L6:

assumes "a≤c" "b≤c" shows "a+b ≤ 2·c"
using assms OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L5B

OrdRing_ZF_1_L3 Ring_ZF_1_L3 by simp

36.3 Positivity in ordered rings

This section is about properties of the set of positive elements R+.

The set of positive elements is closed under ring addition. This is a property
of ordered groups, we just reference a theorem from OrderedGroup_ZF theory
in the proof.
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lemma (in ring1) OrdRing_ZF_3_L1: shows "R+ {is closed under} A"

using OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L13

by simp

Every element of a ring can be either in the postitive set, equal to zero or its
opposite (the additive inverse) is in the positive set. This is a property of
ordered groups, we just reference a theorem from OrderedGroup_ZF theory.

lemma (in ring1) OrdRing_ZF_3_L2: assumes "a∈R"
shows "Exactly_1_of_3_holds (a=0, a∈R+, (-a) ∈ R+)"

using assms OrdRing_ZF_1_L4 group3.OrdGroup_decomp

by simp

If a ring element a 6= 0, and it is not positive, then −a is positive.

lemma (in ring1) OrdRing_ZF_3_L2A: assumes "a∈R" "a6=0" "a /∈ R+"

shows "(-a) ∈ R+"

using assms OrdRing_ZF_1_L4 group3.OrdGroup_cases

by simp

R+ is closed under multiplication iff the ring has no zero divisors.

lemma (in ring1) OrdRing_ZF_3_L3:

shows "(R+ {is closed under} M)←→ HasNoZeroDivs(R,A,M)"

proof
assume A1: "HasNoZeroDivs(R,A,M)"

{ fix a b assume "a∈R+" "b∈R+"
then have "0≤a" "a6=0" "0≤b" "b6=0"

using PositiveSet_def by auto

with A1 have "a·b ∈ R+"

using OrdRing_ZF_1_L5 Ring_ZF_1_L2 OrdRing_ZF_1_L3 Ring_ZF_1_L12

OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L2A

by simp

} then show "R+ {is closed under} M" using IsOpClosed_def

by simp

next assume A2: "R+ {is closed under} M"

{ fix a b assume A3: "a∈R" "b∈R" and "a 6=0" "b 6=0"
with A2 have "|a·b| ∈ R+"

using OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_3_L12 IsOpClosed_def

OrdRing_ZF_2_L5 by simp

with A3 have "a·b 6= 0"
using PositiveSet_def Ring_ZF_1_L4

OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_3_L2A

by auto

} then show "HasNoZeroDivs(R,A,M)" using HasNoZeroDivs_def

by auto

qed

Another (in addition to OrdRing_ZF_1_L6 sufficient condition that defines
order in an ordered ring starting from the positive set.

theorem (in ring0) ring_ord_by_positive_set:
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assumes
A1: "M {is commutative on} R" and
A2: "P⊆R" "P {is closed under} A" "0 /∈ P" and
A3: "∀ a∈R. a6=0 −→ (a∈P) Xor ((-a) ∈ P)" and
A4: "P {is closed under} M" and
A5: "r = OrderFromPosSet(R,A,P)"

shows
"IsAnOrdGroup(R,A,r)"

"IsAnOrdRing(R,A,M,r)"

"r {is total on} R"

"PositiveSet(R,A,r) = P"

"Nonnegative(R,A,r) = P ∪ {0}"
"HasNoZeroDivs(R,A,M)"

proof -

from A2 A3 A5 show
I: "IsAnOrdGroup(R,A,r)" "r {is total on} R" and
II: "PositiveSet(R,A,r) = P" and
III: "Nonnegative(R,A,r) = P ∪ {0}"
using Ring_ZF_1_L1 group0.Group_ord_by_positive_set

by auto

from A2 A4 III have "Nonnegative(R,A,r) {is closed under} M"

using Ring_ZF_1_L16 by simp

with ringAssum A1 I show "IsAnOrdRing(R,A,M,r)"

using OrdRing_ZF_1_L6 by simp

with A4 II show "HasNoZeroDivs(R,A,M)"

using OrdRing_ZF_1_L2 ring1.OrdRing_ZF_3_L3

by auto

qed

Nontrivial ordered rings are infinite. More precisely we assume that the
neutral element of the additive operation is not equal to the multiplicative
neutral element and show that the the set of positive elements of the ring is
not a finite subset of the ring and the ring is not a finite subset of itself.

theorem (in ring1) ord_ring_infinite: assumes "06=1"
shows
"R+ /∈ Fin(R)"

"R /∈ Fin(R)"

using assms Ring_ZF_1_L17 OrdRing_ZF_1_L4 group3.Linord_group_infinite

by auto

If every element of a nontrivial ordered ring can be dominated by an element
from B, then we B is not bounded and not finite.

lemma (in ring1) OrdRing_ZF_3_L4:

assumes "06=1" and "∀ a∈R. ∃ b∈B. a≤b"
shows
"¬IsBoundedAbove(B,r)"
"B /∈ Fin(R)"

using assms Ring_ZF_1_L17 OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_2_L2A

by auto
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If m is greater or equal the multiplicative unit, then the set {m · n : n ∈ R}
is infinite (unless the ring is trivial).

lemma (in ring1) OrdRing_ZF_3_L5: assumes A1: "0 6=1" and A2: "1≤m"
shows
"{m·x. x∈R+} /∈ Fin(R)"

"{m·x. x∈R} /∈ Fin(R)"

"{(-m)·x. x∈R} /∈ Fin(R)"

proof -

from A2 have T: "m∈R" using OrdRing_ZF_1_L3 by simp

from A2 have "0≤1" "1≤m"
using ordring_one_is_nonneg by auto

then have I: "0≤m" by (rule ring_ord_transitive)

let ?B = "{m·x. x∈R+}"
{ fix a assume A3: "a∈R"

then have "a≤0 ∨ (0≤a ∧ a 6=0)"
using ord_ring_split2 by simp

moreover
{ assume A4: "a≤0"

from A1 have "m·1 ∈ ?B" using ordring_one_is_pos

by auto

with T have "m∈?B" using Ring_ZF_1_L3 by simp

moreover from A4 I have "a≤m" by (rule ring_ord_transitive)

ultimately have "∃ b∈?B. a≤b" by blast }
moreover
{ assume A4: "0≤a ∧ a6=0"

with A3 have "m·a ∈ ?B" using PositiveSet_def

by auto

moreover
from A2 A4 have "1·a ≤ m·a" using OrdRing_ZF_1_L9

by simp

with A3 have "a ≤ m·a" using Ring_ZF_1_L3

by simp

ultimately have "∃ b∈?B. a≤b" by auto }
ultimately have "∃ b∈?B. a≤b" by auto

} then have "∀ a∈R. ∃ b∈?B. a≤b"
by simp

with A1 show "?B /∈ Fin(R)" using OrdRing_ZF_3_L4

by simp

moreover have "?B ⊆ {m·x. x∈R}"
using PositiveSet_def by auto

ultimately show "{m·x. x∈R} /∈ Fin(R)" using Fin_subset

by auto

with T show "{(-m)·x. x∈R} /∈ Fin(R)" using Ring_ZF_1_L18

by simp

qed

If m is less or equal than the negative of multiplicative unit, then the set
{m · n : n ∈ R} is infinite (unless the ring is trivial).

lemma (in ring1) OrdRing_ZF_3_L6: assumes A1: "0 6=1" and A2: "m ≤ -1"
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shows "{m·x. x∈R} /∈ Fin(R)"

proof -

from A2 have "(-(-1)) ≤ -m"

using OrdRing_ZF_1_L4B by simp

with A1 have "{(-m)·x. x∈R} /∈ Fin(R)"

using Ring_ZF_1_L2 Ring_ZF_1_L3 OrdRing_ZF_3_L5

by simp

with A2 show "{m·x. x∈R} /∈ Fin(R)"

using OrdRing_ZF_1_L3 Ring_ZF_1_L18 by simp

qed

All elements greater or equal than an element of R+ belong to R+. Property
of ordered groups.

lemma (in ring1) OrdRing_ZF_3_L7: assumes A1: "a ∈ R+" and A2: "a≤b"
shows "b ∈ R+"

proof -

from A1 A2 have
"group3(R,A,r)"

"a ∈ PositiveSet(R,A,r)"

"〈a,b〉 ∈ r"

using OrdRing_ZF_1_L4 by auto

then have "b ∈ PositiveSet(R,A,r)"

by (rule group3.OrderedGroup_ZF_1_L19)

then show "b ∈ R+" by simp

qed

A special case of OrdRing_ZF_3_L7: a ring element greater or equal than 1 is
positive.

corollary (in ring1) OrdRing_ZF_3_L8: assumes A1: "0 6=1" and A2: "1≤a"
shows "a ∈ R+"

proof -

from A1 A2 have "1 ∈ R+" "1≤a"
using ordring_one_is_pos by auto

then show "a ∈ R+" by (rule OrdRing_ZF_3_L7)

qed

Adding a positive element to a strictly increases a. Property of ordered
groups.

lemma (in ring1) OrdRing_ZF_3_L9: assumes A1: "a∈R" "b∈R+"
shows "a ≤ a+b" "a 6= a+b"

using assms OrdRing_ZF_1_L4 group3.OrderedGroup_ZF_1_L22

by auto

A special case of OrdRing_ZF_3_L9: in nontrivial rings adding one to a in-
creases a.

corollary (in ring1) OrdRing_ZF_3_L10: assumes A1: "0 6=1" and A2: "a∈R"
shows "a ≤ a+1" "a 6= a+1"
using assms ordring_one_is_pos OrdRing_ZF_3_L9
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by auto

If a is not greater than b, then it is strictly less than b+ 1.

lemma (in ring1) OrdRing_ZF_3_L11: assumes A1: "0 6=1" and A2: "a≤b"
shows "a< b+1"

proof -

from A1 A2 have I: "b < b+1"
using OrdRing_ZF_1_L3 OrdRing_ZF_3_L10 by auto

with A2 show "a< b+1" by (rule ring_strict_ord_transit)

qed

For any ring element a the greater of a and 1 is a positive element that is
greater or equal than m. If we add 1 to it we get a positive element that is
strictly greater than m. This holds in nontrivial rings.

lemma (in ring1) OrdRing_ZF_3_L12: assumes A1: "0 6=1" and A2: "a∈R"
shows
"a ≤ GreaterOf(r,1,a)"
"GreaterOf(r,1,a) ∈ R+"

"GreaterOf(r,1,a) + 1 ∈ R+"

"a ≤ GreaterOf(r,1,a) + 1" "a 6= GreaterOf(r,1,a) + 1"
proof -

from linord have "r {is total on} R" using IsLinOrder_def

by simp

moreover from A2 have "1 ∈ R" "a∈R"
using Ring_ZF_1_L2 by auto

ultimately have
"1 ≤ GreaterOf(r,1,a)" and
I: "a ≤ GreaterOf(r,1,a)"
using Order_ZF_3_L2 by auto

with A1 show
"a ≤ GreaterOf(r,1,a)" and
"GreaterOf(r,1,a) ∈ R+"

using OrdRing_ZF_3_L8 by auto

with A1 show "GreaterOf(r,1,a) + 1 ∈ R+"

using ordring_one_is_pos OrdRing_ZF_3_L1 IsOpClosed_def

by simp

from A1 I show
"a ≤ GreaterOf(r,1,a) + 1" "a 6= GreaterOf(r,1,a) + 1"
using OrdRing_ZF_3_L11 by auto

qed

We can multiply strict inequality by a positive element.

lemma (in ring1) OrdRing_ZF_3_L13:

assumes A1: "HasNoZeroDivs(R,A,M)" and
A2: "a<b" and A3: "c∈R+"
shows
"a·c < b·c"
"c·a < c·b"
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proof -

from A2 A3 have T: "a∈R" "b∈R" "c∈R" "c6=0"
using OrdRing_ZF_1_L3 PositiveSet_def by auto

from A2 A3 have "a·c ≤ b·c" using OrdRing_ZF_1_L9A

by simp

moreover from A1 A2 T have "a·c 6= b·c"
using Ring_ZF_1_L12A by auto

ultimately show "a·c < b·c" by simp

moreover from mult_commut T have "a·c = c·a" and "b·c = c·b"
using IsCommutative_def by auto

ultimately show "c·a < c·b" by simp

qed

A sufficient condition for an element to be in the set of positive ring elements.

lemma (in ring1) OrdRing_ZF_3_L14: assumes "0≤a" and "a 6=0"
shows "a ∈ R+"

using assms OrdRing_ZF_1_L3 PositiveSet_def

by auto

If a ring has no zero divisors, the square of a nonzero element is positive.

lemma (in ring1) OrdRing_ZF_3_L15:

assumes "HasNoZeroDivs(R,A,M)" and "a∈R" "a6=0"
shows "0 ≤ a2" "a2 6= 0" "a2 ∈ R+"

using assms OrdRing_ZF_1_L10 Ring_ZF_1_L12 OrdRing_ZF_3_L14

by auto

In rings with no zero divisors we can (strictly) increase a positive element
by multiplying it by an element that is greater than 1.

lemma (in ring1) OrdRing_ZF_3_L16:

assumes "HasNoZeroDivs(R,A,M)" and "a ∈ R+" and "1≤b" "1 6=b"

shows "a≤a·b" "a 6= a·b"
using assms PositiveSet_def OrdRing_ZF_1_L16 OrdRing_ZF_1_L3

Ring_ZF_1_L12C by auto

If the right hand side of an inequality is positive we can multiply it by a
number that is greater than one.

lemma (in ring1) OrdRing_ZF_3_L17:

assumes A1: "HasNoZeroDivs(R,A,M)" and A2: "b∈R+" and
A3: "a≤b" and A4: "1<c"
shows "a<b·c"

proof -

from A1 A2 A4 have "b < b·c"
using OrdRing_ZF_3_L16 by auto

with A3 show "a<b·c" by (rule ring_strict_ord_transit)

qed

We can multiply a right hand side of an inequality between positive numbers
by a number that is greater than one.

394



lemma (in ring1) OrdRing_ZF_3_L18:

assumes A1: "HasNoZeroDivs(R,A,M)" and A2: "a ∈ R+" and
A3: "a≤b" and A4: "1<c"
shows "a<b·c"

proof -

from A2 A3 have "b ∈ R+" using OrdRing_ZF_3_L7

by blast

with A1 A3 A4 show "a<b·c"
using OrdRing_ZF_3_L17 by simp

qed

In ordered rings with no zero divisors if at least one of a, b is not zero, then
0 < a2 + b2, in particular a2 + b2 6= 0.

lemma (in ring1) OrdRing_ZF_3_L19:

assumes A1: "HasNoZeroDivs(R,A,M)" and A2: "a∈R" "b∈R" and
A3: "a 6= 0 ∨ b 6= 0"
shows "0 < a2 + b2"

proof -

{ assume "a 6= 0"
with A1 A2 have "0 ≤ a2" "a2 6= 0"

using OrdRing_ZF_3_L15 by auto

then have "0 < a2" by auto

moreover from A2 have "0 ≤ b2"

using OrdRing_ZF_1_L10 by simp

ultimately have "0 + 0 < a2 + b2"

using OrdRing_ZF_1_L19 by simp

then have "0 < a2 + b2"

using Ring_ZF_1_L2 Ring_ZF_1_L3 by simp }
moreover
{ assume A4: "a = 0"

then have "a2 + b2 = 0 + b2"

using Ring_ZF_1_L2 Ring_ZF_1_L6 by simp

also from A2 have ". . . = b2"

using Ring_ZF_1_L4 Ring_ZF_1_L3 by simp

finally have "a2 + b2 = b2" by simp

moreover
from A3 A4 have "b 6= 0" by simp

with A1 A2 have "0 ≤ b2" and "b2 6= 0"
using OrdRing_ZF_3_L15 by auto

hence "0 < b2" by auto

ultimately have "0 < a2 + b2" by simp }
ultimately show "0 < a2 + b2"

by auto

qed

end
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37 Cardinal numbers

theory Cardinal_ZF imports CardinalArith func1

begin

This theory file deals with results on cardinal numbers (cardinals). Cardinals
are a genaralization of the natural numbers, used to measure the cardinality
(size) of sets. Contributed by Daniel de la Concepcion.

37.1 Some new ideas on cardinals

All the results of this section are done without assuming the Axiom of
Choice. With the Axiom of Choice in play, the proofs become easier and
some of the assumptions may be dropped.

Since General Topology Theory is closely related to Set Theory, it is very
interesting to make use of all the possibilities of Set Theory to try to classify
homeomorphic topological spaces. These ideas are generally used to prove
that two topological spaces are not homeomorphic.

There exist cardinals which are the successor of another cardinal, but; as
happens with ordinals, there are cardinals which are limit cardinal.

definition
"LimitC(i) ≡ Card(i) ∧ 0<i ∧ (∀ y. (y<i∧Card(y)) −→ csucc(y)<i)"

Simple fact used a couple of times in proofs.

lemma nat_less_infty: assumes "n∈nat" and "InfCard(X)" shows "n<X"

proof -

from assms have "n<nat" and "nat≤X" using lt_def InfCard_def by auto

then show "n<X" using lt_trans2 by blast

qed

There are three types of cardinals, the zero one, the succesors of other car-
dinals and the limit cardinals.

lemma Card_cases_disj:

assumes "Card(i)"

shows "i=0 | (∃ j. Card(j) ∧ i=csucc(j)) | LimitC(i)"

proof-
from assms have D: "Ord(i)" using Card_is_Ord by auto

{
assume F: "i 6=0"

assume Contr: "~LimitC(i)"

from F D have "0<i" using Ord_0_lt by auto

with Contr assms have "∃ y. y < i ∧ Card(y) ∧ ¬ csucc(y) < i"

using LimitC_def by blast

then obtain y where " y < i ∧ Card(y) ∧ ¬ csucc(y) < i" by blast

with D have " y < i" " i≤csucc(y)" and O: "Card(y)"

396



using not_lt_imp_le lt_Ord Card_csucc Card_is_Ord

by auto

with assms have "csucc(y)≤i""i≤csucc(y)" using csucc_le by auto

then have "i=csucc(y)" using le_anti_sym by auto

with O have "∃ j. Card(j) ∧ i=csucc(j)" by auto

} thus ?thesis by auto

qed

Given an ordinal bounded by a cardinal in ordinal order, we can change to
the order of sets.

lemma le_imp_lesspoll:

assumes "Card(Q)"

shows "A ≤ Q =⇒ A . Q"

proof -

assume "A ≤ Q"

then have "A<Q∨A=Q" using le_iff by auto

then have "A≈Q∨A< Q" using eqpoll_refl by auto

with assms have "A≈Q∨A≺ Q" using lt_Card_imp_lesspoll by auto

then show "A.Q" using lesspoll_def eqpoll_imp_lepoll by auto

qed

There are two types of infinite cardinals, the natural numbers and those that
have at least one infinite strictly smaller cardinal.

lemma InfCard_cases_disj:

assumes "InfCard(Q)"

shows "Q=nat ∨ (∃ j. csucc(j).Q ∧ InfCard(j))"

proof-
{

assume "∀ j. ¬ csucc(j) . Q ∨ ¬ InfCard(j)"

then have D: "¬ csucc(nat) . Q" using InfCard_nat by auto

with D assms have "¬(csucc(nat) ≤ Q)" using le_imp_lesspoll InfCard_is_Card

by auto

with assms have "Q<(csucc(nat))"

using not_le_iff_lt Card_is_Ord Card_csucc Card_is_Ord

Card_is_Ord InfCard_is_Card Card_nat by auto

with assms have "Q≤nat" using Card_lt_csucc_iff InfCard_is_Card Card_nat

by auto

with assms have "Q=nat" using InfCard_def le_anti_sym by auto

}
thus ?thesis by auto

qed

A more readable version of standard Isabelle/ZF Ord_linear_lt

lemma Ord_linear_lt_IML: assumes "Ord(i)" "Ord(j)"

shows "i<j ∨ i=j ∨ j<i"

using assms lt_def Ord_linear disjE by simp
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A set is injective and not bijective to the successor of a cardinal if and only
if it is injective and possibly bijective to the cardinal.

lemma Card_less_csucc_eq_le:

assumes "Card(m)"

shows "A ≺ csucc(m) ←→ A . m"

proof
have S: "Ord(csucc(m))" using Card_csucc Card_is_Ord assms by auto

{
assume A: "A ≺ csucc(m)"

with S have "|A|≈A" using lesspoll_imp_eqpoll by auto

also from A have ". . .≺ csucc(m)" by auto

finally have "|A|≺ csucc(m)" by auto

then have "|A|.csucc(m)""~(|A|≈csucc(m))" using lesspoll_def by
auto

with S have "||A||≤csucc(m)""|A|6=csucc(m)" using lepoll_cardinal_le

by auto

then have "|A|≤csucc(m)" "|A|6=csucc(m)" using Card_def Card_cardinal

by auto

then have I: "~(csucc(m)<|A|)" "|A|6=csucc(m)" using le_imp_not_lt

by auto

from S have "csucc(m)<|A| ∨ |A|=csucc(m) ∨ |A|<csucc(m)"

using Card_cardinal Card_is_Ord Ord_linear_lt_IML by auto

with I have "|A|<csucc(m)" by simp

with assms have "|A|≤m" using Card_lt_csucc_iff Card_cardinal

by auto

then have "|A|=m∨ |A|< m" using le_iff by auto

then have "|A|≈m∨|A|< m" using eqpoll_refl by auto

then have "|A|≈m∨|A|≺ m" using lt_Card_imp_lesspoll assms by auto

then have T:"|A|.m" using lesspoll_def eqpoll_imp_lepoll by auto

from A S have "A≈|A|" using lesspoll_imp_eqpoll eqpoll_sym by auto

also from T have ". . ..m" by auto

finally show "A.m" by simp

}
{

assume A: "A.m"
from assms have "m≺csucc(m)" using lt_Card_imp_lesspoll Card_csucc

Card_is_Ord

lt_csucc by auto

with A show "A≺csucc(m)" using lesspoll_trans1 by auto

}
qed

If the successor of a cardinal is infinite, so is the original cardinal.

lemma csucc_inf_imp_inf:

assumes "Card(j)" and "InfCard(csucc(j))"

shows "InfCard(j)"

proof-
{

assume f:"Finite (j)"
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then obtain n where "n∈nat" "j≈n" using Finite_def by auto

with assms(1) have TT: "j=n" "n∈nat"
using cardinal_cong nat_into_Card Card_def by auto

then have Q:"succ(j)∈nat" using nat_succI by auto

with f TT have T: "Finite(succ(j))" "Card(succ(j))"

using nat_into_Card nat_succI by auto

from T(2) have "Card(succ(j))∧ j<succ(j)" using Card_is_Ord by auto

moreover from this have "Ord(succ(j))" using Card_is_Ord by auto

moreover
{ fix x

assume A: "x<succ(j)"

{
assume "Card(x)∧ j<x"

with A have "False" using lt_trans1 by auto

}
hence "~(Card(x)∧ j<x)" by auto

}
ultimately have "(µ L. Card(L) ∧ j < L)=succ(j)"

by (rule Least_equality)

then have "csucc(j)=succ(j)" using csucc_def by auto

with Q have "csucc(j)∈nat" by auto

then have "csucc(j)<nat" using lt_def Card_nat Card_is_Ord by auto

with assms(2) have "False" using InfCard_def lt_trans2 by auto

}
then have "~(Finite (j))" by auto

with assms(1) show ?thesis using Inf_Card_is_InfCard by auto

qed

Since all the cardinals previous to nat are finite, it cannot be a successor
cardinal; hence it is a LimitC cardinal.

corollary LimitC_nat:

shows "LimitC(nat)"

proof-
note Card_nat

moreover have "0<nat" using lt_def by auto

moreover
{

fix y

assume AS: "y<nat""Card(y)"

then have ord: "Ord(y)" unfolding lt_def by auto

then have Cacsucc: "Card(csucc(y))" using Card_csucc by auto

{
assume "nat≤csucc(y)"
with Cacsucc have "InfCard(csucc(y))" using InfCard_def by auto

with AS(2) have "InfCard(y)" using csucc_inf_imp_inf by auto

then have "nat≤y" using InfCard_def by auto

with AS(1) have "False" using lt_trans2 by auto

}
hence "~(nat≤csucc(y))" by auto
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then have "csucc(y)<nat" using not_le_iff_lt Ord_nat Cacsucc Card_is_Ord

by auto

}
ultimately show ?thesis using LimitC_def by auto

qed

37.2 Main result on cardinals (without the Axiom of Choice)

If two sets are strictly injective to an infinite cardinal, then so is its union.
For the case of successor cardinal, this theorem is done in the isabelle library
in a more general setting; but that theorem is of not use in the case where
LimitC(Q) and it also makes use of the Axiom of Choice. The mentioned
theorem is in the theory file Cardinal_AC.thy

Note that if Q is finite and different from 1, let’s assume Q = n, then the
union of A and B is not bounded by Q. Counterexample: two disjoint sets
of n− 1 elements each have a union of 2n− 2 elements which are more than
n.

Note also that if Q = 1 then A and B must be empty and the union is then
empty too; and Q cannot be 0 because no set is injective and not bijective
to 0.

The proof is divided in two parts, first the case when both sets A and B
are finite; and second, the part when at least one of them is infinite. In the
first part, it is used the fact that a finite union of finite sets is finite. In the
second part it is used the linear order on cardinals (ordinals). This proof
can not be generalized to a setting with an infinite union easily.

lemma less_less_imp_un_less:

assumes "A≺Q" and "B≺Q" and "InfCard(Q)"

shows "A ∪ B≺Q"
proof-
{

assume "Finite (A) ∧ Finite(B)"

then have "Finite(A ∪ B)" using Finite_Un by auto

then obtain n where R: "A ∪ B ≈n" "n∈nat" using Finite_def

by auto

then have "|A ∪ B|<nat" using lt_def cardinal_cong

nat_into_Card Card_def Card_nat Card_is_Ord by auto

with assms(3) have T: "|A ∪ B|<Q" using InfCard_def lt_trans2 by auto

from R have "Ord(n)""A ∪ B . n" using nat_into_Card Card_is_Ord eqpoll_imp_lepoll

by auto

then have "A ∪ B≈|A ∪ B|" using lepoll_Ord_imp_eqpoll eqpoll_sym by
auto

also from T assms(3) have ". . .≺Q" using lt_Card_imp_lesspoll InfCard_is_Card

by auto

finally have "A ∪ B≺Q" by simp

}
moreover
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{
assume "~(Finite (A) ∧ Finite(B))"

hence A: "~Finite (A) ∨ ~Finite(B)" by auto

from assms have B: "|A|≈A" "|B|≈B" using lesspoll_imp_eqpoll lesspoll_imp_eqpoll

InfCard_is_Card Card_is_Ord by auto

from B(1) have Aeq: "∀ x. (|A|≈x) −→ (A≈x)"
using eqpoll_sym eqpoll_trans by blast

from B(2) have Beq: "∀ x. (|B|≈x) −→ (B≈x)"
using eqpoll_sym eqpoll_trans by blast

with A Aeq have "~Finite(|A|)∨ ~Finite(|B|)" using Finite_def

by auto

then have D: "InfCard(|A|)∨InfCard(|B|)"
using Inf_Card_is_InfCard Inf_Card_is_InfCard Card_cardinal by blast

{
assume AS: "|A| < |B|"

{
assume "~InfCard(|A|)"

with D have "InfCard(|B|)" by auto

}
moreover
{

assume "InfCard(|A|)"

then have "nat≤|A|" using InfCard_def by auto

with AS have "nat<|B|" using lt_trans1 by auto

then have "nat≤|B|" using leI by auto

then have "InfCard(|B|)" using InfCard_def Card_cardinal by auto

}
ultimately have INFB: "InfCard(|B|)" by auto

then have "2<|B|" using nat_less_infty by simp

then have AG: "2.|B|" using lt_Card_imp_lesspoll Card_cardinal lesspoll_def

by auto

from B(2) have "|B|≈B" by simp

also from assms(2) have ". . .≺Q" by auto

finally have TTT: "|B|≺Q" by simp

from B(1) have "Card(|B|)" "A .|A|" using eqpoll_sym Card_cardinal

eqpoll_imp_lepoll

by auto

with AS have "A≺|B|" using lt_Card_imp_lesspoll lesspoll_trans1

by auto

then have I1: "A.|B|" using lesspoll_def by auto

from B(2) have I2: "B.|B|" using eqpoll_sym eqpoll_imp_lepoll by
auto

have "A ∪ B.A+B" using Un_lepoll_sum by auto

also from I1 I2 have ". . .. |B| + |B|" using sum_lepoll_mono by auto

also from AG have ". . ..|B| * |B|" using sum_lepoll_prod by auto

also from assms(3) INFB have ". . .≈|B|" using InfCard_square_eqpoll

by auto

finally have "A ∪ B.|B|" by simp

also from TTT have ". . .≺Q" by auto
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finally have "A ∪ B≺Q" by simp

}
moreover
{

assume AS: "|B| < |A|"

{
assume "~InfCard(|B|)"

with D have "InfCard(|A|)" by auto

}
moreover
{

assume "InfCard(|B|)"

then have "nat≤|B|" using InfCard_def by auto

with AS have "nat<|A|" using lt_trans1 by auto

then have "nat≤|A|" using leI by auto

then have "InfCard(|A|)" using InfCard_def Card_cardinal by auto

}
ultimately have INFB: "InfCard(|A|)" by auto

then have "2<|A|" using nat_less_infty by simp

then have AG: "2.|A|" using lt_Card_imp_lesspoll Card_cardinal lesspoll_def

by auto

from B(1) have "|A|≈A" by simp

also from assms(1) have ". . .≺Q" by auto

finally have TTT: "|A|≺Q" by simp

from B(2) have "Card(|A|)" "B .|B|" using eqpoll_sym Card_cardinal

eqpoll_imp_lepoll

by auto

with AS have "B≺|A|" using lt_Card_imp_lesspoll lesspoll_trans1

by auto

then have I1: "B.|A|" using lesspoll_def by auto

from B(1) have I2: "A.|A|" using eqpoll_sym eqpoll_imp_lepoll by
auto

have "A ∪ B.A+B" using Un_lepoll_sum by auto

also from I1 I2 have ". . .. |A| + |A|" using sum_lepoll_mono by auto

also from AG have ". . ..|A| * |A|" using sum_lepoll_prod by auto

also from INFB assms(3) have ". . .≈|A|" using InfCard_square_eqpoll

by auto

finally have "A ∪ B.|A|" by simp

also from TTT have ". . .≺Q" by auto

finally have "A ∪ B≺Q" by simp

}
moreover
{

assume AS: "|A|=|B|"

with D have INFB: "InfCard(|A|)" by auto

then have "2<|A|" using nat_less_infty by simp

then have AG: "2.|A|" using lt_Card_imp_lesspoll Card_cardinal

using lesspoll_def

by auto
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from B(1) have "|A|≈A" by simp

also from assms(1) have ". . .≺Q" by auto

finally have TTT: "|A|≺Q" by simp

from AS B have I1: "A.|A|"and I2:"B.|A|" using eqpoll_refl eqpoll_imp_lepoll

eqpoll_sym by auto

have "A ∪ B.A+B" using Un_lepoll_sum by auto

also from I1 I2 have ". . .. |A| + |A|" using sum_lepoll_mono by auto

also from AG have ". . ..|A| * |A|" using sum_lepoll_prod by auto

also from assms(3) INFB have ". . .≈|A|" using InfCard_square_eqpoll

by auto

finally have "A ∪ B.|A|" by simp

also from TTT have ". . .≺Q" by auto

finally have "A ∪ B≺Q" by simp

}
ultimately have "A ∪ B≺Q" using Ord_linear_lt_IML Card_cardinal Card_is_Ord

by auto

}
ultimately show "A ∪ B≺Q" by auto

qed

37.3 Choice axioms

We want to prove some theorems assuming that some version of the Axiom
of Choice holds. To avoid introducing it as an axiom we will defin an ap-
propriate predicate and put that in the assumptions of the theorems. That
way technically we stay inside ZF.

The first predicate we define states that the axiom of Q-choice holds for
subsets of K if we can find a choice function for every family of subsets of
K whose (that family’s) cardinality does not exceed Q.

definition
AxiomCardinalChoice ("{the axiom of}_{choice holds for subsets}_") where
"{the axiom of} Q {choice holds for subsets}K ≡ Card(Q) ∧ (∀ M N. (M

.Q ∧ (∀ t∈M. N‘t6=0 ∧ N‘t⊆K)) −→ (∃ f. f:Pi(M,λt. N‘t) ∧ (∀ t∈M. f‘t∈N‘t)))"

Next we define a general form of Q choice where we don’t require a collection
of files to be included in a file.

definition
AxiomCardinalChoiceGen ("{the axiom of}_{choice holds}") where
"{the axiom of} Q {choice holds} ≡ Card(Q) ∧ (∀ M N. (M .Q ∧ (∀ t∈M.

N‘t6=0)) −→ (∃ f. f:Pi(M,λt. N‘t) ∧ (∀ t∈M. f‘t∈N‘t)))"

The axiom of finite choice always holds.

theorem finite_choice:

assumes "n∈nat"
shows "{the axiom of} n {choice holds}"

proof -

note assms(1)
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moreover
{

fix M N assume "M.0" "∀ t∈M. N‘t6=0"

then have "M=0" using lepoll_0_is_0 by auto

then have "{〈t,0〉. t∈M}:Pi(M,λt. N‘t)" unfolding Pi_def domain_def

function_def Sigma_def by auto

moreover from ‘M=0‘ have "∀ t∈M. {〈t,0〉. t∈M}‘t∈N‘t" by auto

ultimately have "(∃ f. f:Pi(M,λt. N‘t) ∧ (∀ t∈M. f‘t∈N‘t))" by auto

}
then have "(∀ M N. (M .0 ∧ (∀ t∈M. N‘t6=0)) −→ (∃ f. f:Pi(M,λt. N‘t)

∧ (∀ t∈M. f‘t∈N‘t)))"
by auto

then have "{the axiom of} 0 {choice holds}" using AxiomCardinalChoiceGen_def

nat_into_Card

by auto

moreover {
fix x

assume as: "x∈nat" "{the axiom of} x {choice holds}"

{
fix M N assume ass: "M.succ(x)" "∀ t∈M. N‘t6=0"

{
assume "M.x"
from as(2) ass(2) have
"(M . x ∧ (∀ t∈M. N ‘ t 6= 0)) −→ (∃ f. f ∈ Pi(M,λt. N ‘ t)

∧ (∀ t∈M. f ‘ t ∈ N ‘ t))"

unfolding AxiomCardinalChoiceGen_def by auto

with ‘M.x‘ ass(2) have "(∃ f. f ∈ Pi(M,λt. N ‘ t) ∧ (∀ t∈M. f

‘ t ∈ N ‘ t))"

by auto

}
moreover
{

assume "M≈succ(x)"
then obtain f where f:"f∈bij(succ(x),M)" using eqpoll_sym eqpoll_def

by blast

moreover
have "x∈succ(x)" unfolding succ_def by auto

ultimately have "restrict(f,succ(x)-{x})∈bij(succ(x)-{x},M-{f‘x})"
using bij_restrict_rem

by auto

moreover
have "x/∈x" using mem_not_refl by auto

then have "succ(x)-{x}=x" unfolding succ_def by auto

ultimately have "restrict(f,x)∈bij(x,M-{f‘x})" by auto

then have "x≈M-{f‘x}" unfolding eqpoll_def by auto

then have "M-{f‘x}≈x" using eqpoll_sym by auto

then have "M-{f‘x}.x" using eqpoll_imp_lepoll by auto

with as(2) ass(2) have "(∃ g. g ∈ Pi(M-{f‘x},λt. N ‘ t) ∧ (∀ t∈M-{f‘x}.
g ‘ t ∈ N ‘ t))"
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unfolding AxiomCardinalChoiceGen_def by auto

then obtain g where g: "g∈ Pi(M-{f‘x},λt. N ‘ t)" "∀ t∈M-{f‘x}.
g ‘ t ∈ N ‘ t"

by auto

from f have ff: "f‘x∈M" using bij_def inj_def apply_funtype by
auto

with ass(2) have "N‘(f‘x)6=0" by auto

then obtain y where y: "y∈N‘(f‘x)" by auto

from g(1) have gg: "g⊆Sigma(M-{f‘x},op ‘(N))" unfolding Pi_def

by auto

with y ff have "g ∪{〈f‘x, y〉}⊆Sigma(M, op ‘(N))" unfolding Sigma_def

by auto

moreover
from g(1) have dom: "M-{f‘x}⊆domain(g)" unfolding Pi_def by

auto

then have "M⊆domain(g ∪{〈f‘x, y〉})" unfolding domain_def by auto

moreover
from gg g(1) have noe: "~(∃ t. 〈f‘x,t〉∈g)" and "function(g)"

unfolding domain_def Pi_def Sigma_def by auto

with dom have fg: "function(g ∪{〈f‘x, y〉})" unfolding function_def

by blast

ultimately have PP: "g ∪{〈f‘x, y〉}∈Pi(M,λt. N ‘ t)" unfolding
Pi_def by auto

have "〈f‘x, y〉 ∈ g ∪{〈f‘x, y〉}" by auto

from this fg have "(g ∪{〈f‘x, y〉})‘(f‘x)=y" by (rule function_apply_equality)

with y have "(g ∪{〈f‘x, y〉})‘(f‘x)∈N‘(f‘x)" by auto

moreover
{

fix t assume A:"t∈M-{f‘x}"
with g(1) have "〈t,g‘t〉∈g" using apply_Pair by auto

then have "〈t,g‘t〉∈(g ∪{〈f‘x, y〉})" by auto

then have "(g ∪{〈f‘x, y〉})‘t=g‘t" using apply_equality PP by
auto

with A have "(g ∪{〈f‘x, y〉})‘t∈N‘t" using g(2) by auto

}
ultimately have "∀ t∈M. (g ∪{〈f‘x, y〉})‘t∈N‘t" by auto

with PP have "∃ g. g∈Pi(M,λt. N ‘ t) ∧ (∀ t∈M. g‘t∈N‘t)" by auto

}
ultimately have "∃ g. g ∈ Pi(M, λt. N‘t) ∧ (∀ t∈M. g ‘ t ∈ N ‘ t)"

using as(1) ass(1)

lepoll_succ_disj by auto

}
then have "∀ M N. M . succ(x)∧(∀ t∈M. N‘t6=0)−→(∃ g. g ∈ Pi(M,λt.

N ‘ t) ∧ (∀ t∈M. g ‘ t ∈ N ‘ t))"

by auto

then have "{the axiom of}succ(x){choice holds}"

using AxiomCardinalChoiceGen_def nat_into_Card as(1) nat_succI by
auto
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}
ultimately show ?thesis by (rule nat_induct)

qed

The axiom of choice holds if and only if the AxiomCardinalChoice holds for
every couple of a cardinal Q and a set K.

lemma choice_subset_imp_choice:

shows "{the axiom of} Q {choice holds} ←→ (∀ K. {the axiom of} Q {choice

holds for subsets}K)"

unfolding AxiomCardinalChoice_def AxiomCardinalChoiceGen_def by blast

A choice axiom for greater cardinality implies one for smaller cardinality

lemma greater_choice_imp_smaller_choice:

assumes "Q.Q1" "Card(Q)"

shows "{the axiom of} Q1 {choice holds} −→ ({the axiom of} Q {choice

holds})" using assms

AxiomCardinalChoiceGen_def lepoll_trans by auto

If we have a surjective function from a set which is injective to a set of
ordinals, then we can find an injection which goes the other way.

lemma surj_fun_inv:

assumes "f ∈ surj(A,B)" "A⊆Q" "Ord(Q)"

shows "B.A"
proof-

let ?g = "{〈m,µ j. j∈A ∧ f‘(j)=m〉. m∈B}"
have "?g:B→range(?g)" using lam_is_fun_range by simp

then have fun: "?g:B→?g‘‘(B)" using range_image_domain by simp

from assms(2,3) have OA: "∀ j∈A. Ord(j)" using lt_def Ord_in_Ord by
auto

{
fix x

assume "x∈?g‘‘(B)"
then have "x∈range(?g)" and "∃ y∈B. 〈y,x〉∈?g" by auto

then obtain y where T: "x=(µ j. j∈A∧ f‘(j)=y)" and "y∈B" by auto

with assms(1) OA obtain z where P: "z∈A ∧ f‘(z)=y" "Ord(z)" un-
folding surj_def

by auto

with T have "x∈A ∧ f‘(x)=y" using LeastI by simp

hence "x∈A" by simp

}
then have "?g‘‘(B) ⊆ A" by auto

with fun have fun2: "?g:B→A" using fun_weaken_type by auto

then have "?g∈inj(B,A)"
proof -

{
fix w x

assume AS: "?g‘w=?g‘x" "w∈B" "x∈B"
from assms(1) OA AS(2,3) obtain wz xz where
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P1: "wz∈A ∧ f‘(wz)=w" "Ord(wz)" and P2: "xz∈A ∧ f‘(xz)=x" "Ord(xz)"

unfolding surj_def by blast

from P1 have "(µ j. j∈A∧ f‘j=w) ∈ A ∧ f‘(µ j. j∈A∧ f‘j=w)=w"

by (rule LeastI)

moreover from P2 have "(µ j. j∈A∧ f‘j=x) ∈ A ∧ f‘(µ j. j∈A∧
f‘j=x)=x"

by (rule LeastI)

ultimately have R: "f‘(µ j. j∈A∧ f‘j=w)=w" "f‘(µ j. j∈A∧ f‘j=x)=x"

by auto

from AS have "(µ j. j∈A∧ f‘(j)=w)=(µ j. j∈A ∧ f‘(j)=x)"

using apply_equality fun2 by auto

hence "f‘(µ j. j∈A ∧ f‘(j)=w) = f‘(µ j. j∈A ∧ f‘(j)=x)" by auto

with R(1) have "w = f‘(µ j. j∈A∧ f‘j=x)" by auto

with R(2) have "w=x" by auto

}
hence "∀ w∈B. ∀ x∈B. ?g‘(w) = ?g‘(x) −→ w = x"

by auto

with fun2 show "?g∈inj(B,A)" unfolding inj_def by auto

qed
then show ?thesis unfolding lepoll_def by auto

qed

The difference with the previous result is that in this one A is not a subset
of an ordinal, it is only injective with one.

theorem surj_fun_inv_2:

assumes "f:surj(A,B)" "A.Q" "Ord(Q)"

shows "B.A"
proof-

from assms(2) obtain h where h_def: "h∈inj(A,Q)" using lepoll_def by
auto

then have bij: "h∈bij(A,range(h))" using inj_bij_range by auto

then obtain h1 where "h1∈bij(range(h),A)" using bij_converse_bij by
auto

then have "h1 ∈ surj(range(h),A)" using bij_def by auto

with assms(1) have "(f O h1)∈surj(range(h),B)" using comp_surj by auto

moreover
{

fix x

assume p: "x∈range(h)"
from bij have "h∈surj(A,range(h))" using bij_def by auto

with p obtain q where "q∈A" and "h‘(q)=x" using surj_def by auto

then have "x∈Q" using h_def inj_def by auto

}
then have "range(h)⊆Q" by auto

ultimately have "B.range(h)" using surj_fun_inv assms(3) by auto

moreover have "range(h)≈A" using bij eqpoll_def eqpoll_sym by blast
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ultimately show "B.A" using lepoll_eq_trans by auto

qed

end

38 Groups 4

theory Group_ZF_4 imports Group_ZF_1 Group_ZF_2 Finite_ZF Ring_ZF

Cardinal_ZF Semigroup_ZF

begin

This theory file deals with normal subgroup test and some finite group the-
ory. Then we define group homomorphisms and prove that the set of endo-
morphisms forms a ring with unity and we also prove the first isomorphism
theorem.

38.1 Conjugation of subgroups

The conjugate of a subgroup is a subgroup.

theorem(in group0) semigr0:

shows "semigr0(G,P)"

unfolding semigr0_def using groupAssum IsAgroup_def IsAmonoid_def by
auto

theorem (in group0) conj_group_is_group:

assumes "IsAsubgroup(H,P)" "g∈G"
shows "IsAsubgroup({g·(h·g−1). h∈H},P)"

proof-
have sub:"H⊆G" using assms(1) group0_3_L2 by auto

from assms(2) have "g−1∈G" using inverse_in_group by auto

{
fix r assume "r∈{g·(h·g−1). h∈H}"
then obtain h where h:"h∈H" "r=g·(h·(g−1))" by auto

from h(1) have "h−1∈H" using group0_3_T3A assms(1) by auto

from h(1) sub have "h∈G" by auto

then have "h−1∈G" using inverse_in_group by auto

with ‘g−1∈G‘ have "((h−1)·(g)−1)∈G" using group_op_closed by auto

from h(2) have "r−1=(g·(h·(g−1)))−1" by auto moreover
from ‘h∈G‘ ‘g−1∈G‘ have s:"h·(g−1)∈G" using group_op_closed by blast

ultimately have "r−1=(h·(g−1))−1·(g)−1" using group_inv_of_two[OF assms(2)]

by auto

moreover
from s assms(2) h(2) have r:"r∈G" using group_op_closed by auto

have "(h·(g−1))−1=(g−1)−1·h−1" using group_inv_of_two[OF ‘h∈G‘‘g−1∈G‘]
by auto
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moreover have "(g−1)−1=g" using group_inv_of_inv[OF assms(2)] by
auto

ultimately have "r−1=(g·(h−1))·(g)−1" by auto

then have "r−1=g·((h−1)·(g)−1)" using group_oper_assoc[OF assms(2)

‘h−1∈G‘‘g−1∈G‘] by auto

with ‘h−1∈H‘ r have "r−1∈{g·(h·g−1). h∈H}" "r∈G" by auto

}
then have "∀ r∈{g·(h·g−1). h∈H}. r−1∈{g·(h·g−1). h∈H}" and "{g·(h·g−1).

h∈H}⊆G" by auto moreover
{

fix s t assume s:"s∈{g·(h·g−1). h∈H}" and t:"t∈{g·(h·g−1). h∈H}"
then obtain hs ht where hs:"hs∈H" "s=g·(hs·(g−1))" and ht:"ht∈H"

"t=g·(ht·(g−1))" by auto

from hs(1) have "hs∈G" using sub by auto

then have "g·hs∈G" using group_op_closed assms(2) by auto

then have "(g·hs)−1∈G" using inverse_in_group by auto

from ht(1) have "ht∈G" using sub by auto

with ‘g−1:G‘ have "ht·(g−1)∈G" using group_op_closed by auto

from hs(2) ht(2) have "s·t=(g·(hs·(g−1)))·(g·(ht·(g−1)))" by auto more-
over

have "g·(hs·(g−1))=g·hs·(g−1)" using group_oper_assoc[OF assms(2) ‘hs∈G‘
‘g−1∈G‘] by auto

then have "(g·(hs·(g−1)))·(g·(ht·(g−1)))=(g·hs·(g−1))·(g·(ht·(g−1)))"

by auto

then have "(g·(hs·(g−1)))·(g·(ht·(g−1)))=(g·hs·(g−1))·(g−1−1·(ht·(g−1)))"

using group_inv_of_inv[OF assms(2)] by auto

also have ". . .=g·hs·(ht·(g−1))" using group0_2_L14A(2)[OF ‘(g·hs)−1∈G‘
‘g−1∈G‘‘ht·(g−1)∈G‘] group_inv_of_inv[OF ‘(g·hs)∈G‘]

by auto

ultimately have "s·t=g·hs·(ht·(g−1))" by auto moreover
have "hs·(ht·(g−1))=(hs·ht)·(g−1)" using group_oper_assoc[OF ‘hs∈G‘‘ht∈G‘‘g−1∈G‘]

by auto moreover
have "g·hs·(ht·(g−1))=g·(hs·(ht·(g−1)))" using group_oper_assoc[OF ‘g∈G‘‘hs∈G‘‘(ht·g−1)∈G‘]

by auto

ultimately have "s·t=g·((hs·ht)·(g−1))" by auto moreover
from hs(1) ht(1) have "hs·ht∈H" using assms(1) group0_3_L6 by auto

ultimately have "s·t∈{g·(h·g−1). h∈H}" by auto

}
then have "{g·(h·g−1). h∈H} {is closed under}P" unfolding IsOpClosed_def

by auto moreover
from assms(1) have "1∈H" using group0_3_L5 by auto

then have "g·(1·g−1)∈{g·(h·g−1). h∈H}" by auto

then have "{g·(h·g−1). h∈H} 6=0" by auto ultimately
show ?thesis using group0_3_T3 by auto

qed

Every set is equipollent with its conjugates.

theorem (in group0) conj_set_is_eqpoll:

assumes "H⊆G" "g∈G"
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shows "H≈{g·(h·g−1). h∈H}"
proof-

have fun:"{〈h,g·(h·g−1)〉. h∈H}:H→{g·(h·g−1). h∈H}" unfolding Pi_def function_def

domain_def by auto

{
fix h1 h2 assume "h1∈H""h2∈H""{〈h,g·(h·g−1)〉. h∈H}‘h1={〈h,g·(h·g−1)〉.

h∈H}‘h2"
with fun have "g·(h1·g−1)=g·(h2·g−1)""h1·g−1∈G""h2·g−1∈G""h1∈G""h2∈G"

using apply_equality assms(1)

group_op_closed[OF _ inverse_in_group[OF assms(2)]] by auto

then have "h1·g−1=h2·g−1" using group0_2_L19(2)[OF ‘h1·g−1∈G‘ ‘h2·g−1∈G‘
assms(2)] by auto

then have "h1=h2" using group0_2_L19(1)[OF ‘h1∈G‘‘h2∈G‘ inverse_in_group[OF

assms(2)]] by auto

}
then have "∀ h1∈H. ∀ h2∈H. {〈h,g·(h·g−1)〉. h∈H}‘h1={〈h,g·(h·g−1)〉. h∈H}‘h2

−→ h1=h2" by auto

with fun have "{〈h,g·(h·g−1)〉. h∈H}∈inj(H,{g·(h·g−1). h∈H})" unfold-
ing inj_def by auto moreover
{

fix ghg assume "ghg∈{g·(h·g−1). h∈H}"
then obtain h where "h∈H" "ghg=g·(h·g−1)" by auto

then have "〈h,ghg〉∈{〈h,g·(h·g−1)〉. h∈H}" by auto

then have "{〈h,g·(h·g−1)〉. h∈H}‘h=ghg" using apply_equality fun by
auto

with ‘h∈H‘ have "∃ h∈H. {〈h,g·(h·g−1)〉. h∈H}‘h=ghg" by auto

}
with fun have "{〈h,g·(h·g−1)〉. h∈H}∈surj(H,{g·(h·g−1). h∈H})" unfold-

ing surj_def by auto

ultimately have "{〈h,g·(h·g−1)〉. h∈H}∈bij(H,{g·(h·g−1). h∈H})" unfold-
ing bij_def by auto

then show ?thesis unfolding eqpoll_def by auto

qed

Every normal subgroup contains its conjugate subgroups.

theorem (in group0) norm_group_cont_conj:

assumes "IsAnormalSubgroup(G,P,H)" "g∈G"
shows "{g·(h·g−1). h∈H}⊆H"

proof-
{

fix r assume "r∈{g·(h·g−1). h∈H}"
then obtain h where "r=g·(h·g−1)" "h∈H" by auto moreover
then have "h∈G" using group0_3_L2 assms(1) unfolding IsAnormalSubgroup_def

by auto moreover
from assms(2) have "g−1∈G" using inverse_in_group by auto

ultimately have "r=g·h·g−1" "h∈H" using group_oper_assoc assms(2) by
auto

then have "r∈H" using assms unfolding IsAnormalSubgroup_def by auto

}
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then show "{g·(h·g−1). h∈H}⊆H" by auto

qed

If a subgroup contains all its conjugate subgroups, then it is normal.

theorem (in group0) cont_conj_is_normal:

assumes "IsAsubgroup(H,P)" "∀ g∈G. {g·(h·g−1). h∈H}⊆H"
shows "IsAnormalSubgroup(G,P,H)"

proof-
{

fix h g assume "h∈H" "g∈G"
with assms(2) have "g·(h·g−1)∈H" by auto

moreover have "h∈G""g−1∈G" using group0_3_L2 assms(1) ‘g∈G‘‘h∈H‘
inverse_in_group by auto

ultimately have "g·h·g−1∈H" using group_oper_assoc ‘g∈G‘ by auto

}
then show ?thesis using assms(1) unfolding IsAnormalSubgroup_def by

auto

qed

If a group has only one subgroup of a given order, then this subgroup is
normal.

corollary(in group0) only_one_equipoll_sub:

assumes "IsAsubgroup(H,P)" "∀ M. IsAsubgroup(M,P)∧ H≈M −→ M=H"

shows "IsAnormalSubgroup(G,P,H)"

proof-
{

fix g assume g:"g∈G"
with assms(1) have "IsAsubgroup({g·(h·g−1). h∈H},P)" using conj_group_is_group

by auto

moreover
from assms(1) g have "H≈{g·(h·g−1). h∈H}" using conj_set_is_eqpoll

group0_3_L2 by auto

ultimately have "{g·(h·g−1). h∈H}=H" using assms(2) by auto

then have "{g·(h·g−1). h∈H}⊆H" by auto

}
then show ?thesis using cont_conj_is_normal assms(1) by auto

qed

The trivial subgroup is then a normal subgroup.

corollary(in group0) trivial_normal_subgroup:

shows "IsAnormalSubgroup(G,P,{1})"
proof-

have "{1}⊆G" using group0_2_L2 by auto

moreover have "{1} 6=0" by auto moreover
{

fix a b assume "a∈{1}""b∈{1}"
then have "a=1""b=1" by auto

then have "P‘〈a,b〉=1·1" by auto

then have "P‘〈a,b〉=1" using group0_2_L2 by auto
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then have "P‘〈a,b〉∈{1}" by auto

}
then have "{1}{is closed under}P" unfolding IsOpClosed_def by auto

moreover
{

fix a assume "a∈{1}"
then have "a=1" by auto

then have "a−1=1−1" by auto

then have "a−1=1" using group_inv_of_one by auto

then have "a−1∈{1}" by auto

}
then have "∀ a∈{1}. a−1∈{1}" by auto ultimately
have "IsAsubgroup({1},P)" using group0_3_T3 by auto moreover
{

fix M assume M:"IsAsubgroup(M,P)" "{1}≈M"
then have "1∈M" "M≈{1}" using eqpoll_sym group0_3_L5 by auto

then obtain f where "f∈bij(M,{1})" unfolding eqpoll_def by auto

then have inj:"f∈inj(M,{1})" unfolding bij_def by auto

then have fun:"f:M→{1}" unfolding inj_def by auto

{
fix b assume "b∈M""b6=1"
then have "f‘b 6=f‘1" using inj ‘1∈M‘ unfolding inj_def by auto

then have "False" using ‘b∈M‘ ‘1∈M‘ apply_type[OF fun] by auto

}
then have "M={1}" using ‘1∈M‘ by auto

}
ultimately show ?thesis using only_one_equipoll_sub by auto

qed

lemma(in group0) whole_normal_subgroup:

shows "IsAnormalSubgroup(G,P,G)"

unfolding IsAnormalSubgroup_def

using group_op_closed inverse_in_group

using group0_2_L2 group0_3_T3[of "G"] unfolding IsOpClosed_def

by auto

Since the whole group and the trivial subgroup are normal, it is natural to
define simplicity of groups in the following way:

definition
IsSimple ("[_,_]{is a simple group}" 89)

where "[G,f]{is a simple group} ≡ IsAgroup(G,f)∧(∀ M. IsAnormalSubgroup(G,f,M)

−→ M=G∨M={TheNeutralElement(G,f)})"

From the definition follows that if a group has no subgroups, then it is
simple.

corollary (in group0) noSubgroup_imp_simple:

assumes "∀ H. IsAsubgroup(H,P)−→ H=G∨H={1}"
shows "[G,P]{is a simple group}"

proof-
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have "IsAgroup(G,P)" using groupAssum. moreover
{

fix M assume "IsAnormalSubgroup(G,P,M)"

then have "IsAsubgroup(M,P)" unfolding IsAnormalSubgroup_def by auto

with assms have "M=G∨M={1}" by auto

}
ultimately show ?thesis unfolding IsSimple_def by auto

qed

Since every subgroup is normal in abelian groups, it follows that commuta-
tive simple groups do not have subgroups.

corollary (in group0) abelian_simple_noSubgroups:

assumes "[G,P]{is a simple group}" "P{is commutative on}G"

shows "∀ H. IsAsubgroup(H,P)−→ H=G∨H={1}"
proof(safe)

fix H assume A:"IsAsubgroup(H,P)""H 6= {1}"
then have "IsAnormalSubgroup(G,P,H)" using Group_ZF_2_4_L6(1) groupAssum

assms(2)

by auto

with assms(1) A show "H=G" unfolding IsSimple_def by auto

qed

38.2 Finite groups

The subgroup of a finite group is finite.

lemma(in group0) finite_subgroup:

assumes "Finite(G)" "IsAsubgroup(H,P)"

shows "Finite(H)"

using group0_3_L2 subset_Finite assms by force

The space of cosets is also finite. In particular, quotient groups.

lemma(in group0) finite_cosets:

assumes "Finite(G)" "IsAsubgroup(H,P)" "r=QuotientGroupRel(G,P,H)"

shows "Finite(G//r)"

proof-
have fun:"{〈g,r‘‘{g}〉. g∈G}:G→(G//r)" unfolding Pi_def function_def

domain_def by auto

{
fix C assume C:"C∈G//r"
then obtain c where c:"c∈C" using EquivClass_1_L5[OF Group_ZF_2_4_L1[OF

assms(2)]] assms(3) by auto

with C have "r‘‘{c}=C" using EquivClass_1_L2[OF Group_ZF_2_4_L3]

assms(2,3) by auto

with c C have "〈c,C〉∈{〈g,r‘‘{g}〉. g∈G}" using EquivClass_1_L1[OF Group_ZF_2_4_L3]

assms(2,3)

by auto

then have "{〈g,r‘‘{g}〉. g∈G}‘c=C" "c∈G" using apply_equality fun

by auto
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then have "∃ c∈G. {〈g,r‘‘{g}〉. g∈G}‘c=C" by auto

}
with fun have surj:"{〈g,r‘‘{g}〉. g∈G}∈surj(G,G//r)" unfolding surj_def

by auto moreover
from assms(1) obtain n where "n∈nat" "G≈n" unfolding Finite_def by

auto

then have G:"G.n" "Ord(n)" using eqpoll_imp_lepoll by auto

then have "G//r.G" using surj_fun_inv_2 surj by auto

with G(1) have "G//r.n" using lepoll_trans by blast

then show "Finite(G//r)" using lepoll_nat_imp_Finite ‘n∈nat‘ by auto

qed

All the cosets are equipollent.

lemma(in group0) cosets_equipoll:

assumes "IsAsubgroup(H,P)" "r=QuotientGroupRel(G,P,H)" "g1∈G""g2∈G"
shows "r‘‘{g1}≈r‘‘{g2}"

proof-
from assms(3,4) have GG:"(g1−1)·g2∈G" using inverse_in_group group_op_closed

by auto

then have "RightTranslation(G,P,(g1−1)·g2)∈bij(G,G)" using trans_bij(1)

by auto moreover
have sub2:"r‘‘{g2}⊆G" using EquivClass_1_L1[OF Group_ZF_2_4_L3[OF assms(1)]]

assms(2,4) unfolding quotient_def by auto

have sub:"r‘‘{g1}⊆G" using EquivClass_1_L1[OF Group_ZF_2_4_L3[OF assms(1)]]

assms(2,3) unfolding quotient_def by auto

ultimately have "restrict(RightTranslation(G,P,(g1−1)·g2),r‘‘{g1})∈bij(r‘‘{g1},RightTranslation(G,P,(g1−1)·g2)‘‘(r‘‘{g1}))"
using restrict_bij unfolding bij_def by auto

then have "r‘‘{g1}≈RightTranslation(G,P,(g1−1)·g2)‘‘(r‘‘{g1})" un-
folding eqpoll_def by auto

then have A0:"r‘‘{g1}≈{RightTranslation(G,P,(g1−1)·g2)‘t. t∈r‘‘{g1}}"
using func_imagedef[OF group0_5_L1(1)[OF GG] sub] by auto

{
fix t assume "t∈{RightTranslation(G,P,(g1−1)·g2)‘t. t∈r‘‘{g1}}"
then obtain q where q:"t=RightTranslation(G,P,(g1−1)·g2)‘q" "q∈r‘‘{g1}"

by auto

then have "〈g1,q〉∈r" "q∈G" using image_iff sub by auto

then have "g1·(q−1)∈H" "q−1∈G" using assms(2) inverse_in_group un-
folding QuotientGroupRel_def by auto

from q(1) have t:"t=q·((g1−1)·g2)" using group0_5_L2(1)[OF GG] q(2)

sub by auto

then have "g2·t−1=g2·(q·((g1−1)·g2))−1" by auto

then have "g2·t−1=g2·(((g1−1)·g2)−1·q−1)" using group_inv_of_two[OF

‘q∈G‘ GG] by auto

then have "g2·t−1=g2·(((g2−1)·g1−1−1)·q−1)" using group_inv_of_two[OF

inverse_in_group[OF assms(3)]

assms(4)] by auto

then have "g2·t−1=g2·(((g2−1)·g1)·q−1)" using group_inv_of_inv assms(3)

by auto moreover
have "t∈G" using t ‘q∈G‘ ‘g2∈G‘ inverse_in_group[OF assms(3)] group_op_closed
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by auto

have "(g2−1)·g1∈G" using assms(3) inverse_in_group[OF assms(4)] group_op_closed

by auto

with assms(4) ‘q−1∈G‘ have "g2·(((g2−1)·g1)·q−1)=g2·((g2−1)·g1)·q−1"

using group_oper_assoc by auto

moreover have "g2·((g2−1)·g1)=g2·(g2−1)·g1" using assms(3) inverse_in_group[OF

assms(4)] assms(4)

group_oper_assoc by auto

then have "g2·((g2−1)·g1)=g1" using group0_2_L6[OF assms(4)] group0_2_L2

assms(3) by auto ultimately
have "g2·t−1=g1·q−1" by auto

with ‘g1·(q−1)∈H‘ have "g2·t−1∈H" by auto

then have "〈g2,t〉∈r" using assms(2) unfolding QuotientGroupRel_def

using assms(4) ‘t∈G‘ by auto

then have "t∈r‘‘{g2}" using image_iff assms(4) by auto

}
then have A1:"{RightTranslation(G,P,(g1−1)·g2)‘t. t∈r‘‘{g1}}⊆r‘‘{g2}"

by auto

{
fix t assume "t∈r‘‘{g2}"
then have "〈g2,t〉∈r" "t∈G" using sub2 image_iff by auto

then have H:"g2·t−1∈H" using assms(2) unfolding QuotientGroupRel_def

by auto

then have G:"g2·t−1∈G" using group0_3_L2 assms(1) by auto

then have "g1·(g1−1·(g2·t−1))=g1·g1−1·(g2·t−1)" using group_oper_assoc[OF

assms(3) inverse_in_group[OF assms(3)]]

by auto

then have "g1·(g1−1·(g2·t−1))=g2·t−1" using group0_2_L6[OF assms(3)]

group0_2_L2 G by auto

with H have HH:"g1·(g1−1·(g2·t−1))∈H" by auto

have GGG:"t·g2−1∈G" using ‘t∈G‘ inverse_in_group[OF assms(4)] group_op_closed

by auto

have "(t·g2−1)−1=g2−1−1·t−1" using group_inv_of_two[OF ‘t∈G‘ inverse_in_group[OF

assms(4)]] by auto

also have ". . .=g2·t−1" using group_inv_of_inv[OF assms(4)] by auto

ultimately have "(t·g2−1)−1=g2·t−1" by auto

then have "g1−1·(t·g2−1)−1=g1−1·(g2·t−1)" by auto

then have "((t·g2−1)·g1)−1=g1−1·(g2·t−1)" using group_inv_of_two[OF

GGG assms(3)] by auto

then have HHH:"g1·((t·g2−1)·g1)−1∈H" using HH by auto

have "(t·g2−1)·g1∈G" using assms(3) ‘t∈G‘ inverse_in_group[OF assms(4)]

group_op_closed by auto

with HHH have "〈g1,(t·g2−1)·g1〉∈r" using assms(2,3) unfolding QuotientGroupRel_def

by auto

then have rg1:"t·g2−1·g1∈r‘‘{g1}" using image_iff by auto

have "t·g2−1·g1·((g1−1)·g2)=t·(g2−1·g1)·((g1−1)·g2)" using group_oper_assoc[OF

‘t∈G‘ inverse_in_group[OF assms(4)] assms(3)]

by auto

also have ". . .=t·((g2−1·g1)·((g1−1)·g2))" using group_oper_assoc[OF ‘t∈G‘
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group_op_closed[OF inverse_in_group[OF assms(4)] assms(3)] GG]

by auto

also have ". . .=t·(g2−1·(g1·((g1−1)·g2)))" using group_oper_assoc[OF inverse_in_group[OF

assms(4)] assms(3) GG] by auto

also have ". . .=t·(g2−1·(g1·(g1−1)·g2))" using group_oper_assoc[OF assms(3)

inverse_in_group[OF assms(3)] assms(4)] by auto

also have ". . .=t" using group0_2_L6[OF assms(3)]group0_2_L6[OF assms(4)]

group0_2_L2 ‘t∈G‘ assms(4) by auto

ultimately have "t·g2−1·g1·((g1−1)·g2)=t" by auto

then have "RightTranslation(G,P,(g1−1)·g2)‘(t·g2−1·g1)=t" using group0_5_L2(1)[OF

GG] ‘(t·g2−1)·g1∈G‘ by auto

then have "t∈{RightTranslation(G,P,(g1−1)·g2)‘t. t∈r‘‘{g1}}" using
rg1 by force

}
then have "r‘‘{g2}⊆{RightTranslation(G,P,(g1−1)·g2)‘t. t∈r‘‘{g1}}"

by blast

with A1 have "r‘‘{g2}={RightTranslation(G,P,(g1−1)·g2)‘t. t∈r‘‘{g1}}"
by auto

with A0 show ?thesis by auto

qed

The order of a subgroup multiplied by the order of the space of cosets is the
order of the group. We only prove the theorem for finite groups.

theorem(in group0) Lagrange:

assumes "Finite(G)" "IsAsubgroup(H,P)" "r=QuotientGroupRel(G,P,H)"

shows "|G|=|H| #* |G//r|"

proof-
have "Finite(G//r)" using assms finite_cosets by auto moreover
have un:"

⋃
(G//r)=G" using Union_quotient Group_ZF_2_4_L3 assms(2,3)

by auto

then have "Finite(
⋃
(G//r))" using assms(1) by auto moreover

have "∀ c1∈(G//r). ∀ c2∈(G//r). c1 6=c2 −→ c1∩c2=0" using quotient_disj[OF

Group_ZF_2_4_L3[OF assms(2)]]

assms(3) by auto moreover
have "∀ aa∈G. aa∈H ←→ 〈aa,1〉∈r" using Group_ZF_2_4_L5C assms(3) by

auto

then have "∀ aa∈G. aa∈H ←→ 〈1,aa〉∈r" using Group_ZF_2_4_L2 assms(2,3)

unfolding sym_def

by auto

then have "∀ aa∈G. aa∈H ←→ aa∈r‘‘{1}" using image_iff by auto

then have H:"H=r‘‘{1}" using group0_3_L2[OF assms(2)] assms(3) un-
folding QuotientGroupRel_def by auto

{
fix c assume "c∈(G//r)"
then obtain g where "g∈G" "c=r‘‘{g}" unfolding quotient_def by auto

then have "c≈r‘‘{1}" using cosets_equipoll[OF assms(2,3)] group0_2_L2

by auto

then have "|c|=|H|" using H cardinal_cong by auto

}
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then have "∀ c∈(G//r). |c|=|H|" by auto ultimately
show ?thesis using card_partition un by auto

qed

38.3 Subgroups generated by sets

Given a subset of a group, we can ask ourselves which is the smallest group
that contains that set; if it even exists.

lemma(in group0) inter_subgroups:

assumes "∀ H∈H. IsAsubgroup(H,P)" "H6=0"

shows "IsAsubgroup(
⋂
H,P)"

proof-
from assms have "1∈

⋂
H" using group0_3_L5 by auto

then have "
⋂
H6=0" by auto moreover

{
fix A B assume "A∈

⋂
H""B∈

⋂
H"

then have "∀ H∈H. A∈H∧B∈H" by auto

then have "∀ H∈H. A·B∈H" using assms(1) group0_3_L6 by auto

then have "A·B∈
⋂
H" using assms(2) by auto

}
then have "(

⋂
H){is closed under}P" using IsOpClosed_def by auto more-

over
{

fix A assume "A∈
⋂
H"

then have "∀ H∈H. A∈H" by auto

then have "∀ H∈H. A−1∈H" using assms(1) group0_3_T3A by auto

then have "A−1∈
⋂
H" using assms(2) by auto

}
then have "∀ A∈

⋂
H. A−1∈

⋂
H" by auto moreover

have "
⋂
H⊆G" using assms(1,2) group0_3_L2 by force

ultimately show ?thesis using group0_3_T3 by auto

qed

As the previous lemma states, the subgroup that contains a subset can be
defined as an intersection of subgroups.

definition(in group0)

SubgroupGenerated ("〈_〉G" 80)

where "〈X〉G ≡
⋂
{H∈Pow(G). X⊆H ∧ IsAsubgroup(H,P)}"

theorem(in group0) subgroupGen_is_subgroup:

assumes "X⊆G"
shows "IsAsubgroup(〈X〉G,P)"

proof-
have "restrict(P,G×G)=P" using group_oper_assocA restrict_idem un-

folding Pi_def by auto

then have "IsAsubgroup(G,P)" unfolding IsAsubgroup_def using groupAssum

by auto

with assms have "G∈{H∈Pow(G). X⊆H ∧ IsAsubgroup(H,P)}" by auto
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then have "{H∈Pow(G). X⊆H ∧ IsAsubgroup(H,P)}6=0" by auto

then show ?thesis using inter_subgroups unfolding SubgroupGenerated_def

by auto

qed

38.4 Homomorphisms

A homomorphism is a function between groups that preserves group opera-
tions.

definition
Homomor ("_{is a homomorphism}{_,_}→{_,_}" 85)

where "IsAgroup(G,P) =⇒ IsAgroup(H,F) =⇒ Homomor(f,G,P,H,F) ≡ ∀ g1∈G.
∀ g2∈G. f‘(P‘〈g1,g2〉)=F‘〈f‘g1,f‘g2〉"

Now a lemma about the definition:

lemma homomor_eq:

assumes "IsAgroup(G,P)" "IsAgroup(H,F)" "Homomor(f,G,P,H,F)" "g1∈G"
"g2∈G"

shows "f‘(P‘〈g1,g2〉)=F‘〈f‘g1,f‘g2〉"
using assms Homomor_def by auto

An endomorphism is a homomorphism from a group to the same group. In
case the group is abelian, it has a nice structure.

definition
End

where "End(G,P) ≡ {f:G→G. Homomor(f,G,P,G,P)}"

The set of endomorphisms forms a submonoid of the monoid of function
from a set to that set under composition.

lemma(in group0) end_composition:

assumes "f1∈End(G,P)""f2∈End(G,P)"
shows "Composition(G)‘〈f1,f2〉∈End(G,P)"

proof-
from assms have fun:"f1:G→G""f2:G→G" unfolding End_def by auto

then have fun2:"f1 O f2:G→G" using comp_fun by auto

have comp:"Composition(G)‘〈f1,f2〉=f1 O f2" using func_ZF_5_L2 fun by
auto

{
fix g1 g2 assume AS2:"g1∈G""g2∈G"
then have g1g2:"g1·g2∈G" using group_op_closed by auto

from fun2 have "(f1 O f2)‘(g1·g2)=f1‘(f2‘(g1·g2))" using comp_fun_apply

fun(2) g1g2 by auto

also have ". . .=f1‘((f2‘g1)·(f2‘g2))" using assms(2) unfolding End_def

Homomor_def[OF groupAssum groupAssum]

using AS2 by auto moreover
have "f2‘g1∈G""f2‘g2∈G" using fun(2) AS2 apply_type by auto ulti-

mately
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have "(f1 O f2)‘(g1·g2)=(f1‘(f2‘g1))·(f1‘(f2‘g2))" using assms(1) un-
folding End_def Homomor_def[OF groupAssum groupAssum]

using AS2 by auto

then have "(f1 O f2)‘(g1·g2)=((f1 O f2)‘g1)·((f1 O f2)‘g2)" using
comp_fun_apply fun(2) AS2 by auto

}
then have "∀ g1∈G. ∀ g2∈G. (f1 O f2)‘(g1·g2)=((f1 O f2)‘g1)·((f1 O f2)‘g2)"

by auto

then have "(f1 O f2)∈End(G,P)" unfolding End_def Homomor_def[OF groupAssum

groupAssum] using fun2 by auto

with comp show "Composition(G)‘〈f1,f2〉∈End(G,P)" by auto

qed

theorem(in group0) end_comp_monoid:

shows "IsAmonoid(End(G,P),restrict(Composition(G),End(G,P)×End(G,P)))"
and "TheNeutralElement(End(G,P),restrict(Composition(G),End(G,P)×End(G,P)))=id(G)"

proof-
have fun:"id(G):G→G" unfolding id_def by auto

{
fix g h assume "g∈G""h∈G"
then have id:"g·h∈G""id(G)‘g=g""id(G)‘h=h" using group_op_closed by

auto

then have "id(G)‘(g·h)=g·h" unfolding id_def by auto

with id(2,3) have "id(G)‘(g·h)=(id(G)‘g)·(id(G)‘h)" by auto

}
with fun have "id(G)∈End(G,P)" unfolding End_def Homomor_def[OF groupAssum

groupAssum] by auto moreover
from Group_ZF_2_5_L2(2) have A0:"id(G)=TheNeutralElement(G → G, Composition(G))"

by auto ultimately
have A1:"TheNeutralElement(G → G, Composition(G))∈End(G,P)" by auto

moreover
have A2:"End(G,P)⊆G→G" unfolding End_def by auto moreover
from end_composition have A3:"End(G,P){is closed under}Composition(G)"

unfolding IsOpClosed_def by auto

ultimately show "IsAmonoid(End(G,P),restrict(Composition(G),End(G,P)×End(G,P)))"

using monoid0.group0_1_T1 unfolding monoid0_def using Group_ZF_2_5_L2(1)

by force

have "IsAmonoid(G→G,Composition(G))" using Group_ZF_2_5_L2(1) by auto

with A0 A1 A2 A3 show "TheNeutralElement(End(G,P),restrict(Composition(G),End(G,P)×End(G,P)))=id(G)"
using group0_1_L6 by auto

qed

The set of endomorphisms is closed under pointwise addition. This is so
because the group is abelian.

theorem(in group0) end_pointwise_addition:

assumes "f∈End(G,P)""g∈End(G,P)""P{is commutative on}G""F = P {lifted

to function space over} G"

shows "F‘〈f,g〉∈End(G,P)"
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proof-
from assms(1,2) have fun:"f∈G→G""g∈G→G" unfolding End_def by auto

then have fun2:"F‘〈f,g〉:G→G" using monoid0.Group_ZF_2_1_L0 group0_2_L1

assms(4) by auto

{
fix g1 g2 assume AS:"g1∈G""g2∈G"
then have "g1·g2∈G" using group_op_closed by auto

then have "(F‘〈f,g〉)‘(g1·g2)=(f‘(g1·g2))·(g‘(g1·g2))" using Group_ZF_2_1_L3

fun assms(4) by auto

also have ". . .=(f‘(g1)·f‘(g2))·(g‘(g1)·g‘(g2))" using assms unfolding
End_def Homomor_def[OF groupAssum groupAssum]

using AS by auto ultimately
have "(F‘〈f,g〉)‘(g1·g2)=(f‘(g1)·f‘(g2))·(g‘(g1)·g‘(g2))" by auto more-

over
have "f‘g1∈G""f‘g2∈G""g‘g1∈G""g‘g2∈G" using fun apply_type AS by

auto ultimately
have "(F‘〈f,g〉)‘(g1·g2)=(f‘(g1)·g‘(g1))·(f‘(g2)·g‘(g2))" using group0_4_L8(3)

assms(3)

by auto

with AS have "(F‘〈f,g〉)‘(g1·g2)=((F‘〈f,g〉)‘g1)·((F‘〈f,g〉)‘g2)"
using Group_ZF_2_1_L3 fun assms(4) by auto

}
with fun2 show ?thesis unfolding End_def Homomor_def[OF groupAssum

groupAssum] by auto

qed

The inverse of an abelian group is an endomorphism.

lemma(in group0) end_inverse_group:

assumes "P{is commutative on}G"

shows "GroupInv(G,P)∈End(G,P)"
proof-
{

fix s t assume AS:"s∈G""t∈G"
then have elinv:"s−1∈G""t−1∈G" using inverse_in_group by auto

have "(s·t)−1=t−1·s−1" using group_inv_of_two AS by auto

then have "(s·t)−1=s−1·t−1" using assms(1) elinv unfolding IsCommutative_def

by auto

}
then have "∀ s∈G. ∀ t∈G. GroupInv(G,P)‘(s·t)=GroupInv(G,P)‘(s)·GroupInv(G,P)‘(t)"

by auto

with group0_2_T2 groupAssum show ?thesis unfolding End_def using Homomor_def

by auto

qed

The set of homomorphisms of an abelian group is an abelian subgroup of
the group of functions from a set to a group, under pointwise multiplication.

theorem(in group0) end_addition_group:

assumes "P{is commutative on}G" "F = P {lifted to function space over}

G"

420



shows "IsAgroup(End(G,P),restrict(F,End(G,P)×End(G,P)))" "restrict(F,End(G,P)×End(G,P)){is
commutative on}End(G,P)"

proof-
from end_comp_monoid(1) monoid0.group0_1_L3A have "End(G,P)6=0" un-

folding monoid0_def by auto

moreover have "End(G,P)⊆G→G" unfolding End_def by auto moreover
have "End(G,P){is closed under}F" unfolding IsOpClosed_def using end_pointwise_addition

assms(1,2) by auto moreover
{

fix ff assume AS:"ff∈End(G,P)"
then have "restrict(Composition(G),End(G,P)×End(G,P))‘〈GroupInv(G,P),

ff〉∈End(G,P)" using monoid0.group0_1_L1

unfolding monoid0_def using end_composition(1) end_inverse_group[OF

assms(1)]

by force

then have "Composition(G)‘〈GroupInv(G,P), ff〉∈End(G,P)" using AS end_inverse_group[OF

assms(1)]

by auto

then have "GroupInv(G,P) O ff∈End(G,P)" using func_ZF_5_L2 AS group0_2_T2

groupAssum unfolding
End_def by auto

then have "GroupInv(G→G,F)‘ff∈End(G,P)" using Group_ZF_2_1_L6 assms(2)

AS unfolding End_def

by auto

}
then have "∀ ff∈End(G,P). GroupInv(G→G,F)‘ff∈End(G,P)" by auto ul-

timately
show "IsAgroup(End(G,P),restrict(F,End(G,P)×End(G,P)))" using group0.group0_3_T3

Group_ZF_2_1_T2[OF assms(2)] unfolding IsAsubgroup_def group0_def

by auto

show "restrict(F,End(G,P)×End(G,P)){is commutative on}End(G,P)" us-
ing Group_ZF_2_1_L7[OF assms(2,1)] unfolding End_def IsCommutative_def

by auto

qed

lemma(in group0) distributive_comp_pointwise:

assumes "P{is commutative on}G" "F = P {lifted to function space over}

G"

shows "IsDistributive(End(G,P),restrict(F,End(G,P)×End(G,P)),restrict(Composition(G),End(G,P)×End(G,P)))"
proof-
{

fix b c d assume AS:"b∈End(G,P)""c∈End(G,P)""d∈End(G,P)"
have ig1:"Composition(G) ‘〈b, F ‘ 〈c, d〉〉 =b O (F‘〈c,d〉)" using monoid0.Group_ZF_2_1_L0[OF

group0_2_L1 assms(2)]

AS unfolding End_def using func_ZF_5_L2 by auto

have ig2:"F ‘〈Composition(G) ‘〈b , c〉,Composition(G) ‘〈b , d〉〉=F ‘〈b
O c,b O d〉" using AS unfolding End_def using func_ZF_5_L2 by auto

have comp1fun:"(b O (F‘〈c,d〉)):G→G" using monoid0.Group_ZF_2_1_L0[OF

group0_2_L1 assms(2)] comp_fun AS unfolding End_def by force
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have comp2fun:"(F ‘〈b O c,b O d〉):G→G" using monoid0.Group_ZF_2_1_L0[OF

group0_2_L1 assms(2)] comp_fun AS unfolding End_def by force

{
fix g assume gG:"g∈G"
then have "(b O (F‘〈c,d〉))‘g=b‘((F‘〈c,d〉)‘g)" using comp_fun_apply

monoid0.Group_ZF_2_1_L0[OF group0_2_L1 assms(2)]

AS(2,3) unfolding End_def by force

also have ". . .=b‘(c‘(g)·d‘(g))" using Group_ZF_2_1_L3[OF assms(2)]

AS(2,3) gG unfolding End_def by auto

ultimately have "(b O (F‘〈c,d〉))‘g=b‘(c‘(g)·d‘(g))" by auto more-
over

have "c‘g∈G""d‘g∈G" using AS(2,3) unfolding End_def using apply_type

gG by auto

ultimately have "(b O (F‘〈c,d〉))‘g=(b‘(c‘g))·(b‘(d‘g))" using AS(1)

unfolding End_def

Homomor_def[OF groupAssum groupAssum] by auto

then have "(b O (F‘〈c,d〉))‘g=((b O c)‘g)·((b O d)‘g)" using comp_fun_apply

gG AS(2,3)

unfolding End_def by auto

then have "(b O (F‘〈c,d〉))‘g=(F‘〈b O c,b O d〉)‘g" using gG Group_ZF_2_1_L3[OF

assms(2) comp_fun comp_fun gG]

AS unfolding End_def by auto

}
then have "∀ g∈G. (b O (F‘〈c,d〉))‘g=(F‘〈b O c,b O d〉)‘g" by auto

then have "b O (F‘〈c,d〉)=F‘〈b O c,b O d〉" using fun_extension[OF comp1fun

comp2fun] by auto

with ig1 ig2 have "Composition(G) ‘〈b, F ‘ 〈c, d〉〉 =F ‘〈Composition(G)
‘〈b , c〉,Composition(G) ‘〈b , d〉〉" by auto moreover

have "F ‘ 〈c, d〉=restrict(F,End(G,P)×End(G,P)) ‘ 〈c, d〉" using AS(2,3)

restrict by auto moreover
have "Composition(G) ‘〈b , c〉=restrict(Composition(G),End(G,P)×End(G,P))

‘〈b , c〉" "Composition(G) ‘〈b , d〉=restrict(Composition(G),End(G,P)×End(G,P))
‘〈b , d〉"

using restrict AS by auto moreover
have "Composition(G) ‘〈b, F ‘ 〈c, d〉〉 =restrict(Composition(G),End(G,P)×End(G,P))

‘〈b, F ‘ 〈c, d〉〉" using AS(1)

end_pointwise_addition[OF AS(2,3) assms] by auto

moreover have "F ‘〈Composition(G) ‘〈b , c〉,Composition(G) ‘〈b , d〉〉=restrict(F,End(G,P)×End(G,P))
‘〈Composition(G) ‘〈b , c〉,Composition(G) ‘〈b , d〉〉"

using end_composition[OF AS(1,2)] end_composition[OF AS(1,3)] by
auto ultimately

have eq1:"restrict(Composition(G),End(G,P)×End(G,P)) ‘〈b, restrict(F,End(G,P)×End(G,P))
‘ 〈c, d〉〉 =restrict(F,End(G,P)×End(G,P)) ‘〈restrict(Composition(G),End(G,P)×End(G,P))
‘〈b , c〉,restrict(Composition(G),End(G,P)×End(G,P))‘〈b , d〉〉"

by auto

have ig1:"Composition(G) ‘〈 F ‘ 〈c, d〉,b〉 = (F‘〈c,d〉) O b" using monoid0.Group_ZF_2_1_L0[OF

group0_2_L1 assms(2)]

AS unfolding End_def using func_ZF_5_L2 by auto

have ig2:"F ‘〈Composition(G) ‘〈c , b〉,Composition(G) ‘〈d , b〉〉=F ‘〈c
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O b,d O b〉" using AS unfolding End_def using func_ZF_5_L2 by auto

have comp1fun:"((F‘〈c,d〉) O b):G→G" using monoid0.Group_ZF_2_1_L0[OF

group0_2_L1 assms(2)] comp_fun AS unfolding End_def by force

have comp2fun:"(F ‘〈c O b,d O b〉):G→G" using monoid0.Group_ZF_2_1_L0[OF

group0_2_L1 assms(2)] comp_fun AS unfolding End_def by force

{
fix g assume gG:"g∈G"
then have bg:"b‘g∈G" using AS(1) unfolding End_def using apply_type

by auto

from gG have "((F‘〈c,d〉) O b)‘g=(F‘〈c,d〉)‘(b‘g)" using comp_fun_apply

AS(1) unfolding End_def by force

also have ". . .=(c‘(b‘g))·(d‘(b‘g))" using Group_ZF_2_1_L3[OF assms(2)]

AS(2,3) bg unfolding End_def by auto

also have ". . .=((c O b)‘g)·((d O b)‘g)" using comp_fun_apply gG

AS unfolding End_def by auto

also have ". . .=(F‘〈c O b,d O b〉)‘g" using gG Group_ZF_2_1_L3[OF assms(2)

comp_fun comp_fun gG]

AS unfolding End_def by auto

ultimately have"((F‘〈c,d〉) O b)‘g=(F‘〈c O b,d O b〉)‘g" by auto

}
then have "∀ g∈G. ((F‘〈c,d〉) O b)‘g=(F‘〈c O b,d O b〉)‘g" by auto

then have "(F‘〈c,d〉) O b=F‘〈c O b,d O b〉" using fun_extension[OF comp1fun

comp2fun] by auto

with ig1 ig2 have "Composition(G) ‘〈F ‘ 〈c, d〉,b〉 =F ‘〈Composition(G)
‘〈c , b〉,Composition(G) ‘〈d , b〉〉" by auto moreover

have "F ‘ 〈c, d〉=restrict(F,End(G,P)×End(G,P)) ‘ 〈c, d〉" using AS(2,3)

restrict by auto moreover
have "Composition(G) ‘〈c , b〉=restrict(Composition(G),End(G,P)×End(G,P))

‘〈c , b〉" "Composition(G) ‘〈d , b〉=restrict(Composition(G),End(G,P)×End(G,P))
‘〈d , b〉"

using restrict AS by auto moreover
have "Composition(G) ‘〈F ‘ 〈c, d〉,b〉 =restrict(Composition(G),End(G,P)×End(G,P))

‘〈F ‘ 〈c, d〉,b〉" using AS(1)

end_pointwise_addition[OF AS(2,3) assms] by auto

moreover have "F ‘〈Composition(G) ‘〈c , b〉,Composition(G) ‘〈d , b〉〉=restrict(F,End(G,P)×End(G,P))
‘〈Composition(G) ‘〈c , b〉,Composition(G) ‘〈d , b〉〉"

using end_composition[OF AS(2,1)] end_composition[OF AS(3,1)] by
auto ultimately

have eq2:"restrict(Composition(G),End(G,P)×End(G,P)) ‘〈 restrict(F,End(G,P)×End(G,P))
‘ 〈c, d〉,b〉 =restrict(F,End(G,P)×End(G,P)) ‘〈restrict(Composition(G),End(G,P)×End(G,P))
‘〈c ,b〉,restrict(Composition(G),End(G,P)×End(G,P))‘〈d , b〉〉"

by auto

with eq1 have "(restrict(Composition(G),End(G,P)×End(G,P)) ‘〈b, restrict(F,End(G,P)×End(G,P))
‘ 〈c, d〉〉 =restrict(F,End(G,P)×End(G,P)) ‘〈restrict(Composition(G),End(G,P)×End(G,P))
‘〈b , c〉,restrict(Composition(G),End(G,P)×End(G,P))‘〈b , d〉〉)∧

(restrict(Composition(G),End(G,P)×End(G,P)) ‘〈 restrict(F,End(G,P)×End(G,P))
‘ 〈c, d〉,b〉 =restrict(F,End(G,P)×End(G,P)) ‘〈restrict(Composition(G),End(G,P)×End(G,P))
‘〈c ,b〉,restrict(Composition(G),End(G,P)×End(G,P))‘〈d , b〉〉)"

by auto
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}
then show ?thesis unfolding IsDistributive_def by auto

qed

The endomorphisms of an abelian group is in fact a ring with the previous
operations.

theorem(in group0) end_is_ring:

assumes "P{is commutative on}G" "F = P {lifted to function space over}

G"

shows "IsAring(End(G,P),restrict(F,End(G,P)×End(G,P)),restrict(Composition(G),End(G,P)×End(G,P)))"
unfolding IsAring_def using end_addition_group[OF assms] end_comp_monoid(1)

distributive_comp_pointwise[OF assms]

by auto

38.5 First isomorphism theorem

Now we will prove that any homomorphism f : G → H defines a bijective
homomorphism between G/H and f(G).

A group homomorphism sends the neutral element to the neutral element
and commutes with the inverse.

lemma image_neutral:

assumes "IsAgroup(G,P)" "IsAgroup(H,F)" "Homomor(f,G,P,H,F)" "f:G→H"

shows "f‘TheNeutralElement(G,P)=TheNeutralElement(H,F)"

proof-
have g:"TheNeutralElement(G,P)=P‘〈TheNeutralElement(G,P),TheNeutralElement(G,P)〉"

"TheNeutralElement(G,P)∈G"
using assms(1) group0.group0_2_L2 unfolding group0_def by auto

from g(1) have "f‘TheNeutralElement(G,P)=f‘(P‘〈TheNeutralElement(G,P),TheNeutralElement(G,P)〉)"
by auto

also have ". . .=F‘〈f‘TheNeutralElement(G,P),f‘TheNeutralElement(G,P)〉"
using assms(3) unfolding Homomor_def[OF assms(1,2)] using g(2) by

auto

ultimately have "f‘TheNeutralElement(G,P)=F‘〈f‘TheNeutralElement(G,P),f‘TheNeutralElement(G,P)〉"
by auto moreover

have h:"f‘TheNeutralElement(G,P)∈H" using g(2) apply_type[OF assms(4)]

by auto

then have "f‘TheNeutralElement(G,P)=F‘〈f‘TheNeutralElement(G,P),TheNeutralElement(H,F)〉"
using assms(2) group0.group0_2_L2 unfolding group0_def by auto ul-

timately
have "F‘〈f‘TheNeutralElement(G,P),TheNeutralElement(H,F)〉=F‘〈f‘TheNeutralElement(G,P),f‘TheNeutralElement(G,P)〉"

by auto

with h have "LeftTranslation(H,F,f‘TheNeutralElement(G,P))‘TheNeutralElement(H,F)=LeftTranslation(H,F,f‘TheNeutralElement(G,P))‘(f‘TheNeutralElement(G,P))"

using group0.group0_5_L2(2)[OF _ h] assms(2) group0.group0_2_L2 un-
folding group0_def by auto

moreover have "LeftTranslation(H,F,f‘TheNeutralElement(G,P))∈bij(H,H)"
using group0.trans_bij(2)

assms(2) h unfolding group0_def by auto
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then have "LeftTranslation(H,F,f‘TheNeutralElement(G,P))∈inj(H,H)"
unfolding bij_def by auto ultimately

show "f‘TheNeutralElement(G,P)=TheNeutralElement(H,F)" using h assms(2)

group0.group0_2_L2 unfolding inj_def group0_def

by force

qed

lemma image_inv:

assumes "IsAgroup(G,P)" "IsAgroup(H,F)" "Homomor(f,G,P,H,F)" "f:G→H"

"g∈G"
shows "f‘( GroupInv(G,P)‘g)=GroupInv(H,F)‘ (f‘g)"

proof-
have im:"f‘g∈H" using apply_type[OF assms(4,5)].
have inv:"GroupInv(G,P)‘g∈G" using group0.inverse_in_group[OF _ assms(5)]

assms(1) unfolding group0_def by auto

then have inv2:"f‘(GroupInv(G,P)‘g)∈H"using apply_type[OF assms(4)]

by auto

have "f‘TheNeutralElement(G,P)=f‘(P‘〈g,GroupInv(G,P)‘g〉)" using assms(1,5)

group0.group0_2_L6

unfolding group0_def by auto

also have ". . .=F‘〈f‘g,f‘(GroupInv(G,P)‘g)〉" using assms(3) unfolding
Homomor_def[OF assms(1,2)] using

assms(5) inv by auto

ultimately have "TheNeutralElement(H,F)=F‘〈f‘g,f‘(GroupInv(G,P)‘g)〉"
using image_neutral[OF assms(1-4)]

by auto

then show ?thesis using group0.group0_2_L9(2)[OF _ im inv2] assms(2)

unfolding group0_def by auto

qed

The kernel of an homomorphism is a normal subgroup.

theorem kerner_normal_sub:

assumes "IsAgroup(G,P)" "IsAgroup(H,F)" "Homomor(f,G,P,H,F)" "f:G→H"

shows "IsAnormalSubgroup(G,P,f-‘‘{TheNeutralElement(H,F)})"

proof-
have xy:"∀ x y. 〈x, y〉 ∈ f −→ (∀ y’. 〈x, y’〉 ∈ f −→ y = y’)" using

assms(4) unfolding Pi_def function_def

by force

{
fix g1 g2 assume "g1∈f-‘‘{TheNeutralElement(H,F)}""g2∈f-‘‘{TheNeutralElement(H,F)}"
then have "〈g1,TheNeutralElement(H,F)〉∈f""〈g2,TheNeutralElement(H,F)〉∈f"

using vimage_iff by auto moreover
then have G:"g1∈G""g2∈G" using assms(4) unfolding Pi_def by auto

then have "〈g1,f‘g1〉∈f""〈g2,f‘g2〉∈f" using apply_Pair[OF assms(4)]

by auto moreover
note xy ultimately
have "f‘g1=TheNeutralElement(H,F)""f‘g2=TheNeutralElement(H,F)" by

auto moreover
have "f‘(P‘〈g1,g2〉)=F‘〈f‘g1,f‘g2〉" using assms(3) G unfolding Homomor_def[OF
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assms(1,2)] by auto

ultimately have "f‘(P‘〈g1,g2〉)=F‘〈TheNeutralElement(H,F),TheNeutralElement(H,F)〉"
by auto

also have ". . .=TheNeutralElement(H,F)" using group0.group0_2_L2 assms(2)

unfolding group0_def

by auto

ultimately have "f‘(P‘〈g1,g2〉)=TheNeutralElement(H,F)" by auto more-
over

from G have "P‘〈g1,g2〉∈G" using group0.group_op_closed assms(1) un-
folding group0_def by auto

ultimately have "〈P‘〈g1,g2〉,TheNeutralElement(H,F)〉∈f" using apply_Pair[OF

assms(4)] by force

then have "P‘〈g1,g2〉∈f-‘‘{TheNeutralElement(H,F)}" using vimage_iff

by auto

}
then have "f-‘‘{TheNeutralElement(H,F)} {is closed under}P" unfold-

ing IsOpClosed_def by auto

moreover have A:"f-‘‘{TheNeutralElement(H,F)} ⊆ G" using func1_1_L3

assms(4) by auto

moreover have "f‘TheNeutralElement(G,P)=TheNeutralElement(H,F)" us-
ing image_neutral

assms by auto

then have "〈TheNeutralElement(G,P),TheNeutralElement(H,F)〉∈f" using
apply_Pair[OF assms(4)]

group0.group0_2_L2 assms(1) unfolding group0_def by force

then have "TheNeutralElement(G,P)∈f-‘‘{TheNeutralElement(H,F)}" us-
ing vimage_iff by auto

then have "f-‘‘{TheNeutralElement(H,F)}6=0" by auto moreover
{

fix x assume "x∈f-‘‘{TheNeutralElement(H,F)}"
then have "〈x,TheNeutralElement(H,F)〉∈f" and x:"x∈G" using vimage_iff

A by auto moreover
from x have "〈x,f‘x〉∈f" using apply_Pair[OF assms(4)] by auto ul-

timately
have "f‘x=TheNeutralElement(H,F)" using xy by auto moreover
have "f‘(GroupInv(G,P)‘x)=GroupInv(H,F)‘(f‘x)" using x image_inv assms

by auto

ultimately have "f‘(GroupInv(G,P)‘x)=GroupInv(H,F)‘TheNeutralElement(H,F)"

by auto

then have "f‘(GroupInv(G,P)‘x)=TheNeutralElement(H,F)" using group0.group_inv_of_one

assms(2) unfolding group0_def by auto moreover
have "〈GroupInv(G,P)‘x,f‘(GroupInv(G,P)‘x)〉∈f" using apply_Pair[OF

assms(4)]

x group0.inverse_in_group assms(1) unfolding group0_def by auto

ultimately have "〈GroupInv(G,P)‘x,TheNeutralElement(H,F)〉∈f" by auto

then have "GroupInv(G,P)‘x∈f-‘‘{TheNeutralElement(H,F)}" using vimage_iff

by auto

}
then have "∀ x∈f-‘‘{TheNeutralElement(H,F)}. GroupInv(G,P)‘x∈f-‘‘{TheNeutralElement(H,F)}"
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by auto

ultimately have SS:"IsAsubgroup(f-‘‘{TheNeutralElement(H,F)},P)" us-
ing group0.group0_3_T3

assms(1) unfolding group0_def by auto

{
fix g h assume AS:"g∈G""h∈f-‘‘{TheNeutralElement(H,F)}"
from AS(1) have im:"f‘g∈H" using assms(4) apply_type by auto

then have iminv:"GroupInv(H,F)‘(f‘g)∈H" using assms(2) group0.inverse_in_group

unfolding group0_def by auto

from AS have "h∈G" and inv:"GroupInv(G,P)‘g∈G" using A group0.inverse_in_group

assms(1) unfolding group0_def by auto

then have P:"P‘〈h,GroupInv(G,P)‘g〉∈G" using assms(1) group0.group_op_closed

unfolding group0_def by auto

with ‘g∈G‘ have "P‘〈g,P‘〈h,GroupInv(G,P)‘g〉 〉∈G" using assms(1) group0.group_op_closed

unfolding group0_def by auto

then have "f‘(P‘〈g,P‘〈h,GroupInv(G,P)‘g〉 〉)=F‘〈f‘g,f‘(P‘〈h,GroupInv(G,P)‘g〉)〉"
using assms(3) unfolding Homomor_def[OF assms(1,2)] using ‘g∈G‘

P by auto

also have ". . .=F‘〈f‘g,F‘(〈f‘h,f‘(GroupInv(G,P)‘g)〉)〉" using assms(3)

unfolding Homomor_def[OF assms(1,2)]

using ‘h∈G‘ inv by auto

also have ". . .=F‘〈f‘g,F‘(〈f‘h,GroupInv(H,F)‘(f‘g)〉)〉" using image_inv[OF

assms ‘g∈G‘] by auto

ultimately have "f‘(P‘〈g,P‘〈h,GroupInv(G,P)‘g〉 〉)=F‘〈f‘g,F‘(〈f‘h,GroupInv(H,F)‘(f‘g)〉)〉"
by auto

moreover from AS(2) have "f‘h=TheNeutralElement(H,F)" using func1_1_L15[OF

assms(4)]

by auto ultimately
have "f‘(P‘〈g,P‘〈h,GroupInv(G,P)‘g〉 〉)=F‘〈f‘g,F‘(〈TheNeutralElement(H,F),GroupInv(H,F)‘(f‘g)〉)〉"

by auto

also have ". . .=F‘〈f‘g,GroupInv(H,F)‘(f‘g)〉" using assms(2) im group0.group0_2_L2

unfolding group0_def

using iminv by auto

also have ". . .=TheNeutralElement(H,F)" using assms(2) group0.group0_2_L6

im

unfolding group0_def by auto

ultimately have "f‘(P‘〈g,P‘〈h,GroupInv(G,P)‘g〉 〉)=TheNeutralElement(H,F)"
by auto moreover

from P ‘g∈G‘ have "P‘〈g,P‘〈h,GroupInv(G,P)‘g〉〉∈G" using group0.group_op_closed

assms(1) unfolding group0_def by auto

ultimately have "P‘〈g,P‘〈h,GroupInv(G,P)‘g〉 〉∈f-‘‘{TheNeutralElement(H,F)}"
using func1_1_L15[OF assms(4)]

by auto

}
then have "∀ g∈G. {P‘〈g,P‘〈h,GroupInv(G,P)‘g〉 〉. h∈f-‘‘{TheNeutralElement(H,F)}}⊆f-‘‘{TheNeutralElement(H,F)}"

by auto

then show ?thesis using group0.cont_conj_is_normal assms(1) SS un-
folding group0_def by auto

qed
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The image of a homomorphism is a subgroup.

theorem image_sub:

assumes "IsAgroup(G,P)" "IsAgroup(H,F)" "Homomor(f,G,P,H,F)" "f:G→H"

shows "IsAsubgroup(f‘‘G,F)"

proof-
have "TheNeutralElement(G,P)∈G" using group0.group0_2_L2 assms(1) un-

folding group0_def by auto

then have "TheNeutralElement(H,F)∈f‘‘G" using func_imagedef[OF assms(4),of

"G"] image_neutral[OF assms]

by force

then have "f‘‘G6=0" by auto moreover
{

fix h1 h2 assume "h1∈f‘‘G""h2∈f‘‘G"
then obtain g1 g2 where "h1=f‘g1" "h2=f‘g2" and p:"g1∈G""g2∈G" us-

ing func_imagedef[OF assms(4)] by auto

then have "F‘〈h1,h2〉=F‘〈f‘g1,f‘g2〉" by auto

also have ". . .=f‘(P‘〈g1,g2〉)" using assms(3) unfolding Homomor_def[OF

assms(1,2)] using p by auto

ultimately have "F‘〈h1,h2〉=f‘(P‘〈g1,g2〉)" by auto

moreover have "P‘〈g1,g2〉∈G" using p group0.group_op_closed assms(1)

unfolding group0_def

by auto ultimately
have "F‘〈h1,h2〉∈f‘‘G" using func_imagedef[OF assms(4)] by auto

}
then have "f‘‘G {is closed under} F" unfolding IsOpClosed_def by auto

moreover have "f‘‘G⊆H" using func1_1_L6(2) assms(4) by auto more-
over
{

fix h assume "h∈f‘‘G"
then obtain g where "h=f‘g" and p:"g∈G" using func_imagedef[OF assms(4)]

by auto

then have "GroupInv(H,F)‘h=GroupInv(H,F)‘(f‘g)" by auto

then have "GroupInv(H,F)‘h=f‘(GroupInv(G,P)‘g)" using p image_inv[OF

assms] by auto

then have "GroupInv(H,F)‘h∈f‘‘G" using p group0.inverse_in_group

assms(1) unfolding group0_def

using func_imagedef[OF assms(4)] by auto

}
then have "∀ h∈f‘‘G. GroupInv(H,F)‘h∈f‘‘G" by auto ultimately
show ?thesis using group0.group0_3_T3 assms(2) unfolding group0_def

by auto

qed

Now we are able to prove the first isomorphism theorem. This theorem
states that any group homomorphism f : G → H gives an isomorphism
between a quotient group of G and a subgroup of H.

theorem isomorphism_first_theorem:

assumes "IsAgroup(G,P)" "IsAgroup(H,F)" "Homomor(f,G,P,H,F)" "f:G→H"

defines "r ≡ QuotientGroupRel(G,P,f-‘‘{TheNeutralElement(H,F)})" and
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"PP ≡ QuotientGroupOp(G,P,f-‘‘{TheNeutralElement(H,F)})"

shows "∃ ff. Homomor(ff,G//r,PP,f‘‘G,restrict(F,(f‘‘G)×(f‘‘G))) ∧ ff∈bij(G//r,f‘‘G)"
proof-

let ?ff="{〈r‘‘{g},f‘g〉. g∈G}"
{

fix t assume "t∈{〈r‘‘{g},f‘g〉. g∈G}"
then obtain g where "t=〈r‘‘{g},f‘g〉" "g∈G" by auto

moreover then have "r‘‘{g}∈G//r" unfolding r_def quotient_def by
auto

moreover from ‘g∈G‘ have "f‘g∈f‘‘G" using func_imagedef[OF assms(4)]

by auto

ultimately have "t∈(G//r)×f‘‘G" by auto

}
then have "?ff∈Pow((G//r)×f‘‘G)" by auto

moreover have "(G//r)⊆domain(?ff)" unfolding domain_def quotient_def

by auto moreover
{

fix x y t assume A:"〈x,y〉∈?ff" "〈x,t〉∈?ff"
then obtain gy gr where "〈x, y〉=〈r‘‘{gy},f‘gy〉" "〈x, t〉=〈r‘‘{gr},f‘gr〉"

and p:"gr∈G""gy∈G" by auto

then have B:"r‘‘{gy}=r‘‘{gr}""y=f‘gy""t=f‘gr" by auto

from B(2,3) have q:"y∈H""t∈H" using apply_type p assms(4) by auto

have "〈gy,gr〉∈r" using eq_equiv_class[OF B(1) _ p(1)] group0.Group_ZF_2_4_L3

kerner_normal_sub[OF assms(1-4)]

assms(1) unfolding group0_def IsAnormalSubgroup_def r_def by auto

then have "P‘〈gy,GroupInv(G,P)‘gr〉∈f-‘‘{TheNeutralElement(H,F)}" un-
folding r_def QuotientGroupRel_def by auto

then have eq:"f‘(P‘〈gy,GroupInv(G,P)‘gr〉)=TheNeutralElement(H,F)"
using func1_1_L15[OF assms(4)] by auto

from B(2,3) have "F‘〈y,GroupInv(H,F)‘t〉=F‘〈f‘gy,GroupInv(H,F)‘(f‘gr)〉"
by auto

also have ". . .=F‘〈f‘gy,f‘(GroupInv(G,P)‘gr)〉" using image_inv[OF assms(1-4)]

p(1) by auto

also have ". . .=f‘(P‘〈gy,GroupInv(G,P)‘gr〉)" using assms(3) unfolding
Homomor_def[OF assms(1,2)] using p(2)

group0.inverse_in_group assms(1) p(1) unfolding group0_def by auto

ultimately have "F‘〈y,GroupInv(H,F)‘t〉=TheNeutralElement(H,F)" us-
ing eq by auto

then have "y=t" using assms(2) group0.group0_2_L11A q unfolding group0_def

by auto

}
then have "∀ x y. 〈x,y〉∈?ff −→ (∀ y’. 〈x,y’〉∈?ff −→ y=y’)" by auto

ultimately have ff_fun:"?ff:G//r→f‘‘G" unfolding Pi_def function_def

by auto

{
fix a1 a2 assume AS:"a1∈G//r""a2∈G//r"
then obtain g1 g2 where p:"g1∈G""g2∈G" and a:"a1=r‘‘{g1}""a2=r‘‘{g2}"

unfolding quotient_def by auto

have "equiv(G,r)" using group0.Group_ZF_2_4_L3 kerner_normal_sub[OF
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assms(1-4)]

assms(1) unfolding group0_def IsAnormalSubgroup_def r_def by auto

moreover
have "Congruent2(r,P)" using Group_ZF_2_4_L5A[OF assms(1) kerner_normal_sub[OF

assms(1-4)]]

unfolding r_def by auto moreover
have "PP=ProjFun2(G,r,P)" unfolding PP_def QuotientGroupOp_def r_def

by auto moreover
note a p ultimately have "PP‘〈a1,a2〉=r‘‘{P‘〈g1,g2〉}" using group0.Group_ZF_2_2_L2

assms(1)

unfolding group0_def by auto

then have "〈PP‘〈a1,a2〉,f‘(P‘〈g1,g2〉)〉∈?ff" using group0.group_op_closed[OF

_ p] assms(1) unfolding group0_def

by auto

then have eq:"?ff‘(PP‘〈a1,a2〉)=f‘(P‘〈g1,g2〉)" using apply_equality

ff_fun by auto

from p a have "〈a1,f‘g1〉∈?ff""〈a2,f‘g2〉∈?ff" by auto

then have "?ff‘a1=f‘g1""?ff‘a2=f‘g2" using apply_equality ff_fun

by auto

then have "F‘〈?ff‘a1,?ff‘a2〉=F‘〈f‘g1,f‘g2〉" by auto

also have ". . .=f‘(P‘〈g1,g2〉)" using assms(3) unfolding Homomor_def[OF

assms(1,2)] using p by auto

ultimately have "F‘〈?ff‘a1,?ff‘a2〉=?ff‘(PP‘〈a1,a2〉)" using eq by auto

moreover
have "?ff‘a1∈f‘‘G""?ff‘a2∈f‘‘G" using ff_fun apply_type AS by auto

ultimately
have "restrict(F,f‘‘G×f‘‘G)‘〈?ff‘a1,?ff‘a2〉=?ff‘(PP‘〈a1,a2〉)" by auto

}
then have r:"∀ a1∈G//r. ∀ a2∈G//r. restrict(F,f‘‘G×f‘‘G)‘〈?ff‘a1,?ff‘a2〉=?ff‘(PP‘〈a1,a2〉)"

by auto

have G:"IsAgroup(G//r,PP)" using Group_ZF_2_4_T1[OF assms(1) kerner_normal_sub[OF

assms(1-4)]] unfolding r_def PP_def by auto

have H:"IsAgroup(f‘‘G, restrict(F,f‘‘G×f‘‘G))" using image_sub[OF assms(1-4)]

unfolding IsAsubgroup_def .
have HOM:"Homomor(?ff,G//r,PP,f‘‘G,restrict(F,(f‘‘G)×(f‘‘G)))" us-

ing r unfolding Homomor_def[OF G H] by auto

{
fix b1 b2 assume AS:"?ff‘b1=?ff‘b2""b1∈G//r""b2∈G//r"
have invb2:"GroupInv(G//r,PP)‘b2∈G//r" using group0.inverse_in_group[OF

_ AS(3)] G unfolding group0_def

by auto

with AS(2) have "PP‘〈b1,GroupInv(G//r,PP)‘b2〉∈G//r" using group0.group_op_closed

G unfolding group0_def by auto moreover
then obtain gg where gg:"gg∈G""PP‘〈b1,GroupInv(G//r,PP)‘b2〉=r‘‘{gg}"

unfolding quotient_def by auto

ultimately have E:"?ff‘(PP‘〈b1,GroupInv(G//r,PP)‘b2〉)=f‘gg" using
apply_equality[OF _ ff_fun] by auto

from invb2 have pp:"?ff‘(GroupInv(G//r,PP)‘b2)∈f‘‘G" using apply_type

ff_fun by auto
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from AS(2,3) have fff:"?ff‘b1∈f‘‘G""?ff‘b2∈f‘‘G" using apply_type[OF

ff_fun] by auto

from fff(1) pp have EE:"F‘〈?ff‘b1,?ff‘(GroupInv(G//r,PP)‘b2)〉=restrict(F,f‘‘G×f‘‘G)‘〈?ff‘b1,?ff‘(GroupInv(G//r,PP)‘b2)〉"
by auto

from fff have fff2:"?ff‘b1∈H""?ff‘b2∈H" using func1_1_L6(2)[OF assms(4)]

by auto

with AS(1) have "TheNeutralElement(H,F)=F‘〈?ff‘b1,GroupInv(H,F)‘(?ff‘b2)〉"
using group0.group0_2_L6(1)

assms(2) unfolding group0_def by auto

also have ". . .=F‘〈?ff‘b1,restrict(GroupInv(H,F),f‘‘G)‘(?ff‘b2)〉" us-
ing restrict fff(2) by auto

also have ". . .=F‘〈?ff‘b1,?ff‘(GroupInv(G//r,PP)‘b2)〉" using image_inv[OF

G H HOM ff_fun AS(3)]

group0.group0_3_T1[OF _ image_sub[OF assms(1-4)]] assms(2) unfold-
ing group0_def by auto

also have ". . .=restrict(F,f‘‘G×f‘‘G)‘〈?ff‘b1,?ff‘(GroupInv(G//r,PP)‘b2)〉"
using EE by auto

also have ". . .=?ff‘(PP‘〈b1,GroupInv(G//r,PP)‘b2〉)" using HOM unfold-
ing Homomor_def[OF G H] using AS(2)

group0.inverse_in_group[OF _ AS(3)] G unfolding group0_def by auto

also have ". . .=f‘gg" using E by auto

ultimately have "f‘gg=TheNeutralElement(H,F)" by auto

then have "gg∈f-‘‘{TheNeutralElement(H,F)}" using func1_1_L15[OF

assms(4)] ‘gg∈G‘ by auto

then have "r‘‘{gg}=TheNeutralElement(G//r,PP)" using group0.Group_ZF_2_4_L5E[OF

_ kerner_normal_sub[OF assms(1-4)]

‘gg∈G‘ ] using assms(1) unfolding group0_def r_def PP_def by auto

with gg(2) have "PP‘〈b1,GroupInv(G//r,PP)‘b2〉=TheNeutralElement(G//r,PP)"
by auto

then have "b1=b2" using group0.group0_2_L11A[OF _ AS(2,3)] G un-
folding group0_def by auto

}
then have "?ff∈inj(G//r,f‘‘G)" unfolding inj_def using ff_fun by auto

moreover
{

fix m assume "m∈f‘‘G"
then obtain g where "g∈G""m=f‘g" using func_imagedef[OF assms(4)]

by auto

then have "〈r‘‘{g},m〉∈?ff" by auto

then have "?ff‘(r‘‘{g})=m" using apply_equality ff_fun by auto

then have "∃ A∈G//r. ?ff‘A=m" unfolding quotient_def using ‘g∈G‘ by
auto

}
ultimately have "?ff∈bij(G//r,f‘‘G)" unfolding bij_def surj_def us-

ing ff_fun by auto

with HOM show ?thesis by auto

qed

As a last result, the inverse of a bijective homomorphism is an homomor-

431



phism. Meaning that in the previous result, the homomorphism we found
is an isomorphism.

theorem bij_homomor:

assumes "f∈bij(G,H)""IsAgroup(G,P)""IsAgroup(H,F)""Homomor(f,G,P,H,F)"
shows "Homomor(converse(f),H,F,G,P)"

proof-
{

fix h1 h2 assume A:"h1∈H" "h2∈H"
from A(1) obtain g1 where g1:"g1∈G" "f‘g1=h1" using assms(1) un-

folding bij_def surj_def by auto moreover
from A(2) obtain g2 where g2:"g2∈G" "f‘g2=h2" using assms(1) un-

folding bij_def surj_def by auto ultimately
have "F‘〈f‘g1,f‘g2〉=F‘〈h1,h2〉" by auto

then have "f‘(P‘〈g1,g2〉)=F‘〈h1,h2〉" using assms(2,3,4) homomor_eq

g1(1) g2(1) by auto

then have "converse(f)‘(f‘(P‘〈g1,g2〉))=converse(f)‘(F‘〈h1,h2〉)" by
auto

then have "P‘〈g1,g2〉=converse(f)‘(F‘〈h1,h2〉)" using left_inverse assms(1)

group0.group_op_closed

assms(2) g1(1) g2(1) unfolding group0_def bij_def by auto more-
over

from g1(2) have "converse(f)‘(f‘g1)=converse(f)‘h1" by auto

then have "g1=converse(f)‘h1" using left_inverse assms(1) unfold-
ing bij_def using g1(1) by auto moreover

from g2(2) have "converse(f)‘(f‘g2)=converse(f)‘h2" by auto

then have "g2=converse(f)‘h2" using left_inverse assms(1) unfold-
ing bij_def using g2(1) by auto ultimately

have "P‘〈converse(f)‘h1,converse(f)‘h2〉=converse(f)‘(F‘〈h1,h2〉)" by
auto

}
then show ?thesis using assms(2,3) Homomor_def by auto

qed

end

39 Fields - introduction

theory Field_ZF imports Ring_ZF

begin

This theory covers basic facts about fields.

39.1 Definition and basic properties

In this section we define what is a field and list the basic properties of fields.

Field is a notrivial commutative ring such that all non-zero elements have an
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inverse. We define the notion of being a field as a statement about three sets.
The first set, denoted K is the carrier of the field. The second set, denoted A

represents the additive operation on K (recall that in ZF set theory functions
are sets). The third set M represents the multiplicative operation on K.

definition
"IsAfield(K,A,M) ≡
(IsAring(K,A,M) ∧ (M {is commutative on} K) ∧
TheNeutralElement(K,A) 6= TheNeutralElement(K,M) ∧
(∀ a∈K. a6=TheNeutralElement(K,A)−→
(∃ b∈K. M‘〈a,b〉 = TheNeutralElement(K,M))))"

The field0 context extends the ring0 context adding field-related assump-
tions and notation related to the multiplicative inverse.

locale field0 = ring0 K A M for K A M +

assumes mult_commute: "M {is commutative on} K"

assumes not_triv: "0 6= 1"

assumes inv_exists: "∀ a∈K. a 6=0 −→ (∃ b∈K. a·b = 1)"

fixes non_zero ("K0")

defines non_zero_def[simp]: "K0 ≡ K-{0}"

fixes inv ("_−1 " [96] 97)

defines inv_def[simp]: "a−1 ≡ GroupInv(K0,restrict(M,K0×K0))‘(a)"

The next lemma assures us that we are talking fields in the field0 context.

lemma (in field0) Field_ZF_1_L1: shows "IsAfield(K,A,M)"

using ringAssum mult_commute not_triv inv_exists IsAfield_def

by simp

We can use theorems proven in the field0 context whenever we talk about
a field.

lemma field_field0: assumes "IsAfield(K,A,M)"

shows "field0(K,A,M)"

using assms IsAfield_def field0_axioms.intro ring0_def field0_def

by simp

Let’s have an explicit statement that the multiplication in fields is commu-
tative.

lemma (in field0) field_mult_comm: assumes "a∈K" "b∈K"
shows "a·b = b·a"
using mult_commute assms IsCommutative_def by simp

Fields do not have zero divisors.

lemma (in field0) field_has_no_zero_divs: shows "HasNoZeroDivs(K,A,M)"

proof -
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{ fix a b assume A1: "a∈K" "b∈K" and A2: "a·b = 0" and A3: "b6=0"
from inv_exists A1 A3 obtain c where I: "c∈K" and II: "b·c = 1"

by auto

from A2 have "a·b·c = 0·c" by simp

with A1 I have "a·(b·c) = 0"
using Ring_ZF_1_L11 Ring_ZF_1_L6 by simp

with A1 II have "a=0 "using Ring_ZF_1_L3 by simp }
then have "∀ a∈K.∀ b∈K. a·b = 0 −→ a=0 ∨ b=0" by auto

then show ?thesis using HasNoZeroDivs_def by auto

qed

K0 (the set of nonzero field elements is closed with respect to multiplication.

lemma (in field0) Field_ZF_1_L2:

shows "K0 {is closed under} M"

using Ring_ZF_1_L4 field_has_no_zero_divs Ring_ZF_1_L12

IsOpClosed_def by auto

Any nonzero element has a right inverse that is nonzero.

lemma (in field0) Field_ZF_1_L3: assumes A1: "a∈K0"
shows "∃ b∈K0. a·b = 1"

proof -

from inv_exists A1 obtain b where "b∈K" and "a·b = 1"
by auto

with not_triv A1 show "∃ b∈K0. a·b = 1"
using Ring_ZF_1_L6 by auto

qed

If we remove zero, the field with multiplication becomes a group and we can
use all theorems proven in group0 context.

theorem (in field0) Field_ZF_1_L4: shows
"IsAgroup(K0,restrict(M,K0×K0))"
"group0(K0,restrict(M,K0×K0))"
"1 = TheNeutralElement(K0,restrict(M,K0×K0))"

proof-
let ?f = "restrict(M,K0×K0)"
have
"M {is associative on} K"

"K0 ⊆ K" "K0 {is closed under} M"

using Field_ZF_1_L1 IsAfield_def IsAring_def IsAgroup_def

IsAmonoid_def Field_ZF_1_L2 by auto

then have "?f {is associative on} K0"

using func_ZF_4_L3 by simp

moreover
from not_triv have
I: "1∈K0 ∧ (∀ a∈K0. ?f‘〈1,a〉 = a ∧ ?f‘〈a,1〉 = a)"

using Ring_ZF_1_L2 Ring_ZF_1_L3 by auto

then have "∃ n∈K0. ∀ a∈K0. ?f‘〈n,a〉 = a ∧ ?f‘〈a,n〉 = a"

by blast

ultimately have II: "IsAmonoid(K0,?f)" using IsAmonoid_def
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by simp

then have "monoid0(K0,?f)" using monoid0_def by simp

moreover note I

ultimately show "1 = TheNeutralElement(K0,?f)"

by (rule monoid0.group0_1_L4)

then have "∀ a∈K0.∃ b∈K0. ?f‘〈a,b〉 = TheNeutralElement(K0,?f)"

using Field_ZF_1_L3 by auto

with II show "IsAgroup(K0,?f)" by (rule definition_of_group)

then show "group0(K0,?f)" using group0_def by simp

qed

The inverse of a nonzero field element is nonzero.

lemma (in field0) Field_ZF_1_L5: assumes A1: "a∈K" "a6=0"
shows "a−1 ∈ K0" "(a−1)2 ∈ K0" "a−1 ∈ K" "a−1 6= 0"

proof -

from A1 have "a ∈ K0" by simp

then show "a−1 ∈ K0" using Field_ZF_1_L4 group0.inverse_in_group

by auto

then show "(a−1)2 ∈ K0" "a−1 ∈ K" "a−1 6= 0"
using Field_ZF_1_L2 IsOpClosed_def by auto

qed

The inverse is really the inverse.

lemma (in field0) Field_ZF_1_L6: assumes A1: "a∈K" "a6=0"
shows "a·a−1 = 1" "a−1·a = 1"

proof -

let ?f = "restrict(M,K0×K0)"
from A1 have
"group0(K0,?f)"

"a ∈ K0"

using Field_ZF_1_L4 by auto

then have
"?f‘〈a,GroupInv(K0, ?f)‘(a)〉 = TheNeutralElement(K0,?f) ∧
?f‘〈GroupInv(K0,?f)‘(a),a〉 = TheNeutralElement(K0, ?f)"

by (rule group0.group0_2_L6)

with A1 show "a·a−1 = 1" "a−1·a = 1"
using Field_ZF_1_L5 Field_ZF_1_L4 by auto

qed

A lemma with two field elements and cancelling.

lemma (in field0) Field_ZF_1_L7: assumes "a∈K" "b∈K" "b6=0"
shows
"a·b·b−1 = a"

"a·b−1·b = a"

using assms Field_ZF_1_L5 Ring_ZF_1_L11 Field_ZF_1_L6 Ring_ZF_1_L3

by auto
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39.2 Equations and identities

This section deals with more specialized identities that are true in fields.

a/(a2) = 1/a.

lemma (in field0) Field_ZF_2_L1: assumes A1: "a∈K" "a6=0"
shows "a·(a−1)2 = a−1"

proof -

have "a·(a−1)2 = a·(a−1·a−1)" by simp

also from A1 have ". . . = (a·a−1)·a−1"

using Field_ZF_1_L5 Ring_ZF_1_L11

by simp

also from A1 have ". . . = a−1"

using Field_ZF_1_L6 Field_ZF_1_L5 Ring_ZF_1_L3

by simp

finally show "a·(a−1)2 = a−1" by simp

qed

If we multiply two different numbers by a nonzero number, the results will
be different.

lemma (in field0) Field_ZF_2_L2:

assumes "a∈K" "b∈K" "c∈K" "a6=b" "c6=0"
shows "a·c−1 6= b·c−1"

using assms field_has_no_zero_divs Field_ZF_1_L5 Ring_ZF_1_L12B

by simp

We can put a nonzero factor on the other side of non-identity (is this the
best way to call it?) changing it to the inverse.

lemma (in field0) Field_ZF_2_L3:

assumes A1: "a∈K" "b∈K" "b6=0" "c∈K" and A2: "a·b 6= c"

shows "a 6= c·b−1"

proof -

from A1 A2 have "a·b·b−1 6= c·b−1"

using Ring_ZF_1_L4 Field_ZF_2_L2 by simp

with A1 show "a 6= c·b−1" using Field_ZF_1_L7

by simp

qed

If if the inverse of b is different than a, then the inverse of a is different than
b.

lemma (in field0) Field_ZF_2_L4:

assumes "a∈K" "a6=0" and "b−1 6= a"

shows "a−1 6= b"

using assms Field_ZF_1_L4 group0.group0_2_L11B

by simp

An identity with two field elements, one and an inverse.

lemma (in field0) Field_ZF_2_L5:
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assumes "a∈K" "b∈K" "b6=0"
shows "(1 + a·b)·b−1 = a + b−1"

using assms Ring_ZF_1_L4 Field_ZF_1_L5 Ring_ZF_1_L2 ring_oper_distr

Field_ZF_1_L7 Ring_ZF_1_L3 by simp

An identity with three field elements, inverse and cancelling.

lemma (in field0) Field_ZF_2_L6: assumes A1: "a∈K" "b∈K" "b6=0" "c∈K"
shows "a·b·(c·b−1) = a·c"

proof -

from A1 have T: "a·b ∈ K" "b−1 ∈ K"

using Ring_ZF_1_L4 Field_ZF_1_L5 by auto

with mult_commute A1 have "a·b·(c·b−1) = a·b·(b−1·c)"
using IsCommutative_def by simp

moreover
from A1 T have "a·b ∈ K" "b−1 ∈ K" "c∈K"

by auto

then have "a·b·b−1·c = a·b·(b−1·c)"
by (rule Ring_ZF_1_L11)

ultimately have "a·b·(c·b−1) = a·b·b−1·c" by simp

with A1 show "a·b·(c·b−1) = a·c"
using Field_ZF_1_L7 by simp

qed

39.3 1/0=0

In ZF if f : X → Y and x /∈ X we have f(x) = ∅. Since ∅ (the empty set)
in ZF is the same as zero of natural numbers we can claim that 1/0 = 0
in certain sense. In this section we prove a theorem that makes makes it
explicit.

The next locale extends the field0 locale to introduce notation for division
operation.

locale fieldd = field0 +

fixes division

defines division_def[simp]: "division ≡ {〈p,fst(p)·snd(p)−1〉. p∈K×K0}"

fixes fdiv (infixl "/" 95)

defines fdiv_def[simp]: "x/y ≡ division‘〈x,y〉"

Division is a function on K ×K0 with values in K.

lemma (in fieldd) div_fun: shows "division: K×K0 → K"

proof -

have "∀ p ∈ K×K0. fst(p)·snd(p)−1 ∈ K"

proof
fix p assume "p ∈ K×K0"
hence "fst(p) ∈ K" and "snd(p) ∈ K0" by auto
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then show "fst(p)·snd(p)−1 ∈ K" using Ring_ZF_1_L4 Field_ZF_1_L5

by auto

qed
then have "{〈p,fst(p)·snd(p)−1〉. p∈K×K0}: K×K0 → K"

by (rule ZF_fun_from_total)

thus ?thesis by simp

qed

So, really 1/0 = 0. The essential lemma is apply_0 from standard Isabelle’s
func.thy.

theorem (in fieldd) one_over_zero: shows "1/0 = 0"

proof-
have "domain(division) = K×K0" using div_fun func1_1_L1

by simp

hence "〈1,0〉 /∈ domain(division)" by auto

then show ?thesis using apply_0 by simp

qed

end

40 Ordered fields

theory OrderedField_ZF imports OrderedRing_ZF Field_ZF

begin

This theory covers basic facts about ordered fiels.

40.1 Definition and basic properties

Here we define ordered fields and proove their basic properties.

Ordered field is a notrivial ordered ring such that all non-zero elements have
an inverse. We define the notion of being a ordered field as a statement about
four sets. The first set, denoted K is the carrier of the field. The second set,
denoted A represents the additive operation on K (recall that in ZF set theory
functions are sets). The third set M represents the multiplicative operation
on K. The fourth set r is the order relation on K.

definition
"IsAnOrdField(K,A,M,r) ≡ (IsAnOrdRing(K,A,M,r) ∧
(M {is commutative on} K) ∧
TheNeutralElement(K,A) 6= TheNeutralElement(K,M) ∧
(∀ a∈K. a 6=TheNeutralElement(K,A)−→
(∃ b∈K. M‘〈a,b〉 = TheNeutralElement(K,M))))"

The next context (locale) defines notation used for ordered fields. We do
that by extending the notation defined in the ring1 context that is used for
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oredered rings and adding some assumptions to make sure we are talking
about ordered fields in this context. We should rename the carrier from R
used in the ring1 context to K, more appriopriate for fields. Theoretically
the Isar locale facility supports such renaming, but we experienced diffculties
using some lemmas from ring1 locale after renaming.

locale field1 = ring1 +

assumes mult_commute: "M {is commutative on} R"

assumes not_triv: "0 6= 1"

assumes inv_exists: "∀ a∈R. a 6=0 −→ (∃ b∈R. a·b = 1)"

fixes non_zero ("R0")

defines non_zero_def[simp]: "R0 ≡ R-{0}"

fixes inv ("_−1 " [96] 97)

defines inv_def[simp]: "a−1 ≡ GroupInv(R0,restrict(M,R0×R0))‘(a)"

The next lemma assures us that we are talking fields in the field1 context.

lemma (in field1) OrdField_ZF_1_L1: shows "IsAnOrdField(R,A,M,r)"

using OrdRing_ZF_1_L1 mult_commute not_triv inv_exists IsAnOrdField_def

by simp

Ordered field is a field, of course.

lemma OrdField_ZF_1_L1A: assumes "IsAnOrdField(K,A,M,r)"

shows "IsAfield(K,A,M)"

using assms IsAnOrdField_def IsAnOrdRing_def IsAfield_def

by simp

Theorems proven in field0 (about fields) context are valid in the field1

context (about ordered fields).

lemma (in field1) OrdField_ZF_1_L1B: shows "field0(R,A,M)"

using OrdField_ZF_1_L1 OrdField_ZF_1_L1A field_field0

by simp

We can use theorems proven in the field1 context whenever we talk about
an ordered field.

lemma OrdField_ZF_1_L2: assumes "IsAnOrdField(K,A,M,r)"

shows "field1(K,A,M,r)"

using assms IsAnOrdField_def OrdRing_ZF_1_L2 ring1_def

IsAnOrdField_def field1_axioms_def field1_def

by auto

In ordered rings the existence of a right inverse for all positive elements
implies the existence of an inverse for all non zero elements.

lemma (in ring1) OrdField_ZF_1_L3:
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assumes A1: "∀ a∈R+. ∃ b∈R. a·b = 1" and A2: "c∈R" "c6=0"
shows "∃ b∈R. c·b = 1"

proof -

{ assume "c∈R+"
with A1 have "∃ b∈R. c·b = 1" by simp }

moreover
{ assume "c/∈R+"

with A2 have "(-c) ∈ R+"

using OrdRing_ZF_3_L2A by simp

with A1 obtain b where "b∈R" and "(-c)·b = 1"
by auto

with A2 have "(-b) ∈ R" "c·(-b) = 1"
using Ring_ZF_1_L3 Ring_ZF_1_L7 by auto

then have "∃ b∈R. c·b = 1" by auto }
ultimately show ?thesis by blast

qed

Ordered fields are easier to deal with, because it is sufficient to show the
existence of an inverse for the set of positive elements.

lemma (in ring1) OrdField_ZF_1_L4:

assumes "0 6= 1" and "M {is commutative on} R"

and "∀ a∈R+. ∃ b∈R. a·b = 1"
shows "IsAnOrdField(R,A,M,r)"

using assms OrdRing_ZF_1_L1 OrdField_ZF_1_L3 IsAnOrdField_def

by simp

The set of positive field elements is closed under multiplication.

lemma (in field1) OrdField_ZF_1_L5: shows "R+ {is closed under} M"

using OrdField_ZF_1_L1B field0.field_has_no_zero_divs OrdRing_ZF_3_L3

by simp

The set of positive field elements is closed under multiplication: the explicit
version.

lemma (in field1) pos_mul_closed:

assumes A1: "0 < a" "0 < b"

shows "0 < a·b"
proof -

from A1 have "a ∈ R+" and "b ∈ R+"

using OrdRing_ZF_3_L14 by auto

then show "0 < a·b"
using OrdField_ZF_1_L5 IsOpClosed_def PositiveSet_def

by simp

qed

In fields square of a nonzero element is positive.

lemma (in field1) OrdField_ZF_1_L6: assumes "a∈R" "a6=0"
shows "a2 ∈ R+"

using assms OrdField_ZF_1_L1B field0.field_has_no_zero_divs
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OrdRing_ZF_3_L15 by simp

The next lemma restates the fact Field_ZF that out notation for the field
inverse means what it is supposed to mean.

lemma (in field1) OrdField_ZF_1_L7: assumes "a∈R" "a 6=0"
shows "a·(a−1) = 1" "(a−1)·a = 1"
using assms OrdField_ZF_1_L1B field0.Field_ZF_1_L6

by auto

A simple lemma about multiplication and cancelling of a positive field ele-
ment.

lemma (in field1) OrdField_ZF_1_L7A:

assumes A1: "a∈R" "b ∈ R+"

shows
"a·b·b−1 = a"

"a·b−1·b = a"

proof -

from A1 have "b∈R" "b6=0" using PositiveSet_def

by auto

with A1 show "a·b·b−1 = a" and "a·b−1·b = a"

using OrdField_ZF_1_L1B field0.Field_ZF_1_L7

by auto

qed

Some properties of the inverse of a positive element.

lemma (in field1) OrdField_ZF_1_L8: assumes A1: "a ∈ R+"

shows "a−1 ∈ R+" "a·(a−1) = 1" "(a−1)·a = 1"
proof -

from A1 have I: "a∈R" "a6=0" using PositiveSet_def

by auto

with A1 have "a·(a−1)2 ∈ R+"

using OrdField_ZF_1_L1B field0.Field_ZF_1_L5 OrdField_ZF_1_L6

OrdField_ZF_1_L5 IsOpClosed_def by simp

with I show "a−1 ∈ R+"

using OrdField_ZF_1_L1B field0.Field_ZF_2_L1

by simp

from I show "a·(a−1) = 1" "(a−1)·a = 1"
using OrdField_ZF_1_L7 by auto

qed

If a < b, then (b− a)−1 is positive.

lemma (in field1) OrdField_ZF_1_L9: assumes "a<b"

shows "(b-a)−1 ∈ R+"

using assms OrdRing_ZF_1_L14 OrdField_ZF_1_L8

by simp

In ordered fields if at least one of a, b is not zero, then a2 + b2 > 0, in
particular a2 + b2 6= 0 and exists the (multiplicative) inverse of a2 + b2.
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lemma (in field1) OrdField_ZF_1_L10:

assumes A1: "a∈R" "b∈R" and A2: "a 6= 0 ∨ b 6= 0"
shows "0 < a2 + b2" and "∃ c∈R. (a2 + b2)·c = 1"

proof -

from A1 A2 show "0 < a2 + b2"

using OrdField_ZF_1_L1B field0.field_has_no_zero_divs

OrdRing_ZF_3_L19 by simp

then have
"(a2 + b2)−1 ∈ R" and "(a2 + b2)·(a2 + b2)−1 = 1"
using OrdRing_ZF_1_L3 PositiveSet_def OrdField_ZF_1_L8

by auto

then show "∃ c∈R. (a2 + b2)·c = 1" by auto

qed

40.2 Inequalities

In this section we develop tools to deal inequalities in fields.

We can multiply strict inequality by a positive element.

lemma (in field1) OrdField_ZF_2_L1:

assumes "a<b" and "c∈R+"
shows "a·c < b·c"
using assms OrdField_ZF_1_L1B field0.field_has_no_zero_divs

OrdRing_ZF_3_L13

by simp

A special case of OrdField_ZF_2_L1 when we multiply an inverse by an ele-
ment.

lemma (in field1) OrdField_ZF_2_L2:

assumes A1: "a∈R+" and A2: "a−1 < b"

shows "1 < b·a"
proof -

from A1 A2 have "(a−1)·a < b·a"
using OrdField_ZF_2_L1 by simp

with A1 show "1 < b·a"
using OrdField_ZF_1_L8 by simp

qed

We can multiply an inequality by the inverse of a positive element.

lemma (in field1) OrdField_ZF_2_L3:

assumes "a≤b" and "c∈R+" shows "a·(c−1) ≤ b·(c−1)"

using assms OrdField_ZF_1_L8 OrdRing_ZF_1_L9A

by simp

We can multiply a strict inequality by a positive element or its inverse.

lemma (in field1) OrdField_ZF_2_L4:

assumes "a<b" and "c∈R+"
shows

442



"a·c < b·c"
"c·a < c·b"
"a·c−1 < b·c−1"

using assms OrdField_ZF_1_L1B field0.field_has_no_zero_divs

OrdField_ZF_1_L8 OrdRing_ZF_3_L13 by auto

We can put a positive factor on the other side of an inequality, changing it
to its inverse.

lemma (in field1) OrdField_ZF_2_L5:

assumes A1: "a∈R" "b∈R+" and A2: "a·b ≤ c"

shows "a ≤ c·b−1"

proof -

from A1 A2 have "a·b·b−1 ≤ c·b−1"

using OrdField_ZF_2_L3 by simp

with A1 show "a ≤ c·b−1" using OrdField_ZF_1_L7A

by simp

qed

We can put a positive factor on the other side of an inequality, changing it
to its inverse, version with a product initially on the right hand side.

lemma (in field1) OrdField_ZF_2_L5A:

assumes A1: "b∈R" "c∈R+" and A2: "a ≤ b·c"
shows "a·c−1 ≤ b"

proof -

from A1 A2 have "a·c−1 ≤ b·c·c−1"

using OrdField_ZF_2_L3 by simp

with A1 show "a·c−1 ≤ b" using OrdField_ZF_1_L7A

by simp

qed

We can put a positive factor on the other side of a strict inequality, changing
it to its inverse, version with a product initially on the left hand side.

lemma (in field1) OrdField_ZF_2_L6:

assumes A1: "a∈R" "b∈R+" and A2: "a·b < c"

shows "a < c·b−1"

proof -

from A1 A2 have "a·b·b−1 < c·b−1"

using OrdField_ZF_2_L4 by simp

with A1 show "a < c·b−1" using OrdField_ZF_1_L7A

by simp

qed

We can put a positive factor on the other side of a strict inequality, changing
it to its inverse, version with a product initially on the right hand side.

lemma (in field1) OrdField_ZF_2_L6A:

assumes A1: "b∈R" "c∈R+" and A2: "a < b·c"
shows "a·c−1 < b"

proof -
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from A1 A2 have "a·c−1 < b·c·c−1"

using OrdField_ZF_2_L4 by simp

with A1 show "a·c−1 < b" using OrdField_ZF_1_L7A

by simp

qed

Sometimes we can reverse an inequality by taking inverse on both sides.

lemma (in field1) OrdField_ZF_2_L7:

assumes A1: "a∈R+" and A2: "a−1 ≤ b"

shows "b−1 ≤ a"

proof -

from A1 have "a−1 ∈ R+" using OrdField_ZF_1_L8

by simp

with A2 have "b ∈ R+" using OrdRing_ZF_3_L7

by blast

then have T: "b ∈ R+" "b−1 ∈ R+" using OrdField_ZF_1_L8

by auto

with A1 A2 have "b−1·a−1·a ≤ b−1·b·a"
using OrdRing_ZF_1_L9A by simp

moreover
from A1 A2 T have
"b−1 ∈ R" "a∈R" "a 6=0" "b∈R" "b6=0"
using PositiveSet_def OrdRing_ZF_1_L3 by auto

then have "b−1·a−1·a = b−1" and "b−1·b·a = a"

using OrdField_ZF_1_L1B field0.Field_ZF_1_L7

field0.Field_ZF_1_L6 Ring_ZF_1_L3

by auto

ultimately show "b−1 ≤ a" by simp

qed

Sometimes we can reverse a strict inequality by taking inverse on both sides.

lemma (in field1) OrdField_ZF_2_L8:

assumes A1: "a∈R+" and A2: "a−1 < b"

shows "b−1 < a"

proof -

from A1 A2 have "a−1 ∈ R+" "a−1 ≤b"
using OrdField_ZF_1_L8 by auto

then have "b ∈ R+" using OrdRing_ZF_3_L7

by blast

then have "b∈R" "b6=0" using PositiveSet_def by auto

with A2 have "b−1 6= a"

using OrdField_ZF_1_L1B field0.Field_ZF_2_L4

by simp

with A1 A2 show "b−1 < a"

using OrdField_ZF_2_L7 by simp

qed

A technical lemma about solving a strict inequality with three field elements
and inverse of a difference.
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lemma (in field1) OrdField_ZF_2_L9:

assumes A1: "a<b" and A2: "(b-a)−1 < c"

shows "1 + a·c < b·c"
proof -

from A1 A2 have "(b-a)−1 ∈ R+" "(b-a)−1 ≤ c"

using OrdField_ZF_1_L9 by auto

then have T1: "c ∈ R+" using OrdRing_ZF_3_L7 by blast

with A1 A2 have T2:

"a∈R" "b∈R" "c∈R" "c6=0" "c−1 ∈ R"

using OrdRing_ZF_1_L3 OrdField_ZF_1_L8 PositiveSet_def

by auto

with A1 A2 have "c−1 + a < b-a + a"

using OrdRing_ZF_1_L14 OrdField_ZF_2_L8 ring_strict_ord_trans_inv

by simp

with T1 T2 have "(c−1 + a)·c < b·c"
using Ring_ZF_2_L1A OrdField_ZF_2_L1 by simp

with T1 T2 show "1 + a·c < b·c"
using ring_oper_distr OrdField_ZF_1_L8

by simp

qed

40.3 Definition of real numbers

The only purpose of this section is to define what does it mean to be a model
of real numbers.

We define model of real numbers as any quadruple of sets (K,A,M, r) such
that (K,A,M, r) is an ordered field and the order relation r is complete,
that is every set that is nonempty and bounded above in this relation has a
supremum.

definition
"IsAmodelOfReals(K,A,M,r) ≡ IsAnOrdField(K,A,M,r) ∧ (r {is complete})"

end

41 Integers - introduction

theory Int_ZF_IML imports OrderedGroup_ZF_1 Finite_ZF_1 Int_ZF Nat_ZF_IML

begin

This theory file is an interface between the old-style Isabelle (ZF logic)
material on integers and the IsarMathLib project. Here we redefine the
meta-level operations on integers (addition and multiplication) to convert
them to ZF-functions and show that integers form a commutative group with
respect to addition and commutative monoid with respect to multiplication.
Similarly, we redefine the order on integers as a relation, that is a subset of
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Z × Z. We show that a subset of intergers is bounded iff it is finite. As
we are forced to use standard Isabelle notation with all these dollar signs,
sharps etc. to denote ”type coercions” (?) the notation is often ugly and
difficult to read.

41.1 Addition and multiplication as ZF-functions.

In this section we provide definitions of addition and multiplication as sub-
sets of (Z×Z)×Z. We use the (higher order) relation defined in the standard
Int theory to define a subset of Z×Z that constitutes the ZF order relation
corresponding to it. We define the set of positive integers using the notion
of positive set from the OrderedGroup_ZF theory.

Definition of addition of integers as a binary operation on int. Recall that
in standard Isabelle/ZF int is the set of integers and the sum of integers is
denoted by prependig + with a dollar sign.

definition
"IntegerAddition ≡ { 〈 x,c〉 ∈ (int×int)×int. fst(x) $+ snd(x) = c}"

Definition of multiplication of integers as a binary operation on int. In
standard Isabelle/ZF product of integers is denoted by prepending the dollar
sign to *.

definition
"IntegerMultiplication ≡
{ 〈 x,c〉 ∈ (int×int)×int. fst(x) $* snd(x) = c}"

Definition of natural order on integers as a relation on int. In the standard
Isabelle/ZF the inequality relation on integers is denoted ≤ prepended with
the dollar sign.

definition
"IntegerOrder ≡ {p ∈ int×int. fst(p) $≤ snd(p)}"

This defines the set of positive integers.

definition
"PositiveIntegers ≡ PositiveSet(int,IntegerAddition,IntegerOrder)"

IntegerAddition and IntegerMultiplication are functions on int × int.

lemma Int_ZF_1_L1: shows
"IntegerAddition : int×int → int"

"IntegerMultiplication : int×int → int"

proof -

have
"{〈 x,c〉 ∈ (int×int)×int. fst(x) $+ snd(x) = c} ∈ int×int→int"

"{〈 x,c〉 ∈ (int×int)×int. fst(x) $* snd(x) = c} ∈ int×int→int"

using func1_1_L11A by auto

then show "IntegerAddition : int×int → int"
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"IntegerMultiplication : int×int → int"

using IntegerAddition_def IntegerMultiplication_def by auto

qed

The next context (locale) defines notation used for integers. We define 0 to
denote the neutral element of addition, 1 as the unit of the multiplicative
monoid. We introduce notation m≤n for integers and write m..n to denote
the integer interval with endpoints in m and n. abs(m) means the absolute
value of m. This is a function defined in OrderedGroup that assigns x to
itself if x is positive and assigns the opposite of x if x ≤ 0. Unforunately we
cannot use the |·| notation as in the OrderedGroup theory as this notation has
been hogged by the standard Isabelle’s Int theory. The notation -A where A
is a subset of integers means the set {−m : m ∈ A}. The symbol maxf(f,M)
denotes tha maximum of function f over the set A. We also introduce a
similar notation for the minimum.

locale int0 =

fixes ints ("ZZ")
defines ints_def [simp]: "ZZ ≡ int"

fixes ia (infixl "+" 69)

defines ia_def [simp]: "a+b ≡ IntegerAddition‘〈 a,b〉"

fixes iminus ("- _" 72)

defines rminus_def [simp]: "-a ≡ GroupInv(ZZ,IntegerAddition)‘(a)"

fixes isub (infixl "-" 69)

defines isub_def [simp]: "a-b ≡ a+ (- b)"

fixes imult (infixl "·" 70)

defines imult_def [simp]: "a·b ≡ IntegerMultiplication‘〈 a,b〉"

fixes setneg ("- _" 72)

defines setneg_def [simp]: "-A ≡ GroupInv(ZZ,IntegerAddition)‘‘(A)"

fixes izero ("0")
defines izero_def [simp]: "0 ≡ TheNeutralElement(ZZ,IntegerAddition)"

fixes ione ("1")
defines ione_def [simp]: "1 ≡ TheNeutralElement(ZZ,IntegerMultiplication)"

fixes itwo ("2")
defines itwo_def [simp]: "2 ≡ 1+1"

fixes ithree ("3")
defines ithree_def [simp]: "3 ≡ 2+1"

fixes nonnegative ("ZZ+")
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defines nonnegative_def [simp]:

"ZZ+ ≡ Nonnegative(ZZ,IntegerAddition,IntegerOrder)"

fixes positive ("ZZ+")

defines positive_def [simp]:

"ZZ+ ≡ PositiveSet(ZZ,IntegerAddition,IntegerOrder)"

fixes abs

defines abs_def [simp]:

"abs(m) ≡ AbsoluteValue(ZZ,IntegerAddition,IntegerOrder)‘(m)"

fixes lesseq (infix "≤" 60)

defines lesseq_def [simp]: "m ≤ n ≡ 〈m,n〉 ∈ IntegerOrder"

fixes interval (infix ".." 70)

defines interval_def [simp]: "m..n ≡ Interval(IntegerOrder,m,n)"

fixes maxf

defines maxf_def [simp]: "maxf(f,A) ≡ Maximum(IntegerOrder,f‘‘(A))"

fixes minf

defines minf_def [simp]: "minf(f,A) ≡ Minimum(IntegerOrder,f‘‘(A))"

IntegerAddition adds integers and IntegerMultiplication multiplies integers.
This states that the ZF functions IntegerAddition and IntegerMultiplication

give the same results as the higher-order equivalents defined in the standard
Int theory.

lemma (in int0) Int_ZF_1_L2: assumes A1: "a ∈ ZZ" "b ∈ ZZ"
shows
"a+b = a $+ b"

"a·b = a $* b"

proof -

let ?x = "〈 a,b〉"
let ?c = "a $+ b"

let ?d = "a $* b"

from A1 have
"〈 ?x,?c〉 ∈ {〈 x,c〉 ∈ (ZZ×ZZ)×ZZ. fst(x) $+ snd(x) = c}"

"〈 ?x,?d〉 ∈ {〈 x,d〉 ∈ (ZZ×ZZ)×ZZ. fst(x) $* snd(x) = d}"

by auto

then show "a+b = a $+ b" "a·b = a $* b"

using IntegerAddition_def IntegerMultiplication_def

Int_ZF_1_L1 apply_iff by auto

qed

Integer addition and multiplication are associative.

lemma (in int0) Int_ZF_1_L3:

assumes "x∈ZZ" "y∈ZZ" "z∈ZZ"
shows "x+y+z = x+(y+z)" "x·y·z = x·(y·z)"
using assms Int_ZF_1_L2 zadd_assoc zmult_assoc by auto
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Integer addition and multiplication are commutative.

lemma (in int0) Int_ZF_1_L4:

assumes "x∈ZZ" "y∈ZZ"
shows "x+y = y+x" "x·y = y·x"
using assms Int_ZF_1_L2 zadd_commute zmult_commute

by auto

Zero is neutral for addition and one for multiplication.

lemma (in int0) Int_ZF_1_L5: assumes A1:"x∈ZZ"
shows "($# 0) + x = x ∧ x + ($# 0) = x"

"($# 1)·x = x ∧ x·($# 1) = x"

proof -

from A1 show "($# 0) + x = x ∧ x + ($# 0) = x"

using Int_ZF_1_L2 zadd_int0 Int_ZF_1_L4 by simp

from A1 have "($# 1)·x = x"

using Int_ZF_1_L2 zmult_int1 by simp

with A1 show "($# 1)·x = x ∧ x·($# 1) = x"

using Int_ZF_1_L4 by simp

qed

Zero is neutral for addition and one for multiplication.

lemma (in int0) Int_ZF_1_L6: shows "($# 0)∈ZZ ∧
(∀ x∈ZZ. ($# 0)+x = x ∧ x+($# 0) = x)"

"($# 1)∈ZZ ∧
(∀ x∈ZZ. ($# 1)·x = x ∧ x·($# 1) = x)"

using Int_ZF_1_L5 by auto

Integers with addition and integers with multiplication form monoids.

theorem (in int0) Int_ZF_1_T1: shows
"IsAmonoid(ZZ,IntegerAddition)"
"IsAmonoid(ZZ,IntegerMultiplication)"

proof -

have
"∃ e∈ZZ. ∀ x∈ZZ. e+x = x ∧ x+e = x"

"∃ e∈ZZ. ∀ x∈ZZ. e·x = x ∧ x·e = x"

using int0.Int_ZF_1_L6 by auto

then show "IsAmonoid(ZZ,IntegerAddition)"
"IsAmonoid(ZZ,IntegerMultiplication)" using
IsAmonoid_def IsAssociative_def Int_ZF_1_L1 Int_ZF_1_L3

by auto

qed

Zero is the neutral element of the integers with addition and one is the
neutral element of the integers with multiplication.

lemma (in int0) Int_ZF_1_L8: shows "($# 0) = 0" "($# 1) = 1"
proof -

have "monoid0(ZZ,IntegerAddition)"
using Int_ZF_1_T1 monoid0_def by simp
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moreover have
"($# 0)∈ZZ ∧
(∀ x∈ZZ. IntegerAddition‘〈$# 0,x〉 = x ∧
IntegerAddition‘〈x ,$# 0〉 = x)"

using Int_ZF_1_L6 by auto

ultimately have "($# 0) = TheNeutralElement(ZZ,IntegerAddition)"
by (rule monoid0.group0_1_L4)

then show "($# 0) = 0" by simp

have "monoid0(int,IntegerMultiplication)"

using Int_ZF_1_T1 monoid0_def by simp

moreover have "($# 1) ∈ int ∧
(∀ x∈int. IntegerMultiplication‘〈$# 1, x〉 = x ∧
IntegerMultiplication‘〈x ,$# 1〉 = x)"

using Int_ZF_1_L6 by auto

ultimately have
"($# 1) = TheNeutralElement(int,IntegerMultiplication)"

by (rule monoid0.group0_1_L4)

then show "($# 1) = 1" by simp

qed

0 and 1, as defined in int0 context, are integers.

lemma (in int0) Int_ZF_1_L8A: shows "0 ∈ ZZ" "1 ∈ ZZ"
proof -

have "($# 0) ∈ ZZ" "($# 1) ∈ ZZ" by auto

then show "0 ∈ ZZ" "1 ∈ ZZ" using Int_ZF_1_L8 by auto

qed

Zero is not one.

lemma (in int0) int_zero_not_one: shows "0 6= 1"
proof -

have "($# 0) 6= ($# 1)" by simp

then show "0 6= 1" using Int_ZF_1_L8 by simp

qed

The set of integers is not empty, of course.

lemma (in int0) int_not_empty: shows "ZZ 6= 0"

using Int_ZF_1_L8A by auto

The set of integers has more than just zero in it.

lemma (in int0) int_not_trivial: shows "ZZ 6= {0}"
using Int_ZF_1_L8A int_zero_not_one by blast

Each integer has an inverse (in the addition sense).

lemma (in int0) Int_ZF_1_L9: assumes A1: "g ∈ ZZ"
shows "∃ b∈ZZ. g+b = 0"

proof -

from A1 have "g+ $-g = 0"
using Int_ZF_1_L2 Int_ZF_1_L8 by simp
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thus ?thesis by auto

qed

Integers with addition form an abelian group. This also shows that we can
apply all theorems proven in the proof contexts (locales) that require the
assumpion that some pair of sets form a group like locale group0.

theorem Int_ZF_1_T2: shows
"IsAgroup(int,IntegerAddition)"

"IntegerAddition {is commutative on} int"

"group0(int,IntegerAddition)"

using int0.Int_ZF_1_T1 int0.Int_ZF_1_L9 IsAgroup_def

group0_def int0.Int_ZF_1_L4 IsCommutative_def by auto

What is the additive group inverse in the group of integers?

lemma (in int0) Int_ZF_1_L9A: assumes A1: "m∈ZZ"
shows "$-m = -m"

proof -

from A1 have "m∈int" "$-m ∈ int" "IntegerAddition‘〈 m,$-m〉 =

TheNeutralElement(int,IntegerAddition)"

using zminus_type Int_ZF_1_L2 Int_ZF_1_L8 by auto

then have "$-m = GroupInv(int,IntegerAddition)‘(m)"

using Int_ZF_1_T2 group0.group0_2_L9 by blast

then show ?thesis by simp

qed

Subtracting integers corresponds to adding the negative.

lemma (in int0) Int_ZF_1_L10: assumes A1: "m∈ZZ" "n∈ZZ"
shows "m-n = m $+ $-n"

using assms Int_ZF_1_T2 group0.inverse_in_group Int_ZF_1_L9A Int_ZF_1_L2

by simp

Negative of zero is zero.

lemma (in int0) Int_ZF_1_L11: shows "(-0) = 0"
using Int_ZF_1_T2 group0.group_inv_of_one by simp

A trivial calculation lemma that allows to subtract and add one.

lemma Int_ZF_1_L12:

assumes "m∈int" shows "m $- $#1 $+ $#1 = m"

using assms eq_zdiff_iff by auto

A trivial calculation lemma that allows to subtract and add one, version
with ZF-operation.

lemma (in int0) Int_ZF_1_L13: assumes "m∈ZZ"
shows "(m $- $#1) + 1 = m"

using assms Int_ZF_1_L8A Int_ZF_1_L2 Int_ZF_1_L8 Int_ZF_1_L12

by simp

Adding or subtracing one changes integers.
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lemma (in int0) Int_ZF_1_L14: assumes A1: "m∈ZZ"
shows
"m+1 6= m"

"m-1 6= m"

proof -

{ assume "m+1 = m"

with A1 have
"group0(ZZ,IntegerAddition)"
"m∈ZZ" "1∈ZZ"
"IntegerAddition‘〈m,1〉 = m"

using Int_ZF_1_T2 Int_ZF_1_L8A by auto

then have "1 = TheNeutralElement(ZZ,IntegerAddition)"
by (rule group0.group0_2_L7)

then have False using int_zero_not_one by simp

} then show I: "m+1 6= m" by auto

{ from A1 have "m - 1 + 1 = m"

using Int_ZF_1_L8A Int_ZF_1_T2 group0.inv_cancel_two

by simp

moreover assume "m-1 = m"

ultimately have "m + 1 = m" by simp

with I have False by simp

} then show "m-1 6= m" by auto

qed

If the difference is zero, the integers are equal.

lemma (in int0) Int_ZF_1_L15:

assumes A1: "m∈ZZ" "n∈ZZ" and A2: "m-n = 0"
shows "m=n"

proof -

let ?G = "ZZ"
let ?f = "IntegerAddition"

from A1 A2 have
"group0(?G, ?f)"

"m ∈ ?G" "n ∈ ?G"

"?f‘〈m, GroupInv(?G, ?f)‘(n)〉 = TheNeutralElement(?G, ?f)"

using Int_ZF_1_T2 by auto

then show "m=n" by (rule group0.group0_2_L11A)

qed

41.2 Integers as an ordered group

In this section we define order on integers as a relation, that is a subset of
Z × Z and show that integers form an ordered group.

The next lemma interprets the order definition one way.

lemma (in int0) Int_ZF_2_L1:

assumes A1: "m∈ZZ" "n∈ZZ" and A2: "m $≤ n"

shows "m ≤ n"

proof -
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from A1 A2 have "〈 m,n〉 ∈ {x∈ZZ×ZZ. fst(x) $≤ snd(x)}"

by simp

then show ?thesis using IntegerOrder_def by simp

qed

The next lemma interprets the definition the other way.

lemma (in int0) Int_ZF_2_L1A: assumes A1: "m ≤ n"

shows "m $≤ n" "m∈ZZ" "n∈ZZ"
proof -

from A1 have "〈 m,n〉 ∈ {p∈ZZ×ZZ. fst(p) $≤ snd(p)}"

using IntegerOrder_def by simp

thus "m $≤ n" "m∈ZZ" "n∈ZZ" by auto

qed

Integer order is a relation on integers.

lemma Int_ZF_2_L1B: shows "IntegerOrder ⊆ int×int"
proof

fix x assume "x∈IntegerOrder"
then have "x ∈ {p∈int×int. fst(p) $≤ snd(p)}"

using IntegerOrder_def by simp

then show "x∈int×int" by simp

qed

The way we define the notion of being bounded below, its sufficient for the
relation to be on integers for all bounded below sets to be subsets of integers.

lemma (in int0) Int_ZF_2_L1C:

assumes A1: "IsBoundedBelow(A,IntegerOrder)"

shows "A⊆ZZ"
proof -

from A1 have
"IntegerOrder ⊆ ZZ×ZZ"
"IsBoundedBelow(A,IntegerOrder)"

using Int_ZF_2_L1B by auto

then show "A⊆ZZ" by (rule Order_ZF_3_L1B)

qed

The order on integers is reflexive.

lemma (in int0) int_ord_is_refl: shows "refl(ZZ,IntegerOrder)"
using Int_ZF_2_L1 zle_refl refl_def by auto

The essential condition to show antisymmetry of the order on integers.

lemma (in int0) Int_ZF_2_L3:

assumes A1: "m ≤ n" "n ≤ m"

shows "m=n"

proof -

from A1 have "m $≤ n" "n $≤ m" "m∈ZZ" "n∈ZZ"
using Int_ZF_2_L1A by auto

then show "m=n" using zle_anti_sym by auto
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qed

The order on integers is antisymmetric.

lemma (in int0) Int_ZF_2_L4: shows "antisym(IntegerOrder)"

proof -

have "∀ m n. m ≤ n ∧ n ≤ m −→ m=n"

using Int_ZF_2_L3 by auto

then show ?thesis using imp_conj antisym_def by simp

qed

The essential condition to show that the order on integers is transitive.

lemma Int_ZF_2_L5:

assumes A1: "〈m,n〉 ∈ IntegerOrder" "〈n,k〉 ∈ IntegerOrder"

shows "〈m,k〉 ∈ IntegerOrder"

proof -

from A1 have T1: "m $≤ n" "n $≤ k" and T2: "m∈int" "k∈int"
using int0.Int_ZF_2_L1A by auto

from T1 have "m $≤ k" by (rule zle_trans)

with T2 show ?thesis using int0.Int_ZF_2_L1 by simp

qed

The order on integers is transitive. This version is stated in the int0 context
using notation for integers.

lemma (in int0) Int_order_transitive:

assumes A1: "m≤n" "n≤k"
shows "m≤k"

proof -

from A1 have "〈 m,n〉 ∈ IntegerOrder" "〈 n,k〉 ∈ IntegerOrder"

by auto

then have "〈 m,k〉 ∈ IntegerOrder" by (rule Int_ZF_2_L5)

then show "m≤k" by simp

qed

The order on integers is transitive.

lemma Int_ZF_2_L6: shows "trans(IntegerOrder)"

proof -

have "∀ m n k.

〈m, n〉 ∈ IntegerOrder ∧ 〈n, k〉 ∈ IntegerOrder −→
〈m, k〉 ∈ IntegerOrder"

using Int_ZF_2_L5 by blast

then show ?thesis by (rule Fol1_L2)

qed

The order on integers is a partial order.

lemma Int_ZF_2_L7: shows "IsPartOrder(int,IntegerOrder)"

using int0.int_ord_is_refl int0.Int_ZF_2_L4

Int_ZF_2_L6 IsPartOrder_def by simp
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The essential condition to show that the order on integers is preserved by
translations.

lemma (in int0) int_ord_transl_inv:

assumes A1: "k ∈ ZZ" and A2: "m ≤ n"

shows "m+k ≤ n+k " "k+m≤ k+n "

proof -

from A2 have "m $≤ n" and "m∈ZZ" "n∈ZZ"
using Int_ZF_2_L1A by auto

with A1 show "m+k ≤ n+k " "k+m≤ k+n "

using zadd_right_cancel_zle zadd_left_cancel_zle

Int_ZF_1_L2 Int_ZF_1_L1 apply_funtype

Int_ZF_1_L2 Int_ZF_2_L1 Int_ZF_1_L2 by auto

qed

Integers form a linearly ordered group. We can apply all theorems proven
in group3 context to integers.

theorem (in int0) Int_ZF_2_T1: shows
"IsAnOrdGroup(ZZ,IntegerAddition,IntegerOrder)"
"IntegerOrder {is total on} ZZ"
"group3(ZZ,IntegerAddition,IntegerOrder)"
"IsLinOrder(ZZ,IntegerOrder)"

proof -

have "∀ k∈ZZ. ∀ m n. m ≤ n −→
m+k ≤ n+k ∧ k+m≤ k+n"

using int_ord_transl_inv by simp

then show T1: "IsAnOrdGroup(ZZ,IntegerAddition,IntegerOrder)" using
Int_ZF_1_T2 Int_ZF_2_L1B Int_ZF_2_L7 IsAnOrdGroup_def

by simp

then show "group3(ZZ,IntegerAddition,IntegerOrder)"
using group3_def by simp

have "∀ n∈ZZ. ∀ m∈ZZ. n≤m ∨ m≤n"
using zle_linear Int_ZF_2_L1 by auto

then show "IntegerOrder {is total on} ZZ"
using IsTotal_def by simp

with T1 show "IsLinOrder(ZZ,IntegerOrder)"
using IsAnOrdGroup_def IsPartOrder_def IsLinOrder_def by simp

qed

If a pair (i,m) belongs to the order relation on integers and i 6= m, then
i < m in the sense of defined in the standard Isabelle’s Int.thy.

lemma (in int0) Int_ZF_2_L9: assumes A1: "i ≤ m" and A2: "i6=m"

shows "i $< m"

proof -

from A1 have "i $≤ m" "i∈ZZ" "m∈ZZ"
using Int_ZF_2_L1A by auto

with A2 show "i $< m" using zle_def by simp

qed

This shows how Isabelle’s $< operator translates to IsarMathLib notation.
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lemma (in int0) Int_ZF_2_L9AA: assumes A1: "m∈ZZ" "n∈ZZ"
and A2: "m $< n"

shows "m≤n" "m 6= n"

using assms zle_def Int_ZF_2_L1 by auto

A small technical lemma about putting one on the other side of an inequality.

lemma (in int0) Int_ZF_2_L9A:

assumes A1: "k∈ZZ" and A2: "m ≤ k $- ($# 1)"

shows "m+1 ≤ k"

proof -

from A2 have "m+1 ≤ (k $- ($# 1)) + 1"
using Int_ZF_1_L8A int_ord_transl_inv by simp

with A1 show "m+1 ≤ k"

using Int_ZF_1_L13 by simp

qed

We can put any integer on the other side of an inequality reversing its sign.

lemma (in int0) Int_ZF_2_L9B: assumes "i∈ZZ" "m∈ZZ" "k∈ZZ"
shows "i+m ≤ k ←→ i ≤ k-m"

using assms Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L9A

by simp

A special case of Int_ZF_2_L9B with weaker assumptions.

lemma (in int0) Int_ZF_2_L9C:

assumes "i∈ZZ" "m∈ZZ" and "i-m ≤ k"

shows "i ≤ k+m"

using assms Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L9B

by simp

Taking (higher order) minus on both sides of inequality reverses it.

lemma (in int0) Int_ZF_2_L10: assumes "k ≤ i"

shows
"(-i) ≤ (-k)"

"$-i ≤ $-k"

using assms Int_ZF_2_L1A Int_ZF_1_L9A Int_ZF_2_T1

group3.OrderedGroup_ZF_1_L5 by auto

Taking minus on both sides of inequality reverses it, version with a negative
on one side.

lemma (in int0) Int_ZF_2_L10AA: assumes "n∈ZZ" "m≤(-n)"
shows "n≤(-m)"
using assms Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L5AD

by simp

We can cancel the same element on on both sides of an inequality, a version
with minus on both sides.

lemma (in int0) Int_ZF_2_L10AB:
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assumes "m∈ZZ" "n∈ZZ" "k∈ZZ" and "m-n ≤ m-k"

shows "k≤n"
using assms Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L5AF

by simp

If an integer is nonpositive, then its opposite is nonnegative.

lemma (in int0) Int_ZF_2_L10A: assumes "k ≤ 0"
shows "0≤(-k)"
using assms Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L5A by simp

If the opposite of an integers is nonnegative, then the integer is nonpositive.

lemma (in int0) Int_ZF_2_L10B:

assumes "k∈ZZ" and "0≤(-k)"
shows "k≤0"
using assms Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L5AA by simp

Adding one to an integer corresponds to taking a successor for a natural
number.

lemma (in int0) Int_ZF_2_L11:

shows "i $+ $# n $+ ($# 1) = i $+ $# succ(n)"

proof -

have "$# succ(n) = $#1 $+ $# n" using int_succ_int_1 by blast

then have "i $+ $# succ(n) = i $+ ($# n $+ $#1)"

using zadd_commute by simp

then show ?thesis using zadd_assoc by simp

qed

Adding a natural number increases integers.

lemma (in int0) Int_ZF_2_L12: assumes A1: "i∈ZZ" and A2: "n∈nat"
shows "i ≤ i $+ $#n"

proof -

{ assume "n = 0"

with A1 have "i ≤ i $+ $#n" using zadd_int0 int_ord_is_refl refl_def

by simp }
moreover
{ assume "n 6=0"

with A2 obtain k where "k∈nat" "n = succ(k)"

using Nat_ZF_1_L3 by auto

with A1 have "i ≤ i $+ $#n"

using zless_succ_zadd zless_imp_zle Int_ZF_2_L1 by simp }
ultimately show ?thesis by blast

qed

Adding one increases integers.

lemma (in int0) Int_ZF_2_L12A: assumes A1: "j≤k"
shows "j ≤ k $+ $#1" "j ≤ k+1"

proof -

from A1 have T1:"j∈ZZ" "k∈ZZ" "j $≤ k"
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using Int_ZF_2_L1A by auto

moreover from T1 have "k $≤ k $+ $#1" using Int_ZF_2_L12 Int_ZF_2_L1A

by simp

ultimately have "j $≤ k $+ $#1" using zle_trans by fast

with T1 show "j ≤ k $+ $#1" using Int_ZF_2_L1 by simp

with T1 have "j≤ k+$#1"

using Int_ZF_1_L2 by simp

then show "j ≤ k+1" using Int_ZF_1_L8 by simp

qed

Adding one increases integers, yet one more version.

lemma (in int0) Int_ZF_2_L12B: assumes A1: "m∈ZZ" shows "m ≤ m+1"
using assms int_ord_is_refl refl_def Int_ZF_2_L12A by simp

If k + 1 = m+ n, where n is a non-zero natural number, then m ≤ k.

lemma (in int0) Int_ZF_2_L13:

assumes A1: "k∈ZZ" "m∈ZZ" and A2: "n∈nat"
and A3: "k $+ ($# 1) = m $+ $# succ(n)"

shows "m ≤ k"

proof -

from A1 have "k∈ZZ" "m $+ $# n ∈ ZZ" by auto

moreover from assms have "k $+ $# 1 = m $+ $# n $+ $#1"

using Int_ZF_2_L11 by simp

ultimately have "k = m $+ $# n" using zadd_right_cancel by simp

with A1 A2 show ?thesis using Int_ZF_2_L12 by simp

qed

The absolute value of an integer is an integer.

lemma (in int0) Int_ZF_2_L14: assumes A1: "m∈ZZ"
shows "abs(m) ∈ ZZ"

proof -

have "AbsoluteValue(ZZ,IntegerAddition,IntegerOrder) : ZZ→ZZ"
using Int_ZF_2_T1 group3.OrderedGroup_ZF_3_L1 by simp

with A1 show ?thesis using apply_funtype by simp

qed

If two integers are nonnegative, then the opposite of one is less or equal than
the other and the sum is also nonnegative.

lemma (in int0) Int_ZF_2_L14A:

assumes "0≤m" "0≤n"
shows
"(-m) ≤ n"

"0 ≤ m + n"

using assms Int_ZF_2_T1

group3.OrderedGroup_ZF_1_L5AC group3.OrderedGroup_ZF_1_L12

by auto

We can increase components in an estimate.
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lemma (in int0) Int_ZF_2_L15:

assumes "b≤b1" "c≤c1" and "a≤b+c"
shows "a≤b1+c1"

proof -

from assms have "group3(ZZ,IntegerAddition,IntegerOrder)"
"〈a,IntegerAddition‘〈 b,c〉〉 ∈ IntegerOrder"

"〈b,b1〉 ∈ IntegerOrder" "〈c,c1〉 ∈ IntegerOrder"

using Int_ZF_2_T1 by auto

then have "〈a,IntegerAddition‘〈 b1,c1〉〉 ∈ IntegerOrder"

by (rule group3.OrderedGroup_ZF_1_L5E)

thus ?thesis by simp

qed

We can add or subtract the sides of two inequalities.

lemma (in int0) int_ineq_add_sides:

assumes "a≤b" and "c≤d"
shows
"a+c ≤ b+d"

"a-d ≤ b-c"

using assms Int_ZF_2_T1

group3.OrderedGroup_ZF_1_L5B group3.OrderedGroup_ZF_1_L5I

by auto

We can increase the second component in an estimate.

lemma (in int0) Int_ZF_2_L15A:

assumes "b∈ZZ" and "a≤b+c" and A3: "c≤c1"
shows "a≤b+c1"

proof -

from assms have
"group3(ZZ,IntegerAddition,IntegerOrder)"
"b ∈ ZZ"
"〈a,IntegerAddition‘〈 b,c〉〉 ∈ IntegerOrder"

"〈c,c1〉 ∈ IntegerOrder"

using Int_ZF_2_T1 by auto

then have "〈a,IntegerAddition‘〈 b,c1〉〉 ∈ IntegerOrder"

by (rule group3.OrderedGroup_ZF_1_L5D)

thus ?thesis by simp

qed

If we increase the second component in a sum of three integers, the whole
sum inceases.

lemma (in int0) Int_ZF_2_L15C:

assumes A1: "m∈ZZ" "n∈ZZ" and A2: "k ≤ L"

shows "m+k+n ≤ m+L+n"

proof -

let ?P = "IntegerAddition"

from assms have
"group3(int,?P,IntegerOrder)"

"m ∈ int" "n ∈ int"
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"〈k,L〉 ∈ IntegerOrder"

using Int_ZF_2_T1 by auto

then have "〈?P‘〈?P‘〈 m,k〉,n〉, ?P‘〈?P‘〈 m,L〉,n〉 〉 ∈ IntegerOrder"

by (rule group3.OrderedGroup_ZF_1_L10)

then show "m+k+n ≤ m+L+n" by simp

qed

We don’t decrease an integer by adding a nonnegative one.

lemma (in int0) Int_ZF_2_L15D:

assumes "0≤n" "m∈ZZ"
shows "m ≤ n+m"

using assms Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L5F

by simp

Some inequalities about the sum of two integers and its absolute value.

lemma (in int0) Int_ZF_2_L15E:

assumes "m∈ZZ" "n∈ZZ"
shows
"m+n ≤ abs(m)+abs(n)"

"m-n ≤ abs(m)+abs(n)"

"(-m)+n ≤ abs(m)+abs(n)"

"(-m)-n ≤ abs(m)+abs(n)"

using assms Int_ZF_2_T1 group3.OrderedGroup_ZF_3_L6A

by auto

We can add a nonnegative integer to the right hand side of an inequality.

lemma (in int0) Int_ZF_2_L15F: assumes "m≤k" and "0≤n"
shows "m ≤ k+n" "m ≤ n+k"

using assms Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L5G

by auto

Triangle inequality for integers.

lemma (in int0) Int_triangle_ineq:

assumes "m∈ZZ" "n∈ZZ"
shows "abs(m+n)≤abs(m)+abs(n)"
using assms Int_ZF_1_T2 Int_ZF_2_T1 group3.OrdGroup_triangle_ineq

by simp

Taking absolute value does not change nonnegative integers.

lemma (in int0) Int_ZF_2_L16:

assumes "0≤m" shows "m∈ZZ+" and "abs(m) = m"

using assms Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L2

group3.OrderedGroup_ZF_3_L2 by auto

0 ≤ 1, so |1| = 1.

lemma (in int0) Int_ZF_2_L16A: shows "0≤1" and "abs(1) = 1"
proof -

have "($# 0) ∈ ZZ" "($# 1)∈ ZZ" by auto
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then have "0≤0" and T1: "1∈ZZ"
using Int_ZF_1_L8 int_ord_is_refl refl_def by auto

then have "0≤0+1" using Int_ZF_2_L12A by simp

with T1 show "0≤1" using Int_ZF_1_T2 group0.group0_2_L2

by simp

then show "abs(1) = 1" using Int_ZF_2_L16 by simp

qed

1 ≤ 2.

lemma (in int0) Int_ZF_2_L16B: shows "1≤2"
proof -

have "($# 1)∈ ZZ" by simp

then show "1≤2"
using Int_ZF_1_L8 int_ord_is_refl refl_def Int_ZF_2_L12A

by simp

qed

Integers greater or equal one are greater or equal zero.

lemma (in int0) Int_ZF_2_L16C:

assumes A1: "1≤a" shows
"0≤a" "a6=0"
"2 ≤ a+1"
"1 ≤ a+1"
"0 ≤ a+1"

proof -

from A1 have "0≤1" and "1≤a"
using Int_ZF_2_L16A by auto

then show "0≤a" by (rule Int_order_transitive)

have I: "0≤1" using Int_ZF_2_L16A by simp

have "1≤2" using Int_ZF_2_L16B by simp

moreover from A1 show "2 ≤ a+1"
using Int_ZF_1_L8A int_ord_transl_inv by simp

ultimately show "1 ≤ a+1" by (rule Int_order_transitive)

with I show "0 ≤ a+1" by (rule Int_order_transitive)

from A1 show "a 6=0" using
Int_ZF_2_L16A Int_ZF_2_L3 int_zero_not_one by auto

qed

Absolute value is the same for an integer and its opposite.

lemma (in int0) Int_ZF_2_L17:

assumes "m∈ZZ" shows "abs(-m) = abs(m)"

using assms Int_ZF_2_T1 group3.OrderedGroup_ZF_3_L7A by simp

The absolute value of zero is zero.

lemma (in int0) Int_ZF_2_L18: shows "abs(0) = 0"
using Int_ZF_2_T1 group3.OrderedGroup_ZF_3_L2A by simp

A different version of the triangle inequality.
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lemma (in int0) Int_triangle_ineq1:

assumes A1: "m∈ZZ" "n∈ZZ"
shows
"abs(m-n) ≤ abs(n)+abs(m)"

"abs(m-n) ≤ abs(m)+abs(n)"

proof -

have "$-n ∈ ZZ" by simp

with A1 have "abs(m-n) ≤ abs(m)+abs(-n)"

using Int_ZF_1_L9A Int_triangle_ineq by simp

with A1 show
"abs(m-n) ≤ abs(n)+abs(m)"

"abs(m-n) ≤ abs(m)+abs(n)"

using Int_ZF_2_L17 Int_ZF_2_L14 Int_ZF_1_T2 IsCommutative_def

by auto

qed

Another version of the triangle inequality.

lemma (in int0) Int_triangle_ineq2:

assumes "m∈ZZ" "n∈ZZ"
and "abs(m-n) ≤ k"

shows
"abs(m) ≤ abs(n)+k"

"m-k ≤ n"

"m ≤ n+k"

"n-k ≤ m"

using assms Int_ZF_1_T2 Int_ZF_2_T1

group3.OrderedGroup_ZF_3_L7D group3.OrderedGroup_ZF_3_L7E

by auto

Triangle inequality with three integers. We could use OrdGroup_triangle_ineq3,
but since simp cannot translate the notation directly, it is simpler to reprove
it for integers.

lemma (in int0) Int_triangle_ineq3:

assumes A1: "m∈ZZ" "n∈ZZ" "k∈ZZ"
shows "abs(m+n+k) ≤ abs(m)+abs(n)+abs(k)"

proof -

from A1 have T: "m+n ∈ ZZ" "abs(k) ∈ ZZ"
using Int_ZF_1_T2 group0.group_op_closed Int_ZF_2_L14

by auto

with A1 have "abs(m+n+k) ≤ abs(m+n) + abs(k)"

using Int_triangle_ineq by simp

moreover from A1 T have
"abs(m+n) + abs(k) ≤ abs(m) + abs(n) + abs(k)"

using Int_triangle_ineq int_ord_transl_inv by simp

ultimately show ?thesis by (rule Int_order_transitive)

qed

The next lemma shows what happens when one integers is not greater or
equal than another.
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lemma (in int0) Int_ZF_2_L19:

assumes A1: "m∈ZZ" "n∈ZZ" and A2: "¬(n≤m)"
shows "m≤n" "(-n) ≤ (-m)" "m6=n"

proof -

from A1 A2 show "m≤n" using Int_ZF_2_T1 IsTotal_def

by auto

then show "(-n) ≤ (-m)" using Int_ZF_2_L10

by simp

from A1 have "n ≤ n" using int_ord_is_refl refl_def

by simp

with A2 show "m 6=n" by auto

qed

If one integer is greater or equal and not equal to another, then it is not
smaller or equal.

lemma (in int0) Int_ZF_2_L19AA: assumes A1: "m≤n" and A2: "m6=n"

shows "¬(n≤m)"
proof -

from A1 A2 have
"group3(ZZ, IntegerAddition, IntegerOrder)"

"〈m,n〉 ∈ IntegerOrder"

"m 6=n"

using Int_ZF_2_T1 by auto

then have "〈n,m〉 /∈ IntegerOrder"

by (rule group3.OrderedGroup_ZF_1_L8AA)

thus "¬(n≤m)" by simp

qed

The next lemma allows to prove theorems for the case of positive and neg-
ative integers separately.

lemma (in int0) Int_ZF_2_L19A: assumes A1: "m∈ZZ" and A2: "¬(0≤m)"
shows "m≤0" "0 ≤ (-m)" "m6=0"

proof -

from A1 have T: "0 ∈ ZZ"
using Int_ZF_1_T2 group0.group0_2_L2 by auto

with A1 A2 show "m≤0" using Int_ZF_2_L19 by blast

from A1 T A2 show "m 6=0" by (rule Int_ZF_2_L19)

from A1 T A2 have "(-0)≤(-m)" by (rule Int_ZF_2_L19)

then show "0 ≤ (-m)"

using Int_ZF_1_T2 group0.group_inv_of_one by simp

qed

We can prove a theorem about integers by proving that it holds for m = 0,
m ∈ZZ+ and −m ∈ZZ+.

lemma (in int0) Int_ZF_2_L19B:

assumes "m∈ZZ" and "Q(0)" and "∀ n∈ZZ+. Q(n)" and "∀ n∈ZZ+. Q(-n)"

shows "Q(m)"

proof -
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let ?G = "ZZ"
let ?P = "IntegerAddition"

let ?r = "IntegerOrder"

let ?b = "m"

from assms have
"group3(?G, ?P, ?r)"

"?r {is total on} ?G"

"?b ∈ ?G"

"Q(TheNeutralElement(?G, ?P))"

"∀ a∈PositiveSet(?G, ?P, ?r). Q(a)"

"∀ a∈PositiveSet(?G, ?P, ?r). Q(GroupInv(?G, ?P)‘(a))"

using Int_ZF_2_T1 by auto

then show "Q(?b)" by (rule group3.OrderedGroup_ZF_1_L18)

qed

An integer is not greater than its absolute value.

lemma (in int0) Int_ZF_2_L19C: assumes A1: "m∈ZZ"
shows
"m ≤ abs(m)"

"(-m) ≤ abs(m)"

using assms Int_ZF_2_T1

group3.OrderedGroup_ZF_3_L5 group3.OrderedGroup_ZF_3_L6

by auto

|m− n| = |n−m|.
lemma (in int0) Int_ZF_2_L20: assumes "m∈ZZ" "n∈ZZ"

shows "abs(m-n) = abs(n-m)"

using assms Int_ZF_2_T1 group3.OrderedGroup_ZF_3_L7B by simp

We can add the sides of inequalities with absolute values.

lemma (in int0) Int_ZF_2_L21:

assumes A1: "m∈ZZ" "n∈ZZ"
and A2: "abs(m) ≤ k" "abs(n) ≤ l"

shows
"abs(m+n) ≤ k + l"

"abs(m-n) ≤ k + l"

using assms Int_ZF_1_T2 Int_ZF_2_T1

group3.OrderedGroup_ZF_3_L7C group3.OrderedGroup_ZF_3_L7CA

by auto

Absolute value is nonnegative.

lemma (in int0) int_abs_nonneg: assumes A1: "m∈ZZ"
shows "abs(m) ∈ ZZ+" "0 ≤ abs(m)"

proof -

have "AbsoluteValue(ZZ,IntegerAddition,IntegerOrder) : ZZ→ZZ+"

using Int_ZF_2_T1 group3.OrderedGroup_ZF_3_L3C by simp

with A1 show "abs(m) ∈ ZZ+" using apply_funtype

by simp

464



then show "0 ≤ abs(m)"

using Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L2 by simp

qed

If an nonnegative integer is less or equal than another, then so is its absolute
value.

lemma (in int0) Int_ZF_2_L23:

assumes "0≤m" "m≤k"
shows "abs(m) ≤ k"

using assms Int_ZF_2_L16 by simp

41.3 Induction on integers.

In this section we show some induction lemmas for integers. The basic tools
are the induction on natural numbers and the fact that integers can be
written as a sum of a smaller integer and a natural number.

An integer can be written a a sum of a smaller integer and a natural number.

lemma (in int0) Int_ZF_3_L2: assumes A1: "i ≤ m"

shows "∃ n∈nat. m = i $+ $# n"

proof -

let ?n = "0"

{ assume A2: "i=m"

from A1 A2 have "?n ∈ nat" "m = i $+ $# ?n"

using Int_ZF_2_L1A zadd_int0_right by auto

hence "∃ n∈nat. m = i $+ $# n" by blast }
moreover
{ assume A3: "i6=m"

with A1 have "i $< m" "i∈ZZ" "m∈ZZ"
using Int_ZF_2_L9 Int_ZF_2_L1A by auto

then obtain k where D1: "k∈nat" "m = i $+ $# succ(k)"

using zless_imp_succ_zadd_lemma by auto

let ?n = "succ(k)"

from D1 have "?n∈nat" "m = i $+ $# ?n" by auto

hence "∃ n∈nat. m = i $+ $# n" by simp }
ultimately show ?thesis by blast

qed

Induction for integers, the induction step.

lemma (in int0) Int_ZF_3_L6: assumes A1: "i∈ZZ"
and A2: "∀ m. i≤m ∧ Q(m) −→ Q(m $+ ($# 1))"

shows "∀ k∈nat. Q(i $+ ($# k)) −→ Q(i $+ ($# succ(k)))"

proof
fix k assume A3: "k∈nat" show "Q(i $+ $# k) −→ Q(i $+ $# succ(k))"

proof
assume A4: "Q(i $+ $# k)"

from A1 A3 have "i≤ i $+ ($# k)" using Int_ZF_2_L12

by simp
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with A4 A2 have "Q(i $+ ($# k) $+ ($# 1))" by simp

then show "Q(i $+ ($# succ(k)))" using Int_ZF_2_L11 by simp

qed
qed

Induction on integers, version with higher-order increment function.

lemma (in int0) Int_ZF_3_L7:

assumes A1: "i≤k" and A2: "Q(i)"

and A3: "∀ m. i≤m ∧ Q(m) −→ Q(m $+ ($# 1))"

shows "Q(k)"

proof -

from A1 obtain n where D1: "n∈nat" and D2: "k = i $+ $# n"

using Int_ZF_3_L2 by auto

from A1 have T1: "i∈ZZ" using Int_ZF_2_L1A by simp

note ‘n∈nat‘
moreover from A1 A2 have "Q(i $+ $#0)"

using Int_ZF_2_L1A zadd_int0 by simp

moreover from T1 A3 have
"∀ k∈nat. Q(i $+ ($# k)) −→ Q(i $+ ($# succ(k)))"

by (rule Int_ZF_3_L6)

ultimately have "Q(i $+ ($# n))" by (rule ind_on_nat)

with D2 show "Q(k)" by simp

qed

Induction on integer, implication between two forms of the induction step.

lemma (in int0) Int_ZF_3_L7A: assumes
A1: "∀ m. i≤m ∧ Q(m) −→ Q(m+1)"
shows "∀ m. i≤m ∧ Q(m) −→ Q(m $+ ($# 1))"

proof -

{ fix m assume "i≤m ∧ Q(m)"

with A1 have T1: "m∈ZZ" "Q(m+1)" using Int_ZF_2_L1A by auto

then have "m+1 = m+($# 1)" using Int_ZF_1_L8 by simp

with T1 have "Q(m $+ ($# 1))" using Int_ZF_1_L2

by simp

} then show ?thesis by simp

qed

Induction on integers, version with ZF increment function.

theorem (in int0) Induction_on_int:

assumes A1: "i≤k" and A2: "Q(i)"

and A3: "∀ m. i≤m ∧ Q(m) −→ Q(m+1)"
shows "Q(k)"

proof -

from A3 have "∀ m. i≤m ∧ Q(m) −→ Q(m $+ ($# 1))"

by (rule Int_ZF_3_L7A)

with A1 A2 show ?thesis by (rule Int_ZF_3_L7)

qed

Another form of induction on integers. This rewrites the basic theorem
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Int_ZF_3_L7 substituting P (−k) for Q(k).

lemma (in int0) Int_ZF_3_L7B: assumes A1: "i≤k" and A2: "P($-i)"

and A3: "∀ m. i≤m ∧ P($-m) −→ P($-(m $+ ($# 1)))"

shows "P($-k)"

proof -

from A1 A2 A3 show "P($-k)" by (rule Int_ZF_3_L7)

qed

Another induction on integers. This rewrites Int ZF 3 L7 substituting −k
for k and −i for i.

lemma (in int0) Int_ZF_3_L8: assumes A1: "k≤i" and A2: "P(i)"

and A3: "∀ m. $-i≤m ∧ P($-m) −→ P($-(m $+ ($# 1)))"

shows "P(k)"

proof -

from A1 have T1: "$-i≤$-k" using Int_ZF_2_L10 by simp

from A1 A2 have T2: "P($- $- i)" using Int_ZF_2_L1A zminus_zminus

by simp

from T1 T2 A3 have "P($-($-k))" by (rule Int_ZF_3_L7)

with A1 show "P(k)" using Int_ZF_2_L1A zminus_zminus by simp

qed

An implication between two forms of induction steps.

lemma (in int0) Int_ZF_3_L9: assumes A1: "i∈ZZ"
and A2: "∀ n. n≤i ∧ P(n) −→ P(n $+ $-($#1))"

shows "∀ m. $-i≤m ∧ P($-m) −→ P($-(m $+ ($# 1)))"

proof
fix m show "$-i≤m ∧ P($-m) −→ P($-(m $+ ($# 1)))"

proof
assume A3: "$- i ≤ m ∧ P($- m)"

then have "$- i ≤ m" by simp

then have "$-m ≤ $- ($- i)" by (rule Int_ZF_2_L10)

with A1 A2 A3 show "P($-(m $+ ($# 1)))"

using zminus_zminus zminus_zadd_distrib by simp

qed
qed

Backwards induction on integers, version with higher-order decrement func-
tion.

lemma (in int0) Int_ZF_3_L9A: assumes A1: "k≤i" and A2: "P(i)"

and A3: "∀ n. n≤i ∧ P(n) −→P(n $+ $-($#1)) "

shows "P(k)"

proof -

from A1 have T1: "i∈ZZ" using Int_ZF_2_L1A by simp

from T1 A3 have T2: "∀ m. $-i≤m ∧ P($-m) −→ P($-(m $+ ($# 1)))"

by (rule Int_ZF_3_L9)

from A1 A2 T2 show "P(k)" by (rule Int_ZF_3_L8)

qed

Induction on integers, implication between two forms of the induction step.

467



lemma (in int0) Int_ZF_3_L10: assumes
A1: "∀ n. n≤i ∧ P(n) −→ P(n-1)"
shows "∀ n. n≤i ∧ P(n) −→ P(n $+ $-($#1))"

proof -

{ fix n assume "n≤i ∧ P(n)"

with A1 have T1: "n∈ZZ" "P(n-1)" using Int_ZF_2_L1A by auto

then have "n-1 = n-($# 1)" using Int_ZF_1_L8 by simp

with T1 have "P(n $+ $-($#1))" using Int_ZF_1_L10 by simp

} then show ?thesis by simp

qed

Backwards induction on integers.

theorem (in int0) Back_induct_on_int:

assumes A1: "k≤i" and A2: "P(i)"

and A3: "∀ n. n≤i ∧ P(n) −→ P(n-1)"
shows "P(k)"

proof -

from A3 have "∀ n. n≤i ∧ P(n) −→ P(n $+ $-($#1))"

by (rule Int_ZF_3_L10)

with A1 A2 show "P(k)" by (rule Int_ZF_3_L9A)

qed

41.4 Bounded vs. finite subsets of integers

The goal of this section is to establish that a subset of integers is bounded
is and only is it is finite. The fact that all finite sets are bounded is already
shown for all linearly ordered groups in OrderedGroups_ZF.thy. To show the
other implication we show that all intervals starting at 0 are finite and then
use a result from OrderedGroups_ZF.thy.

There are no integers between k and k + 1.

lemma (in int0) Int_ZF_4_L1:

assumes A1: "k∈ZZ" "m∈ZZ" "n∈nat" and A2: "k $+ $#1 = m $+ $#n"

shows "m = k $+ $#1 ∨ m ≤ k"

proof -

{ assume "n=0"

with A1 A2 have "m = k $+ $#1 ∨ m ≤ k"

using zadd_int0 by simp }
moreover
{ assume "n 6=0"

with A1 obtain j where D1: "j∈nat" "n = succ(j)"

using Nat_ZF_1_L3 by auto

with A1 A2 D1 have "m = k $+ $#1 ∨ m ≤ k"

using Int_ZF_2_L13 by simp }
ultimately show ?thesis by blast

qed

A trivial calculation lemma that allows to subtract and add one.
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lemma Int_ZF_4_L1A:

assumes "m∈int" shows "m $- $#1 $+ $#1 = m"

using assms eq_zdiff_iff by auto

There are no integers between k and k + 1, another formulation.

lemma (in int0) Int_ZF_4_L1B: assumes A1: "m ≤ L"

shows
"m = L ∨ m+1 ≤ L"

"m = L ∨ m ≤ L-1"
proof -

let ?k = "L $- $#1"

from A1 have T1: "m∈ZZ" "L∈ZZ" "L = ?k $+ $#1"

using Int_ZF_2_L1A Int_ZF_4_L1A by auto

moreover from A1 obtain n where D1: "n∈nat" "L = m $+ $# n"

using Int_ZF_3_L2 by auto

ultimately have "m = L ∨ m ≤ ?k"

using Int_ZF_4_L1 by simp

with T1 show "m = L ∨ m+1 ≤ L"

using Int_ZF_2_L9A by auto

with T1 show "m = L ∨ m ≤ L-1"
using Int_ZF_1_L8A Int_ZF_2_L9B by simp

qed

If j ∈ m..k + 1, then j ∈ m..n or j = k + 1.

lemma (in int0) Int_ZF_4_L2: assumes A1: "k∈ZZ"
and A2: "j ∈ m..(k $+ $#1)"

shows "j ∈ m..k ∨ j ∈ {k $+ $#1}"

proof -

from A2 have T1: "m≤j" "j≤(k $+ $#1)" using Order_ZF_2_L1A

by auto

then have T2: "m∈ZZ" "j∈ZZ" using Int_ZF_2_L1A by auto

from T1 obtain n where "n∈nat" "k $+ $#1 = j $+ $# n"

using Int_ZF_3_L2 by auto

with A1 T1 T2 have "(m≤j ∧ j ≤ k) ∨ j ∈ {k $+ $#1}"

using Int_ZF_4_L1 by auto

then show ?thesis using Order_ZF_2_L1B by auto

qed

Extending an integer interval by one is the same as adding the new endpoint.

lemma (in int0) Int_ZF_4_L3: assumes A1: "m≤ k"

shows "m..(k $+ $#1) = m..k ∪ {k $+ $#1}"

proof
from A1 have T1: "m∈ZZ" "k∈ZZ" using Int_ZF_2_L1A by auto

then show "m .. (k $+ $# 1) ⊆ m .. k ∪ {k $+ $# 1}"

using Int_ZF_4_L2 by auto

from T1 have "m≤ m" using Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L3

by simp

with T1 A1 have "m .. k ⊆ m .. (k $+ $# 1)"

using Int_ZF_2_L12 Int_ZF_2_L6 Order_ZF_2_L3 by simp
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with T1 A1 show "m..k ∪ {k $+ $#1} ⊆ m..(k $+ $#1)"

using Int_ZF_2_L12A int_ord_is_refl Order_ZF_2_L2 by auto

qed

Integer intervals are finite - induction step.

lemma (in int0) Int_ZF_4_L4:

assumes A1: "i≤m" and A2: "i..m ∈ Fin(ZZ)"
shows "i..(m $+ $#1) ∈ Fin(ZZ)"
using assms Int_ZF_4_L3 by simp

Integer intervals are finite.

lemma (in int0) Int_ZF_4_L5: assumes A1: "i∈ZZ" "k∈ZZ"
shows "i..k ∈ Fin(ZZ)"

proof -

{ assume A2: "i≤k"
moreover from A1 have "i..i ∈ Fin(ZZ)"

using int_ord_is_refl Int_ZF_2_L4 Order_ZF_2_L4 by simp

moreover from A2 have
"∀ m. i≤m ∧ i..m ∈ Fin(ZZ) −→ i..(m $+ $#1) ∈ Fin(ZZ)"
using Int_ZF_4_L4 by simp

ultimately have "i..k ∈ Fin(ZZ)" by (rule Int_ZF_3_L7) }
moreover
{ assume "¬ i ≤ k"

then have "i..k ∈ Fin(ZZ)" using Int_ZF_2_L6 Order_ZF_2_L5

by simp }
ultimately show ?thesis by blast

qed

Bounded integer sets are finite.

lemma (in int0) Int_ZF_4_L6: assumes A1: "IsBounded(A,IntegerOrder)"

shows "A ∈ Fin(ZZ)"
proof -

have T1: "∀ m ∈ Nonnegative(ZZ,IntegerAddition,IntegerOrder).
$#0..m ∈ Fin(ZZ)"

proof
fix m assume "m ∈ Nonnegative(ZZ,IntegerAddition,IntegerOrder)"
then have "m∈ZZ" using Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L4E

by auto

then show "$#0..m ∈ Fin(ZZ)" using Int_ZF_4_L5 by simp

qed
have "group3(ZZ,IntegerAddition,IntegerOrder)"

using Int_ZF_2_T1 by simp

moreover from T1 have "∀ m ∈ Nonnegative(ZZ,IntegerAddition,IntegerOrder).
Interval(IntegerOrder,TheNeutralElement(ZZ,IntegerAddition),m)
∈ Fin(ZZ)" using Int_ZF_1_L8 by simp

moreover note A1

ultimately show "A ∈ Fin(ZZ)" by (rule group3.OrderedGroup_ZF_2_T1)

qed
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A subset of integers is bounded iff it is finite.

theorem (in int0) Int_bounded_iff_fin:

shows "IsBounded(A,IntegerOrder)←→ A∈Fin(ZZ)"
using Int_ZF_4_L6 Int_ZF_2_T1 group3.ord_group_fin_bounded

by blast

The image of an interval by any integer function is finite, hence bounded.

lemma (in int0) Int_ZF_4_L8:

assumes A1: "i∈ZZ" "k∈ZZ" and A2: "f:ZZ→ZZ"
shows
"f‘‘(i..k) ∈ Fin(ZZ)"
"IsBounded(f‘‘(i..k),IntegerOrder)"

using assms Int_ZF_4_L5 Finite1_L6A Int_bounded_iff_fin

by auto

If for every integer we can find one in A that is greater or equal, then A is
is not bounded above, hence infinite.

lemma (in int0) Int_ZF_4_L9: assumes A1: "∀ m∈ZZ. ∃ k∈A. m≤k"
shows
"¬IsBoundedAbove(A,IntegerOrder)"
"A /∈ Fin(ZZ)"

proof -

have "ZZ 6= {0}"
using Int_ZF_1_L8A int_zero_not_one by blast

with A1 show
"¬IsBoundedAbove(A,IntegerOrder)"
"A /∈ Fin(ZZ)"
using Int_ZF_2_T1 group3.OrderedGroup_ZF_2_L2A

by auto

qed

end

42 Integers 1

theory Int_ZF_1 imports Int_ZF_IML OrderedRing_ZF

begin

This theory file considers the set of integers as an ordered ring.

42.1 Integers as a ring

In this section we show that integers form a commutative ring.

The next lemma provides the condition to show that addition is distributive
with respect to multiplication.
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lemma (in int0) Int_ZF_1_1_L1: assumes A1: "a∈ZZ" "b∈ZZ" "c∈ZZ"
shows
"a·(b+c) = a·b + a·c"
"(b+c)·a = b·a + c·a"
using assms Int_ZF_1_L2 zadd_zmult_distrib zadd_zmult_distrib2

by auto

Integers form a commutative ring, hence we can use theorems proven in
ring0 context (locale).

lemma (in int0) Int_ZF_1_1_L2: shows
"IsAring(ZZ,IntegerAddition,IntegerMultiplication)"
"IntegerMultiplication {is commutative on} ZZ"
"ring0(ZZ,IntegerAddition,IntegerMultiplication)"

proof -

have "∀ a∈ZZ.∀ b∈ZZ.∀ c∈ZZ.
a·(b+c) = a·b + a·c ∧ (b+c)·a = b·a + c·a"
using Int_ZF_1_1_L1 by simp

then have "IsDistributive(ZZ,IntegerAddition,IntegerMultiplication)"
using IsDistributive_def by simp

then show "IsAring(ZZ,IntegerAddition,IntegerMultiplication)"
"ring0(ZZ,IntegerAddition,IntegerMultiplication)"
using Int_ZF_1_T1 Int_ZF_1_T2 IsAring_def ring0_def

by auto

have "∀ a∈ZZ.∀ b∈ZZ. a·b = b·a" using Int_ZF_1_L4 by simp

then show "IntegerMultiplication {is commutative on} ZZ"
using IsCommutative_def by simp

qed

Zero and one are integers.

lemma (in int0) int_zero_one_are_int: shows "0∈ZZ" "1∈ZZ"
using Int_ZF_1_1_L2 ring0.Ring_ZF_1_L2 by auto

Negative of zero is zero.

lemma (in int0) int_zero_one_are_intA: shows "(-0) = 0"
using Int_ZF_1_T2 group0.group_inv_of_one by simp

Properties with one integer.

lemma (in int0) Int_ZF_1_1_L4: assumes A1: "a ∈ ZZ"
shows
"a+0 = a"

"0+a = a"

"a·1 = a" "1·a = a"

"0·a = 0" "a·0 = 0"
"(-a) ∈ ZZ" "(-(-a)) = a"

"a-a = 0" "a-0 = a" "2·a = a+a"

proof -

from A1 show
"a+0 = a" "0+a = a" "a·1 = a"
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"1·a = a" "a-a = 0" "a-0 = a"

"(-a) ∈ ZZ" "2·a = a+a" "(-(-a)) = a"

using Int_ZF_1_1_L2 ring0.Ring_ZF_1_L3 by auto

from A1 show "0·a = 0" "a·0 = 0"
using Int_ZF_1_1_L2 ring0.Ring_ZF_1_L6 by auto

qed

Properties that require two integers.

lemma (in int0) Int_ZF_1_1_L5: assumes "a∈ZZ" "b∈ZZ"
shows
"a+b ∈ ZZ"
"a-b ∈ ZZ"
"a·b ∈ ZZ"
"a+b = b+a"

"a·b = b·a"
"(-b)-a = (-a)-b"

"(-(a+b)) = (-a)-b"

"(-(a-b)) = ((-a)+b)"

"(-a)·b = -(a·b)"
"a·(-b) = -(a·b)"
"(-a)·(-b) = a·b"
using assms Int_ZF_1_1_L2 ring0.Ring_ZF_1_L4 ring0.Ring_ZF_1_L9

ring0.Ring_ZF_1_L7 ring0.Ring_ZF_1_L7A Int_ZF_1_L4 by auto

2 and 3 are integers.

lemma (in int0) int_two_three_are_int: shows "2 ∈ ZZ" "3 ∈ ZZ"
using int_zero_one_are_int Int_ZF_1_1_L5 by auto

Another property with two integers.

lemma (in int0) Int_ZF_1_1_L5B:

assumes "a∈ZZ" "b∈ZZ"
shows "a-(-b) = a+b"

using assms Int_ZF_1_1_L2 ring0.Ring_ZF_1_L9

by simp

Properties that require three integers.

lemma (in int0) Int_ZF_1_1_L6: assumes "a∈ZZ" "b∈ZZ" "c∈ZZ"
shows
"a-(b+c) = a-b-c"

"a-(b-c) = a-b+c"

"a·(b-c) = a·b - a·c"
"(b-c)·a = b·a - c·a"
using assms Int_ZF_1_1_L2 ring0.Ring_ZF_1_L10 ring0.Ring_ZF_1_L8

by auto

One more property with three integers.

lemma (in int0) Int_ZF_1_1_L6A: assumes "a∈ZZ" "b∈ZZ" "c∈ZZ"
shows "a+(b-c) = a+b-c"
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using assms Int_ZF_1_1_L2 ring0.Ring_ZF_1_L10A by simp

Associativity of addition and multiplication.

lemma (in int0) Int_ZF_1_1_L7: assumes "a∈ZZ" "b∈ZZ" "c∈ZZ"
shows
"a+b+c = a+(b+c)"

"a·b·c = a·(b·c)"
using assms Int_ZF_1_1_L2 ring0.Ring_ZF_1_L11 by auto

42.2 Rearrangement lemmas

In this section we collect lemmas about identities related to rearranging the
terms in expresssions

A formula with a positive integer.

lemma (in int0) Int_ZF_1_2_L1: assumes "0≤a"
shows "abs(a)+1 = abs(a+1)"
using assms Int_ZF_2_L16 Int_ZF_2_L12A by simp

A formula with two integers, one positive.

lemma (in int0) Int_ZF_1_2_L2: assumes A1: "a∈ZZ" and A2: "0≤b"
shows "a+(abs(b)+1)·a = (abs(b+1)+1)·a"

proof -

from A2 have "abs(b+1) ∈ ZZ"
using Int_ZF_2_L12A Int_ZF_2_L1A Int_ZF_2_L14 by blast

with A1 A2 show ?thesis

using Int_ZF_1_2_L1 Int_ZF_1_1_L2 ring0.Ring_ZF_2_L1

by simp

qed

A couple of formulae about canceling opposite integers.

lemma (in int0) Int_ZF_1_2_L3: assumes A1: "a∈ZZ" "b∈ZZ"
shows
"a+b-a = b"

"a+(b-a) = b"

"a+b-b = a"

"a-b+b = a"

"(-a)+(a+b) = b"

"a+(b-a) = b"

"(-b)+(a+b) = a"

"a-(b+a) = -b"

"a-(a+b) = -b"

"a-(a-b) = b"

"a-b-a = -b"

"a-b - (a+b) = (-b)-b"

using assms Int_ZF_1_T2 group0.group0_4_L6A group0.inv_cancel_two

group0.group0_2_L16A group0.group0_4_L6AA group0.group0_4_L6AB

group0.group0_4_L6F group0.group0_4_L6AC by auto

474



Subtracting one does not increase integers. This may be moved to a theory
about ordered rings one day.

lemma (in int0) Int_ZF_1_2_L3A: assumes A1: "a≤b"
shows "a-1 ≤ b"

proof -

from A1 have "b+1-1 = b"

using Int_ZF_2_L1A int_zero_one_are_int Int_ZF_1_2_L3 by simp

moreover from A1 have "a-1 ≤ b+1-1"
using Int_ZF_2_L12A int_zero_one_are_int Int_ZF_1_1_L4 int_ord_transl_inv

by simp

ultimately show "a-1 ≤ b" by simp

qed

Subtracting one does not increase integers, special case.

lemma (in int0) Int_ZF_1_2_L3AA:

assumes A1: "a∈ZZ" shows
"a-1 ≤a"
"a-1 6= a"

"¬(a≤a-1)"
"¬(a+1 ≤a)"
"¬(1+a ≤a)"

proof -

from A1 have "a≤a" using int_ord_is_refl refl_def

by simp

then show "a-1 ≤a" using Int_ZF_1_2_L3A

by simp

moreover from A1 show "a-1 6= a" using Int_ZF_1_L14 by simp

ultimately show I: "¬(a≤a-1)" using Int_ZF_2_L19AA

by blast

with A1 show "¬(a+1 ≤a)"
using int_zero_one_are_int Int_ZF_2_L9B by simp

with A1 show "¬(1+a ≤a)"
using int_zero_one_are_int Int_ZF_1_1_L5 by simp

qed

A formula with a nonpositive integer.

lemma (in int0) Int_ZF_1_2_L4: assumes "a≤0"
shows "abs(a)+1 = abs(a-1)"
using assms int_zero_one_are_int Int_ZF_1_2_L3A Int_ZF_2_T1

group3.OrderedGroup_ZF_3_L3A Int_ZF_2_L1A

int_zero_one_are_int Int_ZF_1_1_L5 by simp

A formula with two integers, one negative.

lemma (in int0) Int_ZF_1_2_L5: assumes A1: "a∈ZZ" and A2: "b≤0"
shows "a+(abs(b)+1)·a = (abs(b-1)+1)·a"

proof -

from A2 have "abs(b-1) ∈ ZZ"
using int_zero_one_are_int Int_ZF_1_2_L3A Int_ZF_2_L1A Int_ZF_2_L14
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by blast

with A1 A2 show ?thesis

using Int_ZF_1_2_L4 Int_ZF_1_1_L2 ring0.Ring_ZF_2_L1

by simp

qed

A rearrangement with four integers.

lemma (in int0) Int_ZF_1_2_L6:

assumes A1: "a∈ZZ" "b∈ZZ" "c∈ZZ" "d∈ZZ"
shows
"a-(b-1)·c = (d-b·c)-(d-a-c)"

proof -

from A1 have T1:

"(d-b·c) ∈ ZZ" "d-a ∈ ZZ" "(-(b·c)) ∈ ZZ"
using Int_ZF_1_1_L5 Int_ZF_1_1_L4 by auto

with A1 have
"(d-b·c)-(d-a-c) = (-(b·c))+a+c"
using Int_ZF_1_1_L6 Int_ZF_1_2_L3 by simp

also from A1 T1 have "(-(b·c))+a+c = a-(b-1)·c"
using int_zero_one_are_int Int_ZF_1_1_L6 Int_ZF_1_1_L4 Int_ZF_1_1_L5

by simp

finally show ?thesis by simp

qed

Some other rearrangements with two integers.

lemma (in int0) Int_ZF_1_2_L7: assumes "a∈ZZ" "b∈ZZ"
shows
"a·b = (a-1)·b+b"
"a·(b+1) = a·b+a"
"(b+1)·a = b·a+a"
"(b+1)·a = a+b·a"
using assms Int_ZF_1_1_L1 Int_ZF_1_1_L5 int_zero_one_are_int

Int_ZF_1_1_L6 Int_ZF_1_1_L4 Int_ZF_1_T2 group0.inv_cancel_two

by auto

Another rearrangement with two integers.

lemma (in int0) Int_ZF_1_2_L8:

assumes A1: "a∈ZZ" "b∈ZZ"
shows "a+1+(b+1) = b+a+2"
using assms int_zero_one_are_int Int_ZF_1_T2 group0.group0_4_L8

by simp

A couple of rearrangement with three integers.

lemma (in int0) Int_ZF_1_2_L9:

assumes "a∈ZZ" "b∈ZZ" "c∈ZZ"
shows
"(a-b)+(b-c) = a-c"

"(a-b)-(a-c) = c-b"
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"a+(b+(c-a-b)) = c"

"(-a)-b+c = c-a-b"

"(-b)-a+c = c-a-b"

"(-((-a)+b+c)) = a-b-c"

"a+b+c-a = b+c"

"a+b-(a+c) = b-c"

using assms Int_ZF_1_T2

group0.group0_4_L4B group0.group0_4_L6D group0.group0_4_L4D

group0.group0_4_L6B group0.group0_4_L6E

by auto

Another couple of rearrangements with three integers.

lemma (in int0) Int_ZF_1_2_L9A:

assumes A1: "a∈ZZ" "b∈ZZ" "c∈ZZ"
shows "(-(a-b-c)) = c+b-a"

proof -

from A1 have T:

"a-b ∈ ZZ" "(-(a-b)) ∈ ZZ" "(-b) ∈ ZZ" using
Int_ZF_1_1_L4 Int_ZF_1_1_L5 by auto

with A1 have "(-(a-b-c)) = c - ((-b)+a)"

using Int_ZF_1_1_L5 by simp

also from A1 T have ". . . = c+b-a"

using Int_ZF_1_1_L6 Int_ZF_1_1_L5B

by simp

finally show "(-(a-b-c)) = c+b-a"

by simp

qed

Another rearrangement with three integers.

lemma (in int0) Int_ZF_1_2_L10:

assumes A1: "a∈ZZ" "b∈ZZ" "c∈ZZ"
shows "(a+1)·b + (c+1)·b = (c+a+2)·b"

proof -

from A1 have "a+1 ∈ ZZ" "c+1 ∈ ZZ"
using int_zero_one_are_int Int_ZF_1_1_L5 by auto

with A1 have
"(a+1)·b + (c+1)·b = (a+1+(c+1))·b"
using Int_ZF_1_1_L1 by simp

also from A1 have ". . . = (c+a+2)·b"
using Int_ZF_1_2_L8 by simp

finally show ?thesis by simp

qed

A technical rearrangement involing inequalities with absolute value.

lemma (in int0) Int_ZF_1_2_L10A:

assumes A1: "a∈ZZ" "b∈ZZ" "c∈ZZ" "e∈ZZ"
and A2: "abs(a·b-c) ≤ d" "abs(b·a-e) ≤ f"

shows "abs(c-e) ≤ f+d"

proof -
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from A1 A2 have T1:

"d∈ZZ" "f∈ZZ" "a·b ∈ ZZ" "a·b-c ∈ ZZ" "b·a-e ∈ ZZ"
using Int_ZF_2_L1A Int_ZF_1_1_L5 by auto

with A2 have
"abs((b·a-e)-(a·b-c)) ≤ f +d"

using Int_ZF_2_L21 by simp

with A1 T1 show "abs(c-e) ≤ f+d"

using Int_ZF_1_1_L5 Int_ZF_1_2_L9 by simp

qed

Some arithmetics.

lemma (in int0) Int_ZF_1_2_L11: assumes A1: "a∈ZZ"
shows
"a+1+2 = a+3"
"a = 2·a - a"

proof -

from A1 show "a+1+2 = a+3"
using int_zero_one_are_int int_two_three_are_int Int_ZF_1_T2 group0.group0_4_L4C

by simp

from A1 show "a = 2·a - a"

using int_zero_one_are_int Int_ZF_1_1_L1 Int_ZF_1_1_L4 Int_ZF_1_T2

group0.inv_cancel_two

by simp

qed

A simple rearrangement with three integers.

lemma (in int0) Int_ZF_1_2_L12:

assumes "a∈ZZ" "b∈ZZ" "c∈ZZ"
shows
"(b-c)·a = a·b - a·c"
using assms Int_ZF_1_1_L6 Int_ZF_1_1_L5 by simp

A big rearrangement with five integers.

lemma (in int0) Int_ZF_1_2_L13:

assumes A1: "a∈ZZ" "b∈ZZ" "c∈ZZ" "d∈ZZ" "x∈ZZ"
shows "(x+(a·x+b)+c)·d = d·(a+1)·x + (b·d+c·d)"

proof -

from A1 have T1:

"a·x ∈ ZZ" "(a+1)·x ∈ ZZ"
"(a+1)·x + b ∈ ZZ"
using Int_ZF_1_1_L5 int_zero_one_are_int by auto

with A1 have "(x+(a·x+b)+c)·d = ((a+1)·x + b)·d + c·d"
using Int_ZF_1_1_L7 Int_ZF_1_2_L7 Int_ZF_1_1_L1

by simp

also from A1 T1 have ". . . = (a+1)·x·d + b · d + c·d"
using Int_ZF_1_1_L1 by simp

finally have "(x+(a·x+b)+c)·d = (a+1)·x·d + b·d + c·d"
by simp

moreover from A1 T1 have "(a+1)·x·d = d·(a+1)·x"
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using int_zero_one_are_int Int_ZF_1_1_L5 Int_ZF_1_1_L7 by simp

ultimately have "(x+(a·x+b)+c)·d = d·(a+1)·x + b·d + c·d"
by simp

moreover from A1 T1 have
"d·(a+1)·x ∈ ZZ" "b·d ∈ ZZ" "c·d ∈ ZZ"
using int_zero_one_are_int Int_ZF_1_1_L5 by auto

ultimately show ?thesis using Int_ZF_1_1_L7 by simp

qed

Rerrangement about adding linear functions.

lemma (in int0) Int_ZF_1_2_L14:

assumes "a∈ZZ" "b∈ZZ" "c∈ZZ" "d∈ZZ" "x∈ZZ"
shows "(a·x + b) + (c·x + d) = (a+c)·x + (b+d)"

using assms Int_ZF_1_1_L2 ring0.Ring_ZF_2_L3 by simp

A rearrangement with four integers. Again we have to use the generic set
notation to use a theorem proven in different context.

lemma (in int0) Int_ZF_1_2_L15: assumes A1: "a∈ZZ" "b∈ZZ" "c∈ZZ" "d∈ZZ"
and A2: "a = b-c-d"

shows
"d = b-a-c"

"d = (-a)+b-c"

"b = a+d+c"

proof -

let ?G = "int"

let ?f = "IntegerAddition"

from A1 A2 have I:

"group0(?G, ?f)" "?f {is commutative on} ?G"

"a ∈ ?G" "b ∈ ?G" "c ∈ ?G" "d ∈ ?G"

"a = ?f‘〈?f‘〈b,GroupInv(?G, ?f)‘(c)〉,GroupInv(?G, ?f)‘(d)〉"
using Int_ZF_1_T2 by auto

then have
"d = ?f‘〈?f‘〈b,GroupInv(?G, ?f)‘(a)〉,GroupInv(?G,?f)‘(c)〉"
by (rule group0.group0_4_L9)

then show "d = b-a-c" by simp

from I have "d = ?f‘〈?f‘〈GroupInv(?G, ?f)‘(a),b〉, GroupInv(?G, ?f)‘(c)〉"
by (rule group0.group0_4_L9)

thus "d = (-a)+b-c"

by simp

from I have "b = ?f‘〈?f‘〈a, d〉,c〉"
by (rule group0.group0_4_L9)

thus "b = a+d+c" by simp

qed

A rearrangement with four integers. Property of groups.

lemma (in int0) Int_ZF_1_2_L16:

assumes "a∈ZZ" "b∈ZZ" "c∈ZZ" "d∈ZZ"
shows "a+(b-c)+d = a+b+d-c"

using assms Int_ZF_1_T2 group0.group0_4_L8 by simp
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Some rearrangements with three integers. Properties of groups.

lemma (in int0) Int_ZF_1_2_L17:

assumes A1: "a∈ZZ" "b∈ZZ" "c∈ZZ"
shows
"a+b-c+(c-b) = a"

"a+(b+c)-c = a+b"

proof -

let ?G = "int"

let ?f = "IntegerAddition"

from A1 have I:

"group0(?G, ?f)"

"a ∈ ?G" "b ∈ ?G" "c ∈ ?G"

using Int_ZF_1_T2 by auto

then have
"?f‘〈?f‘〈?f‘〈a,b〉,GroupInv(?G, ?f)‘(c)〉,?f‘〈c,GroupInv(?G, ?f)‘(b)〉〉

= a"

by (rule group0.group0_2_L14A)

thus "a+b-c+(c-b) = a" by simp

from I have
"?f‘〈?f‘〈a,?f‘〈b,c〉〉,GroupInv(?G, ?f)‘(c)〉 = ?f‘〈a,b〉"
by (rule group0.group0_2_L14A)

thus "a+(b+c)-c = a+b" by simp

qed

Another rearrangement with three integers. Property of abelian groups.

lemma (in int0) Int_ZF_1_2_L18:

assumes A1: "a∈ZZ" "b∈ZZ" "c∈ZZ"
shows "a+b-c+(c-a) = b"

proof -

let ?G = "int"

let ?f = "IntegerAddition"

from A1 have
"group0(?G, ?f)" "?f {is commutative on} ?G"

"a ∈ ?G" "b ∈ ?G" "c ∈ ?G"

using Int_ZF_1_T2 by auto

then have
"?f‘〈?f‘〈?f‘〈a,b〉,GroupInv(?G, ?f)‘(c)〉,?f‘〈c,GroupInv(?G, ?f)‘(a)〉〉

= b"

by (rule group0.group0_4_L6D)

thus "a+b-c+(c-a) = b" by simp

qed

42.3 Integers as an ordered ring

We already know from Int_ZF that integers with addition form a linearly
ordered group. To show that integers form an ordered ring we need the fact
that the set of nonnegative integers is closed under multiplication.

We start with the property that a product of nonnegative integers is non-
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negative. The proof is by induction and the next lemma is the induction
step.

lemma (in int0) Int_ZF_1_3_L1: assumes A1: "0≤a" "0≤b"
and A3: "0 ≤ a·b"
shows "0 ≤ a·(b+1)"

proof -

from A1 A3 have "0+0 ≤ a·b+a"
using int_ineq_add_sides by simp

with A1 show "0 ≤ a·(b+1)"
using int_zero_one_are_int Int_ZF_1_1_L4 Int_ZF_2_L1A Int_ZF_1_2_L7

by simp

qed

Product of nonnegative integers is nonnegative.

lemma (in int0) Int_ZF_1_3_L2: assumes A1: "0≤a" "0≤b"
shows "0≤a·b"

proof -

from A1 have "0≤b" by simp

moreover from A1 have "0 ≤ a·0" using
Int_ZF_2_L1A Int_ZF_1_1_L4 int_zero_one_are_int int_ord_is_refl refl_def

by simp

moreover from A1 have
"∀ m. 0≤m ∧ 0≤a·m −→ 0 ≤ a·(m+1)"
using Int_ZF_1_3_L1 by simp

ultimately show "0≤a·b" by (rule Induction_on_int)

qed

The set of nonnegative integers is closed under multiplication.

lemma (in int0) Int_ZF_1_3_L2A: shows
"ZZ+ {is closed under} IntegerMultiplication"

proof -

{ fix a b assume "a∈ZZ+" "b∈ZZ+"

then have "a·b ∈ZZ+"

using Int_ZF_1_3_L2 Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L2

by simp

} then have "∀ a∈ZZ+.∀ b∈ZZ+.a·b ∈ZZ+" by simp

then show ?thesis using IsOpClosed_def by simp

qed

Integers form an ordered ring. All theorems proven in the ring1 context are
valid in int0 context.

theorem (in int0) Int_ZF_1_3_T1: shows
"IsAnOrdRing(ZZ,IntegerAddition,IntegerMultiplication,IntegerOrder)"
"ring1(ZZ,IntegerAddition,IntegerMultiplication,IntegerOrder)"
using Int_ZF_1_1_L2 Int_ZF_2_L1B Int_ZF_1_3_L2A Int_ZF_2_T1

OrdRing_ZF_1_L6 OrdRing_ZF_1_L2 by auto
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Product of integers that are greater that one is greater than one. The proof
is by induction and the next step is the induction step.

lemma (in int0) Int_ZF_1_3_L3_indstep:

assumes A1: "1≤a" "1≤b"
and A2: "1 ≤ a·b"
shows "1 ≤ a·(b+1)"

proof -

from A1 A2 have "1≤2" and "2 ≤ a·(b+1)"
using Int_ZF_2_L1A int_ineq_add_sides Int_ZF_2_L16B Int_ZF_1_2_L7

by auto

then show "1 ≤ a·(b+1)" by (rule Int_order_transitive)

qed

Product of integers that are greater that one is greater than one.

lemma (in int0) Int_ZF_1_3_L3:

assumes A1: "1≤a" "1≤b"
shows "1 ≤ a·b"

proof -

from A1 have "1≤b" "1≤a·1"
using Int_ZF_2_L1A Int_ZF_1_1_L4 by auto

moreover from A1 have
"∀ m. 1≤m ∧ 1 ≤ a·m −→ 1 ≤ a·(m+1)"
using Int_ZF_1_3_L3_indstep by simp

ultimately show "1 ≤ a·b" by (rule Induction_on_int)

qed

|a · (−b)| = |(−a) · b| = |(−a) · (−b)| = |a · b| This is a property of ordered
rings..

lemma (in int0) Int_ZF_1_3_L4: assumes "a∈ZZ" "b∈ZZ"
shows
"abs((-a)·b) = abs(a·b)"
"abs(a·(-b)) = abs(a·b)"
"abs((-a)·(-b)) = abs(a·b)"
using assms Int_ZF_1_1_L5 Int_ZF_2_L17 by auto

Absolute value of a product is the product of absolute values. Property of
ordered rings.

lemma (in int0) Int_ZF_1_3_L5:

assumes A1: "a∈ZZ" "b∈ZZ"
shows "abs(a·b) = abs(a)·abs(b)"
using assms Int_ZF_1_3_T1 ring1.OrdRing_ZF_2_L5 by simp

Double nonnegative is nonnegative. Property of ordered rings.

lemma (in int0) Int_ZF_1_3_L5A: assumes "0≤a"
shows "0≤2·a"
using assms Int_ZF_1_3_T1 ring1.OrdRing_ZF_1_L5A by simp
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The next lemma shows what happens when one integer is not greater or
equal than another.

lemma (in int0) Int_ZF_1_3_L6:

assumes A1: "a∈ZZ" "b∈ZZ"
shows "¬(b≤a) ←→ a+1 ≤ b"

proof
assume A3: "¬(b≤a)"
with A1 have "a≤b" by (rule Int_ZF_2_L19)

then have "a = b ∨ a+1 ≤ b"

using Int_ZF_4_L1B by simp

moreover from A1 A3 have "a6=b" by (rule Int_ZF_2_L19)

ultimately show "a+1 ≤ b" by simp

next assume A4: "a+1 ≤ b"

{ assume "b≤a"
with A4 have "a+1 ≤ a" by (rule Int_order_transitive)

moreover from A1 have "a ≤ a+1"
using Int_ZF_2_L12B by simp

ultimately have "a+1 = a"

by (rule Int_ZF_2_L3)

with A1 have False using Int_ZF_1_L14 by simp

} then show "¬(b≤a)" by auto

qed

Another form of stating that there are no integers between integers m and
m+ 1.

corollary (in int0) no_int_between: assumes A1: "a∈ZZ" "b∈ZZ"
shows "b≤a ∨ a+1 ≤ b"

using A1 Int_ZF_1_3_L6 by auto

Another way of saying what it means that one integer is not greater or equal
than another.

corollary (in int0) Int_ZF_1_3_L6A:

assumes A1: "a∈ZZ" "b∈ZZ" and A2: "¬(b≤a)"
shows "a ≤ b-1"

proof -

from A1 A2 have "a+1 - 1 ≤ b - 1"
using Int_ZF_1_3_L6 int_zero_one_are_int Int_ZF_1_1_L4

int_ord_transl_inv by simp

with A1 show "a ≤ b-1"
using int_zero_one_are_int Int_ZF_1_2_L3

by simp

qed

Yet another form of stating that there are nointegers between m and m+ 1.

lemma (in int0) no_int_between1:

assumes A1: "a≤b" and A2: "a6=b"

shows
"a+1 ≤ b"
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"a ≤ b-1"
proof -

from A1 have T: "a∈ZZ" "b∈ZZ" using Int_ZF_2_L1A

by auto

{ assume "b≤a"
with A1 have "a=b" by (rule Int_ZF_2_L3)

with A2 have False by simp }
then have "¬(b≤a)" by auto

with T show
"a+1 ≤ b"

"a ≤ b-1"
using no_int_between Int_ZF_1_3_L6A by auto

qed

We can decompose proofs into three cases: a = b, a ≤ b− 1b or a ≥ b+ 1b.

lemma (in int0) Int_ZF_1_3_L6B: assumes A1: "a∈ZZ" "b∈ZZ"
shows "a=b ∨ (a ≤ b-1) ∨ (b+1 ≤a)"

proof -

from A1 have "a=b ∨ (a≤b ∧ a 6=b) ∨ (b≤a ∧ b6=a)"

using Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L31

by simp

then show ?thesis using no_int_between1

by auto

qed

A special case of Int_ZF_1_3_L6B when b = 0. This allows to split the proofs
in cases a ≤ −1, a = 0 and a ≥ 1.

corollary (in int0) Int_ZF_1_3_L6C: assumes A1: "a∈ZZ"
shows "a=0 ∨ (a ≤ -1) ∨ (1≤a)"

proof -

from A1 have "a=0 ∨ (a ≤ 0 -1) ∨ (0 +1 ≤a)"
using int_zero_one_are_int Int_ZF_1_3_L6B by simp

then show ?thesis using Int_ZF_1_1_L4 int_zero_one_are_int

by simp

qed

An integer is not less or equal zero iff it is greater or equal one.

lemma (in int0) Int_ZF_1_3_L7: assumes "a∈ZZ"
shows "¬(a≤0) ←→ 1 ≤ a"

using assms int_zero_one_are_int Int_ZF_1_3_L6 Int_ZF_1_1_L4

by simp

Product of positive integers is positive.

lemma (in int0) Int_ZF_1_3_L8:

assumes "a∈ZZ" "b∈ZZ"
and "¬(a≤0)" "¬(b≤0)"
shows "¬((a·b) ≤ 0)"
using assms Int_ZF_1_3_L7 Int_ZF_1_3_L3 Int_ZF_1_1_L5 Int_ZF_1_3_L7
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by simp

If a · b is nonnegative and b is positive, then a is nonnegative. Proof by
contradiction.

lemma (in int0) Int_ZF_1_3_L9:

assumes A1: "a∈ZZ" "b∈ZZ"
and A2: "¬(b≤0)" and A3: "a·b ≤ 0"
shows "a≤0"

proof -

{ assume "¬(a≤0)"
with A1 A2 have "¬((a·b) ≤ 0)" using Int_ZF_1_3_L8

by simp

} with A3 show "a≤0" by auto

qed

One integer is less or equal another iff the difference is nonpositive.

lemma (in int0) Int_ZF_1_3_L10:

assumes "a∈ZZ" "b∈ZZ"
shows "a≤b ←→ a-b ≤ 0"
using assms Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L9

by simp

Some conclusions from the fact that one integer is less or equal than another.

lemma (in int0) Int_ZF_1_3_L10A: assumes "a≤b"
shows "0 ≤ b-a"

using assms Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L12A

by simp

We can simplify out a positive element on both sides of an inequality.

lemma (in int0) Int_ineq_simpl_positive:

assumes A1: "a∈ZZ" "b∈ZZ" "c∈ZZ"
and A2: "a·c ≤ b·c" and A4: "¬(c≤0)"
shows "a ≤ b"

proof -

from A1 A4 have "a-b ∈ ZZ" "c∈ZZ" "¬(c≤0)"
using Int_ZF_1_1_L5 by auto

moreover from A1 A2 have "(a-b)·c ≤ 0"
using Int_ZF_1_1_L5 Int_ZF_1_3_L10 Int_ZF_1_1_L6

by simp

ultimately have "a-b ≤ 0" by (rule Int_ZF_1_3_L9)

with A1 show "a ≤ b" using Int_ZF_1_3_L10 by simp

qed

A technical lemma about conclusion from an inequality between absolute
values. This is a property of ordered rings.

lemma (in int0) Int_ZF_1_3_L11:

assumes A1: "a∈ZZ" "b∈ZZ"
and A2: "¬(abs(a) ≤ abs(b))"
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shows "¬(abs(a) ≤ 0)"
proof -

{ assume "abs(a) ≤ 0"
moreover from A1 have "0 ≤ abs(a)" using int_abs_nonneg

by simp

ultimately have "abs(a) = 0" by (rule Int_ZF_2_L3)

with A1 A2 have False using int_abs_nonneg by simp

} then show "¬(abs(a) ≤ 0)" by auto

qed

Negative times positive is negative. This a property of ordered rings.

lemma (in int0) Int_ZF_1_3_L12:

assumes "a≤0" and "0≤b"
shows "a·b ≤ 0"
using assms Int_ZF_1_3_T1 ring1.OrdRing_ZF_1_L8

by simp

We can multiply an inequality by a nonnegative number. This is a property
of ordered rings.

lemma (in int0) Int_ZF_1_3_L13:

assumes A1: "a≤b" and A2: "0≤c"
shows
"a·c ≤ b·c"
"c·a ≤ c·b"
using assms Int_ZF_1_3_T1 ring1.OrdRing_ZF_1_L9 by auto

A technical lemma about decreasing a factor in an inequality.

lemma (in int0) Int_ZF_1_3_L13A:

assumes "1≤a" and "b≤c" and "(a+1)·c ≤ d"

shows "(a+1)·b ≤ d"

proof -

from assms have
"(a+1)·b ≤ (a+1)·c"
"(a+1)·c ≤ d"

using Int_ZF_2_L16C Int_ZF_1_3_L13 by auto

then show "(a+1)·b ≤ d" by (rule Int_order_transitive)

qed

We can multiply an inequality by a positive number. This is a property of
ordered rings.

lemma (in int0) Int_ZF_1_3_L13B:

assumes A1: "a≤b" and A2: "c∈ZZ+"

shows
"a·c ≤ b·c"
"c·a ≤ c·b"

proof -

let ?R = "ZZ"
let ?A = "IntegerAddition"
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let ?M = "IntegerMultiplication"

let ?r = "IntegerOrder"

from A1 A2 have
"ring1(?R, ?A, ?M, ?r)"

"〈a,b〉 ∈ ?r"

"c ∈ PositiveSet(?R, ?A, ?r)"

using Int_ZF_1_3_T1 by auto

then show
"a·c ≤ b·c"
"c·a ≤ c·b"
using ring1.OrdRing_ZF_1_L9A by auto

qed

A rearrangement with four integers and absolute value.

lemma (in int0) Int_ZF_1_3_L14:

assumes A1: "a∈ZZ" "b∈ZZ" "c∈ZZ" "d∈ZZ"
shows "abs(a·b)+(abs(a)+c)·d = (d+abs(b))·abs(a)+c·d"

proof -

from A1 have T1:

"abs(a) ∈ ZZ" "abs(b) ∈ ZZ"
"abs(a)·abs(b) ∈ ZZ"
"abs(a)·d ∈ ZZ"
"c·d ∈ ZZ"
"abs(b)+d ∈ ZZ"
using Int_ZF_2_L14 Int_ZF_1_1_L5 by auto

with A1 have "abs(a·b)+(abs(a)+c)·d = abs(a)·(abs(b)+d)+c·d"
using Int_ZF_1_3_L5 Int_ZF_1_1_L1 Int_ZF_1_1_L7 by simp

with A1 T1 show ?thesis using Int_ZF_1_1_L5 by simp

qed

A technical lemma about what happens when one absolute value is not
greater or equal than another.

lemma (in int0) Int_ZF_1_3_L15: assumes A1: "m∈ZZ" "n∈ZZ"
and A2: "¬(abs(m) ≤ abs(n))"

shows "n ≤ abs(m)" "m 6=0"
proof -

from A1 have T1: "n ≤ abs(n)"

using Int_ZF_2_L19C by simp

from A1 have "abs(n) ∈ ZZ" "abs(m) ∈ ZZ"
using Int_ZF_2_L14 by auto

moreover note A2

ultimately have "abs(n) ≤ abs(m)"

by (rule Int_ZF_2_L19)

with T1 show "n ≤ abs(m)" by (rule Int_order_transitive)

from A1 A2 show "m 6=0" using Int_ZF_2_L18 int_abs_nonneg by auto

qed

Negative of a nonnegative is nonpositive.

lemma (in int0) Int_ZF_1_3_L16: assumes A1: "0 ≤ m"
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shows "(-m) ≤ 0"
proof -

from A1 have "(-m) ≤ (-0)"
using Int_ZF_2_L10 by simp

then show "(-m) ≤ 0" using Int_ZF_1_L11

by simp

qed

Some statements about intervals centered at 0.

lemma (in int0) Int_ZF_1_3_L17: assumes A1: "m∈ZZ"
shows
"(-abs(m)) ≤ abs(m)"

"(-abs(m))..abs(m) 6= 0"

proof -

from A1 have "(-abs(m)) ≤ 0" "0 ≤ abs(m)"

using int_abs_nonneg Int_ZF_1_3_L16 by auto

then show "(-abs(m)) ≤ abs(m)" by (rule Int_order_transitive)

then have "abs(m) ∈ (-abs(m))..abs(m)"

using int_ord_is_refl Int_ZF_2_L1A Order_ZF_2_L2 by simp

thus "(-abs(m))..abs(m) 6= 0" by auto

qed

The greater of two integers is indeed greater than both, and the smaller one
is smaller that both.

lemma (in int0) Int_ZF_1_3_L18: assumes A1: "m∈ZZ" "n∈ZZ"
shows
"m ≤ GreaterOf(IntegerOrder,m,n)"

"n ≤ GreaterOf(IntegerOrder,m,n)"

"SmallerOf(IntegerOrder,m,n) ≤ m"

"SmallerOf(IntegerOrder,m,n) ≤ n"

using assms Int_ZF_2_T1 Order_ZF_3_L2 by auto

If |m| ≤ n, then m ∈ −n..n.

lemma (in int0) Int_ZF_1_3_L19:

assumes A1: "m∈ZZ" and A2: "abs(m) ≤ n"

shows
"(-n) ≤ m" "m ≤ n"

"m ∈ (-n)..n"

"0 ≤ n"

using assms Int_ZF_2_T1 group3.OrderedGroup_ZF_3_L8

group3.OrderedGroup_ZF_3_L8A Order_ZF_2_L1

by auto

A slight generalization of the above lemma.

lemma (in int0) Int_ZF_1_3_L19A:

assumes A1: "m∈ZZ" and A2: "abs(m) ≤ n" and A3: "0≤k"
shows "(-(n+k)) ≤ m"

using assms Int_ZF_2_T1 group3.OrderedGroup_ZF_3_L8B
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by simp

Sets of integers that have absolute value bounded are bounded.

lemma (in int0) Int_ZF_1_3_L20:

assumes A1: "∀ x∈X. b(x) ∈ ZZ ∧ abs(b(x)) ≤ L"

shows "IsBounded({b(x). x∈X},IntegerOrder)"
proof -

let ?G = "ZZ"
let ?P = "IntegerAddition"

let ?r = "IntegerOrder"

from A1 have
"group3(?G, ?P, ?r)"

"?r {is total on} ?G"

"∀ x∈X. b(x) ∈ ?G ∧ 〈AbsoluteValue(?G, ?P, ?r) ‘ b(x), L〉 ∈ ?r"

using Int_ZF_2_T1 by auto

then show "IsBounded({b(x). x∈X},IntegerOrder)"
by (rule group3.OrderedGroup_ZF_3_L9A)

qed

If a set is bounded, then the absolute values of the elements of that set are
bounded.

lemma (in int0) Int_ZF_1_3_L20A: assumes "IsBounded(A,IntegerOrder)"

shows "∃ L. ∀ a∈A. abs(a) ≤ L"

using assms Int_ZF_2_T1 group3.OrderedGroup_ZF_3_L10A

by simp

Absolute vaues of integers from a finite image of integers are bounded by an
integer.

lemma (in int0) Int_ZF_1_3_L20AA:

assumes A1: "{b(x). x∈ZZ} ∈ Fin(ZZ)"
shows "∃ L∈ZZ. ∀ x∈ZZ. abs(b(x)) ≤ L"

using assms int_not_empty Int_ZF_2_T1 group3.OrderedGroup_ZF_3_L11A

by simp

If absolute values of values of some integer function are bounded, then the
image a set from the domain is a bounded set.

lemma (in int0) Int_ZF_1_3_L20B:

assumes "f:X→ZZ" and "A⊆X" and "∀ x∈A. abs(f‘(x)) ≤ L"

shows "IsBounded(f‘‘(A),IntegerOrder)"

proof -

let ?G = "ZZ"
let ?P = "IntegerAddition"

let ?r = "IntegerOrder"

from assms have
"group3(?G, ?P, ?r)"

"?r {is total on} ?G"

"f:X→?G"

"A⊆X"
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"∀ x∈A. 〈AbsoluteValue(?G, ?P, ?r)‘(f‘(x)), L〉 ∈ ?r"

using Int_ZF_2_T1 by auto

then show "IsBounded(f‘‘(A), ?r)"

by (rule group3.OrderedGroup_ZF_3_L9B)

qed

A special case of the previous lemma for a function from integers to integers.

corollary (in int0) Int_ZF_1_3_L20C:

assumes "f:ZZ→ZZ" and "∀ m∈ZZ. abs(f‘(m)) ≤ L"

shows "f‘‘(ZZ) ∈ Fin(ZZ)"
proof -

from assms have "f:ZZ→ZZ" "ZZ ⊆ ZZ" "∀ m∈ZZ. abs(f‘(m)) ≤ L"

by auto

then have "IsBounded(f‘‘(ZZ),IntegerOrder)"
by (rule Int_ZF_1_3_L20B)

then show "f‘‘(ZZ) ∈ Fin(ZZ)" using Int_bounded_iff_fin

by simp

qed

A triangle inequality with three integers. Property of linearly ordered abelian
groups.

lemma (in int0) int_triangle_ineq3:

assumes A1: "a∈ZZ" "b∈ZZ" "c∈ZZ"
shows "abs(a-b-c) ≤ abs(a) + abs(b) + abs(c)"

proof -

from A1 have T: "a-b ∈ ZZ" "abs(c) ∈ ZZ"
using Int_ZF_1_1_L5 Int_ZF_2_L14 by auto

with A1 have "abs(a-b-c) ≤ abs(a-b) + abs(c)"

using Int_triangle_ineq1 by simp

moreover from A1 T have
"abs(a-b) + abs(c) ≤ abs(a) + abs(b) + abs(c)"

using Int_triangle_ineq1 int_ord_transl_inv by simp

ultimately show ?thesis by (rule Int_order_transitive)

qed

If a ≤ c and b ≤ c, then a+ b ≤ 2 · c. Property of ordered rings.

lemma (in int0) Int_ZF_1_3_L21:

assumes A1: "a≤c" "b≤c" shows "a+b ≤ 2·c"
using assms Int_ZF_1_3_T1 ring1.OrdRing_ZF_2_L6 by simp

If an integer a is between b and b+ c, then |b− a| ≤ c. Property of ordered
groups.

lemma (in int0) Int_ZF_1_3_L22:

assumes "a≤b" and "c∈ZZ" and "b≤ c+a"

shows "abs(b-a) ≤ c"

using assms Int_ZF_2_T1 group3.OrderedGroup_ZF_3_L8C

by simp

490



An application of the triangle inequality with four integers. Property of
linearly ordered abelian groups.

lemma (in int0) Int_ZF_1_3_L22A:

assumes "a∈ZZ" "b∈ZZ" "c∈ZZ" "d∈ZZ"
shows "abs(a-c) ≤ abs(a+b) + abs(c+d) + abs(b-d)"

using assms Int_ZF_1_T2 Int_ZF_2_T1 group3.OrderedGroup_ZF_3_L7F

by simp

If an integer a is between b and b+ c, then |b− a| ≤ c. Property of ordered
groups. A version of Int_ZF_1_3_L22 with sligtly different assumptions.

lemma (in int0) Int_ZF_1_3_L23:

assumes A1: "a≤b" and A2: "c∈ZZ" and A3: "b≤ a+c"

shows "abs(b-a) ≤ c"

proof -

from A1 have "a ∈ ZZ"
using Int_ZF_2_L1A by simp

with A2 A3 have "b≤ c+a"

using Int_ZF_1_1_L5 by simp

with A1 A2 show "abs(b-a) ≤ c"

using Int_ZF_1_3_L22 by simp

qed

42.4 Maximum and minimum of a set of integers

In this section we provide some sufficient conditions for integer subsets to
have extrema (maxima and minima).

Finite nonempty subsets of integers attain maxima and minima.

theorem (in int0) Int_fin_have_max_min:

assumes A1: "A ∈ Fin(ZZ)" and A2: "A6=0"

shows
"HasAmaximum(IntegerOrder,A)"

"HasAminimum(IntegerOrder,A)"

"Maximum(IntegerOrder,A) ∈ A"

"Minimum(IntegerOrder,A) ∈ A"

"∀ x∈A. x ≤ Maximum(IntegerOrder,A)"

"∀ x∈A. Minimum(IntegerOrder,A) ≤ x"

"Maximum(IntegerOrder,A) ∈ ZZ"
"Minimum(IntegerOrder,A) ∈ ZZ"

proof -

from A1 have
"A=0 ∨ HasAmaximum(IntegerOrder,A)" and
"A=0 ∨ HasAminimum(IntegerOrder,A)"

using Int_ZF_2_T1 Int_ZF_2_L6 Finite_ZF_1_1_T1A Finite_ZF_1_1_T1B

by auto

with A2 show
"HasAmaximum(IntegerOrder,A)"

"HasAminimum(IntegerOrder,A)"
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by auto

from A1 A2 show
"Maximum(IntegerOrder,A) ∈ A"

"Minimum(IntegerOrder,A) ∈ A"

"∀ x∈A. x ≤ Maximum(IntegerOrder,A)"

"∀ x∈A. Minimum(IntegerOrder,A) ≤ x"

using Int_ZF_2_T1 Finite_ZF_1_T2 by auto

moreover from A1 have "A⊆ZZ" using FinD by simp

ultimately show
"Maximum(IntegerOrder,A) ∈ ZZ"
"Minimum(IntegerOrder,A) ∈ ZZ"
by auto

qed

Bounded nonempty integer subsets attain maximum and minimum.

theorem (in int0) Int_bounded_have_max_min:

assumes "IsBounded(A,IntegerOrder)" and "A6=0"

shows
"HasAmaximum(IntegerOrder,A)"

"HasAminimum(IntegerOrder,A)"

"Maximum(IntegerOrder,A) ∈ A"

"Minimum(IntegerOrder,A) ∈ A"

"∀ x∈A. x ≤ Maximum(IntegerOrder,A)"

"∀ x∈A. Minimum(IntegerOrder,A) ≤ x"

"Maximum(IntegerOrder,A) ∈ ZZ"
"Minimum(IntegerOrder,A) ∈ ZZ"
using assms Int_fin_have_max_min Int_bounded_iff_fin

by auto

Nonempty set of integers that is bounded below attains its minimum.

theorem (in int0) int_bounded_below_has_min:

assumes A1: "IsBoundedBelow(A,IntegerOrder)" and A2: "A6=0"

shows "

HasAminimum(IntegerOrder,A)"

"Minimum(IntegerOrder,A) ∈ A"

"∀ x∈A. Minimum(IntegerOrder,A) ≤ x"

proof -

from A1 A2 have
"IntegerOrder {is total on} ZZ"
"trans(IntegerOrder)"

"IntegerOrder ⊆ ZZ×ZZ"
"∀ A. IsBounded(A,IntegerOrder) ∧ A6=0 −→ HasAminimum(IntegerOrder,A)"

"A 6=0" "IsBoundedBelow(A,IntegerOrder)"

using Int_ZF_2_T1 Int_ZF_2_L6 Int_ZF_2_L1B Int_bounded_have_max_min

by auto

then show "HasAminimum(IntegerOrder,A)"

by (rule Order_ZF_4_L11)

then show
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"Minimum(IntegerOrder,A) ∈ A"

"∀ x∈A. Minimum(IntegerOrder,A) ≤ x"

using Int_ZF_2_L4 Order_ZF_4_L4 by auto

qed

Nonempty set of integers that is bounded above attains its maximum.

theorem (in int0) int_bounded_above_has_max:

assumes A1: "IsBoundedAbove(A,IntegerOrder)" and A2: "A6=0"

shows
"HasAmaximum(IntegerOrder,A)"

"Maximum(IntegerOrder,A) ∈ A"

"Maximum(IntegerOrder,A) ∈ ZZ"
"∀ x∈A. x ≤ Maximum(IntegerOrder,A)"

proof -

from A1 A2 have
"IntegerOrder {is total on} ZZ"
"trans(IntegerOrder)" and
I: "IntegerOrder ⊆ ZZ×ZZ" and
"∀ A. IsBounded(A,IntegerOrder) ∧ A6=0 −→ HasAmaximum(IntegerOrder,A)"

"A 6=0" "IsBoundedAbove(A,IntegerOrder)"

using Int_ZF_2_T1 Int_ZF_2_L6 Int_ZF_2_L1B Int_bounded_have_max_min

by auto

then show "HasAmaximum(IntegerOrder,A)"

by (rule Order_ZF_4_L11A)

then show
II: "Maximum(IntegerOrder,A) ∈ A" and
"∀ x∈A. x ≤ Maximum(IntegerOrder,A)"

using Int_ZF_2_L4 Order_ZF_4_L3 by auto

from I A1 have "A ⊆ ZZ" by (rule Order_ZF_3_L1A)

with II show "Maximum(IntegerOrder,A) ∈ ZZ" by auto

qed

A set defined by separation over a bounded set attains its maximum and
minimum.

lemma (in int0) Int_ZF_1_4_L1:

assumes A1: "IsBounded(A,IntegerOrder)" and A2: "A6=0"

and A3: "∀ q∈ZZ. F(q) ∈ ZZ"
and A4: "K = {F(q). q ∈ A}"

shows
"HasAmaximum(IntegerOrder,K)"

"HasAminimum(IntegerOrder,K)"

"Maximum(IntegerOrder,K) ∈ K"

"Minimum(IntegerOrder,K) ∈ K"

"Maximum(IntegerOrder,K) ∈ ZZ"
"Minimum(IntegerOrder,K) ∈ ZZ"
"∀ q∈A. F(q) ≤ Maximum(IntegerOrder,K)"

"∀ q∈A. Minimum(IntegerOrder,K) ≤ F(q)"

"IsBounded(K,IntegerOrder)"

proof -
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from A1 have "A ∈ Fin(ZZ)" using Int_bounded_iff_fin

by simp

with A3 have "{F(q). q ∈ A} ∈ Fin(ZZ)"
by (rule fin_image_fin)

with A2 A4 have T1: "K ∈ Fin(ZZ)" "K6=0" by auto

then show T2:

"HasAmaximum(IntegerOrder,K)"

"HasAminimum(IntegerOrder,K)"

and "Maximum(IntegerOrder,K) ∈ K"

"Minimum(IntegerOrder,K) ∈ K"

"Maximum(IntegerOrder,K) ∈ ZZ"
"Minimum(IntegerOrder,K) ∈ ZZ"
using Int_fin_have_max_min by auto

{ fix q assume "q∈A"
with A4 have "F(q) ∈ K" by auto

with T1 have
"F(q) ≤ Maximum(IntegerOrder,K)"

"Minimum(IntegerOrder,K) ≤ F(q)"

using Int_fin_have_max_min by auto

} then show
"∀ q∈A. F(q) ≤ Maximum(IntegerOrder,K)"

"∀ q∈A. Minimum(IntegerOrder,K) ≤ F(q)"

by auto

from T2 show "IsBounded(K,IntegerOrder)"

using Order_ZF_4_L7 Order_ZF_4_L8A IsBounded_def

by simp

qed

A three element set has a maximume and minimum.

lemma (in int0) Int_ZF_1_4_L1A: assumes A1: "a∈ZZ" "b∈ZZ" "c∈ZZ"
shows
"Maximum(IntegerOrder,{a,b,c}) ∈ ZZ"
"a ≤ Maximum(IntegerOrder,{a,b,c})"

"b ≤ Maximum(IntegerOrder,{a,b,c})"

"c ≤ Maximum(IntegerOrder,{a,b,c})"

using assms Int_ZF_2_T1 Finite_ZF_1_L2A by auto

Integer functions attain maxima and minima over intervals.

lemma (in int0) Int_ZF_1_4_L2:

assumes A1: "f:ZZ→ZZ" and A2: "a≤b"
shows
"maxf(f,a..b) ∈ ZZ"
"∀ c ∈ a..b. f‘(c) ≤ maxf(f,a..b)"

"∃ c ∈ a..b. f‘(c) = maxf(f,a..b)"

"minf(f,a..b) ∈ ZZ"
"∀ c ∈ a..b. minf(f,a..b) ≤ f‘(c)"

"∃ c ∈ a..b. f‘(c) = minf(f,a..b)"

proof -

from A2 have T: "a∈ZZ" "b∈ZZ" "a..b ⊆ ZZ"
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using Int_ZF_2_L1A Int_ZF_2_L1B Order_ZF_2_L6

by auto

with A1 A2 have
"Maximum(IntegerOrder,f‘‘(a..b)) ∈ f‘‘(a..b)"

"∀ x∈f‘‘(a..b). x ≤ Maximum(IntegerOrder,f‘‘(a..b))"

"Maximum(IntegerOrder,f‘‘(a..b)) ∈ ZZ"
"Minimum(IntegerOrder,f‘‘(a..b)) ∈ f‘‘(a..b)"

"∀ x∈f‘‘(a..b). Minimum(IntegerOrder,f‘‘(a..b)) ≤ x"

"Minimum(IntegerOrder,f‘‘(a..b)) ∈ ZZ"
using Int_ZF_4_L8 Int_ZF_2_T1 group3.OrderedGroup_ZF_2_L6

Int_fin_have_max_min by auto

with A1 T show
"maxf(f,a..b) ∈ ZZ"
"∀ c ∈ a..b. f‘(c) ≤ maxf(f,a..b)"

"∃ c ∈ a..b. f‘(c) = maxf(f,a..b)"

"minf(f,a..b) ∈ ZZ"
"∀ c ∈ a..b. minf(f,a..b) ≤ f‘(c)"

"∃ c ∈ a..b. f‘(c) = minf(f,a..b)"

using func_imagedef by auto

qed

42.5 The set of nonnegative integers

The set of nonnegative integers looks like the set of natural numbers. We
explore that in this section. We also rephrase some lemmas about the set of
positive integers known from the theory of oredered grups.

The set of positive integers is closed under addition.

lemma (in int0) pos_int_closed_add:

shows "ZZ+ {is closed under} IntegerAddition"

using Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L13 by simp

Text expended version of the fact that the set of positive integers is closed
under addition

lemma (in int0) pos_int_closed_add_unfolded:

assumes "a∈ZZ+" "b∈ZZ+" shows "a+b ∈ ZZ+"

using assms pos_int_closed_add IsOpClosed_def

by simp

ZZ+ is bounded below.

lemma (in int0) Int_ZF_1_5_L1: shows
"IsBoundedBelow(ZZ+,IntegerOrder)"

"IsBoundedBelow(ZZ+,IntegerOrder)"

using Nonnegative_def PositiveSet_def IsBoundedBelow_def by auto

Subsets of ZZ+ are bounded below.

lemma (in int0) Int_ZF_1_5_L1A: assumes "A ⊆ ZZ+"

shows "IsBoundedBelow(A,IntegerOrder)"
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using assms Int_ZF_1_5_L1 Order_ZF_3_L12 by blast

Subsets of ZZ+ are bounded below.

lemma (in int0) Int_ZF_1_5_L1B: assumes A1: "A ⊆ ZZ+"

shows "IsBoundedBelow(A,IntegerOrder)"

using A1 Int_ZF_1_5_L1 Order_ZF_3_L12 by blast

Every nonempty subset of positive integers has a mimimum.

lemma (in int0) Int_ZF_1_5_L1C: assumes "A ⊆ ZZ+" and "A 6= 0"

shows
"HasAminimum(IntegerOrder,A)"

"Minimum(IntegerOrder,A) ∈ A"

"∀ x∈A. Minimum(IntegerOrder,A) ≤ x"

using assms Int_ZF_1_5_L1B int_bounded_below_has_min by auto

Infinite subsets of Z+ do not have a maximum - If A ⊆ Z+ then for every
integer we can find one in the set that is not smaller.

lemma (in int0) Int_ZF_1_5_L2:

assumes A1: "A ⊆ ZZ+" and A2: "A /∈ Fin(ZZ)" and A3: "D∈ZZ"
shows "∃ n∈A. D≤n"

proof -

{ assume "∀ n∈A. ¬(D≤n)"
moreover from A1 A3 have "D∈ZZ" "∀ n∈A. n∈ZZ"

using Nonnegative_def by auto

ultimately have "∀ n∈A. n≤D"
using Int_ZF_2_L19 by blast

hence "∀ n∈A. 〈n,D〉 ∈ IntegerOrder" by simp

then have "IsBoundedAbove(A,IntegerOrder)"

by (rule Order_ZF_3_L10)

with A1 have "IsBounded(A,IntegerOrder)"

using Int_ZF_1_5_L1A IsBounded_def by simp

with A2 have False using Int_bounded_iff_fin by auto

} thus ?thesis by auto

qed

Infinite subsets of Z+ do not have a maximum - If A ⊆ Z+ then for every
integer we can find one in the set that is not smaller. This is very similar to
Int_ZF_1_5_L2, except we have ZZ+ instead of ZZ+ here.

lemma (in int0) Int_ZF_1_5_L2A:

assumes A1: "A ⊆ ZZ+" and A2: "A /∈ Fin(ZZ)" and A3: "D∈ZZ"
shows "∃ n∈A. D≤n"

proof -

{ assume "∀ n∈A. ¬(D≤n)"
moreover from A1 A3 have "D∈ZZ" "∀ n∈A. n∈ZZ"

using PositiveSet_def by auto

ultimately have "∀ n∈A. n≤D"
using Int_ZF_2_L19 by blast

hence "∀ n∈A. 〈n,D〉 ∈ IntegerOrder" by simp
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then have "IsBoundedAbove(A,IntegerOrder)"

by (rule Order_ZF_3_L10)

with A1 have "IsBounded(A,IntegerOrder)"

using Int_ZF_1_5_L1B IsBounded_def by simp

with A2 have False using Int_bounded_iff_fin by auto

} thus ?thesis by auto

qed

An integer is either positive, zero, or its opposite is postitive.

lemma (in int0) Int_decomp: assumes "m∈ZZ"
shows "Exactly_1_of_3_holds (m=0,m∈ZZ+,(-m)∈ZZ+)"

using assms Int_ZF_2_T1 group3.OrdGroup_decomp

by simp

An integer is zero, positive, or it’s inverse is positive.

lemma (in int0) int_decomp_cases: assumes "m∈ZZ"
shows "m=0 ∨ m∈ZZ+ ∨ (-m) ∈ ZZ+"

using assms Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L14

by simp

An integer is in the positive set iff it is greater or equal one.

lemma (in int0) Int_ZF_1_5_L3: shows "m∈ZZ+ ←→ 1≤m"
proof

assume "m∈ZZ+" then have "0≤m" "m6=0"
using PositiveSet_def by auto

then have "0+1 ≤ m"

using Int_ZF_4_L1B by auto

then show "1≤m"
using int_zero_one_are_int Int_ZF_1_T2 group0.group0_2_L2

by simp

next assume "1≤m"
then have "m∈ZZ" "0≤m" "m6=0"

using Int_ZF_2_L1A Int_ZF_2_L16C by auto

then show "m∈ZZ+" using PositiveSet_def by auto

qed

The set of positive integers is closed under multiplication. The unfolded
form.

lemma (in int0) pos_int_closed_mul_unfold:

assumes "a∈ZZ+" "b∈ZZ+"

shows "a·b ∈ ZZ+"

using assms Int_ZF_1_5_L3 Int_ZF_1_3_L3 by simp

The set of positive integers is closed under multiplication.

lemma (in int0) pos_int_closed_mul: shows
"ZZ+ {is closed under} IntegerMultiplication"

using pos_int_closed_mul_unfold IsOpClosed_def

by simp
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It is an overkill to prove that the ring of integers has no zero divisors this
way, but why not?

lemma (in int0) int_has_no_zero_divs:

shows "HasNoZeroDivs(ZZ,IntegerAddition,IntegerMultiplication)"
using pos_int_closed_mul Int_ZF_1_3_T1 ring1.OrdRing_ZF_3_L3

by simp

Nonnegative integers are positive ones plus zero.

lemma (in int0) Int_ZF_1_5_L3A: shows "ZZ+ = ZZ+ ∪ {0}"
using Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L24 by simp

We can make a function smaller than any constant on a given interval of
positive integers by adding another constant.

lemma (in int0) Int_ZF_1_5_L4:

assumes A1: "f:ZZ→ZZ" and A2: "K∈ZZ" "N∈ZZ"
shows "∃ C∈ZZ. ∀ n∈ZZ+. K ≤ f‘(n) + C −→ N≤n"

proof -

from A2 have "N≤1 ∨ 2≤N"
using int_zero_one_are_int no_int_between

by simp

moreover
{ assume A3: "N≤1"

let ?C = "0"
have "?C ∈ ZZ" using int_zero_one_are_int

by simp

moreover
{ fix n assume "n∈ZZ+"

then have "1 ≤ n" using Int_ZF_1_5_L3

by simp

with A3 have "N≤n" by (rule Int_order_transitive)

} then have "∀ n∈ZZ+. K ≤ f‘(n) + ?C −→ N≤n"
by auto

ultimately have "∃ C∈ZZ. ∀ n∈ZZ+. K ≤ f‘(n) + C −→ N≤n"
by auto }

moreover
{ let ?C = "K - 1 - maxf(f,1..(N-1))"

assume "2≤N"
then have "2-1 ≤ N-1"

using int_zero_one_are_int Int_ZF_1_1_L4 int_ord_transl_inv

by simp

then have I: "1 ≤ N-1"
using int_zero_one_are_int Int_ZF_1_2_L3 by simp

with A1 A2 have T:

"maxf(f,1..(N-1)) ∈ ZZ" "K-1 ∈ ZZ" "?C ∈ ZZ"
using Int_ZF_1_4_L2 Int_ZF_1_1_L5 int_zero_one_are_int

by auto

moreover
{ fix n assume A4: "n∈ZZ+"
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{ assume A5: "K ≤ f‘(n) + ?C" and "¬(N≤n)"
with A2 A4 have "n ≤ N-1"

using PositiveSet_def Int_ZF_1_3_L6A by simp

with A4 have "n ∈ 1..(N-1)"
using Int_ZF_1_5_L3 Interval_def by auto

with A1 I T have "f‘(n)+?C ≤ maxf(f,1..(N-1)) + ?C"

using Int_ZF_1_4_L2 int_ord_transl_inv by simp

with T have "f‘(n)+?C ≤ K-1"
using Int_ZF_1_2_L3 by simp

with A5 have "K ≤ K-1"
by (rule Int_order_transitive)

with A2 have False using Int_ZF_1_2_L3AA by simp

} then have "K ≤ f‘(n) + ?C −→ N≤n"
by auto

} then have "∀ n∈ZZ+. K ≤ f‘(n) + ?C −→ N≤n"
by simp

ultimately have "∃ C∈ZZ. ∀ n∈ZZ+. K ≤ f‘(n) + C −→ N≤n"
by auto }

ultimately show ?thesis by auto

qed

Absolute value is identity on positive integers.

lemma (in int0) Int_ZF_1_5_L4A:

assumes "a∈ZZ+" shows "abs(a) = a"

using assms Int_ZF_2_T1 group3.OrderedGroup_ZF_3_L2B

by simp

One and two are in ZZ+.

lemma (in int0) int_one_two_are_pos: shows "1 ∈ ZZ+" "2 ∈ ZZ+"

using int_zero_one_are_int int_ord_is_refl refl_def Int_ZF_1_5_L3

Int_ZF_2_L16B by auto

The image of ZZ+ by a function defined on integers is not empty.

lemma (in int0) Int_ZF_1_5_L5: assumes A1: "f : ZZ→X"

shows "f‘‘(ZZ+) 6= 0"

proof -

have "ZZ+ ⊆ ZZ" using PositiveSet_def by auto

with A1 show "f‘‘(ZZ+) 6= 0"

using int_one_two_are_pos func_imagedef by auto

qed

If n is positive, then n− 1 is nonnegative.

lemma (in int0) Int_ZF_1_5_L6: assumes A1: "n ∈ ZZ+"

shows
"0 ≤ n-1"
"0 ∈ 0..(n-1)"
"0..(n-1) ⊆ ZZ"

proof -

499



from A1 have "1 ≤ n" "(-1) ∈ ZZ"
using Int_ZF_1_5_L3 int_zero_one_are_int Int_ZF_1_1_L4

by auto

then have "1-1 ≤ n-1"
using int_ord_transl_inv by simp

then show "0 ≤ n-1"
using int_zero_one_are_int Int_ZF_1_1_L4 by simp

then show "0 ∈ 0..(n-1)"
using int_zero_one_are_int int_ord_is_refl refl_def Order_ZF_2_L1B

by simp

show "0..(n-1) ⊆ ZZ"
using Int_ZF_2_L1B Order_ZF_2_L6 by simp

qed

Intgers greater than one in ZZ+ belong to ZZ+. This is a property of ordered
groups and follows from OrderedGroup_ZF_1_L19, but Isabelle’s simplifier has
problems using that result directly, so we reprove it specifically for integers.

lemma (in int0) Int_ZF_1_5_L7: assumes "a ∈ ZZ+" and "a≤b"
shows "b ∈ ZZ+"

proof-
from assms have "1≤a" "a≤b"

using Int_ZF_1_5_L3 by auto

then have "1≤b" by (rule Int_order_transitive)

then show "b ∈ ZZ+" using Int_ZF_1_5_L3 by simp

qed

Adding a positive integer increases integers.

lemma (in int0) Int_ZF_1_5_L7A: assumes "a∈ZZ" "b ∈ ZZ+"

shows "a ≤ a+b" "a 6= a+b" "a+b ∈ ZZ"
using assms Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L22

by auto

For any integer m the greater of m and 1 is a positive integer that is greater
or equal than m. If we add 1 to it we get a positive integer that is strictly
greater than m.

lemma (in int0) Int_ZF_1_5_L7B: assumes "a∈ZZ"
shows
"a ≤ GreaterOf(IntegerOrder,1,a)"
"GreaterOf(IntegerOrder,1,a) ∈ ZZ+"

"GreaterOf(IntegerOrder,1,a) + 1 ∈ ZZ+"

"a ≤ GreaterOf(IntegerOrder,1,a) + 1"
"a 6= GreaterOf(IntegerOrder,1,a) + 1"
using assms int_zero_not_one Int_ZF_1_3_T1 ring1.OrdRing_ZF_3_L12

by auto

The opposite of an element of ZZ+ cannot belong to ZZ+.

lemma (in int0) Int_ZF_1_5_L8: assumes "a ∈ ZZ+"

shows "(-a) /∈ ZZ+"

500



using assms Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L20

by simp

For every integer there is one in ZZ+ that is greater or equal.

lemma (in int0) Int_ZF_1_5_L9: assumes "a∈ZZ"
shows "∃ b∈ZZ+. a≤b"
using assms int_not_trivial Int_ZF_2_T1 group3.OrderedGroup_ZF_1_L23

by simp

A theorem about odd extensions. Recall from OrdereGroup_ZF.thy that the
odd extension of an integer function f defined on ZZ+ is the odd function on
ZZ equal to f on ZZ+. First we show that the odd extension is defined on ZZ.

lemma (in int0) Int_ZF_1_5_L10: assumes "f : ZZ+→ZZ"
shows "OddExtension(ZZ,IntegerAddition,IntegerOrder,f) : ZZ→ZZ"
using assms Int_ZF_2_T1 group3.odd_ext_props by simp

On ZZ+, the odd extension of f is the same as f .

lemma (in int0) Int_ZF_1_5_L11: assumes "f : ZZ+→ZZ" and "a ∈ ZZ+"

and
"g = OddExtension(ZZ,IntegerAddition,IntegerOrder,f)"
shows "g‘(a) = f‘(a)"

using assms Int_ZF_2_T1 group3.odd_ext_props by simp

On -ZZ+, the value of the odd extension of f is the negative of f(−a).

lemma (in int0) Int_ZF_1_5_L12:

assumes "f : ZZ+→ZZ" and "a ∈ (-ZZ+)" and
"g = OddExtension(ZZ,IntegerAddition,IntegerOrder,f)"
shows "g‘(a) = -(f‘(-a))"

using assms Int_ZF_2_T1 group3.odd_ext_props by simp

Odd extensions are odd on ZZ.

lemma (in int0) int_oddext_is_odd:

assumes "f : ZZ+→ZZ" and "a∈ZZ" and
"g = OddExtension(ZZ,IntegerAddition,IntegerOrder,f)"
shows "g‘(-a) = -(g‘(a))"

using assms Int_ZF_2_T1 group3.oddext_is_odd by simp

Alternative definition of an odd function.

lemma (in int0) Int_ZF_1_5_L13: assumes A1: "f: ZZ→ZZ" shows
"(∀ a∈ZZ. f‘(-a) = (-f‘(a))) ←→ (∀ a∈ZZ. (-(f‘(-a))) = f‘(a))"

using assms Int_ZF_1_T2 group0.group0_6_L2 by simp

Another way of expressing the fact that odd extensions are odd.

lemma (in int0) int_oddext_is_odd_alt:

assumes "f : ZZ+→ZZ" and "a∈ZZ" and
"g = OddExtension(ZZ,IntegerAddition,IntegerOrder,f)"
shows "(-g‘(-a)) = g‘(a)"

using assms Int_ZF_2_T1 group3.oddext_is_odd_alt by simp
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42.6 Functions with infinite limits

In this section we consider functions (integer sequences) that have infinite
limits. An integer function has infinite positive limit if it is arbitrarily large
for large enough arguments. Similarly, a function has infinite negative limit
if it is arbitrarily small for small enough arguments. The material in this
come mostly from the section in OrderedGroup_ZF.thy with he same title.
Here we rewrite the theorems from that section in the notation we use for
integers and add some results specific for the ordered group of integers.

If an image of a set by a function with infinite positive limit is bounded
above, then the set itself is bounded above.

lemma (in int0) Int_ZF_1_6_L1: assumes "f: ZZ→ZZ" and
"∀ a∈ZZ.∃ b∈ZZ+.∀ x. b≤x −→ a ≤ f‘(x)" and "A ⊆ ZZ" and
"IsBoundedAbove(f‘‘(A),IntegerOrder)"

shows "IsBoundedAbove(A,IntegerOrder)"

using assms int_not_trivial Int_ZF_2_T1 group3.OrderedGroup_ZF_7_L1

by simp

If an image of a set defined by separation by a function with infinite positive
limit is bounded above, then the set itself is bounded above.

lemma (in int0) Int_ZF_1_6_L2: assumes A1: "X6=0" and A2: "f: ZZ→ZZ"
and
A3: "∀ a∈ZZ.∃ b∈ZZ+.∀ x. b≤x −→ a ≤ f‘(x)" and
A4: "∀ x∈X. b(x) ∈ ZZ ∧ f‘(b(x)) ≤ U"

shows "∃ u.∀ x∈X. b(x) ≤ u"

proof -

let ?G = "ZZ"
let ?P = "IntegerAddition"

let ?r = "IntegerOrder"

from A1 A2 A3 A4 have
"group3(?G, ?P, ?r)"

"?r {is total on} ?G"

"?G 6= {TheNeutralElement(?G, ?P)}"

"X6=0" "f: ?G→?G"

"∀ a∈?G. ∃ b∈PositiveSet(?G, ?P, ?r). ∀ y. 〈b, y〉 ∈ ?r −→ 〈a, f‘(y)〉
∈ ?r"

"∀ x∈X. b(x) ∈ ?G ∧ 〈f‘(b(x)), U〉 ∈ ?r"

using int_not_trivial Int_ZF_2_T1 by auto

then have "∃ u. ∀ x∈X. 〈b(x), u〉 ∈ ?r" by (rule group3.OrderedGroup_ZF_7_L2)

thus ?thesis by simp

qed

If an image of a set defined by separation by a integer function with infinite
negative limit is bounded below, then the set itself is bounded above. This
is dual to Int_ZF_1_6_L2.

lemma (in int0) Int_ZF_1_6_L3: assumes A1: "X6=0" and A2: "f: ZZ→ZZ"
and
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A3: "∀ a∈ZZ.∃ b∈ZZ+.∀ y. b≤y −→ f‘(-y) ≤ a" and
A4: "∀ x∈X. b(x) ∈ ZZ ∧ L ≤ f‘(b(x))"

shows "∃ l.∀ x∈X. l ≤ b(x)"

proof -

let ?G = "ZZ"
let ?P = "IntegerAddition"

let ?r = "IntegerOrder"

from A1 A2 A3 A4 have
"group3(?G, ?P, ?r)"

"?r {is total on} ?G"

"?G 6= {TheNeutralElement(?G, ?P)}"

"X6=0" "f: ?G→?G"

"∀ a∈?G. ∃ b∈PositiveSet(?G, ?P, ?r). ∀ y.
〈b, y〉 ∈ ?r −→ 〈f‘(GroupInv(?G, ?P)‘(y)),a〉 ∈ ?r"

"∀ x∈X. b(x) ∈ ?G ∧ 〈L,f‘(b(x))〉 ∈ ?r"

using int_not_trivial Int_ZF_2_T1 by auto

then have "∃ l. ∀ x∈X. 〈l, b(x)〉 ∈ ?r" by (rule group3.OrderedGroup_ZF_7_L3)

thus ?thesis by simp

qed

The next lemma combines Int_ZF_1_6_L2 and Int_ZF_1_6_L3 to show that
if the image of a set defined by separation by a function with infinite limits
is bounded, then the set itself is bounded. The proof again uses directly a
fact from OrderedGroup_ZF.

lemma (in int0) Int_ZF_1_6_L4:

assumes A1: "X6=0" and A2: "f: ZZ→ZZ" and
A3: "∀ a∈ZZ.∃ b∈ZZ+.∀ x. b≤x −→ a ≤ f‘(x)" and
A4: "∀ a∈ZZ.∃ b∈ZZ+.∀ y. b≤y −→ f‘(-y) ≤ a" and
A5: "∀ x∈X. b(x) ∈ ZZ ∧ f‘(b(x)) ≤ U ∧ L ≤ f‘(b(x))"

shows "∃ M.∀ x∈X. abs(b(x)) ≤ M"

proof -

let ?G = "ZZ"
let ?P = "IntegerAddition"

let ?r = "IntegerOrder"

from A1 A2 A3 A4 A5 have
"group3(?G, ?P, ?r)"

"?r {is total on} ?G"

"?G 6= {TheNeutralElement(?G, ?P)}"

"X6=0" "f: ?G→?G"

"∀ a∈?G. ∃ b∈PositiveSet(?G, ?P, ?r). ∀ y. 〈b, y〉 ∈ ?r −→ 〈a, f‘(y)〉
∈ ?r"

"∀ a∈?G. ∃ b∈PositiveSet(?G, ?P, ?r). ∀ y.
〈b, y〉 ∈ ?r −→ 〈f‘(GroupInv(?G, ?P)‘(y)),a〉 ∈ ?r"

"∀ x∈X. b(x) ∈ ?G ∧ 〈L,f‘(b(x))〉 ∈ ?r ∧ 〈f‘(b(x)), U〉 ∈ ?r"

using int_not_trivial Int_ZF_2_T1 by auto

then have "∃ M. ∀ x∈X. 〈AbsoluteValue(?G, ?P, ?r) ‘ b(x), M〉 ∈ ?r"

by (rule group3.OrderedGroup_ZF_7_L4)

thus ?thesis by simp

qed
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If a function is larger than some constant for arguments large enough, then
the image of a set that is bounded below is bounded below. This is not true
for ordered groups in general, but only for those for which bounded sets are
finite. This does not require the function to have infinite limit, but such
functions do have this property.

lemma (in int0) Int_ZF_1_6_L5:

assumes A1: "f: ZZ→ZZ" and A2: "N∈ZZ" and
A3: "∀ m. N≤m −→ L ≤ f‘(m)" and
A4: "IsBoundedBelow(A,IntegerOrder)"

shows "IsBoundedBelow(f‘‘(A),IntegerOrder)"

proof -

from A2 A4 have "A = {x∈A. x≤N} ∪ {x∈A. N≤x}"
using Int_ZF_2_T1 Int_ZF_2_L1C Order_ZF_1_L5

by simp

moreover have
"f‘‘({x∈A. x≤N} ∪ {x∈A. N≤x}) =

f‘‘{x∈A. x≤N} ∪ f‘‘{x∈A. N≤x}"
by (rule image_Un)

ultimately have "f‘‘(A) = f‘‘{x∈A. x≤N} ∪ f‘‘{x∈A. N≤x}"
by simp

moreover have "IsBoundedBelow(f‘‘{x∈A. x≤N},IntegerOrder)"
proof -

let ?B = "{x∈A. x≤N}"
from A4 have "?B ∈ Fin(ZZ)"

using Order_ZF_3_L16 Int_bounded_iff_fin by auto

with A1 have "IsBounded(f‘‘(?B),IntegerOrder)"

using Finite1_L6A Int_bounded_iff_fin by simp

then show "IsBoundedBelow(f‘‘(?B),IntegerOrder)"

using IsBounded_def by simp

qed
moreover have "IsBoundedBelow(f‘‘{x∈A. N≤x},IntegerOrder)"
proof -

let ?C = "{x∈A. N≤x}"
from A4 have "?C ⊆ ZZ" using Int_ZF_2_L1C by auto

with A1 A3 have "∀ y ∈ f‘‘(?C). 〈L,y〉 ∈ IntegerOrder"

using func_imagedef by simp

then show "IsBoundedBelow(f‘‘(?C),IntegerOrder)"

by (rule Order_ZF_3_L9)

qed
ultimately show "IsBoundedBelow(f‘‘(A),IntegerOrder)"

using Int_ZF_2_T1 Int_ZF_2_L6 Int_ZF_2_L1B Order_ZF_3_L6

by simp

qed

A function that has an infinite limit can be made arbitrarily large on positive
integers by adding a constant. This does not actually require the function
to have infinite limit, just to be larger than a constant for arguments large
enough.
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lemma (in int0) Int_ZF_1_6_L6: assumes A1: "N∈ZZ" and
A2: "∀ m. N≤m −→ L ≤ f‘(m)" and
A3: "f: ZZ→ZZ" and A4: "K∈ZZ"
shows "∃ c∈ZZ. ∀ n∈ZZ+. K ≤ f‘(n)+c"

proof -

have "IsBoundedBelow(ZZ+,IntegerOrder)"

using Int_ZF_1_5_L1 by simp

with A3 A1 A2 have "IsBoundedBelow(f‘‘(ZZ+),IntegerOrder)"

by (rule Int_ZF_1_6_L5)

with A1 obtain l where I: "∀ y∈f‘‘(ZZ+). l ≤ y"

using Int_ZF_1_5_L5 IsBoundedBelow_def by auto

let ?c = "K-l"

from A3 have "f‘‘(ZZ+) 6= 0" using Int_ZF_1_5_L5

by simp

then have "∃ y. y ∈ f‘‘(ZZ+)" by (rule nonempty_has_element)

then obtain y where "y ∈ f‘‘(ZZ+)" by auto

with A4 I have T: "l ∈ ZZ" "?c ∈ ZZ"
using Int_ZF_2_L1A Int_ZF_1_1_L5 by auto

{ fix n assume A5: "n∈ZZ+"

have "ZZ+ ⊆ ZZ" using PositiveSet_def by auto

with A3 I T A5 have "l + ?c ≤ f‘(n) + ?c"

using func_imagedef int_ord_transl_inv by auto

with I T have "l + ?c ≤ f‘(n) + ?c"

using int_ord_transl_inv by simp

with A4 T have "K ≤ f‘(n) + ?c"

using Int_ZF_1_2_L3 by simp

} then have "∀ n∈ZZ+. K ≤ f‘(n) + ?c" by simp

with T show ?thesis by auto

qed

If a function has infinite limit, then we can add such constant such that
minimum of those arguments for which the function (plus the constant) is
larger than another given constant is greater than a third constant. It is not
as complicated as it sounds.

lemma (in int0) Int_ZF_1_6_L7:

assumes A1: "f: ZZ→ZZ" and A2: "K∈ZZ" "N∈ZZ" and
A3: "∀ a∈ZZ.∃ b∈ZZ+.∀ x. b≤x −→ a ≤ f‘(x)"

shows "∃ C∈ZZ. N ≤ Minimum(IntegerOrder,{n∈ZZ+. K ≤ f‘(n)+C})"

proof -

from A1 A2 have "∃ C∈ZZ. ∀ n∈ZZ+. K ≤ f‘(n) + C −→ N≤n"
using Int_ZF_1_5_L4 by simp

then obtain C where I: "C∈ZZ" and
II: "∀ n∈ZZ+. K ≤ f‘(n) + C −→ N≤n"
by auto

have "antisym(IntegerOrder)" using Int_ZF_2_L4 by simp

moreover have "HasAminimum(IntegerOrder,{n∈ZZ+. K ≤ f‘(n)+C})"

proof -

from A2 A3 I have "∃ n∈ZZ+.∀ x. n≤x −→ K-C ≤ f‘(x)"

using Int_ZF_1_1_L5 by simp
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then obtain n where
"n∈ZZ+" and "∀ x. n≤x −→ K-C ≤ f‘(x)"

by auto

with A2 I have
"{n∈ZZ+. K ≤ f‘(n)+C} 6= 0"

"{n∈ZZ+. K ≤ f‘(n)+C} ⊆ ZZ+"

using int_ord_is_refl refl_def PositiveSet_def Int_ZF_2_L9C

by auto

then show "HasAminimum(IntegerOrder,{n∈ZZ+. K ≤ f‘(n)+C})"

using Int_ZF_1_5_L1C by simp

qed
moreover from II have
"∀ n ∈ {n∈ZZ+. K ≤ f‘(n)+C}. 〈N,n〉 ∈ IntegerOrder"

by auto

ultimately have
"〈N,Minimum(IntegerOrder,{n∈ZZ+. K ≤ f‘(n)+C})〉 ∈ IntegerOrder"

by (rule Order_ZF_4_L12)

with I show ?thesis by auto

qed

For any integer m the function k 7→ m · k has an infinite limit (or negative
of that). This is why we put some properties of these functions here, even
though they properly belong to a (yet nonexistent) section on homomor-
phisms. The next lemma shows that the set {a · x : x ∈ Z} can finite only
if a = 0.

lemma (in int0) Int_ZF_1_6_L8:

assumes A1: "a∈ZZ" and A2: "{a·x. x∈ZZ} ∈ Fin(ZZ)"
shows "a = 0"

proof -

from A1 have "a=0 ∨ (a ≤ -1) ∨ (1≤a)"
using Int_ZF_1_3_L6C by simp

moreover
{ assume "a ≤ -1"

then have "{a·x. x∈ZZ} /∈ Fin(ZZ)"
using int_zero_not_one Int_ZF_1_3_T1 ring1.OrdRing_ZF_3_L6

by simp

with A2 have False by simp }
moreover
{ assume "1≤a"

then have "{a·x. x∈ZZ} /∈ Fin(ZZ)"
using int_zero_not_one Int_ZF_1_3_T1 ring1.OrdRing_ZF_3_L5

by simp

with A2 have False by simp }
ultimately show "a = 0" by auto

qed
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42.7 Miscelaneous

In this section we put some technical lemmas needed in various other places
that are hard to classify.

Suppose we have an integer expression (a meta-function)F such that F (p)|p|
is bounded by a linear function of |p|, that is for some integers A,B we have
F (p)|p| ≤ A|p|+B. We show that F is then bounded. The proof is easy, we
just divide both sides by |p| and take the limit (just kidding).

lemma (in int0) Int_ZF_1_7_L1:

assumes A1: "∀ q∈ZZ. F(q) ∈ ZZ" and
A2: "∀ q∈ZZ. F(q)·abs(q) ≤ A·abs(q) + B" and
A3: "A∈ZZ" "B∈ZZ"
shows "∃ L. ∀ p∈ZZ. F(p) ≤ L"

proof -

let ?I = "(-abs(B))..abs(B)"

let ?K = "{F(q). q ∈ ?I}"

let ?M = "Maximum(IntegerOrder,?K)"

let ?L = "GreaterOf(IntegerOrder,?M,A+1)"
from A3 A1 have C1:

"IsBounded(?I,IntegerOrder)"

"?I 6= 0"

"∀ q∈ZZ. F(q) ∈ ZZ"
"?K = {F(q). q ∈ ?I}"

using Order_ZF_3_L11 Int_ZF_1_3_L17 by auto

then have "?M ∈ ZZ" by (rule Int_ZF_1_4_L1)

with A3 have T1: "?M ≤ ?L" "A+1 ≤ ?L"

using int_zero_one_are_int Int_ZF_1_1_L5 Int_ZF_1_3_L18

by auto

from C1 have T2: "∀ q∈?I. F(q) ≤ ?M"

by (rule Int_ZF_1_4_L1)

{ fix p assume A4: "p∈ZZ" have "F(p) ≤ ?L"

proof -

{ assume "abs(p) ≤ abs(B)"

with A4 T1 T2 have "F(p) ≤ ?M" "?M ≤ ?L"

using Int_ZF_1_3_L19 by auto

then have "F(p) ≤ ?L" by (rule Int_order_transitive) }
moreover
{ assume A5: "¬(abs(p) ≤ abs(B))"

from A3 A2 A4 have
"A·abs(p) ∈ ZZ" "F(p)·abs(p) ≤ A·abs(p) + B"

using Int_ZF_2_L14 Int_ZF_1_1_L5 by auto

moreover from A3 A4 A5 have "B ≤ abs(p)"

using Int_ZF_1_3_L15 by simp

ultimately have
"F(p)·abs(p) ≤ A·abs(p) + abs(p)"

using Int_ZF_2_L15A by blast

with A3 A4 have "F(p)·abs(p) ≤ (A+1)·abs(p)"
using Int_ZF_2_L14 Int_ZF_1_2_L7 by simp
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moreover from A3 A1 A4 A5 have
"F(p) ∈ ZZ" "A+1 ∈ ZZ" "abs(p) ∈ ZZ"
"¬(abs(p) ≤ 0)"
using int_zero_one_are_int Int_ZF_1_1_L5 Int_ZF_2_L14 Int_ZF_1_3_L11

by auto

ultimately have "F(p) ≤ A+1"
using Int_ineq_simpl_positive by simp

moreover from T1 have "A+1 ≤ ?L" by simp

ultimately have "F(p) ≤ ?L" by (rule Int_order_transitive) }
ultimately show ?thesis by blast

qed
} then have "∀ p∈ZZ. F(p) ≤ ?L" by simp

thus ?thesis by auto

qed

A lemma about splitting (not really, there is some overlap) the ZZ×ZZ into
six subsets (cases). The subsets are as follows: first and third qaudrant, and
second and fourth quadrant farther split by the b = −a line.

lemma (in int0) int_plane_split_in6: assumes "a∈ZZ" "b∈ZZ"
shows
"0≤a ∧ 0≤b ∨ a≤0 ∧ b≤0 ∨
a≤0 ∧ 0≤b ∧ 0 ≤ a+b ∨ a≤0 ∧ 0≤b ∧ a+b ≤ 0 ∨
0≤a ∧ b≤0 ∧ 0 ≤ a+b ∨ 0≤a ∧ b≤0 ∧ a+b ≤ 0"
using assms Int_ZF_2_T1 group3.OrdGroup_6cases by simp

end

43 Division on integers

theory IntDiv_ZF_IML imports Int_ZF_1 IntDiv_ZF

begin

This theory translates some results form the Isabelle’s IntDiv.thy theory to
the notation used by IsarMathLib.

43.1 Quotient and reminder

For any integers m,n , n > 0 there are unique integers q, p such that 0 ≤
p < n and m = n · q+ p. Number p in this decompsition is usually called m
mod n. Standard Isabelle denotes numbers q, p as m zdiv n and m zmod n,
resp., and we will use the same notation.

The next lemma is sometimes called the ”quotient-reminder theorem”.

lemma (in int0) IntDiv_ZF_1_L1: assumes "m∈ZZ" "n∈ZZ"
shows "m = n·(m zdiv n) + (m zmod n)"

using assms Int_ZF_1_L2 raw_zmod_zdiv_equality
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by simp

If n is greater than 0 then m zmod n is between 0 and n− 1.

lemma (in int0) IntDiv_ZF_1_L2:

assumes A1: "m∈ZZ" and A2: "0≤n" "n6=0"
shows
"0 ≤ m zmod n"

"m zmod n ≤ n" "m zmod n 6= n"

"m zmod n ≤ n-1"
proof -

from A2 have T: "n ∈ ZZ"
using Int_ZF_2_L1A by simp

from A2 have "#0 $< n" using Int_ZF_2_L9 Int_ZF_1_L8

by auto

with T show
"0 ≤ m zmod n"

"m zmod n ≤ n"

"m zmod n 6= n"

using pos_mod Int_ZF_1_L8 Int_ZF_1_L8A zmod_type

Int_ZF_2_L1 Int_ZF_2_L9AA

by auto

then show "m zmod n ≤ n-1"
using Int_ZF_4_L1B by auto

qed

(m · k) div k = m.

lemma (in int0) IntDiv_ZF_1_L3:

assumes "m∈ZZ" "k∈ZZ" and "k 6=0"
shows
"(m·k) zdiv k = m"

"(k·m) zdiv k = m"

using assms zdiv_zmult_self1 zdiv_zmult_self2

Int_ZF_1_L8 Int_ZF_1_L2 by auto

The next lemma essentially translates zdiv_mono1 from standard Isabelle to
our notation.

lemma (in int0) IntDiv_ZF_1_L4:

assumes A1: "m ≤ k" and A2: "0≤n" "n6=0"
shows "m zdiv n ≤ k zdiv n"

proof -

from A2 have "#0 ≤ n" "#0 6= n"

using Int_ZF_1_L8 by auto

with A1 have
"m zdiv n $≤ k zdiv n"

"m zdiv n ∈ ZZ" "m zdiv k ∈ ZZ"
using Int_ZF_2_L1A Int_ZF_2_L9 zdiv_mono1

by auto

then show "(m zdiv n) ≤ (k zdiv n)"

using Int_ZF_2_L1 by simp
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qed

A quotient-reminder theorem about integers greater than a given product.

lemma (in int0) IntDiv_ZF_1_L5:

assumes A1: "n ∈ ZZ+" and A2: "n ≤ k" and A3: "k·n ≤ m"

shows
"m = n·(m zdiv n) + (m zmod n)"

"m = (m zdiv n)·n + (m zmod n)"

"(m zmod n) ∈ 0..(n-1)"
"k ≤ (m zdiv n)"

"m zdiv n ∈ ZZ+"

proof -

from A2 A3 have T:

"m∈ZZ" "n∈ZZ" "k∈ZZ" "m zdiv n ∈ ZZ"
using Int_ZF_2_L1A by auto

then show "m = n·(m zdiv n) + (m zmod n)"

using IntDiv_ZF_1_L1 by simp

with T show "m = (m zdiv n)·n + (m zmod n)"

using Int_ZF_1_L4 by simp

from A1 have I: "0≤n" "n6=0"
using PositiveSet_def by auto

with T show "(m zmod n) ∈ 0..(n-1)"
using IntDiv_ZF_1_L2 Order_ZF_2_L1

by simp

from A3 I have "(k·n zdiv n) ≤ (m zdiv n)"

using IntDiv_ZF_1_L4 by simp

with I T show "k ≤ (m zdiv n)"

using IntDiv_ZF_1_L3 by simp

with A1 A2 show "m zdiv n ∈ ZZ+"

using Int_ZF_1_5_L7 by blast

qed

end

44 Integers 2

theory Int_ZF_2 imports func_ZF_1 Int_ZF_1 IntDiv_ZF_IML Group_ZF_3

begin

In this theory file we consider the properties of integers that are needed for
the real numbers construction in Real_ZF series.

44.1 Slopes

In this section we study basic properties of slopes - the integer almost homo-
morphisms. The general definition of an almost homomorphism f on a group
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G written in additive notation requires the set {f(m + n) − f(m) − f(n) :
m,n ∈ G} to be finite. In this section we establish a definition that is equiva-
lent for integers: that for all integerm,n we have |f(m+n)−f(m)−f(n)| ≤ L
for some L.

First we extend the standard notation for integers with notation related to
slopes. We define slopes as almost homomorphisms on the additive group
of integers. The set of slopes is denoted S. We also define ”positive” slopes
as those that take infinite number of positive values on positive integers.
We write δ(s,m,n) to denote the homomorphism difference of s at m,n (i.e
the expression s(m + n)− s(m)− s(n)). We denote maxδ(s) the maximum
absolute value of homomorphism difference of s as m,n range over integers.
If s is a slope, then the set of homomorphism differences is finite and this
maximum exists. In Group_ZF_3 we define the equivalence relation on almost
homomorphisms using the notion of a quotient group relation and use ”≈” to
denote it. As here this symbol seems to be hogged by the standard Isabelle,
we will use ”∼” instead ”≈”. We show in this section that s ∼ r iff for some
L we have |s(m) − r(m)| ≤ L for all integer m. The ”+” denotes the first
operation on almost homomorphisms. For slopes this is addition of functions
defined in the natural way. The ”◦” symbol denotes the second operation
on almost homomorphisms (see Group_ZF_3 for definition), defined for the
group of integers. In short ”◦” is the composition of slopes. The ”−1” symbol
acts as an infix operator that assigns the value min{n ∈ Z+ : p ≤ f(n)} to
a pair (of sets) f and p. In application f represents a function defined on
Z+ and p is a positive integer. We choose this notation because we use
it to construct the right inverse in the ring of classes of slopes and show
that this ring is in fact a field. To study the homomorphism difference
of the function defined by p 7→ f−1(p) we introduce the symbol ε defined
as ε(f, 〈m,n〉) = f−1(m + n) − f−1(m) − f−1(n). Of course the intention
is to use the fact that ε(f, 〈m,n〉) is the homomorphism difference of the
function g defined as g(m) = f−1(m). We also define γ(s,m, n) as the
expression δ(f,m,−n) + s(0) − δ(f, n,−n). This is useful because of the
identity f(m−n) = γ(m,n) + f(m)− f(n) that allows to obtain bounds on
the value of a slope at the difference of of two integers. For every integer m
we introduce notation mS defined by mE(n) = m · n. The mapping q 7→ qS

embeds integers into S preserving the order, (that is, maps positive integers
into S+).

locale int1 = int0 +

fixes slopes ("S" )

defines slopes_def[simp]: "S ≡ AlmostHoms(ZZ,IntegerAddition)"

fixes posslopes ("S+")
defines posslopes_def[simp]: "S+ ≡ {s∈S. s‘‘(ZZ+) ∩ ZZ+ /∈ Fin(ZZ)}"
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fixes δ
defines δ_def[simp]: "δ(s,m,n) ≡ s‘(m+n)-s‘(m)-s‘(n)"

fixes maxhomdiff ("maxδ" )

defines maxhomdiff_def[simp]:

"maxδ(s) ≡ Maximum(IntegerOrder,{abs(δ(s,m,n)). 〈 m,n〉 ∈ ZZ×ZZ})"

fixes AlEqRel

defines AlEqRel_def[simp]:

"AlEqRel ≡ QuotientGroupRel(S,AlHomOp1(ZZ,IntegerAddition),FinRangeFunctions(ZZ,ZZ))"

fixes AlEq (infix "∼" 68)

defines AlEq_def[simp]: "s ∼ r ≡ 〈 s,r〉 ∈ AlEqRel"

fixes slope_add (infix "+" 70)

defines slope_add_def[simp]: "s + r ≡ AlHomOp1(ZZ,IntegerAddition)‘〈
s,r〉"

fixes slope_comp (infix "◦" 70)

defines slope_comp_def[simp]: "s ◦ r ≡ AlHomOp2(ZZ,IntegerAddition)‘〈
s,r〉"

fixes neg ("-_" [90] 91)

defines neg_def[simp]: "-s ≡ GroupInv(ZZ,IntegerAddition) O s"

fixes slope_inv (infix "−1" 71)

defines slope_inv_def[simp]:

"f−1(p) ≡ Minimum(IntegerOrder,{n∈ZZ+. p ≤ f‘(n)})"

fixes ε
defines ε_def[simp]:
"ε(f,p) ≡ f−1(fst(p)+snd(p)) - f−1(fst(p)) - f−1(snd(p))"

fixes γ
defines γ_def[simp]:
"γ(s,m,n) ≡ δ(s,m,-n) - δ(s,n,-n) + s‘(0)"

fixes intembed ("_S")

defines intembed_def[simp]: "mS ≡ {〈n,m·n〉. n∈ZZ}"

We can use theorems proven in the group1 context.

lemma (in int1) Int_ZF_2_1_L1: shows "group1(ZZ,IntegerAddition)"
using Int_ZF_1_T2 group1_axioms.intro group1_def by simp

Type information related to the homomorphism difference expression.

lemma (in int1) Int_ZF_2_1_L2: assumes "f∈S" and "n∈ZZ" "m∈ZZ"
shows
"m+n ∈ ZZ"
"f‘(m+n) ∈ ZZ"
"f‘(m) ∈ ZZ" "f‘(n) ∈ ZZ"
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"f‘(m) + f‘(n) ∈ ZZ"
"HomDiff(ZZ,IntegerAddition,f,〈 m,n〉) ∈ ZZ"
using assms Int_ZF_2_1_L1 group1.Group_ZF_3_2_L4A

by auto

Type information related to the homomorphism difference expression.

lemma (in int1) Int_ZF_2_1_L2A:

assumes "f:ZZ→ZZ" and "n∈ZZ" "m∈ZZ"
shows
"m+n ∈ ZZ"
"f‘(m+n) ∈ ZZ" "f‘(m) ∈ ZZ" "f‘(n) ∈ ZZ"
"f‘(m) + f‘(n) ∈ ZZ"
"HomDiff(ZZ,IntegerAddition,f,〈 m,n〉) ∈ ZZ"
using assms Int_ZF_2_1_L1 group1.Group_ZF_3_2_L4

by auto

Slopes map integers into integers.

lemma (in int1) Int_ZF_2_1_L2B:

assumes A1: "f∈S" and A2: "m∈ZZ"
shows "f‘(m) ∈ ZZ"

proof -

from A1 have "f:ZZ→ZZ" using AlmostHoms_def by simp

with A2 show "f‘(m) ∈ ZZ" using apply_funtype by simp

qed

The homomorphism difference in multiplicative notation is defined as the
expression s(m · n) · (s(m) · s(n))−1. The next lemma shows that in the
additive notation used for integers the homomorphism difference is f(m +
n)− f(m)− f(n) which we denote as δ(f,m,n).

lemma (in int1) Int_ZF_2_1_L3:

assumes "f:ZZ→ZZ" and "m∈ZZ" "n∈ZZ"
shows "HomDiff(ZZ,IntegerAddition,f,〈 m,n〉) = δ(f,m,n)"
using assms Int_ZF_2_1_L2A Int_ZF_1_T2 group0.group0_4_L4A

HomDiff_def by auto

The next formula restates the definition of the homomorphism difference to
express the value an almost homomorphism on a sum.

lemma (in int1) Int_ZF_2_1_L3A:

assumes A1: "f∈S" and A2: "m∈ZZ" "n∈ZZ"
shows
"f‘(m+n) = f‘(m)+(f‘(n)+δ(f,m,n))"

proof -

from A1 A2 have
T: "f‘(m)∈ ZZ" "f‘(n) ∈ ZZ" "δ(f,m,n) ∈ ZZ" and
"HomDiff(ZZ,IntegerAddition,f,〈 m,n〉) = δ(f,m,n)"
using Int_ZF_2_1_L2 AlmostHoms_def Int_ZF_2_1_L3 by auto

with A1 A2 show "f‘(m+n) = f‘(m)+(f‘(n)+δ(f,m,n))"
using Int_ZF_2_1_L3 Int_ZF_1_L3
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Int_ZF_2_1_L1 group1.Group_ZF_3_4_L1

by simp

qed

The homomorphism difference of any integer function is integer.

lemma (in int1) Int_ZF_2_1_L3B:

assumes "f:ZZ→ZZ" and "m∈ZZ" "n∈ZZ"
shows "δ(f,m,n) ∈ ZZ"
using assms Int_ZF_2_1_L2A Int_ZF_2_1_L3 by simp

The value of an integer function at a sum expressed in terms of δ.

lemma (in int1) Int_ZF_2_1_L3C: assumes A1: "f:ZZ→ZZ" and A2: "m∈ZZ"
"n∈ZZ"

shows "f‘(m+n) = δ(f,m,n) + f‘(n) + f‘(m)"

proof -

from A1 A2 have T:

"δ(f,m,n) ∈ ZZ" "f‘(m+n) ∈ ZZ" "f‘(m) ∈ ZZ" "f‘(n) ∈ ZZ"
using Int_ZF_1_1_L5 apply_funtype by auto

then show "f‘(m+n) = δ(f,m,n) + f‘(n) + f‘(m)"

using Int_ZF_1_2_L15 by simp

qed

The next lemma presents two ways the set of homomorphism differences can
be written.

lemma (in int1) Int_ZF_2_1_L4: assumes A1: "f:ZZ→ZZ"
shows "{abs(HomDiff(ZZ,IntegerAddition,f,x)). x ∈ ZZ×ZZ} =

{abs(δ(f,m,n)). 〈 m,n〉 ∈ ZZ×ZZ}"
proof -

from A1 have "∀ m∈ZZ. ∀ n∈ZZ.
abs(HomDiff(ZZ,IntegerAddition,f,〈 m,n〉)) = abs(δ(f,m,n))"
using Int_ZF_2_1_L3 by simp

then show ?thesis by (rule ZF1_1_L4A)

qed

If f maps integers into integers and for all m,n ∈ Z we have |f(m + n) −
f(m)− f(n)| ≤ L for some L, then f is a slope.

lemma (in int1) Int_ZF_2_1_L5: assumes A1: "f:ZZ→ZZ"
and A2: "∀ m∈ZZ.∀ n∈ZZ. abs(δ(f,m,n)) ≤ L"

shows "f∈S"
proof -

let ?Abs = "AbsoluteValue(ZZ,IntegerAddition,IntegerOrder)"
have "group3(ZZ,IntegerAddition,IntegerOrder)"
"IntegerOrder {is total on} ZZ"
using Int_ZF_2_T1 by auto

moreover from A1 A2 have
"∀ x∈ZZ×ZZ. HomDiff(ZZ,IntegerAddition,f,x) ∈ ZZ ∧
〈?Abs‘(HomDiff(ZZ,IntegerAddition,f,x)),L 〉 ∈ IntegerOrder"

using Int_ZF_2_1_L2A Int_ZF_2_1_L3 by auto
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ultimately have
"IsBounded({HomDiff(ZZ,IntegerAddition,f,x). x∈ZZ×ZZ},IntegerOrder)"
by (rule group3.OrderedGroup_ZF_3_L9A)

with A1 show "f ∈ S" using Int_bounded_iff_fin AlmostHoms_def

by simp

qed

The absolute value of homomorphism difference of a slope s does not exceed
maxδ(s).

lemma (in int1) Int_ZF_2_1_L7:

assumes A1: "s∈S" and A2: "n∈ZZ" "m∈ZZ"
shows
"abs(δ(s,m,n)) ≤ maxδ(s)"
"δ(s,m,n) ∈ ZZ" "maxδ(s) ∈ ZZ"
"(-maxδ(s)) ≤ δ(s,m,n)"

proof -

from A1 A2 show T: "δ(s,m,n) ∈ ZZ"
using Int_ZF_2_1_L2 Int_ZF_1_1_L5 by simp

let ?A = "{abs(HomDiff(ZZ,IntegerAddition,s,x)). x∈ZZ×ZZ}"
let ?B = "{abs(δ(s,m,n)). 〈 m,n〉 ∈ ZZ×ZZ}"
let ?d = "abs(δ(s,m,n))"
have "IsLinOrder(ZZ,IntegerOrder)" using Int_ZF_2_T1

by simp

moreover have "?A ∈ Fin(ZZ)"
proof -

have "∀ k∈ZZ. abs(k) ∈ ZZ" using Int_ZF_2_L14 by simp

moreover from A1 have
"{HomDiff(ZZ,IntegerAddition,s,x). x ∈ ZZ×ZZ} ∈ Fin(ZZ)"
using AlmostHoms_def by simp

ultimately show "?A ∈ Fin(ZZ)" by (rule Finite1_L6C)

qed
moreover have "?A6=0" by auto

ultimately have "∀ k∈?A. 〈k,Maximum(IntegerOrder,?A)〉 ∈ IntegerOrder"

by (rule Finite_ZF_1_T2)

moreover from A1 A2 have "?d∈?A" using AlmostHoms_def Int_ZF_2_1_L4

by auto

ultimately have "?d ≤ Maximum(IntegerOrder,?A)" by auto

with A1 show "?d ≤ maxδ(s)" "maxδ(s) ∈ ZZ"
using AlmostHoms_def Int_ZF_2_1_L4 Int_ZF_2_L1A

by auto

with T show "(-maxδ(s)) ≤ δ(s,m,n)"
using Int_ZF_1_3_L19 by simp

qed

A useful estimate for the value of a slope at 0, plus some type information
for slopes.

lemma (in int1) Int_ZF_2_1_L8: assumes A1: "s∈S"
shows
"abs(s‘(0)) ≤ maxδ(s)"
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"0 ≤ maxδ(s)"
"abs(s‘(0)) ∈ ZZ" "maxδ(s) ∈ ZZ"
"abs(s‘(0)) + maxδ(s) ∈ ZZ"

proof -

from A1 have "s‘(0) ∈ ZZ"
using int_zero_one_are_int Int_ZF_2_1_L2B by simp

then have I: "0 ≤ abs(s‘(0))"
and "abs(δ(s,0,0)) = abs(s‘(0))"
using int_abs_nonneg int_zero_one_are_int Int_ZF_1_1_L4

Int_ZF_2_L17 by auto

moreover from A1 have "abs(δ(s,0,0)) ≤ maxδ(s)"
using int_zero_one_are_int Int_ZF_2_1_L7 by simp

ultimately show II: "abs(s‘(0)) ≤ maxδ(s)"
by simp

with I show "0≤maxδ(s)" by (rule Int_order_transitive)

with II show
"maxδ(s) ∈ ZZ" "abs(s‘(0)) ∈ ZZ"
"abs(s‘(0)) + maxδ(s) ∈ ZZ"
using Int_ZF_2_L1A Int_ZF_1_1_L5 by auto

qed

Int Group_ZF_3.thy we show that finite range functions valued in an abelian
group form a normal subgroup of almost homomorphisms. This allows to
define the equivalence relation between almost homomorphisms as the re-
lation resulting from dividing by that normal subgroup. Then we show in
Group_ZF_3_4_L12 that if the difference of f and g has finite range (actually
f(n) · g(n)−1 as we use multiplicative notation in Group_ZF_3.thy), then f
and g are equivalent. The next lemma translates that fact into the notation
used in int1 context.

lemma (in int1) Int_ZF_2_1_L9: assumes A1: "s∈S" "r∈S"
and A2: "∀ m∈ZZ. abs(s‘(m)-r‘(m)) ≤ L"

shows "s ∼ r"

proof -

from A1 A2 have
"∀ m∈ZZ. s‘(m)-r‘(m) ∈ ZZ ∧ abs(s‘(m)-r‘(m)) ≤ L"

using Int_ZF_2_1_L2B Int_ZF_1_1_L5 by simp

then have
"IsBounded({s‘(n)-r‘(n). n∈ZZ}, IntegerOrder)"

by (rule Int_ZF_1_3_L20)

with A1 show "s ∼ r" using Int_bounded_iff_fin

Int_ZF_2_1_L1 group1.Group_ZF_3_4_L12 by simp

qed

A neccessary condition for two slopes to be almost equal. For slopes the
definition postulates the set {f(m) − g(m) : m ∈ Z} to be finite. This
lemma shows that this implies that |f(m) − g(m)| is bounded (by some
integer) as m varies over integers. We also mention here that in this context
s ∼ r implies that both s and r are slopes.
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lemma (in int1) Int_ZF_2_1_L9A: assumes "s ∼ r"

shows
"∃ L∈ZZ. ∀ m∈ZZ. abs(s‘(m)-r‘(m)) ≤ L"

"s∈S" "r∈S"
using assms Int_ZF_2_1_L1 group1.Group_ZF_3_4_L11

Int_ZF_1_3_L20AA QuotientGroupRel_def by auto

Let’s recall that the relation of almost equality is an equivalence relation on
the set of slopes.

lemma (in int1) Int_ZF_2_1_L9B: shows
"AlEqRel ⊆ S×S"
"equiv(S,AlEqRel)"
using Int_ZF_2_1_L1 group1.Group_ZF_3_3_L3 by auto

Another version of sufficient condition for two slopes to be almost equal: if
the difference of two slopes is a finite range function, then they are almost
equal.

lemma (in int1) Int_ZF_2_1_L9C: assumes "s∈S" "r∈S" and
"s + (-r) ∈ FinRangeFunctions(ZZ,ZZ)"
shows
"s ∼ r"

"r ∼ s"

using assms Int_ZF_2_1_L1

group1.Group_ZF_3_2_L13 group1.Group_ZF_3_4_L12A

by auto

If two slopes are almost equal, then the difference has finite range. This is
the inverse of Int_ZF_2_1_L9C.

lemma (in int1) Int_ZF_2_1_L9D: assumes A1: "s ∼ r"

shows "s + (-r) ∈ FinRangeFunctions(ZZ,ZZ)"
proof -

let ?G = "ZZ"
let ?f = "IntegerAddition"

from A1 have "AlHomOp1(?G, ?f)‘〈s,GroupInv(AlmostHoms(?G, ?f),AlHomOp1(?G,

?f))‘(r)〉
∈ FinRangeFunctions(?G, ?G)"

using Int_ZF_2_1_L1 group1.Group_ZF_3_4_L12B by auto

with A1 show "s + (-r) ∈ FinRangeFunctions(ZZ,ZZ)"
using Int_ZF_2_1_L9A Int_ZF_2_1_L1 group1.Group_ZF_3_2_L13

by simp

qed

What is the value of a composition of slopes?

lemma (in int1) Int_ZF_2_1_L10:

assumes "s∈S" "r∈S" and "m∈ZZ"
shows "(s◦r)‘(m) = s‘(r‘(m))" "s‘(r‘(m)) ∈ ZZ"
using assms Int_ZF_2_1_L1 group1.Group_ZF_3_4_L2 by auto

Composition of slopes is a slope.
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lemma (in int1) Int_ZF_2_1_L11:

assumes "s∈S" "r∈S"
shows "s◦r ∈ S"
using assms Int_ZF_2_1_L1 group1.Group_ZF_3_4_T1 by simp

Negative of a slope is a slope.

lemma (in int1) Int_ZF_2_1_L12: assumes "s∈S" shows "-s ∈ S"
using assms Int_ZF_1_T2 Int_ZF_2_1_L1 group1.Group_ZF_3_2_L13

by simp

What is the value of a negative of a slope?

lemma (in int1) Int_ZF_2_1_L12A:

assumes "s∈S" and "m∈ZZ" shows "(-s)‘(m) = -(s‘(m))"

using assms Int_ZF_2_1_L1 group1.Group_ZF_3_2_L5

by simp

What are the values of a sum of slopes?

lemma (in int1) Int_ZF_2_1_L12B: assumes "s∈S" "r∈S" and "m∈ZZ"
shows "(s+r)‘(m) = s‘(m) + r‘(m)"

using assms Int_ZF_2_1_L1 group1.Group_ZF_3_2_L12

by simp

Sum of slopes is a slope.

lemma (in int1) Int_ZF_2_1_L12C: assumes "s∈S" "r∈S"
shows "s+r ∈ S"
using assms Int_ZF_2_1_L1 group1.Group_ZF_3_2_L16

by simp

A simple but useful identity.

lemma (in int1) Int_ZF_2_1_L13:

assumes "s∈S" and "n∈ZZ" "m∈ZZ"
shows "s‘(n·m) + (s‘(m) + δ(s,n·m,m)) = s‘((n+1)·m)"
using assms Int_ZF_1_1_L5 Int_ZF_2_1_L2B Int_ZF_1_2_L9 Int_ZF_1_2_L7

by simp

Some estimates for the absolute value of a slope at the opposite integer.

lemma (in int1) Int_ZF_2_1_L14: assumes A1: "s∈S" and A2: "m∈ZZ"
shows
"s‘(-m) = s‘(0) - δ(s,m,-m) - s‘(m)"

"abs(s‘(m)+s‘(-m)) ≤ 2·maxδ(s)"
"abs(s‘(-m)) ≤ 2·maxδ(s) + abs(s‘(m))"

"s‘(-m) ≤ abs(s‘(0)) + maxδ(s) - s‘(m)"

proof -

from A1 A2 have T:

"(-m) ∈ ZZ" "abs(s‘(m)) ∈ ZZ" "s‘(0) ∈ ZZ" "abs(s‘(0)) ∈ ZZ"
"δ(s,m,-m) ∈ ZZ" "s‘(m) ∈ ZZ" "s‘(-m) ∈ ZZ"
"(-(s‘(m))) ∈ ZZ" "s‘(0) - δ(s,m,-m) ∈ ZZ"
using Int_ZF_1_1_L4 Int_ZF_2_1_L2B Int_ZF_2_L14 Int_ZF_2_1_L2
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Int_ZF_1_1_L5 int_zero_one_are_int by auto

with A2 show I: "s‘(-m) = s‘(0) - δ(s,m,-m) - s‘(m)"

using Int_ZF_1_1_L4 Int_ZF_1_2_L15 by simp

from T have "abs(s‘(0) - δ(s,m,-m)) ≤ abs(s‘(0)) + abs(δ(s,m,-m))"
using Int_triangle_ineq1 by simp

moreover from A1 A2 T have "abs(s‘(0)) + abs(δ(s,m,-m)) ≤ 2·maxδ(s)"
using Int_ZF_2_1_L7 Int_ZF_2_1_L8 Int_ZF_1_3_L21 by simp

ultimately have "abs(s‘(0) - δ(s,m,-m)) ≤ 2·maxδ(s)"
by (rule Int_order_transitive)

moreover
from I have "s‘(m) + s‘(-m) = s‘(m) + (s‘(0) - δ(s,m,-m) - s‘(m))"

by simp

with T have "abs(s‘(m) + s‘(-m)) = abs(s‘(0) - δ(s,m,-m))"
using Int_ZF_1_2_L3 by simp

ultimately show "abs(s‘(m)+s‘(-m)) ≤ 2·maxδ(s)"
by simp

from I have "abs(s‘(-m)) = abs(s‘(0) - δ(s,m,-m) - s‘(m))"

by simp

with T have
"abs(s‘(-m)) ≤ abs(s‘(0)) + abs(δ(s,m,-m)) + abs(s‘(m))"

using int_triangle_ineq3 by simp

moreover from A1 A2 T have
"abs(s‘(0)) + abs(δ(s,m,-m)) + abs(s‘(m)) ≤ 2·maxδ(s) + abs(s‘(m))"

using Int_ZF_2_1_L7 Int_ZF_2_1_L8 Int_ZF_1_3_L21 int_ord_transl_inv

by simp

ultimately show "abs(s‘(-m)) ≤ 2·maxδ(s) + abs(s‘(m))"

by (rule Int_order_transitive)

from T have "s‘(0) - δ(s,m,-m) ≤ abs(s‘(0)) + abs(δ(s,m,-m))"
using Int_ZF_2_L15E by simp

moreover from A1 A2 T have
"abs(s‘(0)) + abs(δ(s,m,-m)) ≤ abs(s‘(0)) + maxδ(s)"
using Int_ZF_2_1_L7 int_ord_transl_inv by simp

ultimately have "s‘(0) - δ(s,m,-m) ≤ abs(s‘(0)) + maxδ(s)"
by (rule Int_order_transitive)

with T have
"s‘(0) - δ(s,m,-m) - s‘(m) ≤ abs(s‘(0)) + maxδ(s) - s‘(m)"

using int_ord_transl_inv by simp

with I show "s‘(-m) ≤ abs(s‘(0)) + maxδ(s) - s‘(m)"

by simp

qed

An identity that expresses the value of an integer function at the opposite
integer in terms of the value of that function at the integer, zero, and the
homomorphism difference. We have a similar identity in Int_ZF_2_1_L14,
but over there we assume that f is a slope.

lemma (in int1) Int_ZF_2_1_L14A: assumes A1: "f:ZZ→ZZ" and A2: "m∈ZZ"
shows "f‘(-m) = (-δ(f,m,-m)) + f‘(0) - f‘(m)"

proof -

from A1 A2 have T:
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"f‘(-m) ∈ ZZ" "δ(f,m,-m) ∈ ZZ" "f‘(0) ∈ ZZ" "f‘(m) ∈ ZZ"
using Int_ZF_1_1_L4 Int_ZF_1_1_L5 int_zero_one_are_int apply_funtype

by auto

with A2 show "f‘(-m) = (-δ(f,m,-m)) + f‘(0) - f‘(m)"

using Int_ZF_1_1_L4 Int_ZF_1_2_L15 by simp

qed

The next lemma allows to use the expression maxf(f,0..M-1). Recall that
maxf(f,A) is the maximum of (function) f on (the set) A.

lemma (in int1) Int_ZF_2_1_L15:

assumes "s∈S" and "M ∈ ZZ+"

shows
"maxf(s,0..(M-1)) ∈ ZZ"
"∀ n ∈ 0..(M-1). s‘(n) ≤ maxf(s,0..(M-1))"
"minf(s,0..(M-1)) ∈ ZZ"
"∀ n ∈ 0..(M-1). minf(s,0..(M-1)) ≤ s‘(n)"

using assms AlmostHoms_def Int_ZF_1_5_L6 Int_ZF_1_4_L2

by auto

A lower estimate for the value of a slope at nM + k.

lemma (in int1) Int_ZF_2_1_L16:

assumes A1: "s∈S" and A2: "m∈ZZ" and A3: "M ∈ ZZ+" and A4: "k ∈
0..(M-1)"

shows "s‘(m·M) + (minf(s,0..(M-1))- maxδ(s)) ≤ s‘(m·M+k)"
proof -

from A3 have "0..(M-1) ⊆ ZZ"
using Int_ZF_1_5_L6 by simp

with A1 A2 A3 A4 have T: "m·M ∈ ZZ" "k ∈ ZZ" "s‘(m·M) ∈ ZZ"
using PositiveSet_def Int_ZF_1_1_L5 Int_ZF_2_1_L2B

by auto

with A1 A3 A4 have
"s‘(m·M) + (minf(s,0..(M-1)) - maxδ(s)) ≤ s‘(m·M) + (s‘(k) + δ(s,m·M,k))"
using Int_ZF_2_1_L15 Int_ZF_2_1_L7 int_ineq_add_sides int_ord_transl_inv

by simp

with A1 T show ?thesis using Int_ZF_2_1_L3A by simp

qed

Identity is a slope.

lemma (in int1) Int_ZF_2_1_L17: shows "id(ZZ) ∈ S"
using Int_ZF_2_1_L1 group1.Group_ZF_3_4_L15 by simp

Simple identities about (absolute value of) homomorphism differences.

lemma (in int1) Int_ZF_2_1_L18:

assumes A1: "f:ZZ→ZZ" and A2: "m∈ZZ" "n∈ZZ"
shows
"abs(f‘(n) + f‘(m) - f‘(m+n)) = abs(δ(f,m,n))"
"abs(f‘(m) + f‘(n) - f‘(m+n)) = abs(δ(f,m,n))"
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"(-(f‘(m))) - f‘(n) + f‘(m+n) = δ(f,m,n)"
"(-(f‘(n))) - f‘(m) + f‘(m+n) = δ(f,m,n)"
"abs((-f‘(m+n)) + f‘(m) + f‘(n)) = abs(δ(f,m,n))"

proof -

from A1 A2 have T:

"f‘(m+n) ∈ ZZ" "f‘(m) ∈ ZZ" "f‘(n) ∈ ZZ"
"f‘(m+n) - f‘(m) - f‘(n) ∈ ZZ"
"(-(f‘(m))) ∈ ZZ"
"(-f‘(m+n)) + f‘(m) + f‘(n) ∈ ZZ"
using apply_funtype Int_ZF_1_1_L4 Int_ZF_1_1_L5 by auto

then have
"abs(-(f‘(m+n) - f‘(m) - f‘(n))) = abs(f‘(m+n) - f‘(m) - f‘(n))"

using Int_ZF_2_L17 by simp

moreover from T have
"(-(f‘(m+n) - f‘(m) - f‘(n))) = f‘(n) + f‘(m) - f‘(m+n)"

using Int_ZF_1_2_L9A by simp

ultimately show "abs(f‘(n) + f‘(m) - f‘(m+n)) = abs(δ(f,m,n))"
by simp

moreover from T have "f‘(n) + f‘(m) = f‘(m) + f‘(n)"

using Int_ZF_1_1_L5 by simp

ultimately show "abs(f‘(m) + f‘(n) - f‘(m+n)) = abs(δ(f,m,n))"
by simp

from T show
"(-(f‘(m))) - f‘(n) + f‘(m+n) = δ(f,m,n)"
"(-(f‘(n))) - f‘(m) + f‘(m+n) = δ(f,m,n)"
using Int_ZF_1_2_L9 by auto

from T have
"abs((-f‘(m+n)) + f‘(m) + f‘(n)) =

abs(-((-f‘(m+n)) + f‘(m) + f‘(n)))"

using Int_ZF_2_L17 by simp

also from T have
"abs(-((-f‘(m+n)) + f‘(m) + f‘(n))) = abs(δ(f,m,n))"
using Int_ZF_1_2_L9 by simp

finally show "abs((-f‘(m+n)) + f‘(m) + f‘(n)) = abs(δ(f,m,n))"
by simp

qed

Some identities about the homomorphism difference of odd functions.

lemma (in int1) Int_ZF_2_1_L19:

assumes A1: "f:ZZ→ZZ" and A2: "∀ x∈ZZ. (-f‘(-x)) = f‘(x)"

and A3: "m∈ZZ" "n∈ZZ"
shows
"abs(δ(f,-m,m+n)) = abs(δ(f,m,n))"
"abs(δ(f,-n,m+n)) = abs(δ(f,m,n))"
"δ(f,n,-(m+n)) = δ(f,m,n)"
"δ(f,m,-(m+n)) = δ(f,m,n)"
"abs(δ(f,-m,-n)) = abs(δ(f,m,n))"

proof -

from A1 A2 A3 show
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"abs(δ(f,-m,m+n)) = abs(δ(f,m,n))"
"abs(δ(f,-n,m+n)) = abs(δ(f,m,n))"
using Int_ZF_1_2_L3 Int_ZF_2_1_L18 by auto

from A3 have T: "m+n ∈ ZZ" using Int_ZF_1_1_L5 by simp

from A1 A2 have I: "∀ x∈ZZ. f‘(-x) = (-f‘(x))"

using Int_ZF_1_5_L13 by simp

with A1 A2 A3 T show
"δ(f,n,-(m+n)) = δ(f,m,n)"
"δ(f,m,-(m+n)) = δ(f,m,n)"
using Int_ZF_1_2_L3 Int_ZF_2_1_L18 by auto

from A3 have
"abs(δ(f,-m,-n)) = abs(f‘(-(m+n)) - f‘(-m) - f‘(-n))"

using Int_ZF_1_1_L5 by simp

also from A1 A2 A3 T I have ". . . = abs(δ(f,m,n))"
using Int_ZF_2_1_L18 by simp

finally show "abs(δ(f,-m,-n)) = abs(δ(f,m,n))" by simp

qed

Recall that f is a slope iff f(m+n)−f(m)−f(n) is bounded as m,n ranges
over integers. The next lemma is the first step in showing that we only need
to check this condition as m,n ranges over positive intergers. Namely we
show that if the condition holds for positive integers, then it holds if one
integer is positive and the second one is nonnegative.

lemma (in int1) Int_ZF_2_1_L20: assumes A1: "f:ZZ→ZZ" and
A2: "∀ a∈ZZ+. ∀ b∈ZZ+. abs(δ(f,a,b)) ≤ L" and
A3: "m∈ZZ+" "n∈ZZ+"

shows
"0 ≤ L"

"abs(δ(f,m,n)) ≤ L + abs(f‘(0))"
proof -

from A1 A2 have
"δ(f,1,1) ∈ ZZ" and "abs(δ(f,1,1)) ≤ L"

using int_one_two_are_pos PositiveSet_def Int_ZF_2_1_L3B

by auto

then show I: "0 ≤ L" using Int_ZF_1_3_L19 by simp

from A1 A3 have T:

"n ∈ ZZ" "f‘(n) ∈ ZZ" "f‘(0) ∈ ZZ"
"δ(f,m,n) ∈ ZZ" "abs(δ(f,m,n)) ∈ ZZ"
using PositiveSet_def int_zero_one_are_int apply_funtype

Nonnegative_def Int_ZF_2_1_L3B Int_ZF_2_L14 by auto

from A3 have "m=0 ∨ m∈ZZ+" using Int_ZF_1_5_L3A by auto

moreover
{ assume "m = 0"

with T I have "abs(δ(f,m,n)) ≤ L + abs(f‘(0))"
using Int_ZF_1_1_L4 Int_ZF_1_2_L3 Int_ZF_2_L17

int_ord_is_refl refl_def Int_ZF_2_L15F by simp }
moreover
{ assume "m∈ZZ+"

with A2 A3 T have "abs(δ(f,m,n)) ≤ L + abs(f‘(0))"
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using int_abs_nonneg Int_ZF_2_L15F by simp }
ultimately show "abs(δ(f,m,n)) ≤ L + abs(f‘(0))"

by auto

qed

If the slope condition holds for all pairs of integers such that one integer is
positive and the second one is nonnegative, then it holds when both integers
are nonnegative.

lemma (in int1) Int_ZF_2_1_L21: assumes A1: "f:ZZ→ZZ" and
A2: "∀ a∈ZZ+. ∀ b∈ZZ+. abs(δ(f,a,b)) ≤ L" and
A3: "n∈ZZ+" "m∈ZZ+"

shows "abs(δ(f,m,n)) ≤ L + abs(f‘(0))"
proof -

from A1 A2 have
"δ(f,1,1) ∈ ZZ" and "abs(δ(f,1,1)) ≤ L"

using int_one_two_are_pos PositiveSet_def Nonnegative_def Int_ZF_2_1_L3B

by auto

then have I: "0 ≤ L" using Int_ZF_1_3_L19 by simp

from A1 A3 have T:

"m ∈ ZZ" "f‘(m) ∈ ZZ" "f‘(0) ∈ ZZ" "(-f‘(0)) ∈ ZZ"
"δ(f,m,n) ∈ ZZ" "abs(δ(f,m,n)) ∈ ZZ"
using int_zero_one_are_int apply_funtype Nonnegative_def

Int_ZF_2_1_L3B Int_ZF_2_L14 Int_ZF_1_1_L4 by auto

from A3 have "n=0 ∨ n∈ZZ+" using Int_ZF_1_5_L3A by auto

moreover
{ assume "n=0"

with T have "δ(f,m,n) = -f‘(0)"
using Int_ZF_1_1_L4 by simp

with T have "abs(δ(f,m,n)) = abs(f‘(0))"
using Int_ZF_2_L17 by simp

with T have "abs(δ(f,m,n)) ≤ abs(f‘(0))"
using int_ord_is_refl refl_def by simp

with T I have "abs(δ(f,m,n)) ≤ L + abs(f‘(0))"
using Int_ZF_2_L15F by simp }

moreover
{ assume "n∈ZZ+"

with A2 A3 T have "abs(δ(f,m,n)) ≤ L + abs(f‘(0))"
using int_abs_nonneg Int_ZF_2_L15F by simp }

ultimately show "abs(δ(f,m,n)) ≤ L + abs(f‘(0))"
by auto

qed

If the homomorphism difference is bounded on ZZ+×ZZ+, then it is bounded
on ZZ+×ZZ+.

lemma (in int1) Int_ZF_2_1_L22: assumes A1: "f:ZZ→ZZ" and
A2: "∀ a∈ZZ+. ∀ b∈ZZ+. abs(δ(f,a,b)) ≤ L"

shows "∃ M. ∀ m∈ZZ+. ∀ n∈ZZ+. abs(δ(f,m,n)) ≤ M"

proof -

from A1 A2 have
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"∀ m∈ZZ+. ∀ n∈ZZ+. abs(δ(f,m,n)) ≤ L + abs(f‘(0)) + abs(f‘(0))"
using Int_ZF_2_1_L20 Int_ZF_2_1_L21 by simp

then show ?thesis by auto

qed

For odd functions we can do better than in Int_ZF_2_1_L22: if the homomor-
phism difference of f is bounded on ZZ+×ZZ+, then it is bounded on ZZ×ZZ,
hence f is a slope. Loong prof by splitting the ZZ×ZZ into six subsets.

lemma (in int1) Int_ZF_2_1_L23: assumes A1: "f:ZZ→ZZ" and
A2: "∀ a∈ZZ+. ∀ b∈ZZ+. abs(δ(f,a,b)) ≤ L"

and A3: "∀ x∈ZZ. (-f‘(-x)) = f‘(x)"

shows "f∈S"
proof -

from A1 A2 have
"∃ M.∀ a∈ZZ+. ∀ b∈ZZ+. abs(δ(f,a,b)) ≤ M"

by (rule Int_ZF_2_1_L22)

then obtain M where I: "∀ m∈ZZ+. ∀ n∈ZZ+. abs(δ(f,m,n)) ≤ M"

by auto

{ fix a b assume A4: "a∈ZZ" "b∈ZZ"
then have
"0≤a ∧ 0≤b ∨ a≤0 ∧ b≤0 ∨
a≤0 ∧ 0≤b ∧ 0 ≤ a+b ∨ a≤0 ∧ 0≤b ∧ a+b ≤ 0 ∨
0≤a ∧ b≤0 ∧ 0 ≤ a+b ∨ 0≤a ∧ b≤0 ∧ a+b ≤ 0"
using int_plane_split_in6 by simp

moreover
{ assume "0≤a ∧ 0≤b"

then have "a∈ZZ+" "b∈ZZ+"

using Int_ZF_2_L16 by auto

with I have "abs(δ(f,a,b)) ≤ M" by simp }
moreover
{ assume "a≤0 ∧ b≤0"

with I have "abs(δ(f,-a,-b)) ≤ M"

using Int_ZF_2_L10A Int_ZF_2_L16 by simp

with A1 A3 A4 have "abs(δ(f,a,b)) ≤ M"

using Int_ZF_2_1_L19 by simp }
moreover
{ assume "a≤0 ∧ 0≤b ∧ 0 ≤ a+b"

with I have "abs(δ(f,-a,a+b)) ≤ M"

using Int_ZF_2_L10A Int_ZF_2_L16 by simp

with A1 A3 A4 have "abs(δ(f,a,b)) ≤ M"

using Int_ZF_2_1_L19 by simp }
moreover
{ assume "a≤0 ∧ 0≤b ∧ a+b ≤ 0"

with I have "abs(δ(f,b,-(a+b))) ≤ M"

using Int_ZF_2_L10A Int_ZF_2_L16 by simp

with A1 A3 A4 have "abs(δ(f,a,b)) ≤ M"

using Int_ZF_2_1_L19 by simp }
moreover
{ assume "0≤a ∧ b≤0 ∧ 0 ≤ a+b"
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with I have "abs(δ(f,-b,a+b)) ≤ M"

using Int_ZF_2_L10A Int_ZF_2_L16 by simp

with A1 A3 A4 have "abs(δ(f,a,b)) ≤ M"

using Int_ZF_2_1_L19 by simp }
moreover
{ assume "0≤a ∧ b≤0 ∧ a+b ≤ 0"

with I have "abs(δ(f,a,-(a+b))) ≤ M"

using Int_ZF_2_L10A Int_ZF_2_L16 by simp

with A1 A3 A4 have "abs(δ(f,a,b)) ≤ M"

using Int_ZF_2_1_L19 by simp }
ultimately have "abs(δ(f,a,b)) ≤ M" by auto }

then have "∀ m∈ZZ. ∀ n∈ZZ. abs(δ(f,m,n)) ≤ M" by simp

with A1 show "f∈S" by (rule Int_ZF_2_1_L5)

qed

If the homomorphism difference of a function defined on positive integers is
bounded, then the odd extension of this function is a slope.

lemma (in int1) Int_ZF_2_1_L24:

assumes A1: "f:ZZ+→ZZ" and A2: "∀ a∈ZZ+. ∀ b∈ZZ+. abs(δ(f,a,b)) ≤ L"

shows "OddExtension(ZZ,IntegerAddition,IntegerOrder,f) ∈ S"
proof -

let ?g = "OddExtension(ZZ,IntegerAddition,IntegerOrder,f)"
from A1 have "?g : ZZ→ZZ"

using Int_ZF_1_5_L10 by simp

moreover have "∀ a∈ZZ+. ∀ b∈ZZ+. abs(δ(?g,a,b)) ≤ L"

proof -

{ fix a b assume A3: "a∈ZZ+" "b∈ZZ+"

with A1 have "abs(δ(f,a,b)) = abs(δ(?g,a,b))"
using pos_int_closed_add_unfolded Int_ZF_1_5_L11

by simp

moreover from A2 A3 have "abs(δ(f,a,b)) ≤ L" by simp

ultimately have "abs(δ(?g,a,b)) ≤ L" by simp

} then show ?thesis by simp

qed
moreover from A1 have "∀ x∈ZZ. (-?g‘(-x)) = ?g‘(x)"

using int_oddext_is_odd_alt by simp

ultimately show "?g ∈ S" by (rule Int_ZF_2_1_L23)

qed

Type information related to γ.

lemma (in int1) Int_ZF_2_1_L25:

assumes A1: "f:ZZ→ZZ" and A2: "m∈ZZ" "n∈ZZ"
shows
"δ(f,m,-n) ∈ ZZ"
"δ(f,n,-n) ∈ ZZ"
"(-δ(f,n,-n)) ∈ ZZ"
"f‘(0) ∈ ZZ"
"γ(f,m,n) ∈ ZZ"

proof -
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from A1 A2 show T1:

"δ(f,m,-n) ∈ ZZ" "f‘(0) ∈ ZZ"
using Int_ZF_1_1_L4 Int_ZF_2_1_L3B int_zero_one_are_int apply_funtype

by auto

from A2 have "(-n) ∈ ZZ"
using Int_ZF_1_1_L4 by simp

with A1 A2 show "δ(f,n,-n) ∈ ZZ"
using Int_ZF_2_1_L3B by simp

then show "(-δ(f,n,-n)) ∈ ZZ"
using Int_ZF_1_1_L4 by simp

with T1 show "γ(f,m,n) ∈ ZZ"
using Int_ZF_1_1_L5 by simp

qed

A couple of formulae involving f(m− n) and γ(f,m, n).

lemma (in int1) Int_ZF_2_1_L26:

assumes A1: "f:ZZ→ZZ" and A2: "m∈ZZ" "n∈ZZ"
shows
"f‘(m-n) = γ(f,m,n) + f‘(m) - f‘(n)"

"f‘(m-n) = γ(f,m,n) + (f‘(m) - f‘(n))"

"f‘(m-n) + (f‘(n) - γ(f,m,n)) = f‘(m)"

proof -

from A1 A2 have T:

"(-n) ∈ ZZ" "δ(f,m,-n) ∈ ZZ"
"f‘(0) ∈ ZZ" "f‘(m) ∈ ZZ" "f‘(n) ∈ ZZ" "(-f‘(n)) ∈ ZZ"
"(-δ(f,n,-n)) ∈ ZZ"
"(-δ(f,n,-n)) + f‘(0) ∈ ZZ"
"γ(f,m,n) ∈ ZZ"
using Int_ZF_1_1_L4 Int_ZF_2_1_L25 apply_funtype Int_ZF_1_1_L5

by auto

with A1 A2 have "f‘(m-n) =

δ(f,m,-n) + ((-δ(f,n,-n)) + f‘(0) - f‘(n)) + f‘(m)"

using Int_ZF_2_1_L3C Int_ZF_2_1_L14A by simp

with T have "f‘(m-n) =

δ(f,m,-n) + ((-δ(f,n,-n)) + f‘(0)) + f‘(m) - f‘(n)"

using Int_ZF_1_2_L16 by simp

moreover from T have
"δ(f,m,-n) + ((-δ(f,n,-n)) + f‘(0)) = γ(f,m,n)"
using Int_ZF_1_1_L7 by simp

ultimately show I: "f‘(m-n) = γ(f,m,n) + f‘(m) - f‘(n)"

by simp

then have "f‘(m-n) + (f‘(n) - γ(f,m,n)) =

(γ(f,m,n) + f‘(m) - f‘(n)) + (f‘(n) - γ(f,m,n))"
by simp

moreover from T have ". . . = f‘(m)" using Int_ZF_1_2_L18

by simp

ultimately show "f‘(m-n) + (f‘(n) - γ(f,m,n)) = f‘(m)"

by simp

from T have "γ(f,m,n) ∈ ZZ" "f‘(m) ∈ ZZ" "(-f‘(n)) ∈ ZZ"
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by auto

then have
"γ(f,m,n) + f‘(m) + (-f‘(n)) = γ(f,m,n) + (f‘(m) + (-f‘(n)))"

by (rule Int_ZF_1_1_L7)

with I show "f‘(m-n) = γ(f,m,n) + (f‘(m) - f‘(n))" by simp

qed

A formula expressing the difference between f(m−n−k) and f(m)−f(n)−
f(k) in terms of γ.

lemma (in int1) Int_ZF_2_1_L26A:

assumes A1: "f:ZZ→ZZ" and A2: "m∈ZZ" "n∈ZZ" "k∈ZZ"
shows
"f‘(m-n-k) - (f‘(m)- f‘(n) - f‘(k)) = γ(f,m-n,k) + γ(f,m,n)"

proof -

from A1 A2 have
T: "m-n ∈ ZZ" "γ(f,m-n,k) ∈ ZZ" "f‘(m) - f‘(n) - f‘(k) ∈ ZZ" and
T1: "γ(f,m,n) ∈ ZZ" "f‘(m) - f‘(n) ∈ ZZ" "(-f‘(k)) ∈ ZZ"
using Int_ZF_1_1_L4 Int_ZF_1_1_L5 Int_ZF_2_1_L25 apply_funtype

by auto

from A1 A2 have
"f‘(m-n) - f‘(k) = γ(f,m,n) + (f‘(m) - f‘(n)) + (-f‘(k))"

using Int_ZF_2_1_L26 by simp

also from T1 have ". . . = γ(f,m,n) + (f‘(m) - f‘(n) + (-f‘(k)))"

by (rule Int_ZF_1_1_L7)

finally have
"f‘(m-n) - f‘(k) = γ(f,m,n) + (f‘(m) - f‘(n) - f‘(k))"

by simp

moreover from A1 A2 T have
"f‘(m-n-k) = γ(f,m-n,k) + (f‘(m-n)-f‘(k))"

using Int_ZF_2_1_L26 by simp

ultimately have
"f‘(m-n-k) - (f‘(m)- f‘(n) - f‘(k)) =

γ(f,m-n,k) + ( γ(f,m,n) + (f‘(m) - f‘(n) - f‘(k)))

- (f‘(m)- f‘(n) - f‘(k))"

by simp

with T T1 show ?thesis

using Int_ZF_1_2_L17 by simp

qed

If s is a slope, then γ(s,m, n) is uniformly bounded.

lemma (in int1) Int_ZF_2_1_L27: assumes A1: "s∈S"
shows "∃ L∈ZZ. ∀ m∈ZZ.∀ n∈ZZ. abs(γ(s,m,n)) ≤ L"

proof -

let ?L = "maxδ(s) + maxδ(s) + abs(s‘(0))"
from A1 have T:

"maxδ(s) ∈ ZZ" "abs(s‘(0)) ∈ ZZ" "?L ∈ ZZ"
using Int_ZF_2_1_L8 int_zero_one_are_int Int_ZF_2_1_L2B

Int_ZF_2_L14 Int_ZF_1_1_L5 by auto

moreover
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{ fix m

fix n

assume A2: "m∈ZZ" "n∈ZZ"
with A1 have T:

"(-n) ∈ ZZ"
"δ(s,m,-n) ∈ ZZ"
"δ(s,n,-n) ∈ ZZ"
"(-δ(s,n,-n)) ∈ ZZ"
"s‘(0) ∈ ZZ" "abs(s‘(0)) ∈ ZZ"
using Int_ZF_1_1_L4 AlmostHoms_def Int_ZF_2_1_L25 Int_ZF_2_L14

by auto

with T have
"abs(δ(s,m,-n) - δ(s,n,-n) + s‘(0)) ≤
abs(δ(s,m,-n)) + abs(-δ(s,n,-n)) + abs(s‘(0))"
using Int_triangle_ineq3 by simp

moreover from A1 A2 T have
"abs(δ(s,m,-n)) + abs(-δ(s,n,-n)) + abs(s‘(0)) ≤ ?L"

using Int_ZF_2_1_L7 int_ineq_add_sides int_ord_transl_inv Int_ZF_2_L17

by simp

ultimately have "abs(δ(s,m,-n) - δ(s,n,-n) + s‘(0)) ≤ ?L"

by (rule Int_order_transitive)

then have "abs(γ(s,m,n)) ≤ ?L" by simp }
ultimately show "∃ L∈ZZ. ∀ m∈ZZ.∀ n∈ZZ. abs(γ(s,m,n)) ≤ L"

by auto

qed

If s is a slope, then s(m) ≤ s(m− 1) +M , where L does not depend on m.

lemma (in int1) Int_ZF_2_1_L28: assumes A1: "s∈S"
shows "∃ M∈ZZ. ∀ m∈ZZ. s‘(m) ≤ s‘(m-1) + M"

proof -

from A1 have
"∃ L∈ZZ. ∀ m∈ZZ.∀ n∈ZZ.abs(γ(s,m,n)) ≤ L"

using Int_ZF_2_1_L27 by simp

then obtain L where T: "L∈ZZ" and "∀ m∈ZZ.∀ n∈ZZ.abs(γ(s,m,n)) ≤ L"

using Int_ZF_2_1_L27 by auto

then have I: "∀ m∈ZZ.abs(γ(s,m,1)) ≤ L"

using int_zero_one_are_int by simp

let ?M = "s‘(1) + L"

from A1 T have "?M ∈ ZZ"
using int_zero_one_are_int Int_ZF_2_1_L2B Int_ZF_1_1_L5

by simp

moreover
{ fix m assume A2: "m∈ZZ"

with A1 have
T1: "s:ZZ→ZZ" "m∈ZZ" "1∈ZZ" and
T2: "γ(s,m,1) ∈ ZZ" "s‘(1) ∈ ZZ"
using int_zero_one_are_int AlmostHoms_def

Int_ZF_2_1_L25 by auto

from A2 T1 have T3: "s‘(m-1) ∈ ZZ"
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using Int_ZF_1_1_L5 apply_funtype by simp

from I A2 T2 have
"(-γ(s,m,1)) ≤ abs(γ(s,m,1))"
"abs(γ(s,m,1)) ≤ L"

using Int_ZF_2_L19C by auto

then have "(-γ(s,m,1)) ≤ L"

by (rule Int_order_transitive)

with T2 T3 have
"s‘(m-1) + (s‘(1) - γ(s,m,1)) ≤ s‘(m-1) + ?M"

using int_ord_transl_inv by simp

moreover from T1 have
"s‘(m-1) + (s‘(1) - γ(s,m,1)) = s‘(m)"

by (rule Int_ZF_2_1_L26)

ultimately have "s‘(m) ≤ s‘(m-1) + ?M" by simp }
ultimately show "∃ M∈ZZ. ∀ m∈ZZ. s‘(m) ≤ s‘(m-1) + M"

by auto

qed

If s is a slope, then the difference between s(m−n−k) and s(m)−s(n)−s(k)
is uniformly bounded.

lemma (in int1) Int_ZF_2_1_L29: assumes A1: "s∈S"
shows
"∃ M∈ZZ. ∀ m∈ZZ.∀ n∈ZZ.∀ k∈ZZ. abs(s‘(m-n-k) - (s‘(m)-s‘(n)-s‘(k))) ≤M"

proof -

from A1 have "∃ L∈ZZ. ∀ m∈ZZ.∀ n∈ZZ. abs(γ(s,m,n)) ≤ L"

using Int_ZF_2_1_L27 by simp

then obtain L where I: "L∈ZZ" and
II: "∀ m∈ZZ.∀ n∈ZZ. abs(γ(s,m,n)) ≤ L"

by auto

from I have "L+L ∈ ZZ"
using Int_ZF_1_1_L5 by simp

moreover
{ fix m n k assume A2: "m∈ZZ" "n∈ZZ" "k∈ZZ"

with A1 have T:

"m-n ∈ ZZ" "γ(s,m-n,k) ∈ ZZ" "γ(s,m,n) ∈ ZZ"
using Int_ZF_1_1_L5 AlmostHoms_def Int_ZF_2_1_L25

by auto

then have
I: "abs(γ(s,m-n,k) + γ(s,m,n)) ≤ abs(γ(s,m-n,k)) + abs(γ(s,m,n))"
using Int_triangle_ineq by simp

from II A2 T have
"abs(γ(s,m-n,k)) ≤ L"

"abs(γ(s,m,n)) ≤ L"

by auto

then have "abs(γ(s,m-n,k)) + abs(γ(s,m,n)) ≤ L+L"

using int_ineq_add_sides by simp

with I have "abs(γ(s,m-n,k) + γ(s,m,n)) ≤ L+L"

by (rule Int_order_transitive)

moreover from A1 A2 have
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"s‘(m-n-k) - (s‘(m)- s‘(n) - s‘(k)) = γ(s,m-n,k) + γ(s,m,n)"
using AlmostHoms_def Int_ZF_2_1_L26A by simp

ultimately have
"abs(s‘(m-n-k) - (s‘(m)- s‘(n) - s‘(k))) ≤ L+L"

by simp }
ultimately show ?thesis by auto

qed

If s is a slope, then we can find integers M,K such that s(m − n − k) ≤
s(m)− s(n)− s(k) +M and s(m)− s(n)− s(k) +K ≤ s(m− n− k), for all
integer m,n, k.

lemma (in int1) Int_ZF_2_1_L30: assumes A1: "s∈S"
shows
"∃ M∈ZZ. ∀ m∈ZZ.∀ n∈ZZ.∀ k∈ZZ. s‘(m-n-k) ≤ s‘(m)-s‘(n)-s‘(k)+M"

"∃ K∈ZZ. ∀ m∈ZZ.∀ n∈ZZ.∀ k∈ZZ. s‘(m)-s‘(n)-s‘(k)+K ≤ s‘(m-n-k)"

proof -

from A1 have
"∃ M∈ZZ. ∀ m∈ZZ.∀ n∈ZZ.∀ k∈ZZ. abs(s‘(m-n-k) - (s‘(m)-s‘(n)-s‘(k))) ≤M"
using Int_ZF_2_1_L29 by simp

then obtain M where I: "M∈ZZ" and II:

"∀ m∈ZZ.∀ n∈ZZ.∀ k∈ZZ. abs(s‘(m-n-k) - (s‘(m)-s‘(n)-s‘(k))) ≤M"
by auto

from I have III: "(-M) ∈ ZZ" using Int_ZF_1_1_L4 by simp

{ fix m n k assume A2: "m∈ZZ" "n∈ZZ" "k∈ZZ"
with A1 have "s‘(m-n-k) ∈ ZZ" and "s‘(m)-s‘(n)-s‘(k) ∈ ZZ"

using Int_ZF_1_1_L5 Int_ZF_2_1_L2B by auto

moreover from II A2 have
"abs(s‘(m-n-k) - (s‘(m)-s‘(n)-s‘(k))) ≤M"
by simp

ultimately have
"s‘(m-n-k) ≤ s‘(m)-s‘(n)-s‘(k)+M ∧
s‘(m)-s‘(n)-s‘(k) - M ≤ s‘(m-n-k)"

using Int_triangle_ineq2 by simp

} then have
"∀ m∈ZZ.∀ n∈ZZ.∀ k∈ZZ. s‘(m-n-k) ≤ s‘(m)-s‘(n)-s‘(k)+M"

"∀ m∈ZZ.∀ n∈ZZ.∀ k∈ZZ. s‘(m)-s‘(n)-s‘(k) - M ≤ s‘(m-n-k)"

by auto

with I III show
"∃ M∈ZZ. ∀ m∈ZZ.∀ n∈ZZ.∀ k∈ZZ. s‘(m-n-k) ≤ s‘(m)-s‘(n)-s‘(k)+M"

"∃ K∈ZZ. ∀ m∈ZZ.∀ n∈ZZ.∀ k∈ZZ. s‘(m)-s‘(n)-s‘(k)+K ≤ s‘(m-n-k)"

by auto

qed

By definition functions f, g are almost equal if f − g* is bounded. In the
next lemma we show it is sufficient to check the boundedness on positive
integers.

lemma (in int1) Int_ZF_2_1_L31: assumes A1: "s∈S" "r∈S"
and A2: "∀ m∈ZZ+. abs(s‘(m)-r‘(m)) ≤ L"

shows "s ∼ r"
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proof -

let ?a = "abs(s‘(0) - r‘(0))"
let ?c = "2·maxδ(s) + 2·maxδ(r) + L"

let ?M = "Maximum(IntegerOrder,{?a,L,?c})"

from A2 have "abs(s‘(1)-r‘(1)) ≤ L"

using int_one_two_are_pos by simp

then have T: "L∈ZZ" using Int_ZF_2_L1A by simp

moreover from A1 have "?a ∈ ZZ"
using int_zero_one_are_int Int_ZF_2_1_L2B

Int_ZF_1_1_L5 Int_ZF_2_L14 by simp

moreover from A1 T have "?c ∈ ZZ"
using Int_ZF_2_1_L8 int_two_three_are_int Int_ZF_1_1_L5

by simp

ultimately have
I: "?a ≤ ?M" and
II: "L ≤ ?M" and
III: "?c ≤ ?M"

using Int_ZF_1_4_L1A by auto

{ fix m assume A5: "m∈ZZ"
with A1 have T:

"s‘(m) ∈ ZZ" "r‘(m) ∈ ZZ" "s‘(m) - r‘(m) ∈ ZZ"
"s‘(-m) ∈ ZZ" "r‘(-m) ∈ ZZ"
using Int_ZF_2_1_L2B Int_ZF_1_1_L4 Int_ZF_1_1_L5

by auto

from A5 have "m=0 ∨ m∈ZZ+ ∨ (-m) ∈ ZZ+"

using int_decomp_cases by simp

moreover
{ assume "m=0"

with I have "abs(s‘(m) - r‘(m)) ≤ ?M"

by simp }
moreover
{ assume "m∈ZZ+"

with A2 II have
"abs(s‘(m)-r‘(m)) ≤ L" and "L≤?M"
by auto

then have "abs(s‘(m)-r‘(m)) ≤ ?M"

by (rule Int_order_transitive) }
moreover
{ assume A6: "(-m) ∈ ZZ+"

from T have "abs(s‘(m)-r‘(m)) ≤
abs(s‘(m)+s‘(-m)) + abs(r‘(m)+r‘(-m)) + abs(s‘(-m)-r‘(-m))"

using Int_ZF_1_3_L22A by simp

moreover
from A1 A2 III A5 A6 have

"abs(s‘(m)+s‘(-m)) + abs(r‘(m)+r‘(-m)) + abs(s‘(-m)-r‘(-m)) ≤ ?c"

"?c ≤ ?M"

using Int_ZF_2_1_L14 int_ineq_add_sides by auto

then have
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"abs(s‘(m)+s‘(-m)) + abs(r‘(m)+r‘(-m)) + abs(s‘(-m)-r‘(-m)) ≤ ?M"

by (rule Int_order_transitive)

ultimately have "abs(s‘(m)-r‘(m)) ≤ ?M"

by (rule Int_order_transitive) }
ultimately have "abs(s‘(m) - r‘(m)) ≤ ?M"

by auto

} then have "∀ m∈ZZ. abs(s‘(m)-r‘(m)) ≤ ?M"

by simp

with A1 show "s ∼ r" by (rule Int_ZF_2_1_L9)

qed

A sufficient condition for an odd slope to be almost equal to identity: If for
all positive integers the value of the slope at m is between m and m plus
some constant independent of m, then the slope is almost identity.

lemma (in int1) Int_ZF_2_1_L32: assumes A1: "s∈S" "M∈ZZ"
and A2: "∀ m∈ZZ+. m ≤ s‘(m) ∧ s‘(m) ≤ m+M"

shows "s ∼ id(ZZ)"
proof -

let ?r = "id(ZZ)"
from A1 have "s∈S" "?r ∈ S"

using Int_ZF_2_1_L17 by auto

moreover from A1 A2 have "∀ m∈ZZ+. abs(s‘(m)-?r‘(m)) ≤ M"

using Int_ZF_1_3_L23 PositiveSet_def id_conv by simp

ultimately show "s ∼ id(ZZ)" by (rule Int_ZF_2_1_L31)

qed

A lemma about adding a constant to slopes. This is actually proven in
Group_ZF_3_5_L1, in Group_ZF_3.thy here we just refer to that lemma to
show it in notation used for integers. Unfortunately we have to use raw set
notation in the proof.

lemma (in int1) Int_ZF_2_1_L33:

assumes A1: "s∈S" and A2: "c∈ZZ" and
A3: "r = {〈m,s‘(m)+c〉. m∈ZZ}"
shows
"∀ m∈ZZ. r‘(m) = s‘(m)+c"

"r∈S"
"s ∼ r"

proof -

let ?G = "ZZ"
let ?f = "IntegerAddition"

let ?AH = "AlmostHoms(?G, ?f)"

from assms have I:

"group1(?G, ?f)"

"s ∈ AlmostHoms(?G, ?f)"

"c ∈ ?G"

"r = {〈x, ?f‘〈s‘(x), c〉〉. x ∈ ?G}"

using Int_ZF_2_1_L1 by auto

then have "∀ x∈?G. r‘(x) = ?f‘〈s‘(x),c〉"
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by (rule group1.Group_ZF_3_5_L1)

moreover from I have "r ∈ AlmostHoms(?G, ?f)"

by (rule group1.Group_ZF_3_5_L1)

moreover from I have
"〈s, r〉 ∈ QuotientGroupRel(AlmostHoms(?G, ?f), AlHomOp1(?G, ?f), FinRangeFunctions(?G,

?G))"

by (rule group1.Group_ZF_3_5_L1)

ultimately show
"∀ m∈ZZ. r‘(m) = s‘(m)+c"

"r∈S"
"s ∼ r"

by auto

qed

44.2 Composing slopes

Composition of slopes is not commutative. However, as we show in this
section if f and g are slopes then the range of f ◦ g− g ◦ f is bounded. This
allows to show that the multiplication of real numbers is commutative.

Two useful estimates.

lemma (in int1) Int_ZF_2_2_L1:

assumes A1: "f:ZZ→ZZ" and A2: "p∈ZZ" "q∈ZZ"
shows
"abs(f‘((p+1)·q)-(p+1)·f‘(q)) ≤ abs(δ(f,p·q,q))+abs(f‘(p·q)-p·f‘(q))"
"abs(f‘((p-1)·q)-(p-1)·f‘(q)) ≤ abs(δ(f,(p-1)·q,q))+abs(f‘(p·q)-p·f‘(q))"

proof -

let ?R = "ZZ"
let ?A = "IntegerAddition"

let ?M = "IntegerMultiplication"

let ?I = "GroupInv(?R, ?A)"

let ?a = "f‘((p+1)·q)"
let ?b = "p"

let ?c = "f‘(q)"

let ?d = "f‘(p·q)"
from A1 A2 have T1:

"ring0(?R, ?A, ?M)" "?a ∈ ?R" "?b ∈ ?R" "?c ∈ ?R" "?d ∈ ?R"

using Int_ZF_1_1_L2 int_zero_one_are_int Int_ZF_1_1_L5 apply_funtype

by auto

then have
"?A‘〈?a,?I‘(?M‘〈?A‘〈?b, TheNeutralElement(?R, ?M)〉,?c〉)〉 =

?A‘〈?A‘〈?A‘〈?a,?I‘(?d)〉,?I‘(?c)〉,?A‘〈?d, ?I‘(?M‘〈?b, ?c〉)〉〉"
by (rule ring0.Ring_ZF_2_L2)

with A2 have
"f‘((p+1)·q)-(p+1)·f‘(q) = δ(f,p·q,q)+(f‘(p·q)-p·f‘(q))"
using int_zero_one_are_int Int_ZF_1_1_L1 Int_ZF_1_1_L4 by simp

moreover from A1 A2 T1 have "δ(f,p·q,q) ∈ ZZ" "f‘(p·q)-p·f‘(q) ∈ ZZ"
using Int_ZF_1_1_L5 apply_funtype by auto
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ultimately show
"abs(f‘((p+1)·q)-(p+1)·f‘(q)) ≤ abs(δ(f,p·q,q))+abs(f‘(p·q)-p·f‘(q))"
using Int_triangle_ineq by simp

from A1 A2 have T1:

"f‘((p-1)·q) ∈ ZZ" "p∈ZZ" "f‘(q) ∈ ZZ" "f‘(p·q) ∈ ZZ"
using int_zero_one_are_int Int_ZF_1_1_L5 apply_funtype by auto

then have
"f‘((p-1)·q)-(p-1)·f‘(q) = (f‘(p·q)-p·f‘(q))-(f‘(p·q)-f‘((p-1)·q)-f‘(q))"
by (rule Int_ZF_1_2_L6)

with A2 have "f‘((p-1)·q)-(p-1)·f‘(q) = (f‘(p·q)-p·f‘(q))-δ(f,(p-1)·q,q)"
using Int_ZF_1_2_L7 by simp

moreover from A1 A2 have
"f‘(p·q)-p·f‘(q) ∈ ZZ" "δ(f,(p-1)·q,q) ∈ ZZ"
using Int_ZF_1_1_L5 int_zero_one_are_int apply_funtype by auto

ultimately show
"abs(f‘((p-1)·q)-(p-1)·f‘(q)) ≤ abs(δ(f,(p-1)·q,q))+abs(f‘(p·q)-p·f‘(q))"
using Int_triangle_ineq1 by simp

qed

If f is a slope, then |f(p · q)− p · f(q)| ≤ (|p|+ 1)·maxδ(f). The proof is by
induction on p and the next lemma is the induction step for the case when
0 ≤ p.
lemma (in int1) Int_ZF_2_2_L2:

assumes A1: "f∈S" and A2: "0≤p" "q∈ZZ"
and A3: "abs(f‘(p·q)-p·f‘(q)) ≤ (abs(p)+1)·maxδ(f)"
shows
"abs(f‘((p+1)·q)-(p+1)·f‘(q)) ≤ (abs(p+1)+ 1)·maxδ(f)"

proof -

from A2 have "q∈ZZ" "p·q ∈ ZZ"
using Int_ZF_2_L1A Int_ZF_1_1_L5 by auto

with A1 have I: "abs(δ(f,p·q,q)) ≤ maxδ(f)" by (rule Int_ZF_2_1_L7)

moreover note A3

moreover from A1 A2 have
"abs(f‘((p+1)·q)-(p+1)·f‘(q)) ≤ abs(δ(f,p·q,q))+abs(f‘(p·q)-p·f‘(q))"
using AlmostHoms_def Int_ZF_2_L1A Int_ZF_2_2_L1 by simp

ultimately have
"abs(f‘((p+1)·q)-(p+1)·f‘(q)) ≤ maxδ(f)+(abs(p)+1)·maxδ(f)"
by (rule Int_ZF_2_L15)

moreover from I A2 have
"maxδ(f)+(abs(p)+1)·maxδ(f) = (abs(p+1)+ 1)·maxδ(f)"
using Int_ZF_2_L1A Int_ZF_1_2_L2 by simp

ultimately show
"abs(f‘((p+1)·q)-(p+1)·f‘(q)) ≤ (abs(p+1)+ 1)·maxδ(f)"
by simp

qed

If f is a slope, then |f(p · q) − p · f(q)| ≤ (|p| + 1)·maxδ. The proof is by
induction on p and the next lemma is the induction step for the case when
p ≤ 0.
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lemma (in int1) Int_ZF_2_2_L3:

assumes A1: "f∈S" and A2: "p≤0" "q∈ZZ"
and A3: "abs(f‘(p·q)-p·f‘(q)) ≤ (abs(p)+1)·maxδ(f)"
shows "abs(f‘((p-1)·q)-(p-1)·f‘(q)) ≤ (abs(p-1)+ 1)·maxδ(f)"

proof -

from A2 have "q∈ZZ" "(p-1)·q ∈ ZZ"
using Int_ZF_2_L1A int_zero_one_are_int Int_ZF_1_1_L5 by auto

with A1 have I: "abs(δ(f,(p-1)·q,q)) ≤ maxδ(f)" by (rule Int_ZF_2_1_L7)

moreover note A3

moreover from A1 A2 have
"abs(f‘((p-1)·q)-(p-1)·f‘(q)) ≤ abs(δ(f,(p-1)·q,q))+abs(f‘(p·q)-p·f‘(q))"
using AlmostHoms_def Int_ZF_2_L1A Int_ZF_2_2_L1 by simp

ultimately have
"abs(f‘((p-1)·q)-(p-1)·f‘(q)) ≤ maxδ(f)+(abs(p)+1)·maxδ(f)"
by (rule Int_ZF_2_L15)

with I A2 show ?thesis using Int_ZF_2_L1A Int_ZF_1_2_L5 by simp

qed

If f is a slope, then |f(p · q) − p · f(q)| ≤ (|p| + 1)·maxδ(f). Proof by cases
on 0 ≤ p.
lemma (in int1) Int_ZF_2_2_L4:

assumes A1: "f∈S" and A2: "p∈ZZ" "q∈ZZ"
shows "abs(f‘(p·q)-p·f‘(q)) ≤ (abs(p)+1)·maxδ(f)"

proof -

{ assume "0≤p"
moreover from A1 A2 have "abs(f‘(0·q)-0·f‘(q)) ≤ (abs(0)+1)·maxδ(f)"

using int_zero_one_are_int Int_ZF_2_1_L2B Int_ZF_1_1_L4

Int_ZF_2_1_L8 Int_ZF_2_L18 by simp

moreover from A1 A2 have
"∀ p. 0≤p ∧ abs(f‘(p·q)-p·f‘(q)) ≤ (abs(p)+1)·maxδ(f) −→
abs(f‘((p+1)·q)-(p+1)·f‘(q)) ≤ (abs(p+1)+ 1)·maxδ(f)"
using Int_ZF_2_2_L2 by simp

ultimately have "abs(f‘(p·q)-p·f‘(q)) ≤ (abs(p)+1)·maxδ(f)"
by (rule Induction_on_int) }

moreover
{ assume "¬(0≤p)"

with A2 have "p≤0" using Int_ZF_2_L19A by simp

moreover from A1 A2 have "abs(f‘(0·q)-0·f‘(q)) ≤ (abs(0)+1)·maxδ(f)"
using int_zero_one_are_int Int_ZF_2_1_L2B Int_ZF_1_1_L4

Int_ZF_2_1_L8 Int_ZF_2_L18 by simp

moreover from A1 A2 have
"∀ p. p≤0 ∧ abs(f‘(p·q)-p·f‘(q)) ≤ (abs(p)+1)·maxδ(f) −→
abs(f‘((p-1)·q)-(p-1)·f‘(q)) ≤ (abs(p-1)+ 1)·maxδ(f)"
using Int_ZF_2_2_L3 by simp

ultimately have "abs(f‘(p·q)-p·f‘(q)) ≤ (abs(p)+1)·maxδ(f)"
by (rule Back_induct_on_int) }

ultimately show ?thesis by blast

qed
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The next elegant result is Lemma 7 in the Arthan’s paper [2].

lemma (in int1) Arthan_Lem_7:

assumes A1: "f∈S" and A2: "p∈ZZ" "q∈ZZ"
shows "abs(q·f‘(p)-p·f‘(q)) ≤ (abs(p)+abs(q)+2)·maxδ(f)"

proof -

from A1 A2 have T:

"q·f‘(p)-f‘(p·q) ∈ ZZ"
"f‘(p·q)-p·f‘(q) ∈ ZZ"
"f‘(q·p) ∈ ZZ" "f‘(p·q) ∈ ZZ"
"q·f‘(p) ∈ ZZ" "p·f‘(q) ∈ ZZ"
"maxδ(f) ∈ ZZ"
"abs(q) ∈ ZZ" "abs(p) ∈ ZZ"
using Int_ZF_1_1_L5 Int_ZF_2_1_L2B Int_ZF_2_1_L7 Int_ZF_2_L14 by auto

moreover have "abs(q·f‘(p)-f‘(p·q)) ≤ (abs(q)+1)·maxδ(f)"
proof -

from A1 A2 have "abs(f‘(q·p)-q·f‘(p)) ≤ (abs(q)+1)·maxδ(f)"
using Int_ZF_2_2_L4 by simp

with T A2 show ?thesis

using Int_ZF_2_L20 Int_ZF_1_1_L5 by simp

qed
moreover from A1 A2 have "abs(f‘(p·q)-p·f‘(q)) ≤ (abs(p)+1)·maxδ(f)"

using Int_ZF_2_2_L4 by simp

ultimately have
"abs(q·f‘(p)-f‘(p·q)+(f‘(p·q)-p·f‘(q))) ≤ (abs(q)+1)·maxδ(f)+(abs(p)+1)·maxδ(f)"
using Int_ZF_2_L21 by simp

with T show ?thesis using Int_ZF_1_2_L9 int_zero_one_are_int Int_ZF_1_2_L10

by simp

qed

This is Lemma 8 in the Arthan’s paper.

lemma (in int1) Arthan_Lem_8: assumes A1: "f∈S"
shows "∃ A B. A∈ZZ ∧ B∈ZZ ∧ (∀ p∈ZZ. abs(f‘(p)) ≤ A·abs(p)+B)"

proof -

let ?A = "maxδ(f) + abs(f‘(1))"
let ?B = "3·maxδ(f)"
from A1 have "?A∈ZZ" "?B∈ZZ"

using int_zero_one_are_int Int_ZF_1_1_L5 Int_ZF_2_1_L2B

Int_ZF_2_1_L7 Int_ZF_2_L14 by auto

moreover have "∀ p∈ZZ. abs(f‘(p)) ≤ ?A·abs(p)+?B"
proof

fix p assume A2: "p∈ZZ"
with A1 have T:

"f‘(p) ∈ ZZ" "abs(p) ∈ ZZ" "f‘(1) ∈ ZZ"
"p·f‘(1) ∈ ZZ" "3∈ZZ" "maxδ(f) ∈ ZZ"
using Int_ZF_2_1_L2B Int_ZF_2_L14 int_zero_one_are_int

Int_ZF_1_1_L5 Int_ZF_2_1_L7 by auto

from A1 A2 have
"abs(1·f‘(p)-p·f‘(1)) ≤ (abs(p)+abs(1)+2)·maxδ(f)"
using int_zero_one_are_int Arthan_Lem_7 by simp
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with T have "abs(f‘(p)) ≤ abs(p·f‘(1))+(abs(p)+3)·maxδ(f)"
using Int_ZF_2_L16A Int_ZF_1_1_L4 Int_ZF_1_2_L11

Int_triangle_ineq2 by simp

with A2 T show "abs(f‘(p)) ≤ ?A·abs(p)+?B"
using Int_ZF_1_3_L14 by simp

qed
ultimately show ?thesis by auto

qed

If f and g are slopes, then f ◦ g is equivalent (almost equal) to g ◦ f . This
is Theorem 9 in Arthan’s paper [2].

theorem (in int1) Arthan_Th_9: assumes A1: "f∈S" "g∈S"
shows "f◦g ∼ g◦f"

proof -

from A1 have
"∃ A B. A∈ZZ ∧ B∈ZZ ∧ (∀ p∈ZZ. abs(f‘(p)) ≤ A·abs(p)+B)"
"∃ C D. C∈ZZ ∧ D∈ZZ ∧ (∀ p∈ZZ. abs(g‘(p)) ≤ C·abs(p)+D)"
using Arthan_Lem_8 by auto

then obtain A B C D where D1: "A∈ZZ" "B∈ZZ" "C∈ZZ" "D∈ZZ" and D2:

"∀ p∈ZZ. abs(f‘(p)) ≤ A·abs(p)+B"
"∀ p∈ZZ. abs(g‘(p)) ≤ C·abs(p)+D"
by auto

let ?E = "maxδ(g)·(A+1) + maxδ(f)·(C+1)"
let ?F = "(B·maxδ(g) + 2·maxδ(g)) + (D·maxδ(f) + 2·maxδ(f))"
{ fix p assume A2: "p∈ZZ"

with A1 have T1:

"g‘(p) ∈ ZZ" "f‘(p) ∈ ZZ" "abs(p) ∈ ZZ" "2 ∈ ZZ"
"f‘(g‘(p)) ∈ ZZ" "g‘(f‘(p)) ∈ ZZ" "f‘(g‘(p)) - g‘(f‘(p)) ∈ ZZ"
"p·f‘(g‘(p)) ∈ ZZ" "p·g‘(f‘(p)) ∈ ZZ"
"abs(f‘(g‘(p))-g‘(f‘(p))) ∈ ZZ"
using Int_ZF_2_1_L2B Int_ZF_2_1_L10 Int_ZF_1_1_L5 Int_ZF_2_L14 int_two_three_are_int

by auto

with A1 A2 have
"abs((f‘(g‘(p))-g‘(f‘(p)))·p) ≤
(abs(p)+abs(f‘(p))+2)·maxδ(g) + (abs(p)+abs(g‘(p))+2)·maxδ(f)"
using Arthan_Lem_7 Int_ZF_1_2_L10A Int_ZF_1_2_L12 by simp

moreover have
"(abs(p)+abs(f‘(p))+2)·maxδ(g) + (abs(p)+abs(g‘(p))+2)·maxδ(f) ≤
((maxδ(g)·(A+1) + maxδ(f)·(C+1)))·abs(p) +

((B·maxδ(g) + 2·maxδ(g)) + (D·maxδ(f) + 2·maxδ(f)))"
proof -

from D2 A2 T1 have
"abs(p)+abs(f‘(p))+2 ≤ abs(p)+(A·abs(p)+B)+2"
"abs(p)+abs(g‘(p))+2 ≤ abs(p)+(C·abs(p)+D)+2"
using Int_ZF_2_L15C by auto

with A1 have
"(abs(p)+abs(f‘(p))+2)·maxδ(g) ≤ (abs(p)+(A·abs(p)+B)+2)·maxδ(g)"
"(abs(p)+abs(g‘(p))+2)·maxδ(f) ≤ (abs(p)+(C·abs(p)+D)+2)·maxδ(f)"
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using Int_ZF_2_1_L8 Int_ZF_1_3_L13 by auto

moreover from A1 D1 T1 have
"(abs(p)+(A·abs(p)+B)+2)·maxδ(g) =

maxδ(g)·(A+1)·abs(p) + (B·maxδ(g) + 2·maxδ(g))"
"(abs(p)+(C·abs(p)+D)+2)·maxδ(f) =

maxδ(f)·(C+1)·abs(p) + (D·maxδ(f) + 2·maxδ(f))"
using Int_ZF_2_1_L8 Int_ZF_1_2_L13 by auto

ultimately have
"(abs(p)+abs(f‘(p))+2)·maxδ(g) + (abs(p)+abs(g‘(p))+2)·maxδ(f) ≤
(maxδ(g)·(A+1)·abs(p) + (B·maxδ(g) + 2·maxδ(g))) +

(maxδ(f)·(C+1)·abs(p) + (D·maxδ(f) + 2·maxδ(f)))"
using int_ineq_add_sides by simp

moreover from A1 A2 D1 have "abs(p) ∈ ZZ"
"maxδ(g)·(A+1) ∈ ZZ" "B·maxδ(g) + 2·maxδ(g) ∈ ZZ"
"maxδ(f)·(C+1) ∈ ZZ" "D·maxδ(f) + 2·maxδ(f) ∈ ZZ"
using Int_ZF_2_L14 Int_ZF_2_1_L8 int_zero_one_are_int

Int_ZF_1_1_L5 int_two_three_are_int by auto

ultimately show ?thesis using Int_ZF_1_2_L14 by simp

qed
ultimately have
"abs((f‘(g‘(p))-g‘(f‘(p)))·p) ≤ ?E·abs(p) + ?F"

by (rule Int_order_transitive)

with A2 T1 have
"abs(f‘(g‘(p))-g‘(f‘(p)))·abs(p) ≤ ?E·abs(p) + ?F"

"abs(f‘(g‘(p))-g‘(f‘(p))) ∈ ZZ"
using Int_ZF_1_3_L5 by auto

} then have
"∀ p∈ZZ. abs(f‘(g‘(p))-g‘(f‘(p))) ∈ ZZ"
"∀ p∈ZZ. abs(f‘(g‘(p))-g‘(f‘(p)))·abs(p) ≤ ?E·abs(p) + ?F"

by auto

moreover from A1 D1 have "?E ∈ ZZ" "?F ∈ ZZ"
using int_zero_one_are_int int_two_three_are_int Int_ZF_2_1_L8 Int_ZF_1_1_L5

by auto

ultimately have
"∃ L. ∀ p∈ZZ. abs(f‘(g‘(p))-g‘(f‘(p))) ≤ L"

by (rule Int_ZF_1_7_L1)

with A1 obtain L where "∀ p∈ZZ. abs((f◦g)‘(p)-(g◦f)‘(p)) ≤ L"

using Int_ZF_2_1_L10 by auto

moreover from A1 have "f◦g ∈ S" "g◦f ∈ S"
using Int_ZF_2_1_L11 by auto

ultimately show "f◦g ∼ g◦f" using Int_ZF_2_1_L9 by auto

qed

end

45 Integers 3

theory Int_ZF_3 imports Int_ZF_2
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begin

This theory is a continuation of Int_ZF_2. We consider here the properties
of slopes (almost homomorphisms on integers) that allow to define the order
relation and multiplicative inverse on real numbers. We also prove theorems
that allow to show completeness of the order relation of real numbers we
define in Real_ZF.

45.1 Positive slopes

This section provides background material for defining the order relation on
real numbers.

Positive slopes are functions (of course.)

lemma (in int1) Int_ZF_2_3_L1: assumes A1: "f∈S+" shows "f:ZZ→ZZ"
using assms AlmostHoms_def PositiveSet_def by simp

A small technical lemma to simplify the proof of the next theorem.

lemma (in int1) Int_ZF_2_3_L1A:

assumes A1: "f∈S+" and A2: "∃ n ∈ f‘‘(ZZ+) ∩ ZZ+. a≤n"
shows "∃ M∈ZZ+. a ≤ f‘(M)"

proof -

from A1 have "f:ZZ→ZZ" "ZZ+ ⊆ ZZ"
using AlmostHoms_def PositiveSet_def by auto

with A2 show ?thesis using func_imagedef by auto

qed

The next lemma is Lemma 3 in the Arthan’s paper.

lemma (in int1) Arthan_Lem_3:

assumes A1: "f∈S+" and A2: "D ∈ ZZ+"

shows "∃ M∈ZZ+. ∀ m∈ZZ+. (m+1)·D ≤ f‘(m·M)"
proof -

let ?E = "maxδ(f) + D"

let ?A = "f‘‘(ZZ+) ∩ ZZ+"

from A1 A2 have I: "D≤?E"
using Int_ZF_1_5_L3 Int_ZF_2_1_L8 Int_ZF_2_L1A Int_ZF_2_L15D

by simp

from A1 A2 have "?A ⊆ ZZ+" "?A /∈ Fin(ZZ)" "2·?E ∈ ZZ"
using int_two_three_are_int Int_ZF_2_1_L8 PositiveSet_def Int_ZF_1_1_L5

by auto

with A1 have "∃ M∈ZZ+. 2·?E ≤ f‘(M)"

using Int_ZF_1_5_L2A Int_ZF_2_3_L1A by simp

then obtain M where II: "M∈ZZ+" and III: "2·?E ≤ f‘(M)"

by auto

{ fix m assume "m∈ZZ+" then have A4: "1≤m"
using Int_ZF_1_5_L3 by simp

moreover from II III have "(1+1) ·?E ≤ f‘(1·M)"
using PositiveSet_def Int_ZF_1_1_L4 by simp
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moreover have "∀ k.
1≤k ∧ (k+1)·?E ≤ f‘(k·M) −→ (k+1+1)·?E ≤ f‘((k+1)·M)"

proof -

{ fix k assume A5: "1≤k" and A6: "(k+1)·?E ≤ f‘(k·M)"
with A1 A2 II have T:

"k∈ZZ" "M∈ZZ" "k+1 ∈ ZZ" "?E∈ZZ" "(k+1)·?E ∈ ZZ" "2·?E ∈ ZZ"
using Int_ZF_2_L1A PositiveSet_def int_zero_one_are_int

Int_ZF_1_1_L5 Int_ZF_2_1_L8 by auto

from A1 A2 A5 II have
"δ(f,k·M,M) ∈ ZZ" "abs(δ(f,k·M,M)) ≤ maxδ(f)" "0≤D"
using Int_ZF_2_L1A PositiveSet_def Int_ZF_1_1_L5

Int_ZF_2_1_L7 Int_ZF_2_L16C by auto

with III A6 have
"(k+1)·?E + (2·?E - ?E) ≤ f‘(k·M) + (f‘(M) + δ(f,k·M,M))"
using Int_ZF_1_3_L19A int_ineq_add_sides by simp

with A1 T have "(k+1+1)·?E ≤ f‘((k+1)·M)"
using Int_ZF_1_1_L1 int_zero_one_are_int Int_ZF_1_1_L4

Int_ZF_1_2_L11 Int_ZF_2_1_L13 by simp

} then show ?thesis by simp

qed
ultimately have "(m+1)·?E ≤ f‘(m·M)" by (rule Induction_on_int)

with A4 I have "(m+1)·D ≤ f‘(m·M)" using Int_ZF_1_3_L13A

by simp

} then have "∀ m∈ZZ+.(m+1)·D ≤ f‘(m·M)" by simp

with II show ?thesis by auto

qed

A special case of Arthan_Lem_3 when D = 1.

corollary (in int1) Arthan_L_3_spec: assumes A1: "f ∈ S+"
shows "∃ M∈ZZ+.∀ n∈ZZ+. n+1 ≤ f‘(n·M)"

proof -

have "∀ n∈ZZ+. n+1 ∈ ZZ"
using PositiveSet_def int_zero_one_are_int Int_ZF_1_1_L5

by simp

then have "∀ n∈ZZ+. (n+1)·1 = n+1"
using Int_ZF_1_1_L4 by simp

moreover from A1 have "∃ M∈ZZ+. ∀ n∈ZZ+. (n+1)·1 ≤ f‘(n·M)"
using int_one_two_are_pos Arthan_Lem_3 by simp

ultimately show ?thesis by simp

qed

We know from Group_ZF_3.thy that finite range functions are almost homo-
morphisms. Besides reminding that fact for slopes the next lemma shows
that finite range functions do not belong to S+. This is important, because
the projection of the set of finite range functions defines zero in the real
number construction in Real_ZF_x.thy series, while the projection of S+ be-
comes the set of (strictly) positive reals. We don’t want zero to be positive,
do we? The next lemma is a part of Lemma 5 in the Arthan’s paper [2].
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lemma (in int1) Int_ZF_2_3_L1B:

assumes A1: "f ∈ FinRangeFunctions(ZZ,ZZ)"
shows "f∈S" "f /∈ S+"

proof -

from A1 show "f∈S" using Int_ZF_2_1_L1 group1.Group_ZF_3_3_L1

by auto

have "ZZ+ ⊆ ZZ" using PositiveSet_def by auto

with A1 have "f‘‘(ZZ+) ∈ Fin(ZZ)"
using Finite1_L21 by simp

then have "f‘‘(ZZ+) ∩ ZZ+ ∈ Fin(ZZ)"
using Fin_subset_lemma by blast

thus "f /∈ S+" by auto

qed

We want to show that if f is a slope and neither f nor −f are in S+, then
f is bounded. The next lemma is the first step towards that goal and shows
that if slope is not in S+ then f(ZZ+) is bounded above.

lemma (in int1) Int_ZF_2_3_L2: assumes A1: "f∈S" and A2: "f /∈ S+"
shows "IsBoundedAbove(f‘‘(ZZ+), IntegerOrder)"

proof -

from A1 have "f:ZZ→ZZ" using AlmostHoms_def by simp

then have "f‘‘(ZZ+) ⊆ ZZ" using func1_1_L6 by simp

moreover from A1 A2 have "f‘‘(ZZ+) ∩ ZZ+ ∈ Fin(ZZ)" by auto

ultimately show ?thesis using Int_ZF_2_T1 group3.OrderedGroup_ZF_2_L4

by simp

qed

If f is a slope and −f /∈ S+, then f(ZZ+) is bounded below.

lemma (in int1) Int_ZF_2_3_L3: assumes A1: "f∈S" and A2: "-f /∈ S+"
shows "IsBoundedBelow(f‘‘(ZZ+), IntegerOrder)"

proof -

from A1 have T: "f:ZZ→ZZ" using AlmostHoms_def by simp

then have "(-(f‘‘(ZZ+))) = (-f)‘‘(ZZ+)"

using Int_ZF_1_T2 group0_2_T2 PositiveSet_def func1_1_L15C

by auto

with A1 A2 T show "IsBoundedBelow(f‘‘(ZZ+), IntegerOrder)"

using Int_ZF_2_1_L12 Int_ZF_2_3_L2 PositiveSet_def func1_1_L6

Int_ZF_2_T1 group3.OrderedGroup_ZF_2_L5 by simp

qed

A slope that is bounded on ZZ+ is bounded everywhere.

lemma (in int1) Int_ZF_2_3_L4:

assumes A1: "f∈S" and A2: "m∈ZZ"
and A3: "∀ n∈ZZ+. abs(f‘(n)) ≤ L"

shows "abs(f‘(m)) ≤ 2·maxδ(f) + L"

proof -

from A1 A3 have
"0 ≤ abs(f‘(1))" "abs(f‘(1)) ≤ L"
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using int_zero_one_are_int Int_ZF_2_1_L2B int_abs_nonneg int_one_two_are_pos

by auto

then have II: "0≤L" by (rule Int_order_transitive)

note A2

moreover have "abs(f‘(0)) ≤ 2·maxδ(f) + L"

proof -

from A1 have
"abs(f‘(0)) ≤ maxδ(f)" "0 ≤ maxδ(f)"
and T: "maxδ(f) ∈ ZZ"
using Int_ZF_2_1_L8 by auto

with II have "abs(f‘(0)) ≤ maxδ(f) + maxδ(f) + L"

using Int_ZF_2_L15F by simp

with T show ?thesis using Int_ZF_1_1_L4 by simp

qed
moreover from A1 A3 II have
"∀ n∈ZZ+. abs(f‘(n)) ≤ 2·maxδ(f) + L"

using Int_ZF_2_1_L8 Int_ZF_1_3_L5A Int_ZF_2_L15F

by simp

moreover have "∀ n∈ZZ+. abs(f‘(-n)) ≤ 2·maxδ(f) + L"

proof
fix n assume "n∈ZZ+"

with A1 A3 have
"2·maxδ(f) ∈ ZZ"
"abs(f‘(-n)) ≤ 2·maxδ(f) + abs(f‘(n))"

"abs(f‘(n)) ≤ L"

using int_two_three_are_int Int_ZF_2_1_L8 Int_ZF_1_1_L5

PositiveSet_def Int_ZF_2_1_L14 by auto

then show "abs(f‘(-n)) ≤ 2·maxδ(f) + L"

using Int_ZF_2_L15A by blast

qed
ultimately show ?thesis by (rule Int_ZF_2_L19B)

qed

A slope whose image of the set of positive integers is bounded is a finite
range function.

lemma (in int1) Int_ZF_2_3_L4A:

assumes A1: "f∈S" and A2: "IsBounded(f‘‘(ZZ+), IntegerOrder)"

shows "f ∈ FinRangeFunctions(ZZ,ZZ)"
proof -

have T1: "ZZ+ ⊆ ZZ" using PositiveSet_def by auto

from A1 have T2: "f:ZZ→ZZ" using AlmostHoms_def by simp

from A2 obtain L where "∀ a∈f‘‘(ZZ+). abs(a) ≤ L"

using Int_ZF_1_3_L20A by auto

with T2 T1 have "∀ n∈ZZ+. abs(f‘(n)) ≤ L"

by (rule func1_1_L15B)

with A1 have "∀ m∈ZZ. abs(f‘(m)) ≤ 2·maxδ(f) + L"

using Int_ZF_2_3_L4 by simp

with T2 have "f‘‘(ZZ) ∈ Fin(ZZ)"
by (rule Int_ZF_1_3_L20C)
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with T2 show "f ∈ FinRangeFunctions(ZZ,ZZ)"
using FinRangeFunctions_def by simp

qed

A slope whose image of the set of positive integers is bounded below is a
finite range function or a positive slope.

lemma (in int1) Int_ZF_2_3_L4B:

assumes "f∈S" and "IsBoundedBelow(f‘‘(ZZ+), IntegerOrder)"

shows "f ∈ FinRangeFunctions(ZZ,ZZ) ∨ f∈S+"
using assms Int_ZF_2_3_L2 IsBounded_def Int_ZF_2_3_L4A

by auto

If one slope is not greater then another on positive integers, then they are
almost equal or the difference is a positive slope.

lemma (in int1) Int_ZF_2_3_L4C: assumes A1: "f∈S" "g∈S" and
A2: "∀ n∈ZZ+. f‘(n) ≤ g‘(n)"

shows "f∼g ∨ g + (-f) ∈ S+"
proof -

let ?h = "g + (-f)"

from A1 have "(-f) ∈ S" using Int_ZF_2_1_L12

by simp

with A1 have I: "?h ∈ S" using Int_ZF_2_1_L12C

by simp

moreover have "IsBoundedBelow(?h‘‘(ZZ+), IntegerOrder)"

proof -

from I have
"?h:ZZ→ZZ" and "ZZ+⊆ZZ" using AlmostHoms_def PositiveSet_def

by auto

moreover from A1 A2 have "∀ n∈ZZ+. 〈0, ?h‘(n)〉 ∈ IntegerOrder"

using Int_ZF_2_1_L2B PositiveSet_def Int_ZF_1_3_L10A

Int_ZF_2_1_L12 Int_ZF_2_1_L12B Int_ZF_2_1_L12A

by simp

ultimately show "IsBoundedBelow(?h‘‘(ZZ+), IntegerOrder)"

by (rule func_ZF_8_L1)

qed
ultimately have "?h ∈ FinRangeFunctions(ZZ,ZZ) ∨ ?h∈S+"

using Int_ZF_2_3_L4B by simp

with A1 show "f∼g ∨ g + (-f) ∈ S+"
using Int_ZF_2_1_L9C by auto

qed

Positive slopes are arbitrarily large for large enough arguments.

lemma (in int1) Int_ZF_2_3_L5:

assumes A1: "f∈S+" and A2: "K∈ZZ"
shows "∃ N∈ZZ+. ∀ m. N≤m −→ K ≤ f‘(m)"

proof -

from A1 obtain M where I: "M∈ZZ+" and II: "∀ n∈ZZ+. n+1 ≤ f‘(n·M)"
using Arthan_L_3_spec by auto
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let ?j = "GreaterOf(IntegerOrder,M,K - (minf(f,0..(M-1)) - maxδ(f))
- 1)"

from A1 I have T1:

"minf(f,0..(M-1)) - maxδ(f) ∈ ZZ" "M∈ZZ"
using Int_ZF_2_1_L15 Int_ZF_2_1_L8 Int_ZF_1_1_L5 PositiveSet_def

by auto

with A2 I have T2:

"K - (minf(f,0..(M-1)) - maxδ(f)) ∈ ZZ"
"K - (minf(f,0..(M-1)) - maxδ(f)) - 1 ∈ ZZ"
using Int_ZF_1_1_L5 int_zero_one_are_int by auto

with T1 have III: "M ≤ ?j" and
"K - (minf(f,0..(M-1)) - maxδ(f)) - 1 ≤ ?j"

using Int_ZF_1_3_L18 by auto

with A2 T1 T2 have
IV: "K ≤ ?j+1 + (minf(f,0..(M-1)) - maxδ(f))"
using int_zero_one_are_int Int_ZF_2_L9C by simp

let ?N = "GreaterOf(IntegerOrder,1,?j·M)"
from T1 III have T3: "?j ∈ ZZ" "?j·M ∈ ZZ"

using Int_ZF_2_L1A Int_ZF_1_1_L5 by auto

then have V: "?N ∈ ZZ+" and VI: "?j·M ≤ ?N"

using int_zero_one_are_int Int_ZF_1_5_L3 Int_ZF_1_3_L18

by auto

{ fix m

let ?n = "m zdiv M"

let ?k = "m zmod M"

assume "?N≤m"
with VI have "?j·M ≤ m" by (rule Int_order_transitive)

with I III have
VII: "m = ?n·M+?k"
"?j ≤ ?n" and
VIII: "?n ∈ ZZ+" "?k ∈ 0..(M-1)"
using IntDiv_ZF_1_L5 by auto

with II have
"?j + 1 ≤ ?n + 1" "?n+1 ≤ f‘(?n·M)"
using int_zero_one_are_int int_ord_transl_inv by auto

then have "?j + 1 ≤ f‘(?n·M)"
by (rule Int_order_transitive)

with T1 have
"?j+1 + (minf(f,0..(M-1)) - maxδ(f)) ≤
f‘(?n·M) + (minf(f,0..(M-1)) - maxδ(f))"
using int_ord_transl_inv by simp

with IV have "K ≤ f‘(?n·M) + (minf(f,0..(M-1)) - maxδ(f))"
by (rule Int_order_transitive)

moreover from A1 I VIII have
"f‘(?n·M) + (minf(f,0..(M-1))- maxδ(f)) ≤ f‘(?n·M+?k)"
using PositiveSet_def Int_ZF_2_1_L16 by simp

ultimately have "K ≤ f‘(?n·M+?k)"
by (rule Int_order_transitive)

with VII have "K ≤ f‘(m)" by simp
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} then have "∀ m. ?N≤m −→ K ≤ f‘(m)"

by simp

with V show ?thesis by auto

qed

Positive slopes are arbitrarily small for small enough arguments. Kind of
dual to Int_ZF_2_3_L5.

lemma (in int1) Int_ZF_2_3_L5A: assumes A1: "f∈S+" and A2: "K∈ZZ"
shows "∃ N∈ZZ+. ∀ m. N≤m −→ f‘(-m) ≤ K"

proof -

from A1 have T1: "abs(f‘(0)) + maxδ(f) ∈ ZZ"
using Int_ZF_2_1_L8 by auto

with A2 have "abs(f‘(0)) + maxδ(f) - K ∈ ZZ"
using Int_ZF_1_1_L5 by simp

with A1 have
"∃ N∈ZZ+. ∀ m. N≤m −→ abs(f‘(0)) + maxδ(f) - K ≤ f‘(m)"

using Int_ZF_2_3_L5 by simp

then obtain N where I: "N∈ZZ+" and II:

"∀ m. N≤m −→ abs(f‘(0)) + maxδ(f) - K ≤ f‘(m)"

by auto

{ fix m assume A3: "N≤m"
with A1 have
"f‘(-m) ≤ abs(f‘(0)) + maxδ(f) - f‘(m)"

using Int_ZF_2_L1A Int_ZF_2_1_L14 by simp

moreover
from II T1 A3 have "abs(f‘(0)) + maxδ(f) - f‘(m) ≤
(abs(f‘(0)) + maxδ(f)) -(abs(f‘(0)) + maxδ(f) - K)"

using Int_ZF_2_L10 int_ord_transl_inv by simp

with A2 T1 have "abs(f‘(0)) + maxδ(f) - f‘(m) ≤ K"

using Int_ZF_1_2_L3 by simp

ultimately have "f‘(-m) ≤ K"

by (rule Int_order_transitive)

} then have "∀ m. N≤m −→ f‘(-m) ≤ K"

by simp

with I show ?thesis by auto

qed

A special case of Int_ZF_2_3_L5 where K = 1.

corollary (in int1) Int_ZF_2_3_L6: assumes "f∈S+"
shows "∃ N∈ZZ+. ∀ m. N≤m −→ f‘(m) ∈ ZZ+"

using assms int_zero_one_are_int Int_ZF_2_3_L5 Int_ZF_1_5_L3

by simp

A special case of Int_ZF_2_3_L5 where m = N .

corollary (in int1) Int_ZF_2_3_L6A: assumes "f∈S+" and "K∈ZZ"
shows "∃ N∈ZZ+. K ≤ f‘(N)"

proof -

from assms have "∃ N∈ZZ+. ∀ m. N≤m −→ K ≤ f‘(m)"

using Int_ZF_2_3_L5 by simp

545



then obtain N where I: "N ∈ ZZ+" and II: "∀ m. N≤m −→ K ≤ f‘(m)"

by auto

then show ?thesis using PositiveSet_def int_ord_is_refl refl_def

by auto

qed

If values of a slope are not bounded above, then the slope is positive.

lemma (in int1) Int_ZF_2_3_L7: assumes A1: "f∈S"
and A2: "∀ K∈ZZ. ∃ n∈ZZ+. K ≤ f‘(n)"

shows "f ∈ S+"
proof -

{ fix K assume "K∈ZZ"
with A2 obtain n where "n∈ZZ+" "K ≤ f‘(n)"

by auto

moreover from A1 have "ZZ+ ⊆ ZZ" "f:ZZ→ZZ"
using PositiveSet_def AlmostHoms_def by auto

ultimately have "∃ m ∈ f‘‘(ZZ+). K ≤ m"

using func1_1_L15D by auto

} then have "∀ K∈ZZ. ∃ m ∈ f‘‘(ZZ+). K ≤ m" by simp

with A1 show "f ∈ S+" using Int_ZF_4_L9 Int_ZF_2_3_L2

by auto

qed

For unbounded slope f either f ∈S+ of −f ∈S+.

theorem (in int1) Int_ZF_2_3_L8:

assumes A1: "f∈S" and A2: "f /∈ FinRangeFunctions(ZZ,ZZ)"
shows "(f ∈ S+) Xor ((-f) ∈ S+)"

proof -

have T1: "ZZ+ ⊆ ZZ" using PositiveSet_def by auto

from A1 have T2: "f:ZZ→ZZ" using AlmostHoms_def by simp

then have I: "f‘‘(ZZ+) ⊆ ZZ" using func1_1_L6 by auto

from A1 A2 have "f ∈ S+ ∨ (-f) ∈ S+"
using Int_ZF_2_3_L2 Int_ZF_2_3_L3 IsBounded_def Int_ZF_2_3_L4A

by blast

moreover have "¬(f ∈ S+ ∧ (-f) ∈ S+)"
proof -

{ assume A3: "f ∈ S+" and A4: "(-f) ∈ S+"
from A3 obtain N1 where

I: "N1∈ZZ+" and II: "∀ m. N1≤m −→ f‘(m) ∈ ZZ+"

using Int_ZF_2_3_L6 by auto

from A4 obtain N2 where
III: "N2∈ZZ+" and IV: "∀ m. N2≤m −→ (-f)‘(m) ∈ ZZ+"

using Int_ZF_2_3_L6 by auto

let ?N = "GreaterOf(IntegerOrder,N1,N2)"

from I III have "N1 ≤ ?N" "N2 ≤ ?N"

using PositiveSet_def Int_ZF_1_3_L18 by auto

with A1 II IV have
"f‘(?N) ∈ ZZ+" "(-f)‘(?N) ∈ ZZ+" "(-f)‘(?N) = -(f‘(?N))"

using Int_ZF_2_L1A PositiveSet_def Int_ZF_2_1_L12A
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by auto

then have False using Int_ZF_1_5_L8 by simp

} thus ?thesis by auto

qed
ultimately show "(f ∈ S+) Xor ((-f) ∈ S+)"

using Xor_def by simp

qed

The sum of positive slopes is a positive slope.

theorem (in int1) sum_of_pos_sls_is_pos_sl:

assumes A1: "f ∈ S+" "g ∈ S+"
shows "f+g ∈ S+"

proof -

{ fix K assume "K∈ZZ"
with A1 have "∃ N∈ZZ+. ∀ m. N≤m −→ K ≤ f‘(m)"

using Int_ZF_2_3_L5 by simp

then obtain N where I: "N∈ZZ+" and II: "∀ m. N≤m −→ K ≤ f‘(m)"

by auto

from A1 have "∃ M∈ZZ+. ∀ m. M≤m −→ 0 ≤ g‘(m)"

using int_zero_one_are_int Int_ZF_2_3_L5 by simp

then obtain M where III: "M∈ZZ+" and IV: "∀ m. M≤m −→ 0 ≤ g‘(m)"

by auto

let ?L = "GreaterOf(IntegerOrder,N,M)"

from I III have V: "?L ∈ ZZ+" "ZZ+ ⊆ ZZ"
using GreaterOf_def PositiveSet_def by auto

moreover from A1 V have "(f+g)‘(?L) = f‘(?L) + g‘(?L)"

using Int_ZF_2_1_L12B by auto

moreover from I II III IV have "K ≤ f‘(?L) + g‘(?L)"

using PositiveSet_def Int_ZF_1_3_L18 Int_ZF_2_L15F

by simp

ultimately have "?L ∈ ZZ+" "K ≤ (f+g)‘(?L)"

by auto

then have "∃ n ∈ZZ+. K ≤ (f+g)‘(n)"

by auto

} with A1 show "f+g ∈ S+"
using Int_ZF_2_1_L12C Int_ZF_2_3_L7 by simp

qed

The composition of positive slopes is a positive slope.

theorem (in int1) comp_of_pos_sls_is_pos_sl:

assumes A1: "f ∈ S+" "g ∈ S+"
shows "f◦g ∈ S+"

proof -

{ fix K assume "K∈ZZ"
with A1 have "∃ N∈ZZ+. ∀ m. N≤m −→ K ≤ f‘(m)"

using Int_ZF_2_3_L5 by simp

then obtain N where "N∈ZZ+" and I: "∀ m. N≤m −→ K ≤ f‘(m)"

by auto

with A1 have "∃ M∈ZZ+. N ≤ g‘(M)"
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using PositiveSet_def Int_ZF_2_3_L6A by simp

then obtain M where "M∈ZZ+" "N ≤ g‘(M)"

by auto

with A1 I have "∃ M∈ZZ+. K ≤ (f◦g)‘(M)"
using PositiveSet_def Int_ZF_2_1_L10

by auto

} with A1 show "f◦g ∈ S+"
using Int_ZF_2_1_L11 Int_ZF_2_3_L7

by simp

qed

A slope equivalent to a positive one is positive.

lemma (in int1) Int_ZF_2_3_L9:

assumes A1: "f ∈ S+" and A2: "〈f,g〉 ∈ AlEqRel" shows "g ∈ S+"
proof -

from A2 have T: "g∈S" and "∃ L∈ZZ. ∀ m∈ZZ. abs(f‘(m)-g‘(m)) ≤ L"

using Int_ZF_2_1_L9A by auto

then obtain L where
I: "L∈ZZ" and II: "∀ m∈ZZ. abs(f‘(m)-g‘(m)) ≤ L"

by auto

{ fix K assume A3: "K∈ZZ"
with I have "K+L ∈ ZZ"

using Int_ZF_1_1_L5 by simp

with A1 obtain M where III: "M∈ZZ+" and IV: "K+L ≤ f‘(M)"

using Int_ZF_2_3_L6A by auto

with A1 A3 I have "K ≤ f‘(M)-L"

using PositiveSet_def Int_ZF_2_1_L2B Int_ZF_2_L9B

by simp

moreover from A1 T II III have
"f‘(M)-L ≤ g‘(M)"

using PositiveSet_def Int_ZF_2_1_L2B Int_triangle_ineq2

by simp

ultimately have "K ≤ g‘(M)"

by (rule Int_order_transitive)

with III have "∃ n∈ZZ+. K ≤ g‘(n)"

by auto

} with T show "g ∈ S+"
using Int_ZF_2_3_L7 by simp

qed

The set of positive slopes is saturated with respect to the relation of equiv-
alence of slopes.

lemma (in int1) pos_slopes_saturated: shows "IsSaturated(AlEqRel,S+)"
proof -

have
"equiv(S,AlEqRel)"
"AlEqRel ⊆ S × S"
using Int_ZF_2_1_L9B by auto

moreover have "S+ ⊆ S" by auto
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moreover have "∀ f∈S+. ∀ g∈S. 〈f,g〉 ∈ AlEqRel −→ g ∈ S+"
using Int_ZF_2_3_L9 by blast

ultimately show "IsSaturated(AlEqRel,S+)"
by (rule EquivClass_3_L3)

qed

A technical lemma involving a projection of the set of positive slopes and a
logical epression with exclusive or.

lemma (in int1) Int_ZF_2_3_L10:

assumes A1: "f∈S" "g∈S"
and A2: "R = {AlEqRel‘‘{s}. s∈S+}"
and A3: "(f∈S+) Xor (g∈S+)"
shows "(AlEqRel‘‘{f} ∈ R) Xor (AlEqRel‘‘{g} ∈ R)"

proof -

from A1 A2 A3 have
"equiv(S,AlEqRel)"
"IsSaturated(AlEqRel,S+)"
"S+ ⊆ S"
"f∈S" "g∈S"
"R = {AlEqRel‘‘{s}. s∈S+}"
"(f∈S+) Xor (g∈S+)"
using pos_slopes_saturated Int_ZF_2_1_L9B by auto

then show ?thesis by (rule EquivClass_3_L7)

qed

Identity function is a positive slope.

lemma (in int1) Int_ZF_2_3_L11: shows "id(ZZ) ∈ S+"
proof -

let ?f = "id(ZZ)"
{ fix K assume "K∈ZZ"

then obtain n where T: "n∈ZZ+" and "K≤n"
using Int_ZF_1_5_L9 by auto

moreover from T have "?f‘(n) = n"

using PositiveSet_def by simp

ultimately have "n∈ZZ+" and "K≤?f‘(n)"
by auto

then have "∃ n∈ZZ+. K≤?f‘(n)" by auto

} then show "?f ∈ S+"
using Int_ZF_2_1_L17 Int_ZF_2_3_L7 by simp

qed

The identity function is not almost equal to any bounded function.

lemma (in int1) Int_ZF_2_3_L12: assumes A1: "f ∈ FinRangeFunctions(ZZ,ZZ)"
shows "¬(id(ZZ) ∼ f)"

proof -

{ from A1 have "id(ZZ) ∈ S+"
using Int_ZF_2_3_L11 by simp

moreover assume "〈id(ZZ),f〉 ∈ AlEqRel"

ultimately have "f ∈ S+"
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by (rule Int_ZF_2_3_L9)

with A1 have False using Int_ZF_2_3_L1B

by simp

} then show "¬(id(ZZ) ∼ f)" by auto

qed

45.2 Inverting slopes

Not every slope is a 1:1 function. However, we can still invert slopes in the
sense that if f is a slope, then we can find a slope g such that f ◦ g is almost
equal to the identity function. The goal of this this section is to establish
this fact for positive slopes.

If f is a positive slope, then for every positive integer p the set {n ∈ Z+ :
p ≤ f(n)} is a nonempty subset of positive integers. Recall that f−1(p) is
the notation for the smallest element of this set.

lemma (in int1) Int_ZF_2_4_L1:

assumes A1: "f ∈ S+" and A2: "p∈ZZ+" and A3: "A = {n∈ZZ+. p ≤ f‘(n)}"

shows
"A ⊆ ZZ+"

"A 6= 0"

"f−1(p) ∈ A"

"∀ m∈A. f−1(p) ≤ m"

proof -

from A3 show I: "A ⊆ ZZ+" by auto

from A1 A2 have "∃ n∈ZZ+. p ≤ f‘(n)"

using PositiveSet_def Int_ZF_2_3_L6A by simp

with A3 show II: "A 6= 0" by auto

from A3 I II show
"f−1(p) ∈ A"

"∀ m∈A. f−1(p) ≤ m"

using Int_ZF_1_5_L1C by auto

qed

If f is a positive slope and p is a positive integer p, then f−1(p) (defined as
the minimum of the set {n ∈ Z+ : p ≤ f(n)} ) is a (well defined) positive
integer.

lemma (in int1) Int_ZF_2_4_L2:

assumes "f ∈ S+" and "p∈ZZ+"

shows
"f−1(p) ∈ ZZ+"

"p ≤ f‘(f−1(p))"

using assms Int_ZF_2_4_L1 by auto

If f is a positive slope and p is a positive integer such that n ≤ f(p), then
f−1(n) ≤ p.
lemma (in int1) Int_ZF_2_4_L3:
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assumes "f ∈ S+" and "m∈ZZ+" "p∈ZZ+" and "m ≤ f‘(p)"

shows "f−1(m) ≤ p"

using assms Int_ZF_2_4_L1 by simp

An upper bound f(f−1(m)− 1) for positive slopes.

lemma (in int1) Int_ZF_2_4_L4:

assumes A1: "f ∈ S+" and A2: "m∈ZZ+" and A3: "f−1(m)-1 ∈ ZZ+"

shows "f‘(f−1(m)-1) ≤ m" "f‘(f−1(m)-1) 6= m"

proof -

from A1 A2 have T: "f−1(m) ∈ ZZ" using Int_ZF_2_4_L2 PositiveSet_def

by simp

from A1 A3 have "f:ZZ→ZZ" and "f−1(m)-1 ∈ ZZ"
using Int_ZF_2_3_L1 PositiveSet_def by auto

with A1 A2 have T1: "f‘(f−1(m)-1) ∈ ZZ" "m∈ZZ"
using apply_funtype PositiveSet_def by auto

{ assume "m ≤ f‘(f−1(m)-1)"
with A1 A2 A3 have "f−1(m) ≤ f−1(m)-1"

by (rule Int_ZF_2_4_L3)

with T have False using Int_ZF_1_2_L3AA

by simp

} then have I: "¬(m ≤ f‘(f−1(m)-1))" by auto

with T1 show "f‘(f−1(m)-1) ≤ m"

by (rule Int_ZF_2_L19)

from T1 I show "f‘(f−1(m)-1) 6= m"

by (rule Int_ZF_2_L19)

qed

The (candidate for) the inverse of a positive slope is nondecreasing.

lemma (in int1) Int_ZF_2_4_L5:

assumes A1: "f ∈ S+" and A2: "m∈ZZ+" and A3: "m≤n"
shows "f−1(m) ≤ f−1(n)"

proof -

from A2 A3 have T: "n ∈ ZZ+" using Int_ZF_1_5_L7 by blast

with A1 have "n ≤ f‘(f−1(n))" using Int_ZF_2_4_L2

by simp

with A3 have "m ≤ f‘(f−1(n))" by (rule Int_order_transitive)

with A1 A2 T show "f−1(m) ≤ f−1(n)"

using Int_ZF_2_4_L2 Int_ZF_2_4_L3 by simp

qed

If f−1(m) is positive and n is a positive integer, then, then f−1(m+ n)− 1
is positive.

lemma (in int1) Int_ZF_2_4_L6:

assumes A1: "f ∈ S+" and A2: "m∈ZZ+" "n∈ZZ+" and
A3: "f−1(m)-1 ∈ ZZ+"

shows "f−1(m+n)-1 ∈ ZZ+"

proof -

from A1 A2 have "f−1(m)-1 ≤ f−1(m+n) - 1"
using PositiveSet_def Int_ZF_1_5_L7A Int_ZF_2_4_L2
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Int_ZF_2_4_L5 int_zero_one_are_int Int_ZF_1_1_L4

int_ord_transl_inv by simp

with A3 show "f−1(m+n)-1 ∈ ZZ+" using Int_ZF_1_5_L7

by blast

qed

If f is a slope, then f(f−1(m+n)−f−1(m)−f−1(n)) is uniformly bounded
above and below. Will it be the messiest IsarMathLib proof ever? Only time
will tell.

lemma (in int1) Int_ZF_2_4_L7: assumes A1: "f ∈ S+" and
A2: "∀ m∈ZZ+. f−1(m)-1 ∈ ZZ+"

shows
"∃ U∈ZZ. ∀ m∈ZZ+. ∀ n∈ZZ+. f‘(f−1(m+n)-f−1(m)-f−1(n)) ≤ U"

"∃ N∈ZZ. ∀ m∈ZZ+. ∀ n∈ZZ+. N ≤ f‘(f−1(m+n)-f−1(m)-f−1(n))"

proof -

from A1 have "∃ L∈ZZ. ∀ r∈ZZ. f‘(r) ≤ f‘(r-1) + L"

using Int_ZF_2_1_L28 by simp

then obtain L where
I: "L∈ZZ" and II: "∀ r∈ZZ. f‘(r) ≤ f‘(r-1) + L"

by auto

from A1 have
"∃ M∈ZZ. ∀ r∈ZZ.∀ p∈ZZ.∀ q∈ZZ. f‘(r-p-q) ≤ f‘(r)-f‘(p)-f‘(q)+M"

"∃ K∈ZZ. ∀ r∈ZZ.∀ p∈ZZ.∀ q∈ZZ. f‘(r)-f‘(p)-f‘(q)+K ≤ f‘(r-p-q)"

using Int_ZF_2_1_L30 by auto

then obtain M K where III: "M∈ZZ" and
IV: "∀ r∈ZZ.∀ p∈ZZ.∀ q∈ZZ. f‘(r-p-q) ≤ f‘(r)-f‘(p)-f‘(q)+M"

and
V: "K∈ZZ" and VI: "∀ r∈ZZ.∀ p∈ZZ.∀ q∈ZZ. f‘(r)-f‘(p)-f‘(q)+K ≤ f‘(r-p-q)"

by auto

from I III V have
"L+M ∈ ZZ" "(-L) - L + K ∈ ZZ"
using Int_ZF_1_1_L4 Int_ZF_1_1_L5 by auto

moreover
{ fix m n

assume A3: "m∈ZZ+" "n∈ZZ+"

have "f‘(f−1(m+n)-f−1(m)-f−1(n)) ≤ L+M ∧
(-L)-L+K ≤ f‘(f−1(m+n)-f−1(m)-f−1(n))"

proof -

let ?r = "f−1(m+n)"

let ?p = "f−1(m)"

let ?q = "f−1(n)"

from A1 A3 have T1:

"?p ∈ ZZ+" "?q ∈ ZZ+" "?r ∈ ZZ+"

using Int_ZF_2_4_L2 pos_int_closed_add_unfolded by auto

with A3 have T2:

"m ∈ ZZ" "n ∈ ZZ" "?p ∈ ZZ" "?q ∈ ZZ" "?r ∈ ZZ"
using PositiveSet_def by auto

from A2 A3 have T3:

"?r-1 ∈ ZZ+" "?p-1 ∈ ZZ+" "?q-1 ∈ ZZ+"
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using pos_int_closed_add_unfolded by auto

from A1 A3 have VII:

"m+n ≤ f‘(?r)"

"m ≤ f‘(?p)"

"n ≤ f‘(?q)"

using Int_ZF_2_4_L2 pos_int_closed_add_unfolded by auto

from A1 A3 T3 have VIII:

"f‘(?r-1) ≤ m+n"

"f‘(?p-1) ≤ m"

"f‘(?q-1) ≤ n"

using pos_int_closed_add_unfolded Int_ZF_2_4_L4 by auto

have "f‘(?r-?p-?q) ≤ L+M"

proof -

from IV T2 have "f‘(?r-?p-?q) ≤ f‘(?r)-f‘(?p)-f‘(?q)+M"

by simp

moreover
from I II T2 VIII have
"f‘(?r) ≤ f‘(?r-1) + L"

"f‘(?r-1) + L ≤ m+n+L"

using int_ord_transl_inv by auto

then have "f‘(?r) ≤ m+n+L"

by (rule Int_order_transitive)

with VII have "f‘(?r) - f‘(?p) ≤ m+n+L-m"

using int_ineq_add_sides by simp

with I T2 VII have "f‘(?r) - f‘(?p) - f‘(?q) ≤ n+L-n"

using Int_ZF_1_2_L9 int_ineq_add_sides by simp

with I III T2 have "f‘(?r) - f‘(?p) - f‘(?q) + M ≤ L+M"

using Int_ZF_1_2_L3 int_ord_transl_inv by simp

ultimately show "f‘(?r-?p-?q) ≤ L+M"

by (rule Int_order_transitive)

qed
moreover have "(-L)-L +K ≤ f‘(?r-?p-?q)"

proof -

from I II T2 VIII have
"f‘(?p) ≤ f‘(?p-1) + L"

"f‘(?p-1) + L ≤ m +L"

using int_ord_transl_inv by auto

then have "f‘(?p) ≤ m +L"

by (rule Int_order_transitive)

with VII have "m+n -(m+L) ≤ f‘(?r) - f‘(?p)"

using int_ineq_add_sides by simp

with I T2 have "n - L ≤ f‘(?r) - f‘(?p)"

using Int_ZF_1_2_L9 by simp

moreover
from I II T2 VIII have
"f‘(?q) ≤ f‘(?q-1) + L"

"f‘(?q-1) + L ≤ n +L"

using int_ord_transl_inv by auto

then have "f‘(?q) ≤ n +L"
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by (rule Int_order_transitive)

ultimately have
"n - L - (n+L) ≤ f‘(?r) - f‘(?p) - f‘(?q)"

using int_ineq_add_sides by simp

with I V T2 have
"(-L)-L +K ≤ f‘(?r) - f‘(?p) - f‘(?q) + K"

using Int_ZF_1_2_L3 int_ord_transl_inv by simp

moreover from VI T2 have
"f‘(?r) - f‘(?p) - f‘(?q) + K ≤ f‘(?r-?p-?q)"

by simp

ultimately show "(-L)-L +K ≤ f‘(?r-?p-?q)"

by (rule Int_order_transitive)

qed
ultimately show
"f‘(?r-?p-?q) ≤ L+M ∧
(-L)-L+K ≤ f‘(f−1(m+n)-f−1(m)-f−1(n))"

by simp

qed
}

ultimately show
"∃ U∈ZZ. ∀ m∈ZZ+. ∀ n∈ZZ+. f‘(f−1(m+n)-f−1(m)-f−1(n)) ≤ U"

"∃ N∈ZZ. ∀ m∈ZZ+. ∀ n∈ZZ+. N ≤ f‘(f−1(m+n)-f−1(m)-f−1(n))"

by auto

qed

The expression f−1(m+n)− f−1(m)− f−1(n) is uniformly bounded for all
pairs 〈m,n〉 ∈ ZZ+×ZZ+. Recall that in the int1 context ε(f,x) is defined so
that ε(f, 〈m,n〉) = f−1(m+ n)− f−1(m)− f−1(n).

lemma (in int1) Int_ZF_2_4_L8: assumes A1: "f ∈ S+" and
A2: "∀ m∈ZZ+. f−1(m)-1 ∈ ZZ+"

shows "∃ M. ∀ x∈ZZ+×ZZ+. abs(ε(f,x)) ≤ M"

proof -

from A1 A2 have
"∃ U∈ZZ. ∀ m∈ZZ+. ∀ n∈ZZ+. f‘(f−1(m+n)-f−1(m)-f−1(n)) ≤ U"

"∃ N∈ZZ. ∀ m∈ZZ+. ∀ n∈ZZ+. N ≤ f‘(f−1(m+n)-f−1(m)-f−1(n))"

using Int_ZF_2_4_L7 by auto

then obtain U N where I:

"∀ m∈ZZ+. ∀ n∈ZZ+. f‘(f−1(m+n)-f−1(m)-f−1(n)) ≤ U"

"∀ m∈ZZ+. ∀ n∈ZZ+. N ≤ f‘(f−1(m+n)-f−1(m)-f−1(n))"

by auto

have "ZZ+×ZZ+ 6= 0" using int_one_two_are_pos by auto

moreover from A1 have "f: ZZ→ZZ"
using AlmostHoms_def by simp

moreover from A1 have
"∀ a∈ZZ.∃ b∈ZZ+.∀ x. b≤x −→ a ≤ f‘(x)"

using Int_ZF_2_3_L5 by simp

moreover from A1 have
"∀ a∈ZZ.∃ b∈ZZ+.∀ y. b≤y −→ f‘(-y) ≤ a"

using Int_ZF_2_3_L5A by simp
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moreover have
"∀ x∈ZZ+×ZZ+. ε(f,x) ∈ ZZ ∧ f‘(ε(f,x)) ≤ U ∧ N ≤ f‘(ε(f,x))"

proof -

{ fix x assume A3: "x ∈ ZZ+×ZZ+"

let ?m = "fst(x)"

let ?n = "snd(x)"

from A3 have T: "?m ∈ ZZ+" "?n ∈ ZZ+" "?m+?n ∈ ZZ+"

using pos_int_closed_add_unfolded by auto

with A1 have
"f−1(?m+?n) ∈ ZZ" "f−1(?m) ∈ ZZ" "f−1(?n) ∈ ZZ"
using Int_ZF_2_4_L2 PositiveSet_def by auto

with I T have
"ε(f,x) ∈ ZZ ∧ f‘(ε(f,x)) ≤ U ∧ N ≤ f‘(ε(f,x))"
using Int_ZF_1_1_L5 by auto

} thus ?thesis by simp

qed
ultimately show "∃ M.∀ x∈ZZ+×ZZ+. abs(ε(f,x)) ≤ M"

by (rule Int_ZF_1_6_L4)

qed

The (candidate for) inverse of a positive slope is a (well defined) function
on ZZ+.

lemma (in int1) Int_ZF_2_4_L9:

assumes A1: "f ∈ S+" and A2: "g = {〈p,f−1(p)〉. p∈ZZ+}"

shows
"g : ZZ+→ZZ+"

"g : ZZ+→ZZ"
proof -

from A1 have
"∀ p∈ZZ+. f−1(p) ∈ ZZ+"

"∀ p∈ZZ+. f−1(p) ∈ ZZ"
using Int_ZF_2_4_L2 PositiveSet_def by auto

with A2 show
"g : ZZ+→ZZ+" and "g : ZZ+→ZZ"
using ZF_fun_from_total by auto

qed

What are the values of the (candidate for) the inverse of a positive slope?

lemma (in int1) Int_ZF_2_4_L10:

assumes A1: "f ∈ S+" and A2: "g = {〈p,f−1(p)〉. p∈ZZ+}" and A3: "p∈ZZ+"

shows "g‘(p) = f−1(p)"

proof -

from A1 A2 have "g : ZZ+→ZZ+" using Int_ZF_2_4_L9 by simp

with A2 A3 show "g‘(p) = f−1(p)" using ZF_fun_from_tot_val by simp

qed

The (candidate for) the inverse of a positive slope is a slope.

lemma (in int1) Int_ZF_2_4_L11: assumes A1: "f ∈ S+" and
A2: "∀ m∈ZZ+. f−1(m)-1 ∈ ZZ+" and
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A3: "g = {〈p,f−1(p)〉. p∈ZZ+}"

shows "OddExtension(ZZ,IntegerAddition,IntegerOrder,g) ∈ S"
proof -

from A1 A2 have "∃ L. ∀ x∈ZZ+×ZZ+. abs(ε(f,x)) ≤ L"

using Int_ZF_2_4_L8 by simp

then obtain L where I: "∀ x∈ZZ+×ZZ+. abs(ε(f,x)) ≤ L"

by auto

from A1 A3 have "g : ZZ+→ZZ" using Int_ZF_2_4_L9

by simp

moreover have "∀ m∈ZZ+. ∀ n∈ZZ+. abs(δ(g,m,n)) ≤ L"

proof-
{ fix m n

assume A4: "m∈ZZ+" "n∈ZZ+"

then have "〈m,n〉 ∈ ZZ+×ZZ+" by simp

with I have "abs(ε(f,〈m,n〉)) ≤ L" by simp

moreover have "ε(f,〈m,n〉) = f−1(m+n) - f−1(m) - f−1(n)"

by simp

moreover from A1 A3 A4 have
"f−1(m+n) = g‘(m+n)" "f−1(m) = g‘(m)" "f−1(n) = g‘(n)"

using pos_int_closed_add_unfolded Int_ZF_2_4_L10 by auto

ultimately have "abs(δ(g,m,n)) ≤ L" by simp

} thus "∀ m∈ZZ+. ∀ n∈ZZ+. abs(δ(g,m,n)) ≤ L" by simp

qed
ultimately show ?thesis by (rule Int_ZF_2_1_L24)

qed

Every positive slope that is at least 2 on positive integers almost has an
inverse.

lemma (in int1) Int_ZF_2_4_L12: assumes A1: "f ∈ S+" and
A2: "∀ m∈ZZ+. f−1(m)-1 ∈ ZZ+"

shows "∃ h∈S. f◦h ∼ id(ZZ)"
proof -

let ?g = "{〈p,f−1(p)〉. p∈ZZ+}"

let ?h = "OddExtension(ZZ,IntegerAddition,IntegerOrder,?g)"
from A1 have
"∃ M∈ZZ. ∀ n∈ZZ. f‘(n) ≤ f‘(n-1) + M"

using Int_ZF_2_1_L28 by simp

then obtain M where
I: "M∈ZZ" and II: "∀ n∈ZZ. f‘(n) ≤ f‘(n-1) + M"

by auto

from A1 A2 have T: "?h ∈ S"
using Int_ZF_2_4_L11 by simp

moreover have "f◦?h ∼ id(ZZ)"
proof -

from A1 T have "f◦?h ∈ S" using Int_ZF_2_1_L11

by simp

moreover note I

moreover
{ fix m assume A3: "m∈ZZ+"

556



with A1 have "f−1(m) ∈ ZZ"
using Int_ZF_2_4_L2 PositiveSet_def by simp

with II have "f‘(f−1(m)) ≤ f‘(f−1(m)-1) + M"

by simp

moreover from A1 A2 I A3 have "f‘(f−1(m)-1) + M ≤ m+M"

using Int_ZF_2_4_L4 int_ord_transl_inv by simp

ultimately have "f‘(f−1(m)) ≤ m+M"

by (rule Int_order_transitive)

moreover from A1 A3 have "m ≤ f‘(f−1(m))"

using Int_ZF_2_4_L2 by simp

moreover from A1 A2 T A3 have "f‘(f−1(m)) = (f◦?h)‘(m)"
using Int_ZF_2_4_L9 Int_ZF_1_5_L11

Int_ZF_2_4_L10 PositiveSet_def Int_ZF_2_1_L10

by simp

ultimately have "m ≤ (f◦?h)‘(m) ∧ (f◦?h)‘(m) ≤ m+M"

by simp }
ultimately show "f◦?h ∼ id(ZZ)" using Int_ZF_2_1_L32

by simp

qed
ultimately show "∃ h∈S. f◦h ∼ id(ZZ)"

by auto

qed

Int_ZF_2_4_L12 is almost what we need, except that it has an assumption
that the values of the slope that we get the inverse for are not smaller than 2
on positive integers. The Arthan’s proof of Theorem 11 has a mistake where
he says ”note that for all but finitely many m,n ∈ N p = g(m) and q = g(n)
are both positive”. Of course there may be infinitely many pairs 〈m,n〉 such
that p, q are not both positive. This is however easy to workaround: we just
modify the slope by adding a constant so that the slope is large enough on
positive integers and then look for the inverse.

theorem (in int1) pos_slope_has_inv: assumes A1: "f ∈ S+"
shows "∃ g∈S. f∼g ∧ (∃ h∈S. g◦h ∼ id(ZZ))"

proof -

from A1 have "f: ZZ→ZZ" "1∈ZZ" "2 ∈ ZZ"
using AlmostHoms_def int_zero_one_are_int int_two_three_are_int

by auto

moreover from A1 have
"∀ a∈ZZ.∃ b∈ZZ+.∀ x. b≤x −→ a ≤ f‘(x)"

using Int_ZF_2_3_L5 by simp

ultimately have
"∃ c∈ZZ. 2 ≤ Minimum(IntegerOrder,{n∈ZZ+. 1 ≤ f‘(n)+c})"

by (rule Int_ZF_1_6_L7)

then obtain c where I: "c∈ZZ" and
II: "2 ≤ Minimum(IntegerOrder,{n∈ZZ+. 1 ≤ f‘(n)+c})"

by auto

let ?g = "{〈m,f‘(m)+c〉. m∈ZZ}"
from A1 I have III: "?g∈S" and IV: "f∼?g" using Int_ZF_2_1_L33
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by auto

from IV have "〈f,?g〉 ∈ AlEqRel" by simp

with A1 have T: "?g ∈ S+" by (rule Int_ZF_2_3_L9)

moreover have "∀ m∈ZZ+. ?g−1(m)-1 ∈ ZZ+"

proof
fix m assume A2: "m∈ZZ+"

from A1 I II have V: "2 ≤ ?g−1(1)"
using Int_ZF_2_1_L33 PositiveSet_def by simp

moreover from A2 T have "?g−1(1) ≤ ?g−1(m)"

using Int_ZF_1_5_L3 int_one_two_are_pos Int_ZF_2_4_L5

by simp

ultimately have "2 ≤ ?g−1(m)"

by (rule Int_order_transitive)

then have "2-1 ≤ ?g−1(m)-1"
using int_zero_one_are_int Int_ZF_1_1_L4 int_ord_transl_inv

by simp

then show "?g−1(m)-1 ∈ ZZ+"

using int_zero_one_are_int Int_ZF_1_2_L3 Int_ZF_1_5_L3

by simp

qed
ultimately have "∃ h∈S. ?g◦h ∼ id(ZZ)"

by (rule Int_ZF_2_4_L12)

with III IV show ?thesis by auto

qed

45.3 Completeness

In this section we consider properties of slopes that are needed for the proof
of completeness of real numbers constructred in Real_ZF_1.thy. In particular
we consider properties of embedding of integers into the set of slopes by the
mapping m 7→ mS , where mS is defined by mS(n) = m · n.

If m is an integer, then mS is a slope whose value is m · n for every integer.

lemma (in int1) Int_ZF_2_5_L1: assumes A1: "m ∈ ZZ"
shows
"∀ n ∈ ZZ. (mS)‘(n) = m·n"
"mS ∈ S"

proof -

from A1 have I: "mS:ZZ→ZZ"
using Int_ZF_1_1_L5 ZF_fun_from_total by simp

then show II: "∀ n ∈ ZZ. (mS)‘(n) = m·n" using ZF_fun_from_tot_val

by simp

{ fix n k

assume A2: "n∈ZZ" "k∈ZZ"
with A1 have T: "m·n ∈ ZZ" "m·k ∈ ZZ"

using Int_ZF_1_1_L5 by auto

from A1 A2 II T have "δ(mS,n,k) = m·k - m·k"
using Int_ZF_1_1_L5 Int_ZF_1_1_L1 Int_ZF_1_2_L3

by simp
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also from T have ". . . = 0" using Int_ZF_1_1_L4

by simp

finally have "δ(mS,n,k) = 0" by simp

then have "abs(δ(mS,n,k)) ≤ 0"
using Int_ZF_2_L18 int_zero_one_are_int int_ord_is_refl refl_def

by simp

} then have "∀ n∈ZZ.∀ k∈ZZ. abs(δ(mS,n,k)) ≤ 0"
by simp

with I show "mS ∈ S" by (rule Int_ZF_2_1_L5)

qed

For any slope f there is an integer m such that there is some slope g that
is almost equal to mS and dominates f in the sense that f ≤ g on positive
integers (which implies that either g is almost equal to f or g−f is a positive
slope. This will be used in Real_ZF_1.thy to show that for any real number
there is an integer that (whose real embedding) is greater or equal.

lemma (in int1) Int_ZF_2_5_L2: assumes A1: "f ∈ S"
shows "∃ m∈ZZ. ∃ g∈S. (mS∼g ∧ (f∼g ∨ g+(-f) ∈ S+))"

proof -

from A1 have
"∃ m k. m∈ZZ ∧ k∈ZZ ∧ (∀ p∈ZZ. abs(f‘(p)) ≤ m·abs(p)+k)"
using Arthan_Lem_8 by simp

then obtain m k where I: "m∈ZZ" and II: "k∈ZZ" and
III: "∀ p∈ZZ. abs(f‘(p)) ≤ m·abs(p)+k"
by auto

let ?g = "{〈n,mS‘(n) +k〉. n∈ZZ}"
from I have IV: "mS ∈ S" using Int_ZF_2_5_L1 by simp

with II have V: "?g∈S" and VI: "mS∼?g" using Int_ZF_2_1_L33

by auto

{ fix n assume A2: "n∈ZZ+"

with A1 have "f‘(n) ∈ ZZ"
using Int_ZF_2_1_L2B PositiveSet_def by simp

then have "f‘(n) ≤ abs(f‘(n))" using Int_ZF_2_L19C

by simp

moreover
from III A2 have "abs(f‘(n)) ≤ m·abs(n) + k"

using PositiveSet_def by simp

with A2 have "abs(f‘(n)) ≤ m·n+k"
using Int_ZF_1_5_L4A by simp

ultimately have "f‘(n) ≤ m·n+k"
by (rule Int_order_transitive)

moreover
from II IV A2 have "?g‘(n) = (mS)‘(n)+k"

using Int_ZF_2_1_L33 PositiveSet_def by simp

with I A2 have "?g‘(n) = m·n+k"
using Int_ZF_2_5_L1 PositiveSet_def by simp

ultimately have "f‘(n) ≤ ?g‘(n)"

by simp

} then have "∀ n∈ZZ+. f‘(n) ≤ ?g‘(n)"
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by simp

with A1 V have "f∼?g ∨ ?g + (-f) ∈ S+"
using Int_ZF_2_3_L4C by simp

with I V VI show ?thesis by auto

qed

The negative of an integer embeds in slopes as a negative of the orgiginal
embedding.

lemma (in int1) Int_ZF_2_5_L3: assumes A1: "m ∈ ZZ"
shows "(-m)S = -(mS)"

proof -

from A1 have "(-m)S: ZZ→ZZ" and "(-(mS)): ZZ→ZZ"
using Int_ZF_1_1_L4 Int_ZF_2_5_L1 AlmostHoms_def Int_ZF_2_1_L12

by auto

moreover have "∀ n∈ZZ. ((-m)S)‘(n) = (-(mS))‘(n)"

proof
fix n assume A2: "n∈ZZ"
with A1 have
"((-m)S)‘(n) = (-m)·n"
"(-(mS))‘(n) = -(m·n)"
using Int_ZF_1_1_L4 Int_ZF_2_5_L1 Int_ZF_2_1_L12A

by auto

with A1 A2 show "((-m)S)‘(n) = (-(mS))‘(n)"

using Int_ZF_1_1_L5 by simp

qed
ultimately show "(-m)S = -(mS)" using fun_extension_iff

by simp

qed

The sum of embeddings is the embeding of the sum.

lemma (in int1) Int_ZF_2_5_L3A: assumes A1: "m∈ZZ" "k∈ZZ"
shows "(mS) + (kS) = ((m+k)S)"

proof -

from A1 have T1: "m+k ∈ ZZ" using Int_ZF_1_1_L5

by simp

with A1 have T2:

"(mS) ∈ S" "(kS) ∈ S"
"(m+k)S ∈ S"
"(mS) + (kS) ∈ S"
using Int_ZF_2_5_L1 Int_ZF_2_1_L12C by auto

then have
"(mS) + (kS) : ZZ→ZZ"
"(m+k)S : ZZ→ZZ"
using AlmostHoms_def by auto

moreover have "∀ n∈ZZ. ((mS) + (kS))‘(n) = ((m+k)S)‘(n)"

proof
fix n assume A2: "n∈ZZ"
with A1 T1 T2 have "((mS) + (kS))‘(n) = (m+k)·n"

using Int_ZF_2_1_L12B Int_ZF_2_5_L1 Int_ZF_1_1_L1
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by simp

also from T1 A2 have ". . . = ((m+k)S)‘(n)"

using Int_ZF_2_5_L1 by simp

finally show "((mS) + (kS))‘(n) = ((m+k)S)‘(n)"

by simp

qed
ultimately show "(mS) + (kS) = ((m+k)S)"

using fun_extension_iff by simp

qed

The composition of embeddings is the embeding of the product.

lemma (in int1) Int_ZF_2_5_L3B: assumes A1: "m∈ZZ" "k∈ZZ"
shows "(mS) ◦ (kS) = ((m·k)S)"

proof -

from A1 have T1: "m·k ∈ ZZ" using Int_ZF_1_1_L5

by simp

with A1 have T2:

"(mS) ∈ S" "(kS) ∈ S"
"(m·k)S ∈ S"
"(mS) ◦ (kS) ∈ S"
using Int_ZF_2_5_L1 Int_ZF_2_1_L11 by auto

then have
"(mS) ◦ (kS) : ZZ→ZZ"
"(m·k)S : ZZ→ZZ"
using AlmostHoms_def by auto

moreover have "∀ n∈ZZ. ((mS) ◦ (kS))‘(n) = ((m·k)S)‘(n)"
proof

fix n assume A2: "n∈ZZ"
with A1 T2 have
"((mS) ◦ (kS))‘(n) = (mS)‘(k·n)"
using Int_ZF_2_1_L10 Int_ZF_2_5_L1 by simp

moreover
from A1 A2 have "k·n ∈ ZZ" using Int_ZF_1_1_L5

by simp

with A1 A2 have "(mS)‘(k·n) = m·k·n"
using Int_ZF_2_5_L1 Int_ZF_1_1_L7 by simp

ultimately have "((mS) ◦ (kS))‘(n) = m·k·n"
by simp

also from T1 A2 have "m·k·n = ((m·k)S)‘(n)"
using Int_ZF_2_5_L1 by simp

finally show "((mS) ◦ (kS))‘(n) = ((m·k)S)‘(n)"
by simp

qed
ultimately show "(mS) ◦ (kS) = ((m·k)S)"

using fun_extension_iff by simp

qed

Embedding integers in slopes preserves order.

lemma (in int1) Int_ZF_2_5_L4: assumes A1: "m≤n"
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shows "(mS) ∼ (nS) ∨ (nS)+(-(mS)) ∈ S+"
proof -

from A1 have "mS ∈ S" and "nS ∈ S"
using Int_ZF_2_L1A Int_ZF_2_5_L1 by auto

moreover from A1 have "∀ k∈ZZ+. (mS)‘(k) ≤ (nS)‘(k)"

using Int_ZF_1_3_L13B Int_ZF_2_L1A PositiveSet_def Int_ZF_2_5_L1

by simp

ultimately show ?thesis using Int_ZF_2_3_L4C

by simp

qed

We aim at showing that m 7→ mS is an injection modulo the relation of
almost equality. To do that we first show that if mS has finite range, then
m = 0.

lemma (in int1) Int_ZF_2_5_L5:

assumes "m∈ZZ" and "mS ∈ FinRangeFunctions(ZZ,ZZ)"
shows "m=0"
using assms FinRangeFunctions_def Int_ZF_2_5_L1 AlmostHoms_def

func_imagedef Int_ZF_1_6_L8 by simp

Embeddings of two integers are almost equal only if the integers are equal.

lemma (in int1) Int_ZF_2_5_L6:

assumes A1: "m∈ZZ" "k∈ZZ" and A2: "(mS) ∼ (kS)"

shows "m=k"

proof -

from A1 have T: "m-k ∈ ZZ" using Int_ZF_1_1_L5 by simp

from A1 have "(-(kS)) = ((-k)S)"

using Int_ZF_2_5_L3 by simp

then have "mS + (-(kS)) = (mS) + ((-k)S)"

by simp

with A1 have "mS + (-(kS)) = ((m-k)S)"

using Int_ZF_1_1_L4 Int_ZF_2_5_L3A by simp

moreover from A1 A2 have "mS + (-(kS)) ∈ FinRangeFunctions(ZZ,ZZ)"
using Int_ZF_2_5_L1 Int_ZF_2_1_L9D by simp

ultimately have "(m-k)S ∈ FinRangeFunctions(ZZ,ZZ)"
by simp

with T have "m-k = 0" using Int_ZF_2_5_L5

by simp

with A1 show "m=k" by (rule Int_ZF_1_L15)

qed

Embedding of 1 is the identity slope and embedding of zero is a finite range
function.

lemma (in int1) Int_ZF_2_5_L7: shows
"1S = id(ZZ)"
"0S ∈ FinRangeFunctions(ZZ,ZZ)"

proof -

have "id(ZZ) = {〈x,x〉. x∈ZZ}"
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using id_def by blast

then show "1S = id(ZZ)" using Int_ZF_1_1_L4 by simp

have "{0S‘(n). n∈ZZ} = {0·n. n∈ZZ}"
using int_zero_one_are_int Int_ZF_2_5_L1 by simp

also have ". . . = {0}" using Int_ZF_1_1_L4 int_not_empty

by simp

finally have "{0S‘(n). n∈ZZ} = {0}" by simp

then have "{0S‘(n). n∈ZZ} ∈ Fin(ZZ)"
using int_zero_one_are_int Finite1_L16 by simp

moreover have "0S: ZZ→ZZ"
using int_zero_one_are_int Int_ZF_2_5_L1 AlmostHoms_def

by simp

ultimately show "0S ∈ FinRangeFunctions(ZZ,ZZ)"
using Finite1_L19 by simp

qed

A somewhat technical condition for a embedding of an integer to be ”less or
equal” (in the sense apriopriate for slopes) than the composition of a slope
and another integer (embedding).

lemma (in int1) Int_ZF_2_5_L8:

assumes A1: "f ∈ S" and A2: "N ∈ ZZ" "M ∈ ZZ" and
A3: "∀ n∈ZZ+. M·n ≤ f‘(N·n)"
shows "MS ∼ f◦(NS) ∨ (f◦(NS)) + (-(MS)) ∈ S+"

proof -

from A1 A2 have "MS ∈ S" "f◦(NS) ∈ S"
using Int_ZF_2_5_L1 Int_ZF_2_1_L11 by auto

moreover from A1 A2 A3 have "∀ n∈ZZ+. (MS)‘(n) ≤ (f◦(NS))‘(n)"
using Int_ZF_2_5_L1 PositiveSet_def Int_ZF_2_1_L10

by simp

ultimately show ?thesis using Int_ZF_2_3_L4C

by simp

qed

Another technical condition for the composition of a slope and an integer
(embedding) to be ”less or equal” (in the sense apriopriate for slopes) than
embedding of another integer.

lemma (in int1) Int_ZF_2_5_L9:

assumes A1: "f ∈ S" and A2: "N ∈ ZZ" "M ∈ ZZ" and
A3: "∀ n∈ZZ+. f‘(N·n) ≤ M·n "

shows "f◦(NS) ∼ (MS) ∨ (MS) + (-(f◦(NS))) ∈ S+"
proof -

from A1 A2 have "f◦(NS) ∈ S" "MS ∈ S"
using Int_ZF_2_5_L1 Int_ZF_2_1_L11 by auto

moreover from A1 A2 A3 have "∀ n∈ZZ+. (f◦(NS))‘(n) ≤ (MS)‘(n) "

using Int_ZF_2_5_L1 PositiveSet_def Int_ZF_2_1_L10

by simp

ultimately show ?thesis using Int_ZF_2_3_L4C

by simp

qed
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end

46 Construction real numbers - the generic part

theory Real_ZF imports Int_ZF_IML Ring_ZF_1

begin

The goal of the Real_ZF series of theory files is to provide a contruction of
the set of real numbers. There are several ways to construct real numbers.
Most common start from the rational numbers and use Dedekind cuts or
Cauchy sequences. Real_ZF_x.thy series formalizes an alternative approach
that constructs real numbers directly from the group of integers. Our for-
malization is mostly based on [2]. Different variants of this contruction are
also described in [1] and [3]. I recommend to read these papers, but for the
impatient here is a short description: we take a set of maps s : Z → Z such
that the set {s(m+ n)− s(m)− s(n)}n,m∈Z is finite (Z means the integers
here). We call these maps slopes. Slopes form a group with the natural
addition (s+ r)(n) = s(n) + r(n). The maps such that the set s(Z) is finite
(finite range functions) form a subgroup of slopes. The additive group of
real numbers is defined as the quotient group of slopes by the (sub)group of
finite range functions. The multiplication is defined as the projection of the
composition of slopes into the resulting quotient (coset) space.

46.1 The definition of real numbers

This section contains the construction of the ring of real numbers as classes
of slopes - integer almost homomorphisms. The real definitions are in
Group_ZF_2 theory, here we just specialize the definitions of almost homomor-
phisms, their equivalence and operations to the additive group of integers
from the general case of abelian groups considered in Group_ZF_2.

The set of slopes is defined as the set of almost homomorphisms on the
additive group of integers.

definition
"Slopes ≡ AlmostHoms(int,IntegerAddition)"

The first operation on slopes (pointwise addition) is a special case of the
first operation on almost homomorphisms.

definition
"SlopeOp1 ≡ AlHomOp1(int,IntegerAddition)"

The second operation on slopes (composition) is a special case of the second
operation on almost homomorphisms.
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definition
"SlopeOp2 ≡ AlHomOp2(int,IntegerAddition)"

Bounded integer maps are functions from integers to integers that have finite
range. They play a role of zero in the set of real numbers we are constructing.

definition
"BoundedIntMaps ≡ FinRangeFunctions(int,int)"

Bounded integer maps form a normal subgroup of slopes. The equivalence
relation on slopes is the (group) quotient relation defined by this subgroup.

definition
"SlopeEquivalenceRel ≡ QuotientGroupRel(Slopes,SlopeOp1,BoundedIntMaps)"

The set of real numbers is the set of equivalence classes of slopes.

definition
"RealNumbers ≡ Slopes//SlopeEquivalenceRel"

The addition on real numbers is defined as the projection of pointwise ad-
dition of slopes on the quotient. This means that the additive group of real
numbers is the quotient group: the group of slopes (with pointwise addition)
defined by the normal subgroup of bounded integer maps.

definition
"RealAddition ≡ ProjFun2(Slopes,SlopeEquivalenceRel,SlopeOp1)"

Multiplication is defined as the projection of composition of slopes on the
quotient. The fact that it works is probably the most surprising part of the
construction.

definition
"RealMultiplication ≡ ProjFun2(Slopes,SlopeEquivalenceRel,SlopeOp2)"

We first show that we can use theorems proven in some proof contexts (lo-
cales). The locale group1 requires assumption that we deal with an abelian
group. The next lemma allows to use all theorems proven in the context
called group1.

lemma Real_ZF_1_L1: shows "group1(int,IntegerAddition)"

using group1_axioms.intro group1_def Int_ZF_1_T2 by simp

Real numbers form a ring. This is a special case of the theorem proven in
Ring_ZF_1.thy, where we show the same in general for almost homomor-
phisms rather than slopes.

theorem Real_ZF_1_T1: shows "IsAring(RealNumbers,RealAddition,RealMultiplication)"

proof -

let ?AH = "AlmostHoms(int,IntegerAddition)"

let ?Op1 = "AlHomOp1(int,IntegerAddition)"

let ?FR = "FinRangeFunctions(int,int)"

let ?Op2 = "AlHomOp2(int,IntegerAddition)"
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let ?R = "QuotientGroupRel(?AH,?Op1,?FR)"

let ?A = "ProjFun2(?AH,?R,?Op1)"

let ?M = "ProjFun2(?AH,?R,?Op2)"

have "IsAring(?AH//?R,?A,?M)" using Real_ZF_1_L1 group1.Ring_ZF_1_1_T1

by simp

then show ?thesis using Slopes_def SlopeOp2_def SlopeOp1_def

BoundedIntMaps_def SlopeEquivalenceRel_def RealNumbers_def

RealAddition_def RealMultiplication_def by simp

qed

We can use theorems proven in group0 and group1 contexts applied to the
group of real numbers.

lemma Real_ZF_1_L2: shows
"group0(RealNumbers,RealAddition)"

"RealAddition {is commutative on} RealNumbers"

"group1(RealNumbers,RealAddition)"

proof -

have
"IsAgroup(RealNumbers,RealAddition)"

"RealAddition {is commutative on} RealNumbers"

using Real_ZF_1_T1 IsAring_def by auto

then show
"group0(RealNumbers,RealAddition)"

"RealAddition {is commutative on} RealNumbers"

"group1(RealNumbers,RealAddition)"

using group1_axioms.intro group0_def group1_def

by auto

qed

Let’s define some notation.

locale real0 =

fixes real ("IR")

defines real_def [simp]: "IR ≡ RealNumbers"

fixes ra (infixl "+" 69)

defines ra_def [simp]: "a+ b ≡ RealAddition‘〈a,b〉"

fixes rminus ("- _" 72)

defines rminus_def [simp]:"-a ≡ GroupInv(IR,RealAddition)‘(a)"

fixes rsub (infixl "-" 69)

defines rsub_def [simp]: "a-b ≡ a+(-b)"

fixes rm (infixl "·" 70)

defines rm_def [simp]: "a·b ≡ RealMultiplication‘〈a,b〉"

fixes rzero ("0")
defines rzero_def [simp]:
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"0 ≡ TheNeutralElement(RealNumbers,RealAddition)"

fixes rone ("1")
defines rone_def [simp]:

"1 ≡ TheNeutralElement(RealNumbers,RealMultiplication)"

fixes rtwo ("2")
defines rtwo_def [simp]: "2 ≡ 1+1"

fixes non_zero ("IR0")

defines non_zero_def[simp]: "IR0 ≡ IR-{0}"

fixes inv ("_−1 " [90] 91)

defines inv_def[simp]:

"a−1 ≡ GroupInv(IR0,restrict(RealMultiplication,IR0×IR0))‘(a)"

In real0 context all theorems proven in the ring0, context are valid.

lemma (in real0) Real_ZF_1_L3: shows
"ring0(IR,RealAddition,RealMultiplication)"

using Real_ZF_1_T1 ring0_def ring0.Ring_ZF_1_L1

by auto

Lets try out our notation to see that zero and one are real numbers.

lemma (in real0) Real_ZF_1_L4: shows "0∈IR" "1∈IR"

using Real_ZF_1_L3 ring0.Ring_ZF_1_L2 by auto

The lemma below lists some properties that require one real number to state.

lemma (in real0) Real_ZF_1_L5: assumes A1: "a∈IR"

shows
"(-a) ∈ IR"

"(-(-a)) = a"

"a+0 = a"

"0+a = a"

"a·1 = a"

"1·a = a"

"a-a = 0"
"a-0 = a"

using assms Real_ZF_1_L3 ring0.Ring_ZF_1_L3 by auto

The lemma below lists some properties that require two real numbers to
state.

lemma (in real0) Real_ZF_1_L6: assumes "a∈IR" "b∈IR"

shows
"a+b ∈ IR"

"a-b ∈ IR"

"a·b ∈ IR"

"a+b = b+a"

"(-a)·b = -(a·b)"
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"a·(-b) = -(a·b)"
using assms Real_ZF_1_L3 ring0.Ring_ZF_1_L4 ring0.Ring_ZF_1_L7

by auto

Multiplication of reals is associative.

lemma (in real0) Real_ZF_1_L6A: assumes "a∈IR" "b∈IR" "c∈IR"

shows "a·(b·c) = (a·b)·c"
using assms Real_ZF_1_L3 ring0.Ring_ZF_1_L11

by simp

Addition is distributive with respect to multiplication.

lemma (in real0) Real_ZF_1_L7: assumes "a∈IR" "b∈IR" "c∈IR"

shows
"a·(b+c) = a·b + a·c"
"(b+c)·a = b·a + c·a"
"a·(b-c) = a·b - a·c"
"(b-c)·a = b·a - c·a"
using assms Real_ZF_1_L3 ring0.ring_oper_distr ring0.Ring_ZF_1_L8

by auto

A simple rearrangement with four real numbers.

lemma (in real0) Real_ZF_1_L7A:

assumes "a∈IR" "b∈IR" "c∈IR" "d∈IR"

shows "a-b + (c-d) = a+c-b-d"

using assms Real_ZF_1_L2 group0.group0_4_L8A by simp

RealAddition is defined as the projection of the first operation on slopes
(that is, slope addition) on the quotient (slopes divided by the ”almost
equal” relation. The next lemma plays with definitions to show that this
is the same as the operation induced on the appriopriate quotient group.
The names AH, Op1 and FR are used in group1 context to denote almost
homomorphisms, the first operation on AH and finite range functions resp.

lemma Real_ZF_1_L8: assumes
"AH = AlmostHoms(int,IntegerAddition)" and
"Op1 = AlHomOp1(int,IntegerAddition)" and
"FR = FinRangeFunctions(int,int)"

shows "RealAddition = QuotientGroupOp(AH,Op1,FR)"

using assms RealAddition_def SlopeEquivalenceRel_def

QuotientGroupOp_def Slopes_def SlopeOp1_def BoundedIntMaps_def

by simp

The symbol 0 in the real0 context is defined as the neutral element of real
addition. The next lemma shows that this is the same as the neutral element
of the appriopriate quotient group.

lemma (in real0) Real_ZF_1_L9: assumes
"AH = AlmostHoms(int,IntegerAddition)" and
"Op1 = AlHomOp1(int,IntegerAddition)" and
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"FR = FinRangeFunctions(int,int)" and
"r = QuotientGroupRel(AH,Op1,FR)"

shows
"TheNeutralElement(AH//r,QuotientGroupOp(AH,Op1,FR)) = 0"
"SlopeEquivalenceRel = r"

using assms Slopes_def Real_ZF_1_L8 RealNumbers_def

SlopeEquivalenceRel_def SlopeOp1_def BoundedIntMaps_def

by auto

Zero is the class of any finite range function.

lemma (in real0) Real_ZF_1_L10:

assumes A1: "s ∈ Slopes"

shows "SlopeEquivalenceRel‘‘{s} = 0 ←→ s ∈ BoundedIntMaps"

proof -

let ?AH = "AlmostHoms(int,IntegerAddition)"

let ?Op1 = "AlHomOp1(int,IntegerAddition)"

let ?FR = "FinRangeFunctions(int,int)"

let ?r = "QuotientGroupRel(?AH,?Op1,?FR)"

let ?e = "TheNeutralElement(?AH//?r,QuotientGroupOp(?AH,?Op1,?FR))"

from A1 have
"group1(int,IntegerAddition)"

"s∈?AH"
using Real_ZF_1_L1 Slopes_def

by auto

then have "?r‘‘{s} = ?e ←→ s ∈ ?FR"

using group1.Group_ZF_3_3_L5 by simp

moreover have
"?r = SlopeEquivalenceRel"

"?e = 0"
"?FR = BoundedIntMaps"

using SlopeEquivalenceRel_def Slopes_def SlopeOp1_def

BoundedIntMaps_def Real_ZF_1_L9 by auto

ultimately show ?thesis by simp

qed

We will need a couple of results from Group_ZF_3.thy The first two that
state that the definition of addition and multiplication of real numbers
are consistent, that is the result does not depend on the choice of the
slopes representing the numbers. The second one implies that what we call
SlopeEquivalenceRel is actually an equivalence relation on the set of slopes.
We also show that the neutral element of the multiplicative operation on
reals (in short number 1) is the class of the identity function on integers.

lemma Real_ZF_1_L11: shows
"Congruent2(SlopeEquivalenceRel,SlopeOp1)"

"Congruent2(SlopeEquivalenceRel,SlopeOp2)"

"SlopeEquivalenceRel ⊆ Slopes × Slopes"

"equiv(Slopes, SlopeEquivalenceRel)"

"SlopeEquivalenceRel‘‘{id(int)} =
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TheNeutralElement(RealNumbers,RealMultiplication)"

"BoundedIntMaps ⊆ Slopes"

proof -

let ?G = "int"

let ?f = "IntegerAddition"

let ?AH = "AlmostHoms(int,IntegerAddition)"

let ?Op1 = "AlHomOp1(int,IntegerAddition)"

let ?Op2 = "AlHomOp2(int,IntegerAddition)"

let ?FR = "FinRangeFunctions(int,int)"

let ?R = "QuotientGroupRel(?AH,?Op1,?FR)"

have
"Congruent2(?R,?Op1)"

"Congruent2(?R,?Op2)"

using Real_ZF_1_L1 group1.Group_ZF_3_4_L13A group1.Group_ZF_3_3_L4

by auto

then show
"Congruent2(SlopeEquivalenceRel,SlopeOp1)"

"Congruent2(SlopeEquivalenceRel,SlopeOp2)"

using SlopeEquivalenceRel_def SlopeOp1_def Slopes_def

BoundedIntMaps_def SlopeOp2_def by auto

have "equiv(?AH,?R)"

using Real_ZF_1_L1 group1.Group_ZF_3_3_L3 by simp

then show "equiv(Slopes,SlopeEquivalenceRel)"

using BoundedIntMaps_def SlopeEquivalenceRel_def SlopeOp1_def Slopes_def

by simp

then show "SlopeEquivalenceRel ⊆ Slopes × Slopes"

using equiv_type by simp

have "?R‘‘{id(int)} = TheNeutralElement(?AH//?R,ProjFun2(?AH,?R,?Op2))"

using Real_ZF_1_L1 group1.Group_ZF_3_4_T2 by simp

then show "SlopeEquivalenceRel‘‘{id(int)} =

TheNeutralElement(RealNumbers,RealMultiplication)"

using Slopes_def RealNumbers_def

SlopeEquivalenceRel_def SlopeOp1_def BoundedIntMaps_def

RealMultiplication_def SlopeOp2_def

by simp

have "?FR ⊆ ?AH" using Real_ZF_1_L1 group1.Group_ZF_3_3_L1

by simp

then show "BoundedIntMaps ⊆ Slopes"

using BoundedIntMaps_def Slopes_def by simp

qed

A one-side implication of the equivalence from Real_ZF_1_L10: the class of a
bounded integer map is the real zero.

lemma (in real0) Real_ZF_1_L11A: assumes "s ∈ BoundedIntMaps"

shows "SlopeEquivalenceRel‘‘{s} = 0"
using assms Real_ZF_1_L11 Real_ZF_1_L10 by auto

The next lemma is rephrases the result from Group_ZF_3.thy that says that
the negative (the group inverse with respect to real addition) of the class of
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a slope is the class of that slope composed with the integer additive group
inverse. The result and proof is not very readable as we use mostly generic
set theory notation with long names here. Real_ZF_1.thy contains the same
statement written in a more readable notation: [−s] = −[s].

lemma (in real0) Real_ZF_1_L12: assumes A1: "s ∈ Slopes" and
Dr: "r = QuotientGroupRel(Slopes,SlopeOp1,BoundedIntMaps)"

shows "r‘‘{GroupInv(int,IntegerAddition) O s} = -(r‘‘{s})"

proof -

let ?G = "int"

let ?f = "IntegerAddition"

let ?AH = "AlmostHoms(int,IntegerAddition)"

let ?Op1 = "AlHomOp1(int,IntegerAddition)"

let ?FR = "FinRangeFunctions(int,int)"

let ?F = "ProjFun2(Slopes,r,SlopeOp1)"

from A1 Dr have
"group1(?G, ?f)"

"s ∈ AlmostHoms(?G, ?f)"

"r = QuotientGroupRel(

AlmostHoms(?G, ?f), AlHomOp1(?G, ?f), FinRangeFunctions(?G, ?G))"

and "?F = ProjFun2(AlmostHoms(?G, ?f), r, AlHomOp1(?G, ?f))"

using Real_ZF_1_L1 Slopes_def SlopeOp1_def BoundedIntMaps_def

by auto

then have
"r‘‘{GroupInv(?G, ?f) O s} =

GroupInv(AlmostHoms(?G, ?f) // r, ?F)‘(r ‘‘ {s})"

using group1.Group_ZF_3_3_L6 by simp

with Dr show ?thesis

using RealNumbers_def Slopes_def SlopeEquivalenceRel_def RealAddition_def

by simp

qed

Two classes are equal iff the slopes that represent them are almost equal.

lemma Real_ZF_1_L13: assumes "s ∈ Slopes" "p ∈ Slopes"

and "r = SlopeEquivalenceRel"

shows "r‘‘{s} = r‘‘{p} ←→ 〈s,p〉 ∈ r"

using assms Real_ZF_1_L11 eq_equiv_class equiv_class_eq

by blast

Identity function on integers is a slope. Thislemma concludes the easy part
of the construction that follows from the fact that slope equivalence classes
form a ring. It is easy to see that multiplication of classes of almost homo-
morphisms is not commutative in general. The remaining properties of real
numbers, like commutativity of multiplication and the existence of multi-
plicative inverses have to be proven using properties of the group of integers,
rather that in general setting of abelian groups.

lemma Real_ZF_1_L14: shows "id(int) ∈ Slopes"

proof -
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have "id(int) ∈ AlmostHoms(int,IntegerAddition)"

using Real_ZF_1_L1 group1.Group_ZF_3_4_L15

by simp

then show ?thesis using Slopes_def by simp

qed

end

47 Construction of real numbers

theory Real_ZF_1 imports Real_ZF Int_ZF_3 OrderedField_ZF

begin

In this theory file we continue the construction of real numbers started in
Real_ZF to a succesful conclusion. We put here those parts of the construc-
tion that can not be done in the general settings of abelian groups and
require integers.

47.1 Definitions and notation

In this section we define notions and notation needed for the rest of the
construction.

We define positive slopes as those that take an infinite number of posititive
values on the positive integers (see Int_ZF_2 for properties of positive slopes).

definition
"PositiveSlopes ≡ {s ∈ Slopes.

s‘‘(PositiveIntegers) ∩ PositiveIntegers /∈ Fin(int)}"

The order on the set of real numbers is constructed by specifying the set
of positive reals. This set is defined as the projection of the set of positive
slopes.

definition
"PositiveReals ≡ {SlopeEquivalenceRel‘‘{s}. s ∈ PositiveSlopes}"

The order relation on real numbers is constructed from the set of posi-
tive elements in a standard way (see section ”Alternative definitions” in
OrderedGroup_ZF.)

definition
"OrderOnReals ≡ OrderFromPosSet(RealNumbers,RealAddition,PositiveReals)"

The next locale extends the locale real0 to define notation specific to the
construction of real numbers. The notation follows the one defined in
Int_ZF_2.thy. If m is an integer, then the real number which is the class
of the slope n 7→ m · n is denoted mR. For a real number a notation bac
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means the largest integer m such that the real version of it (that is, mR) is
not greater than a. For an integer m and a subset of reals S the expression
Γ(S,m) is defined as max{bpR ·xc : x ∈ S}. This is plays a role in the proof
of completeness of real numbers. We also reuse some notation defined in the
int0 context, like ZZ+ (the set of positive integers) and abs(m) ( the absolute
value of an integer, and some defined in the int1 context, like the addition
( +) and composition (◦ of slopes.

locale real1 = real0 +

fixes AlEq (infix "∼" 68)

defines AlEq_def[simp]: "s ∼ r ≡ 〈s,r〉 ∈ SlopeEquivalenceRel"

fixes slope_add (infix "+" 70)

defines slope_add_def[simp]:

"s + r ≡ SlopeOp1‘〈s,r〉"

fixes slope_comp (infix "◦" 71)

defines slope_comp_def[simp]: "s ◦ r ≡ SlopeOp2‘〈s,r〉"

fixes slopes ("S")
defines slopes_def[simp]: "S ≡ AlmostHoms(int,IntegerAddition)"

fixes posslopes ("S+")
defines posslopes_def[simp]: "S+ ≡ PositiveSlopes"

fixes slope_class ("[ _ ]")

defines slope_class_def[simp]: "[f] ≡ SlopeEquivalenceRel‘‘{f}"

fixes slope_neg ("-_" [90] 91)

defines slope_neg_def[simp]: "-s ≡ GroupInv(int,IntegerAddition) O s"

fixes lesseqr (infix "≤" 60)

defines lesseqr_def[simp]: "a ≤ b ≡ 〈a,b〉 ∈ OrderOnReals"

fixes sless (infix "<" 60)

defines sless_def[simp]: "a < b ≡ a≤b ∧ a6=b"

fixes positivereals ("IR+")

defines positivereals_def[simp]: "IR+ ≡ PositiveSet(IR,RealAddition,OrderOnReals)"

fixes intembed ("_R" [90] 91)

defines intembed_def[simp]:

"mR ≡ [{〈n,IntegerMultiplication‘〈m,n〉 〉. n ∈ int}]"

fixes floor ("b _ c")
defines floor_def[simp]:

"bac ≡ Maximum(IntegerOrder,{m ∈ int. mR ≤ a})"
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fixes Γ
defines Γ_def[simp]: "Γ(S,p) ≡ Maximum(IntegerOrder,{bpR·xc. x∈S})"

fixes ia (infixl "+" 69)

defines ia_def[simp]: "a+b ≡ IntegerAddition‘〈 a,b〉"

fixes iminus ("- _" 72)

defines iminus_def[simp]: "-a ≡ GroupInv(int,IntegerAddition)‘(a)"

fixes isub (infixl "-" 69)

defines isub_def[simp]: "a-b ≡ a+ (- b)"

fixes intpositives ("ZZ+")

defines intpositives_def[simp]:

"ZZ+ ≡ PositiveSet(int,IntegerAddition,IntegerOrder)"

fixes zlesseq (infix "≤" 60)

defines lesseq_def[simp]: "m ≤ n ≡ 〈m,n〉 ∈ IntegerOrder"

fixes imult (infixl "·" 70)

defines imult_def[simp]: "a·b ≡ IntegerMultiplication‘〈 a,b〉"

fixes izero ("0Z")

defines izero_def[simp]: "0Z ≡ TheNeutralElement(int,IntegerAddition)"

fixes ione ("1Z")

defines ione_def[simp]: "1Z ≡ TheNeutralElement(int,IntegerMultiplication)"

fixes itwo ("2Z")

defines itwo_def[simp]: "2Z ≡ 1Z+1Z"

fixes abs

defines abs_def[simp]:

"abs(m) ≡ AbsoluteValue(int,IntegerAddition,IntegerOrder)‘(m)"

fixes δ
defines δ_def[simp]: "δ(s,m,n) ≡ s‘(m+n)-s‘(m)-s‘(n)"

47.2 Multiplication of real numbers

Multiplication of real numbers is defined as a projection of composition of
slopes onto the space of equivalence classes of slopes. Thus, the product of
the real numbers given as classes of slopes s and r is defined as the class of
s◦r. The goal of this section is to show that multiplication defined this way
is commutative.

Let’s recall a theorem from Int_ZF_2.thy that states that if f, g are slopes,
then f ◦ g is equivalent to g ◦ f . Here we conclude from that that the classes
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of f ◦ g and g ◦ f are the same.

lemma (in real1) Real_ZF_1_1_L2: assumes A1: "f ∈ S" "g ∈ S"
shows "[f◦g] = [g◦f]"

proof -

from A1 have "f◦g ∼ g◦f"
using Slopes_def int1.Arthan_Th_9 SlopeOp1_def BoundedIntMaps_def

SlopeEquivalenceRel_def SlopeOp2_def by simp

then show ?thesis using Real_ZF_1_L11 equiv_class_eq

by simp

qed

Classes of slopes are real numbers.

lemma (in real1) Real_ZF_1_1_L3: assumes A1: "f ∈ S"
shows "[f] ∈ IR"

proof -

from A1 have "[f] ∈ Slopes//SlopeEquivalenceRel"

using Slopes_def quotientI by simp

then show "[f] ∈ IR" using RealNumbers_def by simp

qed

Each real number is a class of a slope.

lemma (in real1) Real_ZF_1_1_L3A: assumes A1: "a∈IR"

shows "∃ f∈S . a = [f]"

proof -

from A1 have "a ∈ S//SlopeEquivalenceRel"
using RealNumbers_def Slopes_def by simp

then show ?thesis using quotient_def

by simp

qed

It is useful to have the definition of addition and multiplication in the real1

context notation.

lemma (in real1) Real_ZF_1_1_L4:

assumes A1: "f ∈ S" "g ∈ S"
shows
"[f] + [g] = [f+g]"

"[f] · [g] = [f◦g]"
proof -

let ?r = "SlopeEquivalenceRel"

have "[f]·[g] = ProjFun2(S,?r,SlopeOp2)‘〈[f],[g]〉"
using RealMultiplication_def Slopes_def by simp

also from A1 have ". . . = [f◦g]"
using Real_ZF_1_L11 EquivClass_1_L10 Slopes_def

by simp

finally show "[f] · [g] = [f◦g]" by simp

have "[f] + [g] = ProjFun2(S,?r,SlopeOp1)‘〈[f],[g]〉"
using RealAddition_def Slopes_def by simp

also from A1 have ". . . = [f+g]"
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using Real_ZF_1_L11 EquivClass_1_L10 Slopes_def

by simp

finally show "[f] + [g] = [f+g]" by simp

qed

The next lemma is essentially the same as Real_ZF_1_L12, but written in the
notation defined in the real1 context. It states that if f is a slope, then
−[f ] = [−f ].

lemma (in real1) Real_ZF_1_1_L4A: assumes "f ∈ S"
shows "[-f] = -[f]"

using assms Slopes_def SlopeEquivalenceRel_def Real_ZF_1_L12

by simp

Subtracting real numbers correspods to adding the opposite slope.

lemma (in real1) Real_ZF_1_1_L4B: assumes A1: "f ∈ S" "g ∈ S"
shows "[f] - [g] = [f+(-g)]"

proof -

from A1 have "[f+(-g)] = [f] + [-g]"

using Slopes_def BoundedIntMaps_def int1.Int_ZF_2_1_L12

Real_ZF_1_1_L4 by simp

with A1 show "[f] - [g] = [f+(-g)]"

using Real_ZF_1_1_L4A by simp

qed

Multiplication of real numbers is commutative.

theorem (in real1) real_mult_commute: assumes A1: "a∈IR" "b∈IR"

shows "a·b = b·a"
proof -

from A1 have
"∃ f∈S . a = [f]"

"∃ g∈S . b = [g]"

using Real_ZF_1_1_L3A by auto

then obtain f g where
"f ∈ S" "g ∈ S" and "a = [f]" "b = [g]"

by auto

then show "a·b = b·a"
using Real_ZF_1_1_L4 Real_ZF_1_1_L2 by simp

qed

Multiplication is commutative on reals.

lemma real_mult_commutative: shows
"RealMultiplication {is commutative on} RealNumbers"

using real1.real_mult_commute IsCommutative_def

by simp

The neutral element of multiplication of reals (denoted as 1 in the real1

context) is the class of identity function on integers. This is really shown
in Real_ZF_1_L11, here we only rewrite it in the notation used in the real1

context.
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lemma (in real1) real_one_cl_identity: shows "[id(int)] = 1"
using Real_ZF_1_L11 by simp

If f is bounded, then its class is the neutral element of additive operation
on reals (denoted as 0 in the real1 context).

lemma (in real1) real_zero_cl_bounded_map:

assumes "f ∈ BoundedIntMaps" shows "[f] = 0"
using assms Real_ZF_1_L11A by simp

Two real numbers are equal iff the slopes that represent them are almost
equal. This is proven in Real_ZF_1_L13, here we just rewrite it in the notation
used in the real1 context.

lemma (in real1) Real_ZF_1_1_L5:

assumes "f ∈ S" "g ∈ S"
shows "[f] = [g] ←→ f ∼ g"

using assms Slopes_def Real_ZF_1_L13 by simp

If the pair of function belongs to the slope equivalence relation, then their
classes are equal. This is convenient, because we don’t need to assume that
f, g are slopes (follows from the fact that f ∼ g).

lemma (in real1) Real_ZF_1_1_L5A: assumes "f ∼ g"

shows "[f] = [g]"

using assms Real_ZF_1_L11 Slopes_def Real_ZF_1_1_L5

by auto

Identity function on integers is a slope. This is proven in Real_ZF_1_L13,
here we just rewrite it in the notation used in the real1 context.

lemma (in real1) id_on_int_is_slope: shows "id(int) ∈ S"
using Real_ZF_1_L14 Slopes_def by simp

A result from Int_ZF_2.thy: the identity function on integers is not almost
equal to any bounded function.

lemma (in real1) Real_ZF_1_1_L7:

assumes A1: "f ∈ BoundedIntMaps"

shows "¬(id(int) ∼ f)"

using assms Slopes_def SlopeOp1_def BoundedIntMaps_def

SlopeEquivalenceRel_def BoundedIntMaps_def int1.Int_ZF_2_3_L12

by simp

Zero is not one.

lemma (in real1) real_zero_not_one: shows "16=0"
proof -

{ assume A1: "1=0"
have "∃ f ∈ S. 0 = [f]"

using Real_ZF_1_L4 Real_ZF_1_1_L3A by simp

with A1 have
"∃ f ∈ S. [id(int)] = [f] ∧ [f] = 0"
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using real_one_cl_identity by auto

then have False using Real_ZF_1_1_L5 Slopes_def

Real_ZF_1_L10 Real_ZF_1_1_L7 id_on_int_is_slope

by auto

} then show "1 6=0" by auto

qed

Negative of a real number is a real number. Property of groups.

lemma (in real1) Real_ZF_1_1_L8: assumes "a∈IR" shows "(-a) ∈ IR"

using assms Real_ZF_1_L2 group0.inverse_in_group

by simp

An identity with three real numbers.

lemma (in real1) Real_ZF_1_1_L9: assumes "a∈IR" "b∈IR" "c∈IR"

shows "a·(b·c) = a·c·b"
using assms real_mult_commutative Real_ZF_1_L3 ring0.Ring_ZF_2_L4

by simp

47.3 The order on reals

In this section we show that the order relation defined by prescribing the
set of positive reals as the projection of the set of positive slopes makes the
ring of real numbers into an ordered ring. We also collect the facts about
ordered groups and rings that we use in the construction.

Positive slopes are slopes and positive reals are real.

lemma Real_ZF_1_2_L1: shows
"PositiveSlopes ⊆ Slopes"

"PositiveReals ⊆ RealNumbers"

proof -

have "PositiveSlopes =

{s ∈ Slopes. s‘‘(PositiveIntegers) ∩ PositiveIntegers /∈ Fin(int)}"

using PositiveSlopes_def by simp

then show "PositiveSlopes ⊆ Slopes" by (rule subset_with_property)

then have
"{SlopeEquivalenceRel‘‘{s}. s ∈ PositiveSlopes } ⊆
Slopes//SlopeEquivalenceRel"

using EquivClass_1_L1A by simp

then show "PositiveReals ⊆ RealNumbers"

using PositiveReals_def RealNumbers_def by simp

qed

Positive reals are the same as classes of a positive slopes.

lemma (in real1) Real_ZF_1_2_L2:

shows "a ∈ PositiveReals ←→ (∃ f∈S+. a = [f])"

proof
assume "a ∈ PositiveReals"

then have "a ∈ {([s]). s ∈ S+}" using PositiveReals_def
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by simp

then show "∃ f∈S+. a = [f]" by auto

next assume "∃ f∈S+. a = [f]"

then have "a ∈ {([s]). s ∈ S+}" by auto

then show "a ∈ PositiveReals" using PositiveReals_def

by simp

qed

Let’s recall from Int_ZF_2.thy that the sum and composition of positive
slopes is a positive slope.

lemma (in real1) Real_ZF_1_2_L3:

assumes "f∈S+" "g∈S+"
shows
"f+g ∈ S+"
"f◦g ∈ S+"
using assms Slopes_def PositiveSlopes_def PositiveIntegers_def

SlopeOp1_def int1.sum_of_pos_sls_is_pos_sl

SlopeOp2_def int1.comp_of_pos_sls_is_pos_sl

by auto

Bounded integer maps are not positive slopes.

lemma (in real1) Real_ZF_1_2_L5:

assumes "f ∈ BoundedIntMaps"

shows "f /∈ S+"
using assms BoundedIntMaps_def Slopes_def PositiveSlopes_def

PositiveIntegers_def int1.Int_ZF_2_3_L1B by simp

The set of positive reals is closed under addition and multiplication. Zero
(the neutral element of addition) is not a positive number.

lemma (in real1) Real_ZF_1_2_L6: shows
"PositiveReals {is closed under} RealAddition"

"PositiveReals {is closed under} RealMultiplication"

"0 /∈ PositiveReals"

proof -

{ fix a fix b

assume "a ∈ PositiveReals" and "b ∈ PositiveReals"

then obtain f g where
I: "f ∈ S+" "g ∈ S+" and
II: "a = [f]" "b = [g]"

using Real_ZF_1_2_L2 by auto

then have "f ∈ S" "g ∈ S" using Real_ZF_1_2_L1 Slopes_def

by auto

with I II have
"a+b ∈ PositiveReals ∧ a·b ∈ PositiveReals"

using Real_ZF_1_1_L4 Real_ZF_1_2_L3 Real_ZF_1_2_L2

by auto

} then show
"PositiveReals {is closed under} RealAddition"
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"PositiveReals {is closed under} RealMultiplication"

using IsOpClosed_def

by auto

{ assume "0 ∈ PositiveReals"

then obtain f where "f ∈ S+" and "0 = [f]"

using Real_ZF_1_2_L2 by auto

then have False

using Real_ZF_1_2_L1 Slopes_def Real_ZF_1_L10 Real_ZF_1_2_L5

by auto

} then show "0 /∈ PositiveReals" by auto

qed

If a class of a slope f is not zero, then either f is a positive slope or −f is
a positive slope. The real proof is in Int_ZF_2.thy.

lemma (in real1) Real_ZF_1_2_L7:

assumes A1: "f ∈ S" and A2: "[f] 6= 0"
shows "(f ∈ S+) Xor ((-f) ∈ S+)"
using assms Slopes_def SlopeEquivalenceRel_def BoundedIntMaps_def

PositiveSlopes_def PositiveIntegers_def

Real_ZF_1_L10 int1.Int_ZF_2_3_L8 by simp

The next lemma rephrases Int_ZF_2_3_L10 in the notation used in real1

context.

lemma (in real1) Real_ZF_1_2_L8:

assumes A1: "f ∈ S" "g ∈ S"
and A2: "(f ∈ S+) Xor (g ∈ S+)"
shows "([f] ∈ PositiveReals) Xor ([g] ∈ PositiveReals)"

using assms PositiveReals_def SlopeEquivalenceRel_def Slopes_def

SlopeOp1_def BoundedIntMaps_def PositiveSlopes_def PositiveIntegers_def

int1.Int_ZF_2_3_L10 by simp

The trichotomy law for the (potential) order on reals: if a 6= 0, then either
a is positive or −a is potitive.

lemma (in real1) Real_ZF_1_2_L9:

assumes A1: "a∈IR" and A2: "a 6=0"
shows "(a ∈ PositiveReals) Xor ((-a) ∈ PositiveReals)"

proof -

from A1 obtain f where I: "f ∈ S" "a = [f]"

using Real_ZF_1_1_L3A by auto

with A2 have "([f] ∈ PositiveReals) Xor ([-f] ∈ PositiveReals)"

using Slopes_def BoundedIntMaps_def int1.Int_ZF_2_1_L12

Real_ZF_1_2_L7 Real_ZF_1_2_L8 by simp

with I show "(a ∈ PositiveReals) Xor ((-a) ∈ PositiveReals)"

using Real_ZF_1_1_L4A by simp

qed

Finally we are ready to prove that real numbers form an ordered ring with
no zero divisors.
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theorem reals_are_ord_ring: shows
"IsAnOrdRing(RealNumbers,RealAddition,RealMultiplication,OrderOnReals)"

"OrderOnReals {is total on} RealNumbers"

"PositiveSet(RealNumbers,RealAddition,OrderOnReals) = PositiveReals"

"HasNoZeroDivs(RealNumbers,RealAddition,RealMultiplication)"

proof -

let ?R = "RealNumbers"

let ?A = "RealAddition"

let ?M = "RealMultiplication"

let ?P = "PositiveReals"

let ?r = "OrderOnReals"

let ?z = "TheNeutralElement(?R, ?A)"

have I:

"ring0(?R, ?A, ?M)"

"?M {is commutative on} ?R"

"?P ⊆ ?R"

"?P {is closed under} ?A"

"TheNeutralElement(?R, ?A) /∈ ?P"

"∀ a∈?R. a 6= ?z −→ (a ∈ ?P) Xor (GroupInv(?R, ?A)‘(a) ∈ ?P)"

"?P {is closed under} ?M"

"?r = OrderFromPosSet(?R, ?A, ?P)"

using real0.Real_ZF_1_L3 real_mult_commutative Real_ZF_1_2_L1

real1.Real_ZF_1_2_L6 real1.Real_ZF_1_2_L9 OrderOnReals_def

by auto

then show "IsAnOrdRing(?R, ?A, ?M, ?r)"

by (rule ring0.ring_ord_by_positive_set)

from I show "?r {is total on} ?R"

by (rule ring0.ring_ord_by_positive_set)

from I show "PositiveSet(?R,?A,?r) = ?P"

by (rule ring0.ring_ord_by_positive_set)

from I show "HasNoZeroDivs(?R,?A,?M)"

by (rule ring0.ring_ord_by_positive_set)

qed

All theorems proven in the ring1 (about ordered rings), group3 (about or-
dered groups) and group1 (about groups) contexts are valid as applied to
ordered real numbers with addition and (real) order.

lemma Real_ZF_1_2_L10: shows
"ring1(RealNumbers,RealAddition,RealMultiplication,OrderOnReals)"

"IsAnOrdGroup(RealNumbers,RealAddition,OrderOnReals)"

"group3(RealNumbers,RealAddition,OrderOnReals)"

"OrderOnReals {is total on} RealNumbers"

proof -

show "ring1(RealNumbers,RealAddition,RealMultiplication,OrderOnReals)"

using reals_are_ord_ring OrdRing_ZF_1_L2 by simp

then show
"IsAnOrdGroup(RealNumbers,RealAddition,OrderOnReals)"

"group3(RealNumbers,RealAddition,OrderOnReals)"

"OrderOnReals {is total on} RealNumbers"
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using ring1.OrdRing_ZF_1_L4 by auto

qed

If a = b or b− a is positive, then a is less or equal b.

lemma (in real1) Real_ZF_1_2_L11: assumes A1: "a∈IR" "b∈IR" and
A3: "a=b ∨ b-a ∈ PositiveReals"

shows "a≤b"
using assms reals_are_ord_ring Real_ZF_1_2_L10

group3.OrderedGroup_ZF_1_L30 by simp

A sufficient condition for two classes to be in the real order.

lemma (in real1) Real_ZF_1_2_L12: assumes A1: "f ∈ S" "g ∈ S" and
A2: "f∼g ∨ (g + (-f)) ∈ S+"
shows "[f] ≤ [g]"

proof -

from A1 A2 have "[f] = [g] ∨ [g]-[f] ∈ PositiveReals"

using Real_ZF_1_1_L5A Real_ZF_1_2_L2 Real_ZF_1_1_L4B

by auto

with A1 show "[f] ≤ [g]" using Real_ZF_1_1_L3 Real_ZF_1_2_L11

by simp

qed

Taking negative on both sides reverses the inequality, a case with an inverse
on one side. Property of ordered groups.

lemma (in real1) Real_ZF_1_2_L13:

assumes A1: "a∈IR" and A2: "(-a) ≤ b"

shows "(-b) ≤ a"

using assms Real_ZF_1_2_L10 group3.OrderedGroup_ZF_1_L5AG

by simp

Real order is antisymmetric.

lemma (in real1) real_ord_antisym:

assumes A1: "a≤b" "b≤a" shows "a=b"

proof -

from A1 have
"group3(RealNumbers,RealAddition,OrderOnReals)"

"〈a,b〉 ∈ OrderOnReals" "〈b,a〉 ∈ OrderOnReals"

using Real_ZF_1_2_L10 by auto

then show "a=b" by (rule group3.group_order_antisym)

qed

Real order is transitive.

lemma (in real1) real_ord_transitive: assumes A1: "a≤b" "b≤c"
shows "a≤c"

proof -

from A1 have
"group3(RealNumbers,RealAddition,OrderOnReals)"

"〈a,b〉 ∈ OrderOnReals" "〈b,c〉 ∈ OrderOnReals"
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using Real_ZF_1_2_L10 by auto

then have "〈a,c〉 ∈ OrderOnReals"

by (rule group3.Group_order_transitive)

then show "a≤c" by simp

qed

We can multiply both sides of an inequality by a nonnegative real number.

lemma (in real1) Real_ZF_1_2_L14:

assumes "a≤b" and "0≤c"
shows
"a·c ≤ b·c"
"c·a ≤ c·b"
using assms Real_ZF_1_2_L10 ring1.OrdRing_ZF_1_L9

by auto

A special case of Real_ZF_1_2_L14: we can multiply an inequality by a real
number.

lemma (in real1) Real_ZF_1_2_L14A:

assumes A1: "a≤b" and A2: "c∈IR+"

shows "c·a ≤ c·b"
using assms Real_ZF_1_2_L10 ring1.OrdRing_ZF_1_L9A

by simp

In the real1 context notation a ≤ b implies that a and b are real numbers.

lemma (in real1) Real_ZF_1_2_L15: assumes "a≤b" shows "a∈IR" "b∈IR"

using assms Real_ZF_1_2_L10 group3.OrderedGroup_ZF_1_L4

by auto

a ≤ b implies that 0 ≤ b− a.

lemma (in real1) Real_ZF_1_2_L16: assumes "a≤b"
shows "0 ≤ b-a"

using assms Real_ZF_1_2_L10 group3.OrderedGroup_ZF_1_L12A

by simp

A sum of nonnegative elements is nonnegative.

lemma (in real1) Real_ZF_1_2_L17: assumes "0≤a" "0≤b"
shows "0 ≤ a+b"

using assms Real_ZF_1_2_L10 group3.OrderedGroup_ZF_1_L12

by simp

We can add sides of two inequalities

lemma (in real1) Real_ZF_1_2_L18: assumes "a≤b" "c≤d"
shows "a+c ≤ b+d"

using assms Real_ZF_1_2_L10 group3.OrderedGroup_ZF_1_L5B

by simp

The order on real is reflexive.

lemma (in real1) real_ord_refl: assumes "a∈IR" shows "a≤a"
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using assms Real_ZF_1_2_L10 group3.OrderedGroup_ZF_1_L3

by simp

We can add a real number to both sides of an inequality.

lemma (in real1) add_num_to_ineq: assumes "a≤b" and "c∈IR"

shows "a+c ≤ b+c"

using assms Real_ZF_1_2_L10 IsAnOrdGroup_def by simp

We can put a number on the other side of an inequality, changing its sign.

lemma (in real1) Real_ZF_1_2_L19:

assumes "a∈IR" "b∈IR" and "c ≤ a+b"

shows "c-b ≤ a"

using assms Real_ZF_1_2_L10 group3.OrderedGroup_ZF_1_L9C

by simp

What happens when one real number is not greater or equal than another?

lemma (in real1) Real_ZF_1_2_L20: assumes "a∈IR" "b∈IR" and "¬(a≤b)"
shows "b < a"

proof -

from assms have I:

"group3(IR,RealAddition,OrderOnReals)"

"OrderOnReals {is total on} IR"

"a∈IR" "b∈IR" "¬(〈a,b〉 ∈ OrderOnReals)"

using Real_ZF_1_2_L10 by auto

then have "〈b,a〉 ∈ OrderOnReals"

by (rule group3.OrderedGroup_ZF_1_L8)

then have "b ≤ a" by simp

moreover from I have "a 6=b" by (rule group3.OrderedGroup_ZF_1_L8)

ultimately show "b < a" by auto

qed

We can put a number on the other side of an inequality, changing its sign,
version with a minus.

lemma (in real1) Real_ZF_1_2_L21:

assumes "a∈IR" "b∈IR" and "c ≤ a-b"

shows "c+b ≤ a"

using assms Real_ZF_1_2_L10 group3.OrderedGroup_ZF_1_L5J

by simp

The order on reals is a relation on reals.

lemma (in real1) Real_ZF_1_2_L22: shows "OrderOnReals ⊆ IR×IR"

using Real_ZF_1_2_L10 IsAnOrdGroup_def

by simp

A set that is bounded above in the sense defined by order on reals is a subset
of real numbers.

lemma (in real1) Real_ZF_1_2_L23:

584



assumes A1: "IsBoundedAbove(A,OrderOnReals)"

shows "A ⊆ IR"

using A1 Real_ZF_1_2_L22 Order_ZF_3_L1A

by blast

Properties of the maximum of three real numbers.

lemma (in real1) Real_ZF_1_2_L24:

assumes A1: "a∈IR" "b∈IR" "c∈IR"

shows
"Maximum(OrderOnReals,{a,b,c}) ∈ {a,b,c}"

"Maximum(OrderOnReals,{a,b,c}) ∈ IR"

"a ≤ Maximum(OrderOnReals,{a,b,c})"

"b ≤ Maximum(OrderOnReals,{a,b,c})"

"c ≤ Maximum(OrderOnReals,{a,b,c})"

proof -

have "IsLinOrder(IR,OrderOnReals)"

using Real_ZF_1_2_L10 group3.group_ord_total_is_lin

by simp

with A1 show
"Maximum(OrderOnReals,{a,b,c}) ∈ {a,b,c}"

"Maximum(OrderOnReals,{a,b,c}) ∈ IR"

"a ≤ Maximum(OrderOnReals,{a,b,c})"

"b ≤ Maximum(OrderOnReals,{a,b,c})"

"c ≤ Maximum(OrderOnReals,{a,b,c})"

using Finite_ZF_1_L2A by auto

qed

A form of transitivity for the order on reals.

lemma (in real1) real_strict_ord_transit:

assumes A1: "a≤b" and A2: "b<c"

shows "a<c"

proof -

from A1 A2 have I:

"group3(IR,RealAddition,OrderOnReals)"

"〈a,b〉 ∈ OrderOnReals" "〈b,c〉 ∈ OrderOnReals ∧ b6=c"

using Real_ZF_1_2_L10 by auto

then have "〈a,c〉 ∈ OrderOnReals ∧ a6=c" by (rule group3.group_strict_ord_transit)

then show "a<c" by simp

qed

We can multiply a right hand side of an inequality between positive real
numbers by a number that is greater than one.

lemma (in real1) Real_ZF_1_2_L25:

assumes "b ∈ IR+" and "a≤b" and "1<c"
shows "a<b·c"
using assms reals_are_ord_ring Real_ZF_1_2_L10 ring1.OrdRing_ZF_3_L17

by simp

We can move a real number to the other side of a strict inequality, changing
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its sign.

lemma (in real1) Real_ZF_1_2_L26:

assumes "a∈IR" "b∈IR" and "a-b < c"

shows "a < c+b"

using assms Real_ZF_1_2_L10 group3.OrderedGroup_ZF_1_L12B

by simp

Real order is translation invariant.

lemma (in real1) real_ord_transl_inv:

assumes "a≤b" and "c∈IR"

shows "c+a ≤ c+b"

using assms Real_ZF_1_2_L10 IsAnOrdGroup_def

by simp

It is convenient to have the transitivity of the order on integers in the nota-
tion specific to real1 context. This may be confusing for the presentation
readers: even though ≤ and ≤ are printed in the same way, they are different
symbols in the source. In the real1 context the former denotes inequality
between integers, and the latter denotes inequality between real numbers
(classes of slopes). The next lemma is about transitivity of the order rela-
tion on integers.

lemma (in real1) int_order_transitive:

assumes A1: "a≤b" "b≤c"
shows "a≤c"

proof -

from A1 have
"〈a,b〉 ∈ IntegerOrder" and "〈b,c〉 ∈ IntegerOrder"

by auto

then have "〈a,c〉 ∈ IntegerOrder"

by (rule Int_ZF_2_L5)

then show "a≤c" by simp

qed

A property of nonempty subsets of real numbers that don’t have a maximum:
for any element we can find one that is (strictly) greater.

lemma (in real1) Real_ZF_1_2_L27:

assumes "A⊆IR" and "¬HasAmaximum(OrderOnReals,A)" and "x∈A"
shows "∃ y∈A. x<y"

using assms Real_ZF_1_2_L10 group3.OrderedGroup_ZF_2_L2B

by simp

The next lemma shows what happens when one real number is not greater
or equal than another.

lemma (in real1) Real_ZF_1_2_L28:

assumes "a∈IR" "b∈IR" and "¬(a≤b)"
shows "b<a"

proof -
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from assms have
"group3(IR,RealAddition,OrderOnReals)"

"OrderOnReals {is total on} IR"

"a∈IR" "b∈IR" "〈a,b〉 /∈ OrderOnReals"

using Real_ZF_1_2_L10 by auto

then have "〈b,a〉 ∈ OrderOnReals ∧ b6=a"

by (rule group3.OrderedGroup_ZF_1_L8)

then show "b<a" by simp

qed

If a real number is less than another, then the second one can not be less or
equal that the first.

lemma (in real1) Real_ZF_1_2_L29:

assumes "a<b" shows "¬(b≤a)"
proof -

from assms have
"group3(IR,RealAddition,OrderOnReals)"

"〈a,b〉 ∈ OrderOnReals" "a6=b"

using Real_ZF_1_2_L10 by auto

then have "〈b,a〉 /∈ OrderOnReals"

by (rule group3.OrderedGroup_ZF_1_L8AA)

then show "¬(b≤a)" by simp

qed

47.4 Inverting reals

In this section we tackle the issue of existence of (multiplicative) inverses
of real numbers and show that real numbers form an ordered field. We
also restate here some facts specific to ordered fields that we need for the
construction. The actual proofs of most of these facts can be found in
Field_ZF.thy and OrderedField_ZF.thy

We rewrite the theorem from Int_ZF_2.thy that shows that for every positive
slope we can find one that is almost equal and has an inverse.

lemma (in real1) pos_slopes_have_inv: assumes "f ∈ S+"
shows "∃ g∈S. f∼g ∧ (∃ h∈S. g◦h ∼ id(int))"

using assms PositiveSlopes_def Slopes_def PositiveIntegers_def

int1.pos_slope_has_inv SlopeOp1_def SlopeOp2_def

BoundedIntMaps_def SlopeEquivalenceRel_def

by simp

The set of real numbers we are constructing is an ordered field.

theorem (in real1) reals_are_ord_field: shows
"IsAnOrdField(RealNumbers,RealAddition,RealMultiplication,OrderOnReals)"

proof -

let ?R = "RealNumbers"

let ?A = "RealAddition"

let ?M = "RealMultiplication"
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let ?r = "OrderOnReals"

have "ring1(?R,?A,?M,?r)" and "0 6= 1"
using reals_are_ord_ring OrdRing_ZF_1_L2 real_zero_not_one

by auto

moreover have "?M {is commutative on} ?R"

using real_mult_commutative by simp

moreover have
"∀ a∈PositiveSet(?R,?A,?r). ∃ b∈?R. a·b = 1"

proof
fix a assume "a ∈ PositiveSet(?R,?A,?r)"

then obtain f where I: "f∈S+" and II: "a = [f]"

using reals_are_ord_ring Real_ZF_1_2_L2

by auto

then have "∃ g∈S. f∼g ∧ (∃ h∈S. g◦h ∼ id(int))"

using pos_slopes_have_inv by simp

then obtain g where
III: "g∈S" and IV: "f∼g" and V: "∃ h∈S. g◦h ∼ id(int)"

by auto

from V obtain h where VII: "h∈S" and VIII: "g◦h ∼ id(int)"

by auto

from I III IV have "[f] = [g]"

using Real_ZF_1_2_L1 Slopes_def Real_ZF_1_1_L5

by auto

with II III VII VIII have "a·[h] = 1"
using Real_ZF_1_1_L4 Real_ZF_1_1_L5A real_one_cl_identity

by simp

with VII show "∃ b∈?R. a·b = 1" using Real_ZF_1_1_L3

by auto

qed
ultimately show ?thesis using ring1.OrdField_ZF_1_L4

by simp

qed

Reals form a field.

lemma reals_are_field:

shows "IsAfield(RealNumbers,RealAddition,RealMultiplication)"

using real1.reals_are_ord_field OrdField_ZF_1_L1A

by simp

Theorem proven in field0 and field1 contexts are valid as applied to real
numbers.

lemma field_cntxts_ok: shows
"field0(RealNumbers,RealAddition,RealMultiplication)"

"field1(RealNumbers,RealAddition,RealMultiplication,OrderOnReals)"

using reals_are_field real1.reals_are_ord_field

field_field0 OrdField_ZF_1_L2 by auto

If a is positive, then a−1 is also positive.

lemma (in real1) Real_ZF_1_3_L1: assumes "a ∈ IR+"
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shows "a−1 ∈ IR+" "a−1 ∈ IR"

using assms field_cntxts_ok field1.OrdField_ZF_1_L8 PositiveSet_def

by auto

A technical fact about multiplying strict inequality by the inverse of one of
the sides.

lemma (in real1) Real_ZF_1_3_L2:

assumes "a ∈ IR+" and "a−1 < b"

shows "1 < b·a"
using assms field_cntxts_ok field1.OrdField_ZF_2_L2

by simp

If a is smaller than b, then (b− a)−1 is positive.

lemma (in real1) Real_ZF_1_3_L3: assumes "a<b"

shows "(b-a)−1 ∈ IR+"

using assms field_cntxts_ok field1.OrdField_ZF_1_L9

by simp

We can put a positive factor on the other side of a strict inequality, changing
it to its inverse.

lemma (in real1) Real_ZF_1_3_L4:

assumes A1: "a∈IR" "b∈IR+" and A2: "a·b < c"

shows "a < c·b−1"

using assms field_cntxts_ok field1.OrdField_ZF_2_L6

by simp

We can put a positive factor on the other side of a strict inequality, changing
it to its inverse, version with the product initially on the right hand side.

lemma (in real1) Real_ZF_1_3_L4A:

assumes A1: "b∈IR" "c∈IR+" and A2: "a < b·c"
shows "a·c−1 < b"

using assms field_cntxts_ok field1.OrdField_ZF_2_L6A

by simp

We can put a positive factor on the other side of an inequality, changing it
to its inverse, version with the product initially on the right hand side.

lemma (in real1) Real_ZF_1_3_L4B:

assumes A1: "b∈IR" "c∈IR+" and A2: "a ≤ b·c"
shows "a·c−1 ≤ b"

using assms field_cntxts_ok field1.OrdField_ZF_2_L5A

by simp

We can put a positive factor on the other side of an inequality, changing it
to its inverse, version with the product initially on the left hand side.

lemma (in real1) Real_ZF_1_3_L4C:

assumes A1: "a∈IR" "b∈IR+" and A2: "a·b ≤ c"

shows "a ≤ c·b−1"

589



using assms field_cntxts_ok field1.OrdField_ZF_2_L5

by simp

A technical lemma about solving a strict inequality with three real numbers
and inverse of a difference.

lemma (in real1) Real_ZF_1_3_L5:

assumes "a<b" and "(b-a)−1 < c"

shows "1 + a·c < b·c"
using assms field_cntxts_ok field1.OrdField_ZF_2_L9

by simp

We can multiply an inequality by the inverse of a positive number.

lemma (in real1) Real_ZF_1_3_L6:

assumes "a≤b" and "c∈IR+" shows "a·c−1 ≤ b·c−1"

using assms field_cntxts_ok field1.OrdField_ZF_2_L3

by simp

We can multiply a strict inequality by a positive number or its inverse.

lemma (in real1) Real_ZF_1_3_L7:

assumes "a<b" and "c∈IR+" shows
"a·c < b·c"
"c·a < c·b"
"a·c−1 < b·c−1"

using assms field_cntxts_ok field1.OrdField_ZF_2_L4

by auto

An identity with three real numbers, inverse and cancelling.

lemma (in real1) Real_ZF_1_3_L8: assumes"a∈IR" "b∈IR" "b6=0" "c∈IR"

shows "a·b·(c·b−1) = a·c"
using assms field_cntxts_ok field0.Field_ZF_2_L6

by simp

47.5 Completeness

This goal of this section is to show that the order on real numbers is com-
plete, that is every subset of reals that is bounded above has a smallest
upper bound.

If m is an integer, then mR is a real number. Recall that in real1 context mR

denotes the class of the slope n 7→ m · n.

lemma (in real1) real_int_is_real: assumes "m ∈ int"

shows "mR ∈ IR"

using assms int1.Int_ZF_2_5_L1 Real_ZF_1_1_L3 by simp

The negative of the real embedding of an integer is the embedding of the
negative of the integer.

lemma (in real1) Real_ZF_1_4_L1: assumes "m ∈ int"
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shows "(-m)R = -(mR)"

using assms int1.Int_ZF_2_5_L3 int1.Int_ZF_2_5_L1 Real_ZF_1_1_L4A

by simp

The embedding of sum of integers is the sum of embeddings.

lemma (in real1) Real_ZF_1_4_L1A: assumes "m ∈ int" "k ∈ int"

shows "mR + kR = ((m+k)R)"

using assms int1.Int_ZF_2_5_L1 SlopeOp1_def int1.Int_ZF_2_5_L3A

Real_ZF_1_1_L4 by simp

The embedding of a difference of integers is the difference of embeddings.

lemma (in real1) Real_ZF_1_4_L1B: assumes A1: "m ∈ int" "k ∈ int"

shows "mR - kR = (m-k)R"

proof -

from A1 have "(-k) ∈ int" using int0.Int_ZF_1_1_L4

by simp

with A1 have "(m-k)R = mR + (-k)R"

using Real_ZF_1_4_L1A by simp

with A1 show "mR - kR = (m-k)R"

using Real_ZF_1_4_L1 by simp

qed

The embedding of the product of integers is the product of embeddings.

lemma (in real1) Real_ZF_1_4_L1C: assumes "m ∈ int" "k ∈ int"

shows "mR · kR = (m·k)R"
using assms int1.Int_ZF_2_5_L1 SlopeOp2_def int1.Int_ZF_2_5_L3B

Real_ZF_1_1_L4 by simp

For any real numbers there is an integer whose real version is greater or
equal.

lemma (in real1) Real_ZF_1_4_L2: assumes A1: "a∈IR"

shows "∃ m∈int. a ≤ mR"

proof -

from A1 obtain f where I: "f∈S" and II: "a = [f]"

using Real_ZF_1_1_L3A by auto

then have "∃ m∈int. ∃ g∈S.
{〈n,m·n〉 . n ∈ int} ∼ g ∧ (f∼g ∨ (g + (-f)) ∈ S+)"
using int1.Int_ZF_2_5_L2 Slopes_def SlopeOp1_def

BoundedIntMaps_def SlopeEquivalenceRel_def

PositiveIntegers_def PositiveSlopes_def

by simp

then obtain m g where III: "m∈int" and IV: "g∈S" and
"{〈n,m·n〉 . n ∈ int} ∼ g ∧ (f∼g ∨ (g + (-f)) ∈ S+)"
by auto

then have "mR = [g]" and "f ∼ g ∨ (g + (-f)) ∈ S+"
using Real_ZF_1_1_L5A by auto

with I II IV have "a ≤ mR" using Real_ZF_1_2_L12

by simp
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with III show "∃ m∈int. a ≤ mR" by auto

qed

For any real numbers there is an integer whose real version (embedding) is
less or equal.

lemma (in real1) Real_ZF_1_4_L3: assumes A1: "a∈IR"

shows "{m ∈ int. mR ≤ a} 6= 0"

proof -

from A1 have "(-a) ∈ IR" using Real_ZF_1_1_L8

by simp

then obtain m where I: "m∈int" and II: "(-a) ≤ mR"

using Real_ZF_1_4_L2 by auto

let ?k = "GroupInv(int,IntegerAddition)‘(m)"

from A1 I II have "?k ∈ int" and "?kR ≤ a"

using Real_ZF_1_2_L13 Real_ZF_1_4_L1 int0.Int_ZF_1_1_L4

by auto

then show ?thesis by auto

qed

Embeddings of two integers are equal only if the integers are equal.

lemma (in real1) Real_ZF_1_4_L4:

assumes A1: "m ∈ int" "k ∈ int" and A2: "mR = kR"

shows "m=k"

proof -

let ?r = "{〈n, IntegerMultiplication ‘ 〈m, n〉〉 . n ∈ int}"

let ?s = "{〈n, IntegerMultiplication ‘ 〈k, n〉〉 . n ∈ int}"

from A1 A2 have "?r ∼ ?s"

using int1.Int_ZF_2_5_L1 AlmostHoms_def Real_ZF_1_1_L5

by simp

with A1 have
"m ∈ int" "k ∈ int"

"〈?r,?s〉 ∈ QuotientGroupRel(AlmostHoms(int, IntegerAddition),

AlHomOp1(int, IntegerAddition),FinRangeFunctions(int, int))"

using SlopeEquivalenceRel_def Slopes_def SlopeOp1_def

BoundedIntMaps_def by auto

then show "m=k" by (rule int1.Int_ZF_2_5_L6)

qed

The embedding of integers preserves the order.

lemma (in real1) Real_ZF_1_4_L5: assumes A1: "m≤k"
shows "mR ≤ kR"

proof -

let ?r = "{〈n, m·n〉 . n ∈ int}"

let ?s = "{〈n, k·n〉 . n ∈ int}"

from A1 have "?r ∈ S" "?s ∈ S"
using int0.Int_ZF_2_L1A int1.Int_ZF_2_5_L1 by auto

moreover from A1 have "?r ∼ ?s ∨ ?s + (-?r) ∈ S+"
using Slopes_def SlopeOp1_def BoundedIntMaps_def SlopeEquivalenceRel_def

PositiveIntegers_def PositiveSlopes_def
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int1.Int_ZF_2_5_L4 by simp

ultimately show "mR ≤ kR" using Real_ZF_1_2_L12

by simp

qed

The embedding of integers preserves the strict order.

lemma (in real1) Real_ZF_1_4_L5A: assumes A1: "m≤k" "m6=k"

shows "mR < kR"

proof -

from A1 have "mR ≤ kR" using Real_ZF_1_4_L5

by simp

moreover
from A1 have T: "m ∈ int" "k ∈ int"

using int0.Int_ZF_2_L1A by auto

with A1 have "mR 6= kR" using Real_ZF_1_4_L4

by auto

ultimately show "mR < kR" by simp

qed

For any real number there is a positive integer whose real version is (strictly)
greater. This is Lemma 14 i) in [2].

lemma (in real1) Arthan_Lemma14i: assumes A1: "a∈IR"

shows "∃ n∈ZZ+. a < nR"

proof -

from A1 obtain m where I: "m∈int" and II: "a ≤ mR"

using Real_ZF_1_4_L2 by auto

let ?n = "GreaterOf(IntegerOrder,1Z,m) + 1Z"

from I have T: "?n ∈ZZ+" and "m ≤ ?n" "m 6=?n"

using int0.Int_ZF_1_5_L7B by auto

then have III: "mR < ?nR"

using Real_ZF_1_4_L5A by simp

with II have "a < ?nR" by (rule real_strict_ord_transit)

with T show ?thesis by auto

qed

If one embedding is less or equal than another, then the integers are also
less or equal.

lemma (in real1) Real_ZF_1_4_L6:

assumes A1: "k ∈ int" "m ∈ int" and A2: "mR ≤ kR"

shows "m≤k"
proof -

{ assume A3: "〈m,k〉 /∈ IntegerOrder"

with A1 have "〈k,m〉 ∈ IntegerOrder"

by (rule int0.Int_ZF_2_L19)

then have "kR ≤ mR" using Real_ZF_1_4_L5

by simp

with A2 have "mR = kR" by (rule real_ord_antisym)

with A1 have "k = m" using Real_ZF_1_4_L4
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by auto

moreover from A1 A3 have "k 6=m" by (rule int0.Int_ZF_2_L19)

ultimately have False by simp

} then show "m≤k" by auto

qed

The floor function is well defined and has expected properties.

lemma (in real1) Real_ZF_1_4_L7: assumes A1: "a∈IR"

shows
"IsBoundedAbove({m ∈ int. mR ≤ a},IntegerOrder)"

"{m ∈ int. mR ≤ a} 6= 0"

"bac ∈ int"

"bacR ≤ a"

proof -

let ?A = "{m ∈ int. mR ≤ a}"

from A1 obtain K where I: "K∈int" and II: "a ≤ (KR)"

using Real_ZF_1_4_L2 by auto

{ fix n assume "n ∈ ?A"

then have III: "n ∈ int" and IV: "nR ≤ a"

by auto

from IV II have "(nR) ≤ (KR)"

by (rule real_ord_transitive)

with I III have "n≤K" using Real_ZF_1_4_L6

by simp

} then have "∀ n∈?A. 〈n,K〉 ∈ IntegerOrder"

by simp

then show "IsBoundedAbove(?A,IntegerOrder)"

by (rule Order_ZF_3_L10)

moreover from A1 show "?A 6= 0" using Real_ZF_1_4_L3

by simp

ultimately have "Maximum(IntegerOrder,?A) ∈ ?A"

by (rule int0.int_bounded_above_has_max)

then show "bac ∈ int" "bacR ≤ a" by auto

qed

Every integer whose embedding is less or equal a real number a is less or
equal than the floor of a.

lemma (in real1) Real_ZF_1_4_L8:

assumes A1: "m ∈ int" and A2: "mR ≤ a"

shows "m ≤ bac"
proof -

let ?A = "{m ∈ int. mR ≤ a}"

from A2 have "IsBoundedAbove(?A,IntegerOrder)" and "?A6=0"

using Real_ZF_1_2_L15 Real_ZF_1_4_L7 by auto

then have "∀ x∈?A. 〈x,Maximum(IntegerOrder,?A)〉 ∈ IntegerOrder"

by (rule int0.int_bounded_above_has_max)

with A1 A2 show "m ≤ bac" by simp

qed
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Integer zero and one embed as real zero and one.

lemma (in real1) int_0_1_are_real_zero_one:

shows "0Z
R = 0" "1Z

R = 1"
using int1.Int_ZF_2_5_L7 BoundedIntMaps_def

real_one_cl_identity real_zero_cl_bounded_map

by auto

Integer two embeds as the real two.

lemma (in real1) int_two_is_real_two: shows "2Z
R = 2"

proof -

have "2Z
R = 1Z

R + 1Z
R"

using int0.int_zero_one_are_int Real_ZF_1_4_L1A

by simp

also have ". . . = 2" using int_0_1_are_real_zero_one

by simp

finally show "2Z
R = 2" by simp

qed

A positive integer embeds as a positive (hence nonnegative) real.

lemma (in real1) int_pos_is_real_pos: assumes A1: "p∈ZZ+"

shows
"pR ∈ IR"

"0 ≤ pR"

"pR ∈ IR+"

proof -

from A1 have I: "p ∈ int" "0Z ≤ p" "0Z 6= p"

using PositiveSet_def by auto

then have "pR ∈ IR" "0Z
R ≤ pR"

using real_int_is_real Real_ZF_1_4_L5 by auto

then show "pR ∈ IR" "0 ≤ pR"

using int_0_1_are_real_zero_one by auto

moreover have "0 6= pR"

proof -

{ assume "0 = pR"

with I have False using int_0_1_are_real_zero_one

int0.int_zero_one_are_int Real_ZF_1_4_L4 by auto

} then show "0 6= pR" by auto

qed
ultimately show "pR ∈ IR+" using PositiveSet_def

by simp

qed

The ordered field of reals we are constructing is archimedean, i.e., if x, y are
its elements with y positive, then there is a positive integer M such that x
is smaller than MRy. This is Lemma 14 ii) in [2].

lemma (in real1) Arthan_Lemma14ii: assumes A1: "x∈IR" "y ∈ IR+"

shows "∃ M∈ZZ+. x < MR·y"
proof -
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from A1 have
"∃ C∈ZZ+. x < CR" and "∃ D∈ZZ+. y−1 < DR"

using Real_ZF_1_3_L1 Arthan_Lemma14i by auto

then obtain C D where
I: "C∈ZZ+" and II: "x < CR" and
III: "D∈ZZ+" and IV: "y−1 < DR"

by auto

let ?M = "C·D"
from I III have
T: "?M ∈ ZZ+" "CR ∈ IR" "DR ∈ IR"

using int0.pos_int_closed_mul_unfold PositiveSet_def real_int_is_real

by auto

with A1 I III have "CR·(DR·y) = ?MR·y"
using PositiveSet_def Real_ZF_1_L6A Real_ZF_1_4_L1C

by simp

moreover from A1 I II IV have
"x < CR·(DR·y)"
using int_pos_is_real_pos Real_ZF_1_3_L2 Real_ZF_1_2_L25

by auto

ultimately have "x < ?MR·y"
by auto

with T show ?thesis by auto

qed

Taking the floor function preserves the order.

lemma (in real1) Real_ZF_1_4_L9: assumes A1: "a≤b"
shows "bac ≤ bbc"

proof -

from A1 have T: "a∈IR" using Real_ZF_1_2_L15

by simp

with A1 have "bacR ≤ a" and "a≤b"
using Real_ZF_1_4_L7 by auto

then have "bacR ≤ b" by (rule real_ord_transitive)

moreover from T have "bac ∈ int" using Real_ZF_1_4_L7

by simp

ultimately show "bac ≤ bbc" using Real_ZF_1_4_L8

by simp

qed

If S is bounded above and p is a positive intereger, then Γ(S, p) is well
defined.

lemma (in real1) Real_ZF_1_4_L10:

assumes A1: "IsBoundedAbove(S,OrderOnReals)" "S6=0" and A2: "p∈ZZ+"

shows
"IsBoundedAbove({bpR·xc. x∈S},IntegerOrder)"
"Γ(S,p) ∈ {bpR·xc. x∈S}"
"Γ(S,p) ∈ int"

proof -

let ?A = "{bpR·xc. x∈S}"
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from A1 obtain X where I: "∀ x∈S. x≤X"
using IsBoundedAbove_def by auto

{ fix m assume "m ∈ ?A"

then obtain x where "x∈S" and II: "m = bpR·xc"
by auto

with I have "x≤X" by simp

moreover from A2 have "0 ≤ pR" using int_pos_is_real_pos

by simp

ultimately have "pR·x ≤ pR·X" using Real_ZF_1_2_L14

by simp

with II have "m ≤ bpR·Xc" using Real_ZF_1_4_L9

by simp

} then have "∀ m∈?A. 〈m,bpR·Xc〉 ∈ IntegerOrder"

by auto

then show II: "IsBoundedAbove(?A,IntegerOrder)"

by (rule Order_ZF_3_L10)

moreover from A1 have III: "?A 6= 0" by simp

ultimately have "Maximum(IntegerOrder,?A) ∈ ?A"

by (rule int0.int_bounded_above_has_max)

moreover from II III have "Maximum(IntegerOrder,?A) ∈ int"

by (rule int0.int_bounded_above_has_max)

ultimately show "Γ(S,p) ∈ {bpR·xc. x∈S}" and "Γ(S,p) ∈ int"

by auto

qed

If p is a positive integer, then for all s ∈ S the floor of p · x is not greater
that Γ(S, p).

lemma (in real1) Real_ZF_1_4_L11:

assumes A1: "IsBoundedAbove(S,OrderOnReals)" and A2: "x∈S" and A3:

"p∈ZZ+"

shows "bpR·xc ≤ Γ(S,p)"
proof -

let ?A = "{bpR·xc. x∈S}"
from A2 have "S 6=0" by auto

with A1 A3 have "IsBoundedAbove(?A,IntegerOrder)" "?A 6= 0"

using Real_ZF_1_4_L10 by auto

then have "∀ x∈?A. 〈x,Maximum(IntegerOrder,?A)〉 ∈ IntegerOrder"

by (rule int0.int_bounded_above_has_max)

with A2 show "bpR·xc ≤ Γ(S,p)" by simp

qed

The candidate for supremum is an integer mapping with values given by Γ.

lemma (in real1) Real_ZF_1_4_L12:

assumes A1: "IsBoundedAbove(S,OrderOnReals)" "S6=0" and
A2: "g = {〈p,Γ(S,p)〉. p∈ZZ+}"

shows
"g : ZZ+→int"

"∀ n∈ZZ+. g‘(n) = Γ(S,n)"
proof -
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from A1 have "∀ n∈ZZ+. Γ(S,n) ∈ int" using Real_ZF_1_4_L10

by simp

with A2 show I: "g : ZZ+→int" using ZF_fun_from_total by simp

{ fix n assume "n∈ZZ+"

with A2 I have "g‘(n) = Γ(S,n)" using ZF_fun_from_tot_val

by simp

} then show "∀ n∈ZZ+. g‘(n) = Γ(S,n)" by simp

qed

Every integer is equal to the floor of its embedding.

lemma (in real1) Real_ZF_1_4_L14: assumes A1: "m ∈ int"

shows "bmRc = m"

proof -

let ?A = "{n ∈ int. nR ≤ mR }"

have "antisym(IntegerOrder)" using int0.Int_ZF_2_L4

by simp

moreover from A1 have "m ∈ ?A"

using real_int_is_real real_ord_refl by auto

moreover from A1 have "∀ n ∈ ?A. 〈n,m〉 ∈ IntegerOrder"

using Real_ZF_1_4_L6 by auto

ultimately show "bmRc = m" using Order_ZF_4_L14

by auto

qed

Floor of (real) zero is (integer) zero.

lemma (in real1) floor_01_is_zero_one: shows
"b0c = 0Z" "b1c = 1Z"

proof -

have "b(0Z)
Rc = 0Z" and "b(1Z)

Rc = 1Z"

using int0.int_zero_one_are_int Real_ZF_1_4_L14

by auto

then show "b0c = 0Z" and "b1c = 1Z"

using int_0_1_are_real_zero_one

by auto

qed

Floor of (real) two is (integer) two.

lemma (in real1) floor_2_is_two: shows "b2c = 2Z"

proof -

have "b(2Z)
Rc = 2Z"

using int0.int_two_three_are_int Real_ZF_1_4_L14

by simp

then show "b2c = 2Z" using int_two_is_real_two

by simp

qed

Floor of a product of embeddings of integers is equal to the product of
integers.

lemma (in real1) Real_ZF_1_4_L14A: assumes A1: "m ∈ int" "k ∈ int"
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shows "bmR·kRc = m·k"
proof -

from A1 have T: "m·k ∈ int"

using int0.Int_ZF_1_1_L5 by simp

from A1 have "bmR·kRc = b(m·k)Rc" using Real_ZF_1_4_L1C

by simp

with T show "bmR·kRc = m·k" using Real_ZF_1_4_L14

by simp

qed

Floor of the sum of a number and the embedding of an integer is the floor
of the number plus the integer.

lemma (in real1) Real_ZF_1_4_L15: assumes A1: "x∈IR" and A2: "p ∈ int"

shows "bx + pRc = bxc + p"

proof -

let ?A = "{n ∈ int. nR ≤ x + pR}"

have "antisym(IntegerOrder)" using int0.Int_ZF_2_L4

by simp

moreover have "bxc + p ∈ ?A"

proof -

from A1 A2 have "bxcR ≤ x" and "pR ∈ IR"

using Real_ZF_1_4_L7 real_int_is_real by auto

then have "bxcR + pR ≤ x + pR"

using add_num_to_ineq by simp

moreover from A1 A2 have "(bxc + p)R = bxcR + pR"

using Real_ZF_1_4_L7 Real_ZF_1_4_L1A by simp

ultimately have "(bxc + p)R ≤ x + pR"

by simp

moreover from A1 A2 have "bxc + p ∈ int"

using Real_ZF_1_4_L7 int0.Int_ZF_1_1_L5 by simp

ultimately show "bxc + p ∈ ?A" by auto

qed
moreover have "∀ n∈?A. n ≤ bxc + p"

proof
fix n assume "n∈?A"
then have I: "n ∈ int" and "nR ≤ x + pR"

by auto

with A1 A2 have "nR - pR ≤ x"

using real_int_is_real Real_ZF_1_2_L19

by simp

with A2 I have "b(n-p)Rc ≤ bxc"
using Real_ZF_1_4_L1B Real_ZF_1_4_L9

by simp

moreover
from A2 I have "n-p ∈ int"

using int0.Int_ZF_1_1_L5 by simp

then have "b(n-p)Rc = n-p"

using Real_ZF_1_4_L14 by simp

ultimately have "n-p ≤ bxc"
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by simp

with A2 I show "n ≤ bxc + p"

using int0.Int_ZF_2_L9C by simp

qed
ultimately show "bx + pRc = bxc + p"

using Order_ZF_4_L14 by auto

qed

Floor of the difference of a number and the embedding of an integer is the
floor of the number minus the integer.

lemma (in real1) Real_ZF_1_4_L16: assumes A1: "x∈IR" and A2: "p ∈ int"

shows "bx - pRc = bxc - p"

proof -

from A2 have "bx - pRc = bx + (-p)Rc"
using Real_ZF_1_4_L1 by simp

with A1 A2 show "bx - pRc = bxc - p"

using int0.Int_ZF_1_1_L4 Real_ZF_1_4_L15 by simp

qed

The floor of sum of embeddings is the sum of the integers.

lemma (in real1) Real_ZF_1_4_L17: assumes "m ∈ int" "n ∈ int"

shows "b(mR) + nRc = m + n"

using assms real_int_is_real Real_ZF_1_4_L15 Real_ZF_1_4_L14

by simp

A lemma about adding one to floor.

lemma (in real1) Real_ZF_1_4_L17A: assumes A1: "a∈IR"

shows "1 + bacR = (1Z + bac)R"
proof -

have "1 + bacR = 1Z
R + bacR"

using int_0_1_are_real_zero_one by simp

with A1 show "1 + bacR = (1Z + bac)R"
using int0.int_zero_one_are_int Real_ZF_1_4_L7 Real_ZF_1_4_L1A

by simp

qed

The difference between the a number and the embedding of its floor is
(strictly) less than one.

lemma (in real1) Real_ZF_1_4_L17B: assumes A1: "a∈IR"

shows
"a - bacR < 1"
"a < (1Z + bac)R"

proof -

from A1 have T1: "bac ∈ int" "bacR ∈ IR" and
T2: "1 ∈ IR" "a - bacR ∈ IR"

using Real_ZF_1_4_L7 real_int_is_real Real_ZF_1_L6 Real_ZF_1_L4

by auto

{ assume "1 ≤ a - bacR"
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with A1 T1 have "b1Z
R + bacRc ≤ bac"

using Real_ZF_1_2_L21 Real_ZF_1_4_L9 int_0_1_are_real_zero_one

by simp

with T1 have False

using int0.int_zero_one_are_int Real_ZF_1_4_L17

int0.Int_ZF_1_2_L3AA by simp

} then have I: "¬(1 ≤ a - bacR)" by auto

with T2 show II: "a - bacR < 1"
by (rule Real_ZF_1_2_L20)

with A1 T1 I II have
"a < 1 + bacR"
using Real_ZF_1_2_L26 by simp

with A1 show "a < (1Z + bac)R"
using Real_ZF_1_4_L17A by simp

qed

The next lemma corresponds to Lemma 14 iii) in [2]. It says that we can
find a rational number between any two different real numbers.

lemma (in real1) Arthan_Lemma14iii: assumes A1: "x<y"

shows "∃ M∈int. ∃ N∈ZZ+. x·NR < MR ∧ MR < y·NR"
proof -

from A1 have "(y-x)−1 ∈ IR+" using Real_ZF_1_3_L3

by simp

then have
"∃ N∈ZZ+. (y-x)−1 < NR"

using Arthan_Lemma14i PositiveSet_def by simp

then obtain N where I: "N∈ZZ+" and II: "(y-x)−1 < NR"

by auto

let ?M = "1Z + bx·NRc"
from A1 I have

T1: "x∈IR" "NR ∈ IR" "NR ∈ IR+" "x·NR ∈ IR"

using Real_ZF_1_2_L15 PositiveSet_def real_int_is_real

Real_ZF_1_L6 int_pos_is_real_pos by auto

then have T2: "?M ∈ int" using
int0.int_zero_one_are_int Real_ZF_1_4_L7 int0.Int_ZF_1_1_L5

by simp

from T1 have III: "x·NR < ?MR"

using Real_ZF_1_4_L17B by simp

from T1 have "(1 + bx·NRcR) ≤ (1 + x·NR)"
using Real_ZF_1_4_L7 Real_ZF_1_L4 real_ord_transl_inv

by simp

with T1 have "?MR ≤ (1 + x·NR)"
using Real_ZF_1_4_L17A by simp

moreover from A1 II have "(1 + x·NR) < y·NR"
using Real_ZF_1_3_L5 by simp

ultimately have "?MR < y·NR"
by (rule real_strict_ord_transit)

with I T2 III show ?thesis by auto

qed
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Some estimates for the homomorphism difference of the floor function.

lemma (in real1) Real_ZF_1_4_L18: assumes A1: "x∈IR" "y∈IR"

shows
"abs(bx+yc - bxc - byc) ≤ 2Z"

proof -

from A1 have T:

"bxcR ∈ IR" "bycR ∈ IR"

"x+y - (bxcR) ∈ IR"

using Real_ZF_1_4_L7 real_int_is_real Real_ZF_1_L6

by auto

from A1 have
"0 ≤ x - (bxcR) + (y - (bycR))"
"x - (bxcR) + (y - (bycR)) ≤ 2"
using Real_ZF_1_4_L7 Real_ZF_1_2_L16 Real_ZF_1_2_L17

Real_ZF_1_4_L17B Real_ZF_1_2_L18 by auto

moreover from A1 T have
"x - (bxcR) + (y - (bycR)) = x+y - (bxcR) - (bycR)"
using Real_ZF_1_L7A by simp

ultimately have
"0 ≤ x+y - (bxcR) - (bycR)"
"x+y - (bxcR) - (bycR) ≤ 2"
by auto

then have
"b0c ≤ bx+y - (bxcR) - (bycR)c"
"bx+y - (bxcR) - (bycR)c ≤ b2c"
using Real_ZF_1_4_L9 by auto

then have
"0Z ≤ bx+y - (bxcR) - (bycR)c"
"bx+y - (bxcR) - (bycR)c ≤ 2Z"

using floor_01_is_zero_one floor_2_is_two by auto

moreover from A1 have
"bx+y - (bxcR) - (bycR)c = bx+yc - bxc - byc"
using Real_ZF_1_L6 Real_ZF_1_4_L7 real_int_is_real Real_ZF_1_4_L16

by simp

ultimately have
"0Z ≤ bx+yc - bxc - byc"
"bx+yc - bxc - byc ≤ 2Z"

by auto

then show "abs(bx+yc - bxc - byc) ≤ 2Z"

using int0.Int_ZF_2_L16 by simp

qed

Suppose S 6= ∅ is bounded above and Γ(S,m) = bmR · xc for some positive
integer m and x ∈ S. Then if y ∈ S, x ≤ y we also have Γ(S,m) = bmR · yc.
lemma (in real1) Real_ZF_1_4_L20:

assumes A1: "IsBoundedAbove(S,OrderOnReals)" "S6=0" and
A2: "n∈ZZ+" "x∈S" and
A3: "Γ(S,n) = bnR·xc" and
A4: "y∈S" "x≤y"
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shows "Γ(S,n) = bnR·yc"
proof -

from A2 A4 have "bnR·xc ≤ b(nR)·yc"
using int_pos_is_real_pos Real_ZF_1_2_L14 Real_ZF_1_4_L9

by simp

with A3 have "〈Γ(S,n),b(nR)·yc〉 ∈ IntegerOrder"

by simp

moreover from A1 A2 A4 have "〈bnR·yc,Γ(S,n)〉 ∈ IntegerOrder"

using Real_ZF_1_4_L11 by simp

ultimately show "Γ(S,n) = bnR·yc"
by (rule int0.Int_ZF_2_L3)

qed

The homomorphism difference of n 7→ Γ(S, n) is bounded by 2 on positive
integers.

lemma (in real1) Real_ZF_1_4_L21:

assumes A1: "IsBoundedAbove(S,OrderOnReals)" "S6=0" and
A2: "m∈ZZ+" "n∈ZZ+"

shows "abs(Γ(S,m+n) - Γ(S,m) - Γ(S,n)) ≤ 2Z"

proof -

from A2 have T: "m+n ∈ ZZ+" using int0.pos_int_closed_add_unfolded

by simp

with A1 A2 have
"Γ(S,m) ∈ {bmR·xc. x∈S}" and
"Γ(S,n) ∈ {bnR·xc. x∈S}" and
"Γ(S,m+n) ∈ {b(m+n)R·xc. x∈S}"
using Real_ZF_1_4_L10 by auto

then obtain a b c where I: "a∈S" "b∈S" "c∈S"
and II:

"Γ(S,m) = bmR·ac"
"Γ(S,n) = bnR·bc"
"Γ(S,m+n) = b(m+n)R·cc"
by auto

let ?d = "Maximum(OrderOnReals,{a,b,c})"

from A1 I have "a∈IR" "b∈IR" "c∈IR"

using Real_ZF_1_2_L23 by auto

then have IV:

"?d ∈ {a,b,c}"

"?d ∈ IR"

"a ≤ ?d"

"b ≤ ?d"

"c ≤ ?d"

using Real_ZF_1_2_L24 by auto

with I have V: "?d ∈ S" by auto

from A1 T I II IV V have "Γ(S,m+n) = b(m+n)R·?dc"
using Real_ZF_1_4_L20 by blast

also from A2 have ". . . = b((mR)+(nR))·?dc"
using Real_ZF_1_4_L1A PositiveSet_def by simp

also from A2 IV have ". . . = b(mR)·?d + (nR)·?dc"
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using PositiveSet_def real_int_is_real Real_ZF_1_L7

by simp

finally have "Γ(S,m+n) = b(mR)·?d + (nR)·?dc"
by simp

moreover from A1 A2 I II IV V have "Γ(S,m) = bmR·?dc"
using Real_ZF_1_4_L20 by blast

moreover from A1 A2 I II IV V have "Γ(S,n) = bnR·?dc"
using Real_ZF_1_4_L20 by blast

moreover from A1 T I II IV V have "Γ(S,m+n) = b(m+n)R·?dc"
using Real_ZF_1_4_L20 by blast

ultimately have "abs(Γ(S,m+n) - Γ(S,m) - Γ(S,n)) =

abs(b(mR)·?d + (nR)·?dc - bmR·?dc - bnR·?dc)"
by simp

with A2 IV show
"abs(Γ(S,m+n) - Γ(S,m) - Γ(S,n)) ≤ 2Z"

using PositiveSet_def real_int_is_real Real_ZF_1_L6

Real_ZF_1_4_L18 by simp

qed

The next lemma provides sufficient condition for an odd function to be an
almost homomorphism. It says for odd functions we only need to check that
the homomorphism difference (denoted δ in the real1 context) is bounded
on positive integers. This is really proven in Int_ZF_2.thy, but we restate
it here for convenience. Recall from Group_ZF_3.thy that OddExtension of a
function defined on the set of positive elements (of an ordered group) is the
only odd function that is equal to the given one when restricted to positive
elements.

lemma (in real1) Real_ZF_1_4_L21A:

assumes A1: "f:ZZ+→int" "∀ a∈ZZ+. ∀ b∈ZZ+. abs(δ(f,a,b)) ≤ L"

shows "OddExtension(int,IntegerAddition,IntegerOrder,f) ∈ S"
using A1 int1.Int_ZF_2_1_L24 by auto

The candidate for (a representant of) the supremum of a nonempty bounded
above set is a slope.

lemma (in real1) Real_ZF_1_4_L22:

assumes A1: "IsBoundedAbove(S,OrderOnReals)" "S6=0" and
A2: "g = {〈p,Γ(S,p)〉. p∈ZZ+}"

shows "OddExtension(int,IntegerAddition,IntegerOrder,g) ∈ S"
proof -

from A1 A2 have "g: ZZ+→int" by (rule Real_ZF_1_4_L12)

moreover have "∀ m∈ZZ+. ∀ n∈ZZ+. abs(δ(g,m,n)) ≤ 2Z"

proof -

{ fix m n assume A3: "m∈ZZ+" "n∈ZZ+"

then have "m+n ∈ ZZ+" "m∈ZZ+" "n∈ZZ+"

using int0.pos_int_closed_add_unfolded

by auto

moreover from A1 A2 have "∀ n∈ZZ+. g‘(n) = Γ(S,n)"
by (rule Real_ZF_1_4_L12)
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ultimately have "δ(g,m,n) = Γ(S,m+n) - Γ(S,m) - Γ(S,n)"
by simp

moreover from A1 A3 have
"abs(Γ(S,m+n) - Γ(S,m) - Γ(S,n)) ≤ 2Z"

by (rule Real_ZF_1_4_L21)

ultimately have "abs(δ(g,m,n)) ≤ 2Z"

by simp

} then show "∀ m∈ZZ+. ∀ n∈ZZ+. abs(δ(g,m,n)) ≤ 2Z"

by simp

qed
ultimately show ?thesis by (rule Real_ZF_1_4_L21A)

qed

A technical lemma used in the proof that all elements of S are less or equal
than the candidate for supremum of S.

lemma (in real1) Real_ZF_1_4_L23:

assumes A1: "f ∈ S" and A2: "N ∈ int" "M ∈ int" and
A3: "∀ n∈ZZ+. M·n ≤ f‘(N·n)"
shows "MR ≤ [f]·(NR)"

proof -

let ?MS = "{〈n, M·n〉 . n ∈ int}"

let ?NS = "{〈n, N·n〉 . n ∈ int}"

from A1 A2 have T: "?MS ∈ S" "?NS ∈ S" "f◦?NS ∈ S"
using int1.Int_ZF_2_5_L1 int1.Int_ZF_2_1_L11 SlopeOp2_def

by auto

moreover from A1 A2 A3 have "?MS ∼ f◦?NS ∨ f◦?NS + (-?MS) ∈ S+"
using int1.Int_ZF_2_5_L8 SlopeOp2_def SlopeOp1_def Slopes_def

BoundedIntMaps_def SlopeEquivalenceRel_def PositiveIntegers_def

PositiveSlopes_def by simp

ultimately have "[?MS] ≤ [f◦?NS]" using Real_ZF_1_2_L12

by simp

with A1 T show "MR ≤ [f]·(NR)" using Real_ZF_1_1_L4

by simp

qed

A technical lemma aimed used in the proof the candidate for supremum of
S is less or equal than any upper bound for S.

lemma (in real1) Real_ZF_1_4_L23A:

assumes A1: "f ∈ S" and A2: "N ∈ int" "M ∈ int" and
A3: "∀ n∈ZZ+. f‘(N·n) ≤ M·n "

shows "[f]·(NR) ≤ MR"

proof -

let ?MS = "{〈n, M·n〉 . n ∈ int}"

let ?NS = "{〈n, N·n〉 . n ∈ int}"

from A1 A2 have T: "?MS ∈ S" "?NS ∈ S" "f◦?NS ∈ S"
using int1.Int_ZF_2_5_L1 int1.Int_ZF_2_1_L11 SlopeOp2_def

by auto

moreover from A1 A2 A3 have
"f◦?NS ∼ ?MS ∨ ?MS + (-(f◦?NS)) ∈ S+"
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using int1.Int_ZF_2_5_L9 SlopeOp2_def SlopeOp1_def Slopes_def

BoundedIntMaps_def SlopeEquivalenceRel_def PositiveIntegers_def

PositiveSlopes_def by simp

ultimately have "[f◦?NS] ≤ [?MS]" using Real_ZF_1_2_L12

by simp

with A1 T show " [f]·(NR)≤ MR" using Real_ZF_1_1_L4

by simp

qed

The essential condition to claim that the candidate for supremum of S is
greater or equal than all elements of S.

lemma (in real1) Real_ZF_1_4_L24:

assumes A1: "IsBoundedAbove(S,OrderOnReals)" and
A2: "x<y" "y∈S" and
A4: "N ∈ ZZ+" "M ∈ int" and
A5: "MR < y·NR" and A6: "p ∈ ZZ+"

shows "p·M ≤ Γ(S,p·N)"
proof -

from A2 A4 A6 have T1:

"NR ∈ IR+" "y∈IR" "pR ∈ IR+"

"p·N ∈ ZZ+" "(p·N)R ∈ IR+"

using int_pos_is_real_pos Real_ZF_1_2_L15

int0.pos_int_closed_mul_unfold by auto

with A4 A6 have T2:

"p ∈ int" "pR ∈ IR" "NR ∈ IR" "NR 6= 0" "MR ∈ IR"

using real_int_is_real PositiveSet_def by auto

from T1 A5 have "b(p·N)R·(MR·(NR)−1)c ≤ b(p·N)R·yc"
using Real_ZF_1_3_L4A Real_ZF_1_3_L7 Real_ZF_1_4_L9

by simp

moreover from A1 A2 T1 have "b(p·N)R·yc ≤ Γ(S,p·N)"
using Real_ZF_1_4_L11 by simp

ultimately have I: "b(p·N)R·(MR·(NR)−1)c ≤ Γ(S,p·N)"
by (rule int_order_transitive)

from A4 A6 have "(p·N)R·(MR·(NR)−1) = pR·NR·(MR·(NR)−1)"

using PositiveSet_def Real_ZF_1_4_L1C by simp

with A4 T2 have "b(p·N)R·(MR·(NR)−1)c = p·M"
using Real_ZF_1_3_L8 Real_ZF_1_4_L14A by simp

with I show "p·M ≤ Γ(S,p·N)" by simp

qed

An obvious fact about odd extension of a function p 7→ Γ(s, p) that is used
a couple of times in proofs.

lemma (in real1) Real_ZF_1_4_L24A:

assumes A1: "IsBoundedAbove(S,OrderOnReals)" "S6=0" and A2: "p ∈ ZZ+"

and A3:

"h = OddExtension(int,IntegerAddition,IntegerOrder,{〈p,Γ(S,p)〉. p∈ZZ+})"

shows "h‘(p) = Γ(S,p)"
proof -

let ?g = "{〈p,Γ(S,p)〉. p∈ZZ+}"

606



from A1 have I: "?g : ZZ+→int" using Real_ZF_1_4_L12

by blast

with A2 A3 show "h‘(p) = Γ(S,p)"
using int0.Int_ZF_1_5_L11 ZF_fun_from_tot_val

by simp

qed

The candidate for the supremum of S is not smaller than any element of S.

lemma (in real1) Real_ZF_1_4_L25:

assumes A1: "IsBoundedAbove(S,OrderOnReals)" and
A2: "¬HasAmaximum(OrderOnReals,S)" and
A3: "x∈S" and A4:

"h = OddExtension(int,IntegerAddition,IntegerOrder,{〈p,Γ(S,p)〉. p∈ZZ+})"

shows "x ≤ [h]"

proof -

from A1 A2 A3 have
"S ⊆ IR" "¬HasAmaximum(OrderOnReals,S)" "x∈S"
using Real_ZF_1_2_L23 by auto

then have "∃ y∈S. x<y" by (rule Real_ZF_1_2_L27)

then obtain y where I: "y∈S" and II: "x<y"

by auto

from II have
"∃ M∈int. ∃ N∈ZZ+. x·NR < MR ∧ MR < y·NR"
using Arthan_Lemma14iii by simp

then obtain M N where III: "M ∈ int" "N∈ZZ+" and
IV: "x·NR < MR" "MR < y·NR"
by auto

from II III IV have V: "x ≤ MR·(NR)−1"

using int_pos_is_real_pos Real_ZF_1_2_L15 Real_ZF_1_3_L4

by auto

from A3 have VI: "S6=0" by auto

with A1 A4 have T1: "h ∈ S" using Real_ZF_1_4_L22

by simp

moreover from III have "N ∈ int" "M ∈ int"

using PositiveSet_def by auto

moreover have "∀ n∈ZZ+. M·n ≤ h‘(N·n)"
proof

let ?g = "{〈p,Γ(S,p)〉. p∈ZZ+}"

fix n assume A5: "n∈ZZ+"

with III have T2: "N·n ∈ ZZ+"

using int0.pos_int_closed_mul_unfold by simp

from III A5 have
"N·n = n·N" and "n·M = M·n"
using PositiveSet_def int0.Int_ZF_1_1_L5 by auto

moreover
from A1 I II III IV A5 have
"IsBoundedAbove(S,OrderOnReals)"

"x<y" "y∈S"
"N ∈ ZZ+" "M ∈ int"
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"MR < y·NR" "n ∈ ZZ+"

by auto

then have "n·M ≤ Γ(S,n·N)" by (rule Real_ZF_1_4_L24)

moreover from A1 A4 VI T2 have "h‘(N·n) = Γ(S,N·n)"
using Real_ZF_1_4_L24A by simp

ultimately show "M·n ≤ h‘(N·n)" by auto

qed
ultimately have "MR ≤ [h]·NR" using Real_ZF_1_4_L23

by simp

with III T1 have "MR·(NR)−1 ≤ [h]"

using int_pos_is_real_pos Real_ZF_1_1_L3 Real_ZF_1_3_L4B

by simp

with V show "x ≤ [h]" by (rule real_ord_transitive)

qed

The essential condition to claim that the candidate for supremum of S is
less or equal than any upper bound of S.

lemma (in real1) Real_ZF_1_4_L26:

assumes A1: "IsBoundedAbove(S,OrderOnReals)" and
A2: "x≤y" "x∈S" and
A4: "N ∈ ZZ+" "M ∈ int" and
A5: "y·NR < MR " and A6: "p ∈ ZZ+"

shows "b(N·p)R·xc ≤ M·p"
proof -

from A2 A4 A6 have T:

"p·N ∈ ZZ+" "p ∈ int" "N ∈ int"

"pR ∈ IR+" "pR ∈ IR" "NR ∈ IR" "x ∈ IR" "y ∈ IR"

using int0.pos_int_closed_mul_unfold PositiveSet_def

real_int_is_real Real_ZF_1_2_L15 int_pos_is_real_pos

by auto

with A2 have "(p·N)R·x ≤ (p·N)R·y"
using int_pos_is_real_pos Real_ZF_1_2_L14A

by simp

moreover from A4 T have I:

"(p·N)R = pR·NR"
"(p·M)R = pR·MR"
using Real_ZF_1_4_L1C by auto

ultimately have "(p·N)R·x ≤ pR·NR·y"
by simp

moreover
from A5 T I have "pR·(y·NR) < (p·M)R"

using Real_ZF_1_3_L7 by simp

with T have "pR·NR·y < (p·M)R" using Real_ZF_1_1_L9

by simp

ultimately have "(p·N)R·x < (p·M)R"
by (rule real_strict_ord_transit)

then have "b(p·N)R·xc ≤ b(p·M)Rc"
using Real_ZF_1_4_L9 by simp

moreover
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from A4 T have "p·M ∈ int" using int0.Int_ZF_1_1_L5

by simp

then have "b(p·M)Rc = p·M" using Real_ZF_1_4_L14

by simp

moreover from A4 A6 have "p·N = N·p" and "p·M = M·p"
using PositiveSet_def int0.Int_ZF_1_1_L5 by auto

ultimately show "b(N·p)R·xc ≤ M·p" by simp

qed

A piece of the proof of the fact that the candidate for the supremum of S
is not greater than any upper bound of S, done separately for clarity (of
mind).

lemma (in real1) Real_ZF_1_4_L27:

assumes "IsBoundedAbove(S,OrderOnReals)" "S6=0" and
"h = OddExtension(int,IntegerAddition,IntegerOrder,{〈p,Γ(S,p)〉. p∈ZZ+})"

and "p ∈ ZZ+"

shows "∃ x∈S. h‘(p) = bpR·xc"
using assms Real_ZF_1_4_L10 Real_ZF_1_4_L24A by auto

The candidate for the supremum of S is not greater than any upper bound
of S.

lemma (in real1) Real_ZF_1_4_L28:

assumes A1: "IsBoundedAbove(S,OrderOnReals)" "S6=0"

and A2: "∀ x∈S. x≤y" and A3:

"h = OddExtension(int,IntegerAddition,IntegerOrder,{〈p,Γ(S,p)〉. p∈ZZ+})"

shows "[h] ≤ y"

proof -

from A1 obtain a where "a∈S" by auto

with A1 A2 A3 have T: "y∈IR" "h ∈ S" "[h] ∈ IR"

using Real_ZF_1_2_L15 Real_ZF_1_4_L22 Real_ZF_1_1_L3

by auto

{ assume "¬([h] ≤ y)"

with T have "y < [h]" using Real_ZF_1_2_L28

by blast

then have "∃ M∈int. ∃ N∈ZZ+. y·NR < MR ∧ MR < [h]·NR"
using Arthan_Lemma14iii by simp

then obtain M N where I: "M∈int" "N∈ZZ+" and
II: "y·NR < MR" "MR < [h]·NR"
by auto

from I have III: "NR ∈ IR+" using int_pos_is_real_pos

by simp

have "∀ p∈ZZ+. h‘(N·p) ≤ M·p"
proof

fix p assume A4: "p∈ZZ+"

with A1 A3 I have "∃ x∈S. h‘(N·p) = b(N·p)R·xc"
using int0.pos_int_closed_mul_unfold Real_ZF_1_4_L27

by simp

with A1 A2 I II A4 show "h‘(N·p) ≤ M·p"
using Real_ZF_1_4_L26 by auto
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qed
with T I have "[h]·NR ≤ MR"

using PositiveSet_def Real_ZF_1_4_L23A

by simp

with T III have "[h] ≤ MR·(NR)−1"

using Real_ZF_1_3_L4C by simp

moreover from T II III have "MR·(NR)−1 < [h]"

using Real_ZF_1_3_L4A by simp

ultimately have False using Real_ZF_1_2_L29 by blast

} then show "[h] ≤ y" by auto

qed

Now we can prove that every nonempty subset of reals that is bounded
above has a supremum. Proof by considering two cases: when the set has a
maximum and when it does not.

lemma (in real1) real_order_complete:

assumes A1: "IsBoundedAbove(S,OrderOnReals)" "S6=0"

shows "HasAminimum(OrderOnReals,
⋂
a∈S. OrderOnReals‘‘{a})"

proof -

{ assume "HasAmaximum(OrderOnReals,S)"

with A1 have "HasAminimum(OrderOnReals,
⋂
a∈S. OrderOnReals‘‘{a})"

using Real_ZF_1_2_L10 IsAnOrdGroup_def IsPartOrder_def

Order_ZF_5_L6 by simp }
moreover
{ assume A2: "¬HasAmaximum(OrderOnReals,S)"

let ?h = "OddExtension(int,IntegerAddition,IntegerOrder,{〈p,Γ(S,p)〉.
p∈ZZ+})"

let ?r = "OrderOnReals"

from A1 have "antisym(OrderOnReals)" "S6=0"

using Real_ZF_1_2_L10 IsAnOrdGroup_def IsPartOrder_def by auto

moreover from A1 A2 have "∀ x∈S. 〈x,[?h]〉 ∈ ?r"

using Real_ZF_1_4_L25 by simp

moreover from A1 have "∀ y. (∀ x∈S. 〈x,y〉 ∈ ?r) −→ 〈[?h],y〉 ∈ ?r"

using Real_ZF_1_4_L28 by simp

ultimately have "HasAminimum(OrderOnReals,
⋂
a∈S. OrderOnReals‘‘{a})"

by (rule Order_ZF_5_L5) }
ultimately show ?thesis by blast

qed

Finally, we are ready to formulate the main result: that the construction
of real numbers from the additive group of integers results in a complete
ordered field. This theorem completes the construction. It was fun.

theorem eudoxus_reals_are_reals: shows
"IsAmodelOfReals(RealNumbers,RealAddition,RealMultiplication,OrderOnReals)"

using real1.reals_are_ord_field real1.real_order_complete

IsComplete_def IsAmodelOfReals_def by simp

end
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48 Complex numbers

theory Complex_ZF imports func_ZF_1 OrderedField_ZF

begin

The goal of this theory is to define complex numbers and prove that the
Metamath complex numbers axioms hold.

48.1 From complete ordered fields to complex numbers

This section consists mostly of definitions and a proof context for talking
about complex numbers. Suppose we have a set R with binary operations
A and M and a relation r such that the quadruple (R,A,M, r) forms a
complete ordered field. The next definitions take (R,A,M, r) and construct
the sets that represent the structure of complex numbers: the carrier (C =
R×R), binary operations of addition and multiplication of complex numbers
and the order relation on R = R × 0. The ImCxAdd, ReCxAdd, ImCxMul,

ReCxMul are helper meta-functions representing the imaginary part of a sum
of complex numbers, the real part of a sum of real numbers, the imaginary
part of a product of complex numbers and the real part of a product of real
numbers, respectively. The actual operations (subsets of (R × R) × R are
named CplxAdd and CplxMul.

When R is an ordered field, it comes with an order relation. This induces
a natural strict order relation on {〈x, 0〉 : x ∈ R} ⊆ R × R. We call
the set {〈x, 0〉 : x ∈ R} ComplexReals(R,A) and the strict order relation
CplxROrder(R,A,r). The order on the real axis of complex numbers is de-
fined as the relation induced on it by the canonical projection on the first
coordinate and the order we have on the real numbers. OK, lets repeat this
slower. We start with the order relation r on a (model of) real numbers R.
We want to define an order relation on a subset of complex numbers, namely
on R×{0}. To do that we use the notion of a relation induced by a mapping.
The mapping here is f : R× {0} → R, f〈x, 0〉 = x which is defined under a
name of SliceProjection in func_ZF.thy. This defines a relation r1 (called
InducedRelation(f,r), see func_ZF) on R× {0} such that 〈〈x, 0〉, 〈y, 0〉 ∈ r1

iff 〈x, y〉 ∈ r. This way we get what we call CplxROrder(R,A,r). However,
this is not the end of the story, because Metamath uses strict inequalities in
its axioms, rather than weak ones like IsarMathLib (mostly). So we need to
take the strict version of this order relation. This is done in the syntax def-
inition of <R in the definition of complex0 context. Since Metamath proves
a lot of theorems about the real numbers extended with +∞ and −∞, we
define the notation for inequalites on the extended real line as well.

A helper expression representing the real part of the sum of two complex
numbers.
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definition
"ReCxAdd(R,A,a,b) ≡ A‘〈fst(a),fst(b)〉"

An expression representing the imaginary part of the sum of two complex
numbers.

definition
"ImCxAdd(R,A,a,b) ≡ A‘〈snd(a),snd(b)〉"

The set (function) that is the binary operation that adds complex numbers.

definition
"CplxAdd(R,A) ≡
{〈p, 〈 ReCxAdd(R,A,fst(p),snd(p)),ImCxAdd(R,A,fst(p),snd(p)) 〉 〉.
p∈(R×R)×(R×R)}"

The expression representing the imaginary part of the product of complex
numbers.

definition
"ImCxMul(R,A,M,a,b) ≡ A‘〈M‘〈fst(a),snd(b)〉, M‘〈snd(a),fst(b)〉 〉"

The expression representing the real part of the product of complex numbers.

definition
"ReCxMul(R,A,M,a,b) ≡
A‘〈M‘〈fst(a),fst(b)〉,GroupInv(R,A)‘(M‘〈snd(a),snd(b)〉)〉"

The function (set) that represents the binary operation of multiplication of
complex numbers.

definition
"CplxMul(R,A,M) ≡
{ 〈p, 〈ReCxMul(R,A,M,fst(p),snd(p)),ImCxMul(R,A,M,fst(p),snd(p))〉 〉.

p ∈ (R×R)×(R×R)}"

The definition real numbers embedded in the complex plane.

definition
"ComplexReals(R,A) ≡ R×{TheNeutralElement(R,A)}"

Definition of order relation on the real line.

definition
"CplxROrder(R,A,r) ≡
InducedRelation(SliceProjection(ComplexReals(R,A)),r)"

The next locale defines proof context and notation that will be used for
complex numbers.

locale complex0 =

fixes R and A and M and r

assumes R_are_reals: "IsAmodelOfReals(R,A,M,r)"
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fixes complex ("C")

defines complex_def[simp]: "C ≡ R×R"

fixes rone ("1R")

defines rone_def[simp]: "1R ≡ TheNeutralElement(R,M)"

fixes rzero ("0R")

defines rzero_def[simp]: "0R ≡ TheNeutralElement(R,A)"

fixes one ("1")
defines one_def[simp]: "1 ≡ 〈1R, 0R〉"

fixes zero ("0")
defines zero_def[simp]: "0 ≡ 〈0R, 0R〉"

fixes iunit ("i")
defines iunit_def[simp]: "i ≡ 〈0R,1R〉"

fixes creal ("IR")

defines creal_def[simp]: "IR ≡ {〈r,0R〉. r∈R}"

fixes rmul (infixl "·" 71)

defines rmul_def[simp]: "a · b ≡ M‘〈a,b〉"

fixes radd (infixl "+" 69)

defines radd_def[simp]: "a + b ≡ A‘〈a,b〉"

fixes rneg ("- _" 70)

defines rneg_def[simp]: "- a ≡ GroupInv(R,A)‘(a)"

fixes ca (infixl "+" 69)

defines ca_def[simp]: "a + b ≡ CplxAdd(R,A)‘〈a,b〉"

fixes cm (infixl "·" 71)

defines cm_def[simp]: "a · b ≡ CplxMul(R,A,M)‘〈a,b〉"

fixes cdiv (infixl "/" 70)

defines cdiv_def[simp]: "a / b ≡
⋃

{ x ∈ C. b · x = a }"

fixes sub (infixl "-" 69)

defines sub_def[simp]: "a - b ≡
⋃

{ x ∈ C. b + x = a }"

fixes cneg ("-_" 95)

defines cneg_def[simp]: "- a ≡ 0 - a"

fixes lessr (infix "<R" 68)

defines lessr_def[simp]:

"a <R b ≡ 〈a,b〉 ∈ StrictVersion(CplxROrder(R,A,r))"
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fixes cpnf ("+∞")

defines cpnf_def[simp]: "+∞ ≡ C"

fixes cmnf ("−∞")

defines cmnf_def[simp]: "−∞ ≡ {C}"

fixes cxr ("IR∗")

defines cxr_def[simp]: "IR∗ ≡ IR ∪ {+∞,−∞}"

fixes cxn ("IN")

defines cxn_def[simp]:

"IN ≡
⋂

{N ∈ Pow(IR). 1 ∈ N ∧ (∀ n. n∈N −→ n+1 ∈ N)}"

fixes cltrrset ("<")

defines cltrrset_def[simp]:

"< ≡ StrictVersion(CplxROrder(R,A,r)) ∩ IR×IR ∪
{〈−∞,+∞〉} ∪ (IR×{+∞}) ∪ ({−∞}×IR )"

fixes cltrr (infix "<" 68)

defines cltrr_def[simp]: "a < b ≡ 〈a,b〉 ∈ <"

fixes lsq (infix "≤" 68)

defines lsq_def[simp]: "a ≤ b ≡ ¬ (b < a)"

fixes two ("2")
defines two_def[simp]: "2 ≡ 1 + 1"

fixes three ("3")
defines three_def[simp]: "3 ≡ 2+1"

fixes four ("4")
defines four_def[simp]: "4 ≡ 3+1"

fixes five ("5")
defines five_def[simp]: "5 ≡ 4+1"

fixes six ("6")
defines six_def[simp]: "6 ≡ 5+1"

fixes seven ("7")
defines seven_def[simp]: "7 ≡ 6+1"

fixes eight ("8")
defines eight_def[simp]: "8 ≡ 7+1"

fixes nine ("9")
defines nine_def[simp]: "9 ≡ 8+1"
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48.2 Axioms of complex numbers

In this section we will prove that all Metamath’s axioms of complex numbers
hold in the complex0 context.

The next lemma lists some contexts that are valid in the complex0 context.

lemma (in complex0) valid_cntxts: shows
"field1(R,A,M,r)"

"field0(R,A,M)"

"ring1(R,A,M,r)"

"group3(R,A,r)"

"ring0(R,A,M)"

"M {is commutative on} R"

"group0(R,A)"

proof -

from R_are_reals have I: "IsAnOrdField(R,A,M,r)"

using IsAmodelOfReals_def by simp

then show "field1(R,A,M,r)" using OrdField_ZF_1_L2 by simp

then show "ring1(R,A,M,r)" and I: "field0(R,A,M)"

using field1.axioms ring1_def field1.OrdField_ZF_1_L1B

by auto

then show "group3(R,A,r)" using ring1.OrdRing_ZF_1_L4

by simp

from I have "IsAfield(R,A,M)" using field0.Field_ZF_1_L1

by simp

then have "IsAring(R,A,M)" and "M {is commutative on} R"

using IsAfield_def by auto

then show "ring0(R,A,M)" and "M {is commutative on} R"

using ring0_def by auto

then show "group0(R,A)" using ring0.Ring_ZF_1_L1

by simp

qed

The next lemma shows the definition of real and imaginary part of complex
sum and product in a more readable form using notation defined in complex0

locale.

lemma (in complex0) cplx_mul_add_defs: shows
"ReCxAdd(R,A,〈a,b〉,〈c,d〉) = a + c"

"ImCxAdd(R,A,〈a,b〉,〈c,d〉) = b + d"

"ImCxMul(R,A,M,〈a,b〉,〈c,d〉) = a·d + b·c"
"ReCxMul(R,A,M,〈a,b〉,〈c,d〉) = a·c + (-b·d)"

proof -

let ?z1 = "〈a,b〉"
let ?z2 = "〈c,d〉"
have "ReCxAdd(R,A,?z1,?z2) ≡ A‘〈fst(?z1),fst(?z2)〉"
by (rule ReCxAdd_def)

moreover have "ImCxAdd(R,A,?z1,?z2) ≡ A‘〈snd(?z1),snd(?z2)〉"
by (rule ImCxAdd_def)

moreover have
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"ImCxMul(R,A,M,?z1,?z2) ≡ A‘〈M‘<fst(?z1),snd(?z2)>,M‘<snd(?z1),fst(?z2)>〉"
by (rule ImCxMul_def)

moreover have
"ReCxMul(R,A,M,?z1,?z2) ≡
A‘〈M‘<fst(?z1),fst(?z2)>,GroupInv(R,A)‘(M‘〈snd(?z1),snd(?z2)〉)〉"
by (rule ReCxMul_def)

ultimately show
"ReCxAdd(R,A,?z1,?z2) = a + c"

"ImCxAdd(R,A,〈a,b〉,〈c,d〉) = b + d"

"ImCxMul(R,A,M,〈a,b〉,〈c,d〉) = a·d + b·c"
"ReCxMul(R,A,M,〈a,b〉,〈c,d〉) = a·c + (-b·d)"
by auto

qed

Real and imaginary parts of sums and products of complex numbers are
real.

lemma (in complex0) cplx_mul_add_types:

assumes A1: "z1 ∈ C" "z2 ∈ C"

shows
"ReCxAdd(R,A,z1,z2) ∈ R"

"ImCxAdd(R,A,z1,z2) ∈ R"

"ImCxMul(R,A,M,z1,z2) ∈ R"

"ReCxMul(R,A,M,z1,z2) ∈ R"

proof -

let ?a = "fst(z1)"

let ?b = "snd(z1)"

let ?c = "fst(z2)"

let ?d = "snd(z2)"

from A1 have "?a ∈ R" "?b ∈ R" "?c ∈ R" "?d ∈ R"

by auto

then have
"?a + ?c ∈ R"

"?b + ?d ∈ R"

"?a·?d + ?b·?c ∈ R"

"?a·?c + (- ?b·?d) ∈ R"

using valid_cntxts ring0.Ring_ZF_1_L4 by auto

with A1 show
"ReCxAdd(R,A,z1,z2) ∈ R"

"ImCxAdd(R,A,z1,z2) ∈ R"

"ImCxMul(R,A,M,z1,z2) ∈ R"

"ReCxMul(R,A,M,z1,z2) ∈ R"

using cplx_mul_add_defs by auto

qed

Complex reals are complex. Recall the definition of IR in the complex0 locale.

lemma (in complex0) axresscn: shows "IR ⊆ C"

using valid_cntxts group0.group0_2_L2 by auto

Complex 1 is not complex 0.
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lemma (in complex0) ax1ne0: shows "1 6= 0"
proof -

have "IsAfield(R,A,M)" using valid_cntxts field0.Field_ZF_1_L1

by simp

then show "1 6= 0" using IsAfield_def by auto

qed

Complex addition is a complex valued binary operation on complex numbers.

lemma (in complex0) axaddopr: shows "CplxAdd(R,A): C × C → C"

proof -

have "∀ p ∈ C×C.

〈ReCxAdd(R,A,fst(p),snd(p)),ImCxAdd(R,A,fst(p),snd(p))〉 ∈ C"

using cplx_mul_add_types by simp

then have
"{〈p,〈ReCxAdd(R,A,fst(p),snd(p)),ImCxAdd(R,A,fst(p),snd(p))〉 〉.
p ∈ C×C}: C×C → C"

by (rule ZF_fun_from_total)

then show "CplxAdd(R,A): C × C → C" using CplxAdd_def by simp

qed

Complex multiplication is a complex valued binary operation on complex
numbers.

lemma (in complex0) axmulopr: shows "CplxMul(R,A,M): C × C → C"

proof -

have "∀ p ∈ C×C.

〈ReCxMul(R,A,M,fst(p),snd(p)),ImCxMul(R,A,M,fst(p),snd(p))〉 ∈ C"

using cplx_mul_add_types by simp

then have
"{〈p,〈ReCxMul(R,A,M,fst(p),snd(p)),ImCxMul(R,A,M,fst(p),snd(p))〉〉.
p ∈ C×C}: C×C → C" by (rule ZF_fun_from_total)

then show "CplxMul(R,A,M): C × C → C" using CplxMul_def by simp

qed

What are the values of omplex addition and multiplication in terms of their
real and imaginary parts?

lemma (in complex0) cplx_mul_add_vals:

assumes A1: "a∈R" "b∈R" "c∈R" "d∈R"
shows
"〈a,b〉 + 〈c,d〉 = 〈a + c, b + d〉"
"〈a,b〉 · 〈c,d〉 = 〈a·c + (-b·d), a·d + b·c〉"

proof -

let ?S = "CplxAdd(R,A)"

let ?P = "CplxMul(R,A,M)"

let ?p = "〈 〈a,b〉, 〈c,d〉 〉"
from A1 have "?S : C × C → C" and "?p ∈ C × C"

using axaddopr by auto

moreover have
"?S = {〈p, <ReCxAdd(R,A,fst(p),snd(p)),ImCxAdd(R,A,fst(p),snd(p))>〉.
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p ∈ C × C}"

using CplxAdd_def by simp

ultimately have "?S‘(?p) = 〈ReCxAdd(R,A,fst(?p),snd(?p)),ImCxAdd(R,A,fst(?p),snd(?p))〉"
by (rule ZF_fun_from_tot_val)

then show "〈a,b〉 + 〈c,d〉 = 〈a + c, b + d〉"
using cplx_mul_add_defs by simp

from A1 have "?P : C × C → C" and "?p ∈ C × C"

using axmulopr by auto

moreover have
"?P = {〈p, 〈ReCxMul(R,A,M,fst(p),snd(p)),ImCxMul(R,A,M,fst(p),snd(p))〉

〉.
p ∈ C × C}"

using CplxMul_def by simp

ultimately have
"?P‘(?p) = 〈ReCxMul(R,A,M,fst(?p),snd(?p)),ImCxMul(R,A,M,fst(?p),snd(?p))〉"
by (rule ZF_fun_from_tot_val)

then show "〈a,b〉 · 〈c,d〉 = 〈a·c + (-b·d), a·d + b·c〉"
using cplx_mul_add_defs by simp

qed

Complex multiplication is commutative.

lemma (in complex0) axmulcom: assumes A1: "a ∈ C" "b ∈ C"

shows "a·b = b·a"
using assms cplx_mul_add_vals valid_cntxts ring0.Ring_ZF_1_L4

field0.field_mult_comm by auto

A sum of complex numbers is complex.

lemma (in complex0) axaddcl: assumes "a ∈ C" "b ∈ C"

shows "a+b ∈ C"

using assms axaddopr apply_funtype by simp

A product of complex numbers is complex.

lemma (in complex0) axmulcl: assumes "a ∈ C" "b ∈ C"

shows "a·b ∈ C"

using assms axmulopr apply_funtype by simp

Multiplication is distributive with respect to addition.

lemma (in complex0) axdistr:

assumes A1: "a ∈ C" "b ∈ C" "c ∈ C"

shows "a·(b + c) = a·b + a·c"
proof -

let ?ar = "fst(a)"

let ?ai = "snd(a)"

let ?br = "fst(b)"

let ?bi = "snd(b)"

let ?cr = "fst(c)"

let ?ci = "snd(c)"

from A1 have T:
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"?ar ∈ R" "?ai ∈ R" "?br ∈ R" "?bi ∈ R" "?cr ∈ R" "?ci ∈ R"

"?br+?cr ∈ R" "?bi+?ci ∈ R"

"?ar·?br + (-?ai·?bi) ∈ R"

"?ar·?cr + (-?ai·?ci) ∈ R"

"?ar·?bi + ?ai·?br ∈ R"

"?ar·?ci + ?ai·?cr ∈ R"

using valid_cntxts ring0.Ring_ZF_1_L4 by auto

with A1 have "a·(b + c) =

〈?ar·(?br+?cr) + (-?ai·(?bi+?ci)),?ar·(?bi+?ci) + ?ai·(?br+?cr)〉"
using cplx_mul_add_vals by auto

moreover from T have
"?ar·(?br+?cr) + (-?ai·(?bi+?ci)) =

?ar·?br + (-?ai·?bi) + (?ar·?cr + (-?ai·?ci))"
and
"?ar·(?bi+?ci) + ?ai·(?br+?cr) =

?ar·?bi + ?ai·?br + (?ar·?ci + ?ai·?cr)"
using valid_cntxts ring0.Ring_ZF_2_L6 by auto

moreover from A1 T have
"〈?ar·?br + (-?ai·?bi) + (?ar·?cr + (-?ai·?ci)),
?ar·?bi + ?ai·?br + (?ar·?ci + ?ai·?cr)〉 =

a·b + a·c"
using cplx_mul_add_vals by auto

ultimately show "a·(b + c) = a·b + a·c"
by simp

qed

Complex addition is commutative.

lemma (in complex0) axaddcom: assumes "a ∈ C" "b ∈ C"

shows "a+b = b+a"

using assms cplx_mul_add_vals valid_cntxts ring0.Ring_ZF_1_L4

by auto

Complex addition is associative.

lemma (in complex0) axaddass: assumes A1: "a ∈ C" "b ∈ C" "c ∈ C"

shows "a + b + c = a + (b + c)"

proof -

let ?ar = "fst(a)"

let ?ai = "snd(a)"

let ?br = "fst(b)"

let ?bi = "snd(b)"

let ?cr = "fst(c)"

let ?ci = "snd(c)"

from A1 have T:

"?ar ∈ R" "?ai ∈ R" "?br ∈ R" "?bi ∈ R" "?cr ∈ R" "?ci ∈ R"

"?ar+?br ∈ R" "?ai+?bi ∈ R"

"?br+?cr ∈ R" "?bi+?ci ∈ R"

using valid_cntxts ring0.Ring_ZF_1_L4 by auto

with A1 have "a + b + c = 〈?ar+?br+?cr,?ai+?bi+?ci〉"
using cplx_mul_add_vals by auto
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also from A1 T have ". . . = a + (b + c)"

using valid_cntxts ring0.Ring_ZF_1_L11 cplx_mul_add_vals

by auto

finally show "a + b + c = a + (b + c)"

by simp

qed

Complex multiplication is associative.

lemma (in complex0) axmulass: assumes A1: "a ∈ C" "b ∈ C" "c ∈ C"

shows "a · b · c = a · (b · c)"
proof -

let ?ar = "fst(a)"

let ?ai = "snd(a)"

let ?br = "fst(b)"

let ?bi = "snd(b)"

let ?cr = "fst(c)"

let ?ci = "snd(c)"

from A1 have T:

"?ar ∈ R" "?ai ∈ R" "?br ∈ R" "?bi ∈ R" "?cr ∈ R" "?ci ∈ R"

"?ar·?br + (-?ai·?bi) ∈ R"

"?ar·?bi + ?ai·?br ∈ R"

"?br·?cr + (-?bi·?ci) ∈ R"

"?br·?ci + ?bi·?cr ∈ R"

using valid_cntxts ring0.Ring_ZF_1_L4 by auto

with A1 have "a · b · c =

〈(?ar·?br + (-?ai·?bi))·?cr + (-(?ar·?bi + ?ai·?br)·?ci),
(?ar·?br + (-?ai·?bi))·?ci + (?ar·?bi + ?ai·?br)·?cr〉"
using cplx_mul_add_vals by auto

moreover from A1 T have
"〈?ar·(?br·?cr + (-?bi·?ci)) + (-?ai·(?br·?ci + ?bi·?cr)),
?ar·(?br·?ci + ?bi·?cr) + ?ai·(?br·?cr + (-?bi·?ci))〉 =

a · (b · c)"
using cplx_mul_add_vals by auto

moreover from T have
"?ar·(?br·?cr + (-?bi·?ci)) + (-?ai·(?br·?ci + ?bi·?cr)) =

(?ar·?br + (-?ai·?bi))·?cr + (-(?ar·?bi + ?ai·?br)·?ci)"
and
"?ar·(?br·?ci + ?bi·?cr) + ?ai·(?br·?cr + (-?bi·?ci)) =

(?ar·?br + (-?ai·?bi))·?ci + (?ar·?bi + ?ai·?br)·?cr"
using valid_cntxts ring0.Ring_ZF_2_L6 by auto

ultimately show "a · b · c = a · (b · c)"
by auto

qed

Complex 1 is real. This really means that the pair 〈1, 0〉 is on the real axis.

lemma (in complex0) ax1re: shows "1 ∈ IR"

using valid_cntxts ring0.Ring_ZF_1_L2 by simp

The imaginary unit is a ”square root” of −1 (that is, i2 + 1 = 0).
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lemma (in complex0) axi2m1: shows "i·i + 1 = 0"
using valid_cntxts ring0.Ring_ZF_1_L2 ring0.Ring_ZF_1_L3

cplx_mul_add_vals ring0.Ring_ZF_1_L6 group0.group0_2_L6

by simp

0 is the neutral element of complex addition.

lemma (in complex0) ax0id: assumes "a ∈ C"

shows "a + 0 = a"

using assms cplx_mul_add_vals valid_cntxts

ring0.Ring_ZF_1_L2 ring0.Ring_ZF_1_L3

by auto

The imaginary unit is a complex number.

lemma (in complex0) axicn: shows "i ∈ C"

using valid_cntxts ring0.Ring_ZF_1_L2 by auto

All complex numbers have additive inverses.

lemma (in complex0) axnegex: assumes A1: "a ∈ C"

shows "∃ x∈C. a + x = 0"
proof -

let ?ar = "fst(a)"

let ?ai = "snd(a)"

let ?x = "〈-?ar, -?ai〉"
from A1 have T:

"?ar ∈ R" "?ai ∈ R" "(-?ar) ∈ R" "(-?ar) ∈ R"

using valid_cntxts ring0.Ring_ZF_1_L3 by auto

then have "?x ∈ C" using valid_cntxts ring0.Ring_ZF_1_L3

by auto

moreover from A1 T have "a + ?x = 0"
using cplx_mul_add_vals valid_cntxts ring0.Ring_ZF_1_L3

by auto

ultimately show "∃ x∈C. a + x = 0"
by auto

qed

A non-zero complex number has a multiplicative inverse.

lemma (in complex0) axrecex: assumes A1: "a ∈ C" and A2: "a6=0"
shows "∃ x∈C. a·x = 1"

proof -

let ?ar = "fst(a)"

let ?ai = "snd(a)"

let ?m = "?ar·?ar + ?ai·?ai"
from A1 have T1: "?ar ∈ R" "?ai ∈ R" by auto

moreover from A1 A2 have "?ar 6= 0R ∨ ?ai 6= 0R"

by auto

ultimately have "∃ c∈R. ?m·c = 1R"

using valid_cntxts field1.OrdField_ZF_1_L10

by auto
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then obtain c where I: "c∈R" and II: "?m·c = 1R"

by auto

let ?x = "〈?ar·c, -?ai·c〉"
from T1 I have T2: "?ar·c ∈ R" "(-?ai·c) ∈ R"

using valid_cntxts ring0.Ring_ZF_1_L4 ring0.Ring_ZF_1_L3

by auto

then have "?x ∈ C" by auto

moreover from A1 T1 T2 I II have "a·?x = 1"
using cplx_mul_add_vals valid_cntxts ring0.ring_rearr_3_elemA

by auto

ultimately show "∃ x∈C. a·x = 1" by auto

qed

Complex 1 is a right neutral element for multiplication.

lemma (in complex0) ax1id: assumes A1: "a ∈ C"

shows "a·1 = a"

using assms valid_cntxts ring0.Ring_ZF_1_L2 cplx_mul_add_vals

ring0.Ring_ZF_1_L3 ring0.Ring_ZF_1_L6 by auto

A formula for sum of (complex) real numbers.

lemma (in complex0) sum_of_reals: assumes "a∈IR" "b∈IR"

shows
"a + b = 〈fst(a) + fst(b),0R〉"
using assms valid_cntxts ring0.Ring_ZF_1_L2 cplx_mul_add_vals

ring0.Ring_ZF_1_L3 by auto

The sum of real numbers is real.

lemma (in complex0) axaddrcl: assumes A1: "a∈IR" "b∈IR"

shows "a + b ∈ IR"

using assms sum_of_reals valid_cntxts ring0.Ring_ZF_1_L4

by auto

The formula for the product of (complex) real numbers.

lemma (in complex0) prod_of_reals: assumes A1: "a∈IR" "b∈IR"

shows "a · b = 〈fst(a)·fst(b),0R〉"
proof -

let ?ar = "fst(a)"

let ?br = "fst(b)"

from A1 have T:

"?ar ∈ R" "?br ∈ R" "0R ∈ R" "?ar·?br ∈ R"

using valid_cntxts ring0.Ring_ZF_1_L2 ring0.Ring_ZF_1_L4

by auto

with A1 show "a · b = 〈?ar·?br,0R〉"
using cplx_mul_add_vals valid_cntxts ring0.Ring_ZF_1_L2

ring0.Ring_ZF_1_L6 ring0.Ring_ZF_1_L3 by auto

qed

The product of (complex) real numbers is real.
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lemma (in complex0) axmulrcl: assumes "a∈IR" "b∈IR"

shows "a · b ∈ IR"

using assms prod_of_reals valid_cntxts ring0.Ring_ZF_1_L4

by auto

The existence of a real negative of a real number.

lemma (in complex0) axrnegex: assumes A1: "a∈IR"

shows "∃ x ∈ IR. a + x = 0"
proof -

let ?ar = "fst(a)"

let ?x = "〈-?ar,0R〉"
from A1 have T:

"?ar ∈ R" "(-?ar) ∈ R" "0R ∈ R"

using valid_cntxts ring0.Ring_ZF_1_L3 ring0.Ring_ZF_1_L2

by auto

then have "?x∈ IR" by auto

moreover from A1 T have "a + ?x = 0"
using cplx_mul_add_vals valid_cntxts ring0.Ring_ZF_1_L3

by auto

ultimately show "∃ x∈IR. a + x = 0" by auto

qed

Each nonzero real number has a real inverse

lemma (in complex0) axrrecex:

assumes A1: "a ∈ IR" "a 6= 0"
shows "∃ x∈IR. a · x = 1"

proof -

let ?R0 = "R-{0R}"

let ?ar = "fst(a)"

let ?y = "GroupInv(?R0,restrict(M,?R0×?R0))‘(?ar)"
from A1 have T: "〈?y,0R〉 ∈ IR" using valid_cntxts field0.Field_ZF_1_L5

by auto

moreover from A1 T have "a · 〈?y,0R〉 = 1"
using prod_of_reals valid_cntxts

field0.Field_ZF_1_L5 field0.Field_ZF_1_L6 by auto

ultimately show "∃ x ∈ IR. a · x = 1" by auto

qed

Our IR symbol is the real axis on the complex plane.

lemma (in complex0) real_means_real_axis: shows "IR = ComplexReals(R,A)"

using ComplexReals_def by auto

The CplxROrder thing is a relation on the complex reals.

lemma (in complex0) cplx_ord_on_cplx_reals:

shows "CplxROrder(R,A,r) ⊆ IR×IR"

using ComplexReals_def slice_proj_bij real_means_real_axis

CplxROrder_def InducedRelation_def by auto

The strict version of the complex relation is a relation on complex reals.
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lemma (in complex0) cplx_strict_ord_on_cplx_reals:

shows "StrictVersion(CplxROrder(R,A,r)) ⊆ IR×IR"

using cplx_ord_on_cplx_reals strict_ver_rel by simp

The CplxROrder thing is a relation on the complex reals. Here this is for-
mulated as a statement that in complex0 context a < b implies that a, b are
complex reals

lemma (in complex0) strict_cplx_ord_type: assumes "a <R b"

shows "a∈IR" "b∈IR"

using assms CplxROrder_def def_of_strict_ver InducedRelation_def

slice_proj_bij ComplexReals_def real_means_real_axis

by auto

A more readable version of the definition of the strict order relation on the
real axis. Recall that in the complex0 context r denotes the (non-strict)
order relation on the underlying model of real numbers.

lemma (in complex0) def_of_real_axis_order: shows
"〈x,0R〉 <R 〈y,0R〉 ←→ 〈x,y〉 ∈ r ∧ x6=y"

proof
let ?f = "SliceProjection(ComplexReals(R,A))"

assume A1: "〈x,0R〉 <R 〈y,0R〉"
then have "〈 ?f‘〈x,0R〉, ?f‘〈y,0R〉 〉 ∈ r ∧ x 6= y"

using CplxROrder_def def_of_strict_ver def_of_ind_relA

by simp

moreover from A1 have "〈x,0R〉 ∈ IR" "〈y,0R〉 ∈ IR"

using strict_cplx_ord_type by auto

ultimately show "〈x,y〉 ∈ r ∧ x 6=y"

using slice_proj_bij ComplexReals_def by simp

next assume A1: "〈x,y〉 ∈ r ∧ x 6=y"

let ?f = "SliceProjection(ComplexReals(R,A))"

have "?f : IR → R"

using ComplexReals_def slice_proj_bij real_means_real_axis

by simp

moreover from A1 have T: "〈x,0R〉 ∈ IR" "〈y,0R〉 ∈ IR"

using valid_cntxts ring1.OrdRing_ZF_1_L3 by auto

moreover from A1 T have "〈 ?f‘〈x,0R〉, ?f‘〈y,0R〉 〉 ∈ r"

using slice_proj_bij ComplexReals_def by simp

ultimately have "〈 〈x,0R〉, 〈y,0R〉 〉 ∈ InducedRelation(?f,r)"

using def_of_ind_relB by simp

with A1 show "〈x,0R〉 <R 〈y,0R〉"
using CplxROrder_def def_of_strict_ver

by simp

qed

The (non strict) order on complex reals is antisymmetric, transitive and
total.

lemma (in complex0) cplx_ord_antsym_trans_tot: shows
"antisym(CplxROrder(R,A,r))"
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"trans(CplxROrder(R,A,r))"

"CplxROrder(R,A,r) {is total on} IR"

proof -

let ?f = "SliceProjection(ComplexReals(R,A))"

have "?f ∈ ord_iso(IR,CplxROrder(R,A,r),R,r)"

using ComplexReals_def slice_proj_bij real_means_real_axis

bij_is_ord_iso CplxROrder_def by simp

moreover have "CplxROrder(R,A,r) ⊆ IR×IR"

using cplx_ord_on_cplx_reals by simp

moreover have I:

"antisym(r)" "r {is total on} R" "trans(r)"

using valid_cntxts ring1.OrdRing_ZF_1_L1 IsAnOrdRing_def

IsLinOrder_def by auto

ultimately show
"antisym(CplxROrder(R,A,r))"

"trans(CplxROrder(R,A,r))"

"CplxROrder(R,A,r) {is total on} IR"

using ord_iso_pres_antsym ord_iso_pres_tot ord_iso_pres_trans

by auto

qed

The trichotomy law for the strict order on the complex reals.

lemma (in complex0) cplx_strict_ord_trich:

assumes "a ∈ IR" "b ∈ IR"

shows "Exactly_1_of_3_holds(a<Rb, a=b, b<Ra)"
using assms cplx_ord_antsym_trans_tot strict_ans_tot_trich

by simp

The strict order on the complex reals is kind of antisymetric.

lemma (in complex0) pre_axlttri: assumes A1: "a ∈ IR" "b ∈ IR"

shows "a <R b ←→ ¬(a=b ∨ b <R a)"

proof -

from A1 have "Exactly_1_of_3_holds(a<Rb, a=b, b<Ra)"
by (rule cplx_strict_ord_trich)

then show "a <R b ←→ ¬(a=b ∨ b <R a)"

by (rule Fol1_L8A)

qed

The strict order on complex reals is transitive.

lemma (in complex0) cplx_strict_ord_trans:

shows "trans(StrictVersion(CplxROrder(R,A,r)))"

using cplx_ord_antsym_trans_tot strict_of_transB by simp

The strict order on complex reals is transitive - the explicit version of
cplx_strict_ord_trans.

lemma (in complex0) pre_axlttrn:

assumes A1: "a <R b" "b <R c"

shows "a <R c"
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proof -

let ?s = "StrictVersion(CplxROrder(R,A,r))"

from A1 have
"trans(?s)" "〈a,b〉 ∈ ?s ∧ 〈b,c〉 ∈ ?s"

using cplx_strict_ord_trans by auto

then have "〈a,c〉 ∈ ?s" by (rule Fol1_L3)

then show "a <R c" by simp

qed

The strict order on complex reals is preserved by translations.

lemma (in complex0) pre_axltadd:

assumes A1: "a <R b" and A2: "c ∈ IR"

shows "c+a <R c+b"

proof -

from A1 have T: "a∈IR" "b∈IR" using strict_cplx_ord_type

by auto

with A1 A2 show "c+a <R c+b"

using def_of_real_axis_order valid_cntxts

group3.group_strict_ord_transl_inv sum_of_reals

by auto

qed

The set of positive complex reals is closed with respect to multiplication.

lemma (in complex0) pre_axmulgt0: assumes A1: "0 <R a" "0 <R b"

shows "0 <R a·b"
proof -

from A1 have T: "a∈IR" "b∈IR" using strict_cplx_ord_type

by auto

with A1 show "0 <R a·b"
using def_of_real_axis_order valid_cntxts field1.pos_mul_closed

def_of_real_axis_order prod_of_reals

by auto

qed

The order on complex reals is linear and complete.

lemma (in complex0) cmplx_reals_ord_lin_compl: shows
"CplxROrder(R,A,r) {is complete}"

"IsLinOrder(IR,CplxROrder(R,A,r))"

proof -

have "SliceProjection(IR) ∈ bij(IR,R)"

using slice_proj_bij ComplexReals_def real_means_real_axis

by simp

moreover have "r ⊆ R×R" using valid_cntxts ring1.OrdRing_ZF_1_L1

IsAnOrdRing_def by simp

moreover from R_are_reals have
"r {is complete}" and "IsLinOrder(R,r)"

using IsAmodelOfReals_def valid_cntxts ring1.OrdRing_ZF_1_L1

IsAnOrdRing_def by auto

ultimately show
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"CplxROrder(R,A,r) {is complete}"

"IsLinOrder(IR,CplxROrder(R,A,r))"

using CplxROrder_def real_means_real_axis ind_rel_pres_compl

ind_rel_pres_lin by auto

qed

The property of the strict order on complex reals that corresponds to com-
pleteness.

lemma (in complex0) pre_axsup: assumes A1: "X ⊆ IR" "X 6= 0" and
A2: "∃ x∈IR. ∀ y∈X. y <R x"

shows
"∃ x∈IR. (∀ y∈X. ¬(x <R y)) ∧ (∀ y∈IR. (y <R x −→ (∃ z∈X. y <R z)))"

proof -

let ?s = "StrictVersion(CplxROrder(R,A,r))"

have
"CplxROrder(R,A,r) ⊆ IR×IR"

"IsLinOrder(IR,CplxROrder(R,A,r))"

"CplxROrder(R,A,r) {is complete}"

using cplx_ord_on_cplx_reals cmplx_reals_ord_lin_compl

by auto

moreover note A1

moreover have "?s = StrictVersion(CplxROrder(R,A,r))"

by simp

moreover from A2 have "∃ u∈IR. ∀ y∈X. 〈y,u〉 ∈ ?s"

by simp

ultimately have
"∃ x∈IR. ( ∀ y∈X. 〈x,y〉 /∈ ?s ) ∧
(∀ y∈IR. 〈y,x〉 ∈ ?s −→ (∃ z∈X. 〈y,z〉 ∈ ?s))"

by (rule strict_of_compl)

then show "(∃ x∈IR. (∀ y∈X. ¬(x <R y)) ∧
(∀ y∈IR. (y <R x −→ (∃ z∈X. y <R z))))"

by simp

qed

end

49 Topology - introduction

theory Topology_ZF imports ZF1 Finite_ZF Fol1

begin

This theory file provides basic definitions and properties of topology, open
and closed sets, closure and boundary.
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49.1 Basic definitions and properties

A typical textbook defines a topology on a set X as a collection T of subsets
of X such that X ∈ T , ∅ ∈ T and T is closed with respect to arbitrary
unions and intersection of two sets. One can notice here that since we always
have

⋃
T = X, the set on which the topology is defined (the ”carrier” of

the topology) can always be constructed from the topology itself and is
superfluous in the definition. Moreover, as Marnix Klooster pointed out
to me, the fact that the empty set is open can also be proven from other
axioms. Hence, we define a topology as a collection of sets that is closed
under arbitrary unions and intersections of two sets, without any mention of
the set on which the topology is defined. Recall that Pow(T) is the powerset
of T , so that if M ∈ Pow(T) then M is a subset of T . The sets that belong
to a topology T will be sometimes called ”open in” T or just ”open” if the
topology is clear from the context.

Topology is a collection of sets that is closed under arbitrary unions and
intersections of two sets.

definition
IsATopology ("_ {is a topology}" [90] 91) where
"T {is a topology} ≡ ( ∀ M ∈ Pow(T).

⋃
M ∈ T ) ∧

( ∀ U∈T. ∀ V∈T. U∩V ∈ T)"

We define interior of a set A as the union of all open sets contained in A.
We use Interior(A,T) to denote the interior of A.

definition
"Interior(A,T) ≡

⋃
{U∈T. U ⊆ A}"

A set is closed if it is contained in the carrier of topology and its complement
is open.

definition
IsClosed (infixl "{is closed in}" 90) where
"D {is closed in} T ≡ (D ⊆

⋃
T ∧

⋃
T - D ∈ T)"

To prove various properties of closure we will often use the collection of
closed sets that contain a given set A. Such collection does not have a
separate name in informal math. We will call it ClosedCovers(A,T).

definition
"ClosedCovers(A,T) ≡ {D ∈ Pow(

⋃
T). D {is closed in} T ∧ A⊆D}"

The closure of a set A is defined as the intersection of the collection of closed
sets that contain A.

definition
"Closure(A,T) ≡

⋂
ClosedCovers(A,T)"

We also define boundary of a set as the intersection of its closure with the
closure of the complement (with respect to the carrier).
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definition
"Boundary(A,T) ≡ Closure(A,T) ∩ Closure(

⋃
T - A,T)"

A set K is compact if for every collection of open sets that covers K we can
choose a finite one that still covers the set. Recall that FinPow(M) is the col-
lection of finite subsets of M (finite powerset of M), defined in IsarMathLib’s
Finite_ZF theory.

definition
IsCompact (infixl "{is compact in}" 90) where
"K {is compact in} T ≡ (K ⊆

⋃
T ∧

(∀ M∈Pow(T). K ⊆
⋃
M −→ (∃ N ∈ FinPow(M). K ⊆

⋃
N)))"

A basic example of a topology: the powerset of any set is a topology.

lemma Pow_is_top: shows "Pow(X) {is a topology}"

proof -

have "∀ A∈Pow(Pow(X)).
⋃
A ∈ Pow(X)" by fast

moreover have "∀ U∈Pow(X). ∀ V∈Pow(X). U∩V ∈ Pow(X)" by fast

ultimately show "Pow(X) {is a topology}" using IsATopology_def

by auto

qed

Empty set is open.

lemma empty_open:

assumes "T {is a topology}" shows "0 ∈ T"

proof -

have "0 ∈ Pow(T)" by simp

with assms have "
⋃
0 ∈ T" using IsATopology_def by blast

thus "0 ∈ T" by simp

qed

Union of a collection of open sets is open.

lemma union_open: assumes "T {is a topology}" and "∀ A∈A. A ∈ T"

shows "(
⋃
A) ∈ T" using assms IsATopology_def by auto

Union of a indexed family of open sets is open.

lemma union_indexed_open: assumes A1: "T {is a topology}" and A2: "∀ i∈I.
P(i) ∈ T"

shows "(
⋃
i∈I. P(i)) ∈ T" using assms union_open by simp

The intersection of any nonempty collection of topologies on a set X is a
topology.

lemma Inter_tops_is_top:

assumes A1: "M 6= 0" and A2: "∀ T∈M. T {is a topology}"

shows "(
⋂
M) {is a topology}"

proof -

{ fix A assume "A∈Pow(
⋂
M)"

with A1 have "∀ T∈M. A∈Pow(T)" by auto
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with A1 A2 have "
⋃
A ∈

⋂
M" using IsATopology_def

by auto

} then have "∀ A. A∈Pow(
⋂
M) −→

⋃
A ∈

⋂
M" by simp

hence "∀ A∈Pow(
⋂
M).

⋃
A ∈

⋂
M" by auto

moreover
{ fix U V assume "U ∈

⋂
M" and "V ∈

⋂
M"

then have "∀ T∈M. U ∈ T ∧ V ∈ T" by auto

with A1 A2 have "∀ T∈M. U∩V ∈ T" using IsATopology_def

by simp

} then have "∀ U ∈
⋂
M. ∀ V ∈

⋂
M. U∩V ∈

⋂
M"

by auto

ultimately show "(
⋂
M) {is a topology}"

using IsATopology_def by simp

qed

We will now introduce some notation. In Isar, this is done by definining
a ”locale”. Locale is kind of a context that holds some assumptions and
notation used in all theorems proven in it. In the locale (context) below
called topology0 we assume that T is a topology. The interior of the set A
(with respect to the topology in the context) is denoted int(A). The closure
of a set A ⊆

⋃
T is denoted cl(A) and the boundary is ∂A.

locale topology0 =

fixes T

assumes topSpaceAssum: "T {is a topology}"

fixes int

defines int_def [simp]: "int(A) ≡ Interior(A,T)"

fixes cl

defines cl_def [simp]: "cl(A) ≡ Closure(A,T)"

fixes boundary ("∂_" [91] 92)

defines boundary_def [simp]: "∂A ≡ Boundary(A,T)"

Intersection of a finite nonempty collection of open sets is open.

lemma (in topology0) fin_inter_open_open: assumes "N 6=0" "N ∈ FinPow(T)"

shows "
⋂
N ∈ T"

using topSpaceAssum assms IsATopology_def inter_two_inter_fin

by simp

Having a topology T and a set X we can define the induced topology as the
one consisting of the intersections of X with sets from T . The notion of a
collection restricted to a set is defined in ZF1.thy.

lemma (in topology0) Top_1_L4:

shows "(T {restricted to} X) {is a topology}"

proof -

let ?S = "T {restricted to} X"

have "∀ A∈Pow(?S).
⋃
A ∈ ?S"
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proof
fix A assume A1: "A∈Pow(?S)"
have "∀ V∈A.

⋃
{U ∈ T. V = U∩X} ∈ T"

proof -

{ fix V

let ?M = "{U ∈ T. V = U∩X}"
have "?M ∈ Pow(T)" by auto

with topSpaceAssum have "
⋃
?M ∈ T" using IsATopology_def by simp

} thus ?thesis by simp

qed
hence "{

⋃
{U∈T. V = U∩X}.V∈ A} ⊆ T" by auto

with topSpaceAssum have "(
⋃
V∈A.

⋃
{U∈T. V = U∩X}) ∈ T"

using IsATopology_def by auto

then have "(
⋃
V∈A.

⋃
{U∈T. V = U∩X})∩ X ∈ ?S"

using RestrictedTo_def by auto

moreover
from A1 have "∀ V∈A. ∃ U∈T. V = U∩X"

using RestrictedTo_def by auto

hence "(
⋃
V∈A.

⋃
{U∈T. V = U∩X})∩X =

⋃
A" by blast

ultimately show "
⋃
A ∈ ?S" by simp

qed
moreover have "∀ U∈?S. ∀ V∈?S. U∩V ∈ ?S"

proof -

{ fix U V assume "U∈?S" "V∈?S"
then obtain U1 V1 where

"U1 ∈ T ∧ U = U1∩X" and "V1 ∈ T ∧ V = V1∩X"
using RestrictedTo_def by auto

with topSpaceAssum have "U1∩V1 ∈ T" and "U∩V = (U1∩V1)∩X"
using IsATopology_def by auto

then have " U∩V ∈ ?S" using RestrictedTo_def by auto

} thus "∀ U∈?S. ∀ V∈?S. U∩V ∈ ?S"

by simp

qed
ultimately show "?S {is a topology}" using IsATopology_def

by simp

qed

49.2 Interior of a set

In section we show basic properties of the interior of a set.

Interior of a set A is contained in A.

lemma (in topology0) Top_2_L1: shows "int(A) ⊆ A"

using Interior_def by auto

Interior is open.

lemma (in topology0) Top_2_L2: shows "int(A) ∈ T"

proof -

have "{U∈T. U⊆A} ∈ Pow(T)" by auto
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with topSpaceAssum show "int(A) ∈ T"

using IsATopology_def Interior_def by auto

qed

A set is open iff it is equal to its interior.

lemma (in topology0) Top_2_L3: shows "U∈T ←→ int(U) = U"

proof
assume "U∈T" then show "int(U) = U"

using Interior_def by auto

next assume A1: "int(U) = U"

have "int(U) ∈ T" using Top_2_L2 by simp

with A1 show "U∈T" by simp

qed

Interior of the interior is the interior.

lemma (in topology0) Top_2_L4: shows "int(int(A)) = int(A)"

proof -

let ?U = "int(A)"

from topSpaceAssum have "?U∈T" using Top_2_L2 by simp

then show "int(int(A)) = int(A)" using Top_2_L3 by simp

qed

Interior of a bigger set is bigger.

lemma (in topology0) interior_mono:

assumes A1: "A⊆B" shows "int(A) ⊆ int(B)"

proof -

from A1 have "∀ U∈T. (U⊆A −→ U⊆B)" by auto

then show "int(A) ⊆ int(B)" using Interior_def by auto

qed

An open subset of any set is a subset of the interior of that set.

lemma (in topology0) Top_2_L5: assumes "U⊆A" and "U∈T"
shows "U ⊆ int(A)"

using assms Interior_def by auto

If a point of a set has an open neighboorhood contained in the set, then the
point belongs to the interior of the set.

lemma (in topology0) Top_2_L6: assumes "∃ U∈T. (x∈U ∧ U⊆A)"
shows "x ∈ int(A)"

using assms Interior_def by auto

A set is open iff its every point has a an open neighbourhood contained in
the set. We will formulate this statement as two lemmas (implication one
way and the other way). The lemma below shows that if a set is open then
every point has a an open neighbourhood contained in the set.

lemma (in topology0) open_open_neigh:

assumes A1: "V∈T"
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shows "∀ x∈V. ∃ U∈T. (x∈U ∧ U⊆V)"
proof -

from A1 have "∀ x∈V. V∈T ∧ x ∈ V ∧ V ⊆ V" by simp

thus ?thesis by auto

qed

If every point of a set has a an open neighbourhood contained in the set
then the set is open.

lemma (in topology0) open_neigh_open:

assumes A1: "∀ x∈V. ∃ U∈T. (x∈U ∧ U⊆V)"
shows "V∈T"

proof -

from A1 have "V = int(V)" using Top_2_L1 Top_2_L6

by blast

then show "V∈T" using Top_2_L3 by simp

qed

49.3 Closed sets, closure, boundary.

This section is devoted to closed sets and properties of the closure and
boundary operators.

The carrier of the space is closed.

lemma (in topology0) Top_3_L1: shows "(
⋃
T) {is closed in} T"

proof -

have "
⋃
T -

⋃
T = 0" by auto

with topSpaceAssum have "
⋃
T -

⋃
T ∈ T" using IsATopology_def by auto

then show ?thesis using IsClosed_def by simp

qed

Empty set is closed.

lemma (in topology0) Top_3_L2: shows "0 {is closed in} T"

using topSpaceAssum IsATopology_def IsClosed_def by simp

The collection of closed covers of a subset of the carrier of topology is never
empty. This is good to know, as we want to intersect this collection to get
the closure.

lemma (in topology0) Top_3_L3:

assumes A1: "A ⊆
⋃
T" shows "ClosedCovers(A,T) 6= 0"

proof -

from A1 have "
⋃
T ∈ ClosedCovers(A,T)" using ClosedCovers_def Top_3_L1

by auto

thus ?thesis by auto

qed

Intersection of a nonempty family of closed sets is closed.

lemma (in topology0) Top_3_L4: assumes A1: "K6=0" and
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A2: "∀ D∈K. D {is closed in} T"

shows "(
⋂
K) {is closed in} T"

proof -

from A2 have I: "∀ D∈K. (D ⊆
⋃
T ∧ (

⋃
T - D)∈ T)"

using IsClosed_def by simp

then have "{
⋃
T - D. D∈ K} ⊆ T" by auto

with topSpaceAssum have "(
⋃

{
⋃
T - D. D∈ K}) ∈ T"

using IsATopology_def by auto

moreover from A1 have "
⋃

{
⋃
T - D. D∈ K} =

⋃
T -

⋂
K" by fast

moreover from A1 I have "
⋂
K ⊆

⋃
T" by blast

ultimately show "(
⋂
K) {is closed in} T" using IsClosed_def

by simp

qed

The union and intersection of two closed sets are closed.

lemma (in topology0) Top_3_L5:

assumes A1: "D1 {is closed in} T" "D2 {is closed in} T"

shows
"(D1∩D2) {is closed in} T"

"(D1∪D2) {is closed in} T"

proof -

have "{D1,D2} 6= 0" by simp

with A1 have "(
⋂

{D1,D2}) {is closed in} T" using Top_3_L4

by fast

thus "(D1∩D2) {is closed in} T" by simp

from topSpaceAssum A1 have "(
⋃
T - D1) ∩ (

⋃
T - D2) ∈ T"

using IsClosed_def IsATopology_def by simp

moreover have "(
⋃
T - D1) ∩ (

⋃
T - D2) =

⋃
T - (D1 ∪ D2)"

by auto

moreover from A1 have "D1 ∪ D2 ⊆
⋃
T" using IsClosed_def

by auto

ultimately show "(D1∪D2) {is closed in} T" using IsClosed_def

by simp

qed

Finite union of closed sets is closed. To understand the proof recall that
D ∈Pow(

⋃
T) means that D is a subset of the carrier of the topology.

lemma (in topology0) fin_union_cl_is_cl:

assumes
A1: "N ∈ FinPow({D∈Pow(

⋃
T). D {is closed in} T})"

shows "(
⋃
N) {is closed in} T"

proof -

let ?C = "{D∈Pow(
⋃
T). D {is closed in} T}"

have "0∈?C" using Top_3_L2 by simp

moreover have "∀ A∈?C. ∀ B∈?C. A∪B ∈ ?C"

using Top_3_L5 by auto

moreover note A1

ultimately have "
⋃
N ∈ ?C" by (rule union_two_union_fin)

thus "(
⋃
N) {is closed in} T" by simp
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qed

Closure of a set is closed.

lemma (in topology0) cl_is_closed: assumes "A ⊆
⋃
T"

shows "cl(A) {is closed in} T"

using assms Closure_def Top_3_L3 ClosedCovers_def Top_3_L4

by simp

Closure of a bigger sets is bigger.

lemma (in topology0) top_closure_mono:

assumes A1: "A ⊆
⋃
T" "B ⊆

⋃
T" and A2:"A⊆B"

shows "cl(A) ⊆ cl(B)"

proof -

from A2 have "ClosedCovers(B,T)⊆ ClosedCovers(A,T)"

using ClosedCovers_def by auto

with A1 show ?thesis using Top_3_L3 Closure_def by auto

qed

Boundary of a set is closed.

lemma (in topology0) boundary_closed:

assumes A1: "A ⊆
⋃
T" shows "∂A {is closed in} T"

proof -

from A1 have "
⋃
T - A ⊆

⋃
T" by fast

with A1 show "∂A {is closed in} T"

using cl_is_closed Top_3_L5 Boundary_def by auto

qed

A set is closed iff it is equal to its closure.

lemma (in topology0) Top_3_L8: assumes A1: "A ⊆
⋃
T"

shows "A {is closed in} T ←→ cl(A) = A"

proof
assume "A {is closed in} T"

with A1 show "cl(A) = A"

using Closure_def ClosedCovers_def by auto

next assume "cl(A) = A"

then have "
⋃
T - A =

⋃
T - cl(A)" by simp

with A1 show "A {is closed in} T" using cl_is_closed IsClosed_def

by simp

qed

Complement of an open set is closed.

lemma (in topology0) Top_3_L9:

assumes A1: "A∈T"
shows "(

⋃
T - A) {is closed in} T"

proof -

from topSpaceAssum A1 have "
⋃
T - (

⋃
T - A) = A" and "

⋃
T - A ⊆

⋃
T"

using IsATopology_def by auto

with A1 show "(
⋃
T - A) {is closed in} T" using IsClosed_def by simp
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qed

A set is contained in its closure.

lemma (in topology0) cl_contains_set: assumes "A ⊆
⋃
T" shows "A ⊆

cl(A)"

using assms Top_3_L1 ClosedCovers_def Top_3_L3 Closure_def by auto

Closure of a subset of the carrier is a subset of the carrier and closure of the
complement is the complement of the interior.

lemma (in topology0) Top_3_L11: assumes A1: "A ⊆
⋃
T"

shows
"cl(A) ⊆

⋃
T"

"cl(
⋃
T - A) =

⋃
T - int(A)"

proof -

from A1 show "cl(A) ⊆
⋃
T" using Top_3_L1 Closure_def ClosedCovers_def

by auto

from A1 have "
⋃
T - A ⊆

⋃
T - int(A)" using Top_2_L1

by auto

moreover have I: "
⋃
T - int(A) ⊆

⋃
T" "

⋃
T - A ⊆

⋃
T" by auto

ultimately have "cl(
⋃
T - A) ⊆ cl(

⋃
T - int(A))"

using top_closure_mono by simp

moreover
from I have "(

⋃
T - int(A)) {is closed in} T"

using Top_2_L2 Top_3_L9 by simp

with I have "cl((
⋃
T) - int(A)) =

⋃
T - int(A)"

using Top_3_L8 by simp

ultimately have "cl(
⋃
T - A) ⊆

⋃
T - int(A)" by simp

moreover
from I have "

⋃
T - A ⊆ cl(

⋃
T - A)" using cl_contains_set by simp

hence "
⋃
T - cl(

⋃
T - A) ⊆ A" and "

⋃
T - A ⊆

⋃
T" by auto

then have "
⋃
T - cl(

⋃
T - A) ⊆ int(A)"

using cl_is_closed IsClosed_def Top_2_L5 by simp

hence "
⋃
T - int(A) ⊆ cl(

⋃
T - A)" by auto

ultimately show "cl(
⋃
T - A) =

⋃
T - int(A)" by auto

qed

Boundary of a set is the closure of the set minus the interior of the set.

lemma (in topology0) Top_3_L12: assumes A1: "A ⊆
⋃
T"

shows "∂A = cl(A) - int(A)"

proof -

from A1 have "∂A = cl(A) ∩ (
⋃
T - int(A))"

using Boundary_def Top_3_L11 by simp

moreover from A1 have
"cl(A) ∩ (

⋃
T - int(A)) = cl(A) - int(A)"

using Top_3_L11 by blast

ultimately show "∂A = cl(A) - int(A)" by simp

qed

If a set A is contained in a closed set B, then the closure of A is contained
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in B.

lemma (in topology0) Top_3_L13:

assumes A1: "B {is closed in} T" "A⊆B"
shows "cl(A) ⊆ B"

proof -

from A1 have "B ⊆
⋃
T" using IsClosed_def by simp

with A1 show "cl(A) ⊆ B" using ClosedCovers_def Closure_def by auto

qed

If a set is disjoint with an open set, then we can close it and it will still be
disjoint.

lemma (in topology0) disj_open_cl_disj:

assumes A1: "A ⊆
⋃
T" "V∈T" and A2: "A∩V = 0"

shows "cl(A) ∩ V = 0"

proof -

from assms have "A ⊆
⋃
T - V" by auto

moreover from A1 have "(
⋃
T - V) {is closed in} T" using Top_3_L9

by simp

ultimately have "cl(A) - (
⋃
T - V) = 0"

using Top_3_L13 by blast

moreover from A1 have "cl(A) ⊆
⋃
T" using cl_is_closed IsClosed_def

by simp

then have "cl(A) -(
⋃
T - V) = cl(A) ∩ V" by auto

ultimately show ?thesis by simp

qed

A reformulation of disj_open_cl_disj: If a point belongs to the closure of a
set, then we can find a point from the set in any open neighboorhood of the
point.

lemma (in topology0) cl_inter_neigh:

assumes "A ⊆
⋃
T" and "U∈T" and "x ∈ cl(A) ∩ U"

shows "A∩U 6= 0" using assms disj_open_cl_disj by auto

A reverse of cl_inter_neigh: if every open neiboorhood of a point has a
nonempty intersection with a set, then that point belongs to the closure of
the set.

lemma (in topology0) inter_neigh_cl:

assumes A1: "A ⊆
⋃
T" and A2: "x∈

⋃
T" and A3: "∀ U∈T. x∈U −→ U∩A

6= 0"

shows "x ∈ cl(A)"

proof -

{ assume "x /∈ cl(A)"

with A1 obtain D where "D {is closed in} T" and "A⊆D" and "x/∈D"
using Top_3_L3 Closure_def ClosedCovers_def by auto

let ?U = "(
⋃
T) - D"

from A2 ‘D {is closed in} T‘ ‘x/∈D‘ ‘A⊆D‘ have "?U∈T" "x∈?U" and
"?U∩A = 0"

unfolding IsClosed_def by auto
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with A3 have False by auto

} thus ?thesis by auto

qed

end

50 Topology 1

theory Topology_ZF_1 imports Topology_ZF

begin

In this theory file we study separation axioms and the notion of base and
subbase. Using the products of open sets as a subbase we define a natural
topology on a product of two topological spaces.

50.1 Separation axioms.

Topological spaces cas be classified according to certain properties called
”separation axioms”. In this section we define what it means that a topo-
logical space is T0, T1 or T2.

A topology on X is T0 if for every pair of distinct points of X there is an
open set that contains only one of them.

definition
isT0 ("_ {is T0}" [90] 91) where
"T {is T0} ≡ ∀ x y. ((x ∈

⋃
T ∧ y ∈

⋃
T ∧ x 6=y) −→

(∃ U∈T. (x∈U ∧ y/∈U) ∨ (y∈U ∧ x/∈U)))"

A topology is T1 if for every such pair there exist an open set that contains
the first point but not the second.

definition
isT1 ("_ {is T1}" [90] 91) where
"T {is T1} ≡ ∀ x y. ((x ∈

⋃
T ∧ y ∈

⋃
T ∧ x6=y) −→

(∃ U∈T. (x∈U ∧ y/∈U)))"

A topology is T2 (Hausdorff) if for every pair of points there exist a pair of
disjoint open sets each containing one of the points. This is an important
class of topological spaces. In particular, metric spaces are Hausdorff.

definition
isT2 ("_ {is T2}" [90] 91) where
"T {is T2} ≡ ∀ x y. ((x ∈

⋃
T ∧ y ∈

⋃
T ∧ x6=y) −→

(∃ U∈T. ∃ V∈T. x∈U ∧ y∈V ∧ U∩V=0))"

If a topology is T1 then it is T0. We don’t really assume here that T is a
topology on X. Instead, we prove the relation between isT0 condition and
isT1.
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lemma T1_is_T0: assumes A1: "T {is T1}" shows "T {is T0}"

proof -

from A1 have "∀ x y. x ∈
⋃
T ∧ y ∈

⋃
T ∧ x 6=y −→

(∃ U∈T. x∈U ∧ y/∈U)"
using isT1_def by simp

then have "∀ x y. x ∈
⋃
T ∧ y ∈

⋃
T ∧ x6=y −→

(∃ U∈T. x∈U ∧ y/∈U ∨ y∈U ∧ x/∈U)"
by auto

then show "T {is T0}" using isT0_def by simp

qed

If a topology is T2 then it is T1.

lemma T2_is_T1: assumes A1: "T {is T2}" shows "T {is T1}"

proof -

{ fix x y assume "x ∈
⋃
T" "y ∈

⋃
T" "x6=y"

with A1 have "∃ U∈T. ∃ V∈T. x∈U ∧ y∈V ∧ U∩V=0"
using isT2_def by auto

then have "∃ U∈T. x∈U ∧ y/∈U" by auto

} then have "∀ x y. x ∈
⋃
T ∧ y ∈

⋃
T ∧ x6=y −→

(∃ U∈T. x∈U ∧ y/∈U)" by simp

then show "T {is T1}" using isT1_def by simp

qed

In a T0 space two points that can not be separated by an open set are equal.
Proof by contradiction.

lemma Top_1_1_L1: assumes A1: "T {is T0}" and A2: "x ∈
⋃
T" "y ∈

⋃
T"

and A3: "∀ U∈T. (x∈U ←→ y∈U)"
shows "x=y"

proof -

{ assume "x 6=y"

with A1 A2 have "∃ U∈T. x∈U ∧ y/∈U ∨ y∈U ∧ x/∈U"
using isT0_def by simp

with A3 have False by auto

} then show "x=y" by auto

qed

50.2 Bases and subbases.

Sometimes it is convenient to talk about topologies in terms of their bases
and subbases. These are certain collections of open sets that define the
whole topology.

A base of topology is a collection of open sets such that every open set is a
union of the sets from the base.

definition
IsAbaseFor (infixl "{is a base for}" 65) where
"B {is a base for} T ≡ B⊆T ∧ T = {

⋃
A. A∈Pow(B)}"
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A subbase is a collection of open sets such that finite intersection of those
sets form a base.

definition
IsAsubBaseFor (infixl "{is a subbase for}" 65) where
"B {is a subbase for} T ≡
B ⊆ T ∧ {

⋂
A. A ∈ FinPow(B)} {is a base for} T"

Below we formulate a condition that we will prove to be necessary and
sufficient for a collection B of open sets to form a base. It says that for any
two sets U, V from the collection B we can find a point x ∈ U ∩ V with a
neighboorhod from B contained in U ∩ V .

definition
SatisfiesBaseCondition ("_ {satisfies the base condition}" [50] 50)

where
"B {satisfies the base condition} ≡
∀ U V. ((U∈B ∧ V∈B) −→ (∀ x ∈ U∩V. ∃ W∈B. x∈W ∧ W ⊆ U∩V))"

A collection that is closed with respect to intersection satisfies the base
condition.

lemma inter_closed_base: assumes "∀ U∈B.(∀ V∈B. U∩V ∈ B)"

shows "B {satisfies the base condition}"

proof -

{ fix U V x assume "U∈B" and "V∈B" and "x ∈ U∩V"
with assms have "∃ W∈B. x∈W ∧ W ⊆ U∩V" by blast

} then show ?thesis using SatisfiesBaseCondition_def by simp

qed

Each open set is a union of some sets from the base.

lemma Top_1_2_L1: assumes "B {is a base for} T" and "U∈T"
shows "∃ A∈Pow(B). U =

⋃
A"

using assms IsAbaseFor_def by simp

Elements of base are open.

lemma base_sets_open:

assumes "B {is a base for} T" and "U ∈ B"

shows "U ∈ T"

using assms IsAbaseFor_def by auto

A base defines topology uniquely.

lemma same_base_same_top:

assumes "B {is a base for} T" and "B {is a base for} S"

shows "T = S"

using assms IsAbaseFor_def by simp

Every point from an open set has a neighboorhood from the base that is
contained in the set.

lemma point_open_base_neigh:
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assumes A1: "B {is a base for} T" and A2: "U∈T" and A3: "x∈U"
shows "∃ V∈B. V⊆U ∧ x∈V"

proof -

from A1 A2 obtain A where "A ∈ Pow(B)" and "U =
⋃
A"

using Top_1_2_L1 by blast

with A3 obtain V where "V∈A" and "x∈V" by auto

with ‘A ∈ Pow(B)‘ ‘U =
⋃
A‘ show ?thesis by auto

qed

A criterion for a collection to be a base for a topology that is a slight
reformulation of the definition. The only thing different that in the definition
is that we assume only that every open set is a union of some sets from the
base. The definition requires also the opposite inclusion that every union of
the sets from the base is open, but that we can prove if we assume that T
is a topology.

lemma is_a_base_criterion: assumes A1: "T {is a topology}"

and A2: "B ⊆ T" and A3: "∀ V ∈ T. ∃ A ∈ Pow(B). V =
⋃
A"

shows "B {is a base for} T"

proof -

from A3 have "T ⊆ {
⋃
A. A∈Pow(B)}" by auto

moreover have "{
⋃
A. A∈Pow(B)} ⊆ T"

proof
fix U assume "U ∈ {

⋃
A. A∈Pow(B)}"

then obtain A where "A ∈ Pow(B)" and "U =
⋃
A"

by auto

with ‘B ⊆ T‘ have "A ∈ Pow(T)" by auto

with A1 ‘U =
⋃
A‘ show "U ∈ T"

unfolding IsATopology_def by simp

qed
ultimately have "T = {

⋃
A. A∈Pow(B)}" by auto

with A2 show "B {is a base for} T"

unfolding IsAbaseFor_def by simp

qed

A necessary condition for a collection of sets to be a base for some topology
: every point in the intersection of two sets in the base has a neighboorhood
from the base contained in the intersection.

lemma Top_1_2_L2:

assumes A1:"∃ T. T {is a topology} ∧ B {is a base for} T"

and A2: "V∈B" "W∈B"
shows "∀ x ∈ V∩W. ∃ U∈B. x∈U ∧ U ⊆ V ∩ W"

proof -

from A1 obtain T where
D1: "T {is a topology}" "B {is a base for} T"

by auto

then have "B ⊆ T" using IsAbaseFor_def by auto

with A2 have "V∈T" and "W∈T" using IsAbaseFor_def by auto

with D1 have "∃ A∈Pow(B). V∩W =
⋃
A" using IsATopology_def Top_1_2_L1
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by auto

then obtain A where "A ⊆ B" and "V ∩ W =
⋃
A" by auto

then show "∀ x ∈ V∩W. ∃ U∈B. (x∈U ∧ U ⊆ V ∩ W)" by auto

qed

We will construct a topology as the collection of unions of (would-be) base.
First we prove that if the collection of sets satisfies the condition we want
to show to be sufficient, the the intersection belongs to what we will define
as topology (am I clear here?). Having this fact ready simplifies the proof
of the next lemma. There is not much topology here, just some set theory.

lemma Top_1_2_L3:

assumes A1: "∀ x∈ V∩W . ∃ U∈B. x∈U ∧ U ⊆ V∩W"
shows "V∩W ∈ {

⋃
A. A∈Pow(B)}"

proof
let ?A = "

⋃
x∈V∩W. {U∈B. x∈U ∧ U ⊆ V∩W}"

show "?A∈Pow(B)" by auto

from A1 show "V∩W =
⋃
?A" by blast

qed

The next lemma is needed when proving that the would-be topology is closed
with respect to taking intersections. We show here that intersection of two
sets from this (would-be) topology can be written as union of sets from the
topology.

lemma Top_1_2_L4:

assumes A1: "U1 ∈ {
⋃
A. A∈Pow(B)}" "U2 ∈ {

⋃
A. A∈Pow(B)}"

and A2: "B {satisfies the base condition}"

shows "∃ C. C ⊆ {
⋃
A. A∈Pow(B)} ∧ U1∩U2 =

⋃
C"

proof -

from A1 A2 obtain A1 A2 where
D1: "A1∈ Pow(B)" "U1 =

⋃
A1" "A2 ∈ Pow(B)" "U2 =

⋃
A2"

by auto

let ?C = "
⋃
U∈A1.{U∩V. V∈A2}"

from D1 have "(∀ U∈A1. U∈B) ∧ (∀ V∈A2. V∈B)" by auto

with A2 have "?C ⊆ {
⋃
A . A ∈ Pow(B)}"

using Top_1_2_L3 SatisfiesBaseCondition_def by auto

moreover from D1 have "U1 ∩ U2 =
⋃
?C" by auto

ultimately show ?thesis by auto

qed

If B satisfies the base condition, then the collection of unions of sets from
B is a topology and B is a base for this topology.

theorem Top_1_2_T1:

assumes A1: "B {satisfies the base condition}"

and A2: "T = {
⋃
A. A∈Pow(B)}"

shows "T {is a topology}" and "B {is a base for} T"

proof -

show "T {is a topology}"

proof -
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have I: "∀ C∈Pow(T).
⋃
C ∈ T"

proof -

{ fix C assume A3: "C ∈ Pow(T)"

let ?Q = "
⋃

{
⋃
{A∈Pow(B). U =

⋃
A}. U∈C}"

from A2 A3 have "∀ U∈C. ∃ A∈Pow(B). U =
⋃
A" by auto

then have "
⋃
?Q =

⋃
C" using ZF1_1_L10 by simp

moreover from A2 have "
⋃
?Q ∈ T" by auto

ultimately have "
⋃
C ∈ T" by simp

} thus "∀ C∈Pow(T).
⋃
C ∈ T" by auto

qed
moreover have "∀ U∈T. ∀ V∈T. U∩V ∈ T"

proof -

{ fix U V assume "U ∈ T" "V ∈ T"

with A1 A2 have "∃ C.(C ⊆ T ∧ U∩V =
⋃
C)"

using Top_1_2_L4 by simp

then obtain C where "C ⊆ T" and "U∩V =
⋃
C"

by auto

with I have "U∩V ∈ T" by simp

} then show "∀ U∈T. ∀ V∈T. U∩V ∈ T" by simp

qed
ultimately show "T {is a topology}" using IsATopology_def

by simp

qed
from A2 have "B⊆T" by auto

with A2 show "B {is a base for} T" using IsAbaseFor_def

by simp

qed

The carrier of the base and topology are the same.

lemma Top_1_2_L5: assumes "B {is a base for} T"

shows "
⋃
T =

⋃
B"

using assms IsAbaseFor_def by auto

If B is a base for T , then T is the smallest topology containing B.

lemma base_smallest_top:

assumes A1: "B {is a base for} T" and A2: "S {is a topology}" and
A3: "B⊆S"

shows "T⊆S"
proof

fix U assume "U∈T"
with A1 obtain BU where "BU ⊆ B" and "U =

⋃
BU" using IsAbaseFor_def

by auto

with A3 have "BU ⊆ S" by auto

with A2 ‘U =
⋃
BU‘ show "U∈S" using IsATopology_def by simp

qed

If B is a base for T and B is a topology, then B = T .

lemma base_topology: assumes "B {is a topology}" and "B {is a base for}

T"
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shows "B=T" using assms base_sets_open base_smallest_top by blast

50.3 Product topology

In this section we consider a topology defined on a product of two sets.

Given two topological spaces we can define a topology on the product of the
carriers such that the cartesian products of the sets of the topologies are a
base for the product topology. Recall that for two collections S, T of sets
the product collection is defined (in ZF1.thy) as the collections of cartesian
products A×B, where A ∈ S,B ∈ T .

definition
"ProductTopology(T,S) ≡ {

⋃
W. W ∈ Pow(ProductCollection(T,S))}"

The product collection satisfies the base condition.

lemma Top_1_4_L1:

assumes A1: "T {is a topology}" "S {is a topology}"

and A2: "A ∈ ProductCollection(T,S)" "B ∈ ProductCollection(T,S)"

shows "∀ x∈(A∩B). ∃ W∈ProductCollection(T,S). (x∈W ∧ W ⊆ A ∩ B)"

proof
fix x assume A3: "x ∈ A∩B"
from A2 obtain U1 V1 U2 V2 where
D1: "U1∈T" "V1∈S" "A=U1×V1" "U2∈T" "V2∈S" "B=U2×V2"
using ProductCollection_def by auto

let ?W = "(U1∩U2) × (V1∩V2)"
from A1 D1 have "U1∩U2 ∈ T" and "V1∩V2 ∈ S"

using IsATopology_def by auto

then have "?W ∈ ProductCollection(T,S)" using ProductCollection_def

by auto

moreover from A3 D1 have "x∈?W" and "?W ⊆ A∩B" by auto

ultimately have "∃ W. (W ∈ ProductCollection(T,S) ∧ x∈W ∧ W ⊆ A∩B)"
by auto

thus "∃ W∈ProductCollection(T,S). (x∈W ∧ W ⊆ A ∩ B)" by auto

qed

The product topology is indeed a topology on the product.

theorem Top_1_4_T1: assumes A1: "T {is a topology}" "S {is a topology}"

shows
"ProductTopology(T,S) {is a topology}"

"ProductCollection(T,S) {is a base for} ProductTopology(T,S)"

"
⋃

ProductTopology(T,S) =
⋃
T ×

⋃
S"

proof -

from A1 show
"ProductTopology(T,S) {is a topology}"

"ProductCollection(T,S) {is a base for} ProductTopology(T,S)"

using Top_1_4_L1 ProductCollection_def

SatisfiesBaseCondition_def ProductTopology_def Top_1_2_T1
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by auto

then show "
⋃

ProductTopology(T,S) =
⋃
T ×

⋃
S"

using Top_1_2_L5 ZF1_1_L6 by simp

qed

Each point of a set open in the product topology has a neighborhood which
is a cartesian product of open sets.

lemma prod_top_point_neighb:

assumes A1: "T {is a topology}" "S {is a topology}" and
A2: "U ∈ ProductTopology(T,S)" and A3: "x ∈ U"

shows "∃ V W. V∈T ∧ W∈S ∧ V×W ⊆ U ∧ x ∈ V×W"
proof -

from A1 have
"ProductCollection(T,S) {is a base for} ProductTopology(T,S)"

using Top_1_4_T1 by simp

with A2 A3 obtain Z where
"Z ∈ ProductCollection(T,S)" and "Z ⊆ U ∧ x∈Z"
using point_open_base_neigh by blast

then obtain V W where "V ∈ T" and "W∈S" and" V×W ⊆ U ∧ x ∈ V×W"
using ProductCollection_def by auto

thus ?thesis by auto

qed

Products of open sets are open in the product topology.

lemma prod_open_open_prod:

assumes A1: "T {is a topology}" "S {is a topology}" and
A2: "U∈T" "V∈S"
shows "U×V ∈ ProductTopology(T,S)"

proof -

from A1 have
"ProductCollection(T,S) {is a base for} ProductTopology(T,S)"

using Top_1_4_T1 by simp

moreover from A2 have "U×V ∈ ProductCollection(T,S)"

unfolding ProductCollection_def by auto

ultimately show "U×V ∈ ProductTopology(T,S)"

using base_sets_open by simp

qed

Sets that are open in th product topology are contained in the product of
the carrier.

lemma prod_open_type: assumes A1: "T {is a topology}" "S {is a topology}"

and
A2: "V ∈ ProductTopology(T,S)"

shows "V ⊆
⋃
T ×

⋃
S"

proof -

from A2 have "V ⊆
⋃

ProductTopology(T,S)" by auto

with A1 show ?thesis using Top_1_4_T1 by simp

qed
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Suppose we have subsets A ⊆ X,B ⊆ Y , where X,Y are topological spaces
with topologies T, S. We can the consider relative topologies on TA, SB on
sets A,B and the collection of cartesian products of sets open in TA, SB,
(namely {U × V : U ∈ TA, V ∈ SB}. The next lemma states that this
collection is a base of the product topology on X × Y restricted to the
product A×B.

lemma prod_restr_base_restr:

assumes A1: "T {is a topology}" "S {is a topology}"

shows
"ProductCollection(T {restricted to} A, S {restricted to} B)

{is a base for} (ProductTopology(T,S) {restricted to} A×B)"
proof -

let ?B = "ProductCollection(T {restricted to} A, S {restricted to} B)"

let ?τ = "ProductTopology(T,S)"

from A1 have "(?τ {restricted to} A×B) {is a topology}"

using Top_1_4_T1 topology0_def topology0.Top_1_L4

by simp

moreover have "?B ⊆ (?τ {restricted to} A×B)"
proof

fix U assume "U ∈ ?B"
then obtain UA UB where "U = UA × UB" and
"UA ∈ (T {restricted to} A)" and "UB ∈ (S {restricted to} B)"

using ProductCollection_def by auto

then obtain WA WB where
"WA ∈ T" "UA = WA ∩ A" and "WB ∈ S" "UB = WB ∩ B"

using RestrictedTo_def by auto

with ‘U = UA × UB‘ have "U = WA×WB ∩ (A×B)" by auto

moreover from A1 ‘WA ∈ T‘ and ‘WB ∈ S‘ have "WA×WB ∈ ?τ"
using prod_open_open_prod by simp

ultimately show "U ∈ ?τ {restricted to} A×B"
using RestrictedTo_def by auto

qed
moreover have "∀ U ∈ ?τ {restricted to} A×B.
∃ C ∈ Pow(?B). U =

⋃
C"

proof
fix U assume "U ∈ ?τ {restricted to} A×B"
then obtain W where "W ∈ ?τ" and "U = W ∩ (A×B)"

using RestrictedTo_def by auto

from A1 ‘W ∈ ?τ‘ obtain AW where
"AW ∈ Pow(ProductCollection(T,S))" and "W =

⋃
AW "

using Top_1_4_T1 IsAbaseFor_def by auto

let ?C = "{V ∩ A×B. V ∈ AW }"

have "?C ∈ Pow(?B)" and "U =
⋃
?C"

proof -

{ fix R assume "R ∈ ?C"

then obtain V where "V ∈ AW " and "R = V ∩ A×B"
by auto

with ‘AW ∈ Pow(ProductCollection(T,S))‘ obtain VT VS where
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"VT ∈ T" and "VS ∈ S" and "V = VT × VS"

using ProductCollection_def by auto

with ‘R = V ∩ A×B‘ have "R ∈ ?B"
using ProductCollection_def RestrictedTo_def

by auto

} then show "?C ∈ Pow(?B)" by auto

from ‘U = W ∩ (A×B)‘ and ‘W =
⋃
AW ‘

show "U =
⋃
?C" by auto

qed
thus "∃ C ∈ Pow(?B). U =

⋃
C" by blast

qed
ultimately show ?thesis by (rule is_a_base_criterion)

qed

We can commute taking restriction (relative topology) and product topology.
The reason the two topologies are the same is that they have the same base.

lemma prod_top_restr_comm:

assumes A1: "T {is a topology}" "S {is a topology}"

shows
"ProductTopology(T {restricted to} A,S {restricted to} B) =

ProductTopology(T,S) {restricted to} (A×B)"
proof -

let ?B = "ProductCollection(T {restricted to} A, S {restricted to} B)"

from A1 have
"?B {is a base for} ProductTopology(T {restricted to} A,S {restricted

to} B)"

using topology0_def topology0.Top_1_L4 Top_1_4_T1 by simp

moreover from A1 have
"?B {is a base for} ProductTopology(T,S) {restricted to} (A×B)"
using prod_restr_base_restr by simp

ultimately show ?thesis by (rule same_base_same_top)

qed

Projection of a section of an open set is open.

lemma prod_sec_open1: assumes A1: "T {is a topology}" "S {is a topology}"

and
A2: "V ∈ ProductTopology(T,S)" and A3: "x ∈

⋃
T"

shows "{y ∈
⋃
S. 〈x,y〉 ∈ V} ∈ S"

proof -

let ?A = "{y ∈
⋃
S. 〈x,y〉 ∈ V}"

from A1 have "topology0(S)" using topology0_def by simp

moreover have "∀ y∈?A.∃ W∈S. (y∈W ∧ W⊆?A)"
proof

fix y assume "y ∈ ?A"

then have "〈x,y〉 ∈ V" by simp

with A1 A2 have "〈x,y〉 ∈
⋃
T ×

⋃
S" using prod_open_type by blast

hence "x ∈
⋃
T" and "y ∈

⋃
S" by auto

from A1 A2 ‘〈x,y〉 ∈ V‘ have "∃ U W. U∈T ∧ W∈S ∧ U×W ⊆ V ∧ 〈x,y〉
∈ U×W"
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by (rule prod_top_point_neighb)

then obtain U W where "U∈T" "W∈S" "U×W ⊆ V" "〈x,y〉 ∈ U×W"
by auto

with A1 A2 show "∃ W∈S. (y∈W ∧ W⊆?A)" using prod_open_type section_proj

by auto

qed
ultimately show ?thesis by (rule topology0.open_neigh_open)

qed

Projection of a section of an open set is open. This is dual of prod_sec_open1
with a very similar proof.

lemma prod_sec_open2: assumes A1: "T {is a topology}" "S {is a topology}"

and
A2: "V ∈ ProductTopology(T,S)" and A3: "y ∈

⋃
S"

shows "{x ∈
⋃
T. 〈x,y〉 ∈ V} ∈ T"

proof -

let ?A = "{x ∈
⋃
T. 〈x,y〉 ∈ V}"

from A1 have "topology0(T)" using topology0_def by simp

moreover have "∀ x∈?A.∃ W∈T. (x∈W ∧ W⊆?A)"
proof

fix x assume "x ∈ ?A"

then have "〈x,y〉 ∈ V" by simp

with A1 A2 have "〈x,y〉 ∈
⋃
T ×

⋃
S" using prod_open_type by blast

hence "x ∈
⋃
T" and "y ∈

⋃
S" by auto

from A1 A2 ‘〈x,y〉 ∈ V‘ have "∃ U W. U∈T ∧ W∈S ∧ U×W ⊆ V ∧ 〈x,y〉
∈ U×W"

by (rule prod_top_point_neighb)

then obtain U W where "U∈T" "W∈S" "U×W ⊆ V" "〈x,y〉 ∈ U×W"
by auto

with A1 A2 show "∃ W∈T. (x∈W ∧ W⊆?A)" using prod_open_type section_proj

by auto

qed
ultimately show ?thesis by (rule topology0.open_neigh_open)

qed

end

51 Topology 1b

theory Topology_ZF_1b imports Topology_ZF_1

begin

One of the facts demonstrated in every class on General Topology is that in
a T2 (Hausdorff) topological space compact sets are closed. Formalizing the
proof of this fact gave me an interesting insight into the role of the Axiom
of Choice (AC) in many informal proofs.
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A typical informal proof of this fact goes like this: we want to show that the
complement of K is open. To do this, choose an arbitrary point y ∈ Kc.
Since X is T2, for every point x ∈ K we can find an open set Ux such that
y /∈ Ux. Obviously {Ux}x∈K covers K, so select a finite subcollection that
covers K, and so on. I had never realized that such reasoning requires the
Axiom of Choice. Namely, suppose we have a lemma that states ”In T2

spaces, if x 6= y, then there is an open set U such that x ∈ U and y /∈ U”
(like our lemma T2_cl_open_sep below). This only states that the set of such
open sets U is not empty. To get the collection {Ux}x∈K in this proof we
have to select one such set among many for every x ∈ K and this is where
we use the Axiom of Choice. Probably in 99/100 cases when an informal
calculus proof states something like ∀ε∃δε · · · the proof uses AC. Most of the
time the use of AC in such proofs can be avoided. This is also the case for
the fact that in a T2 space compact sets are closed.

51.1 Compact sets are closed - no need for AC

In this section we show that in a T2 topological space compact sets are
closed.

First we prove a lemma that in a T2 space two points can be separated by
the closure of an open set.

lemma (in topology0) T2_cl_open_sep:

assumes "T {is T2}" and "x ∈
⋃
T" "y ∈

⋃
T" "x 6=y"

shows "∃ U∈T. (x∈U ∧ y /∈ cl(U))"

proof -

from assms have "∃ U∈T. ∃ V∈T. x∈U ∧ y∈V ∧ U∩V=0"
using isT2_def by simp

then obtain U V where "U∈T" "V∈T" "x∈U" "y∈V" "U∩V=0"
by auto

then have "U∈T ∧ x∈U ∧ y∈ V ∧ cl(U) ∩ V = 0"

using disj_open_cl_disj by auto

thus "∃ U∈T. (x∈U ∧ y /∈ cl(U))" by auto

qed

AC-free proof that in a Hausdorff space compact sets are closed. To un-
derstand the notation recall that in Isabelle/ZF Pow(A) is the powerset (the
set of subsets) of A and FinPow(A) denotes the set of finite subsets of A in
IsarMathLib.

theorem (in topology0) in_t2_compact_is_cl:

assumes A1: "T {is T2}" and A2: "K {is compact in} T"

shows "K {is closed in} T"

proof -

let ?X = "
⋃
T"

have "∀ y ∈ ?X - K. ∃ U∈T. y∈U ∧ U ⊆ ?X - K"

proof -
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{ fix y assume "y ∈ ?X" "y/∈K"
have "∃ U∈T. y∈U ∧ U ⊆ ?X - K"

proof -

let ?B = "
⋃
x∈K. {V∈T. x∈V ∧ y /∈ cl(V)}"

have I: "?B ∈ Pow(T)" "FinPow(?B) ⊆ Pow(?B)"

using FinPow_def by auto

from ‘K {is compact in} T‘ ‘y ∈ ?X‘ ‘y/∈K‘ have
"∀ x∈K. x ∈ ?X ∧ y ∈ ?X ∧ x6=y"

using IsCompact_def by auto

with ‘T {is T2}‘ have "∀ x∈K. {V∈T. x∈V ∧ y /∈ cl(V)} 6= 0"

using T2_cl_open_sep by auto

hence "K ⊆
⋃
?B" by blast

with ‘K {is compact in} T‘ I have
"∃ N ∈ FinPow(?B). K ⊆

⋃
N"

using IsCompact_def by auto

then obtain N where "N ∈ FinPow(?B)" "K ⊆
⋃
N"

by auto

with I have "N ⊆ ?B" by auto

hence "∀ V∈N. V∈?B" by auto

let ?M = "{cl(V). V∈N}"
let ?C = "{D ∈ Pow(?X). D {is closed in} T}"

from ‘N ∈ FinPow(?B)‘ have "∀ V∈?B. cl(V) ∈ ?C" "N ∈ FinPow(?B)"

using cl_is_closed IsClosed_def by auto

then have "?M ∈ FinPow(?C)" by (rule fin_image_fin)

then have "?X -
⋃
?M ∈ T" using fin_union_cl_is_cl IsClosed_def

by simp

moreover from ‘y ∈ ?X‘ ‘y/∈K‘ ‘∀ V∈N. V∈?B‘ have
"y ∈ ?X -

⋃
?M" by simp

moreover have "?X -
⋃
?M ⊆ ?X - K"

proof -

from ‘∀ V∈N. V∈?B‘ have "
⋃
N ⊆

⋃
?M" using cl_contains_set by auto

with ‘K ⊆
⋃
N‘ show "?X -

⋃
?M ⊆ ?X - K" by auto

qed
ultimately have "∃ U. U∈T ∧ y ∈ U ∧ U ⊆ ?X - K"

by auto

thus "∃ U∈T. y∈U ∧ U ⊆ ?X - K" by auto

qed
} thus "∀ y ∈ ?X - K. ∃ U∈T. y∈U ∧ U ⊆ ?X - K"

by auto

qed
with A2 show "K {is closed in} T"

using open_neigh_open IsCompact_def IsClosed_def by auto

qed

end
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52 Topology 2

theory Topology_ZF_2 imports Topology_ZF_1 func1 Fol1

begin

This theory continues the series on general topology and covers the definition
and basic properties of continuous functions. We also introduce the notion
of homeomorphism an prove the pasting lemma.

52.1 Continuous functions.

In this section we define continuous functions and prove that certain condi-
tions are equivalent to a function being continuous.

In standard math we say that a function is contiuous with respect to two
topologies τ1, τ2 if the inverse image of sets from topology τ2 are in τ1. Here
we define a predicate that is supposed to reflect that definition, with a dif-
ference that we don’t require in the definition that τ1, τ2 are topologies. This
means for example that when we define measurable functions, the definition
will be the same.

The notation f-‘‘(A) means the inverse image of (a set) A with respect to
(a function) f .

definition
"IsContinuous(τ1,τ2,f) ≡ (∀ U∈τ2. f-‘‘(U) ∈ τ1)"

A trivial example of a continuous function - identity is continuous.

lemma id_cont: shows "IsContinuous(τ,τ,id(
⋃
τ))"

proof -

{ fix U assume "U∈τ"
then have "id(

⋃
τ)-‘‘(U) = U" using vimage_id_same by auto

with ‘U∈τ‘ have "id(
⋃
τ)-‘‘(U) ∈ τ" by simp

} then show "IsContinuous(τ,τ,id(
⋃
τ))" using IsContinuous_def

by simp

qed

We will work with a pair of topological spaces. The following locale sets up
our context that consists of two topologies τ1, τ2 and a continuous function
f : X1 → X2, where Xi is defined as

⋃
τi for i = 1, 2. We also define

notation cl1(A) and cl2(A) for closure of a set A in topologies τ1 and τ2,
respectively.

locale two_top_spaces0 =

fixes τ1
assumes tau1_is_top: "τ1 {is a topology}"
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fixes τ2
assumes tau2_is_top: "τ2 {is a topology}"

fixes X1
defines X1_def [simp]: "X1 ≡

⋃
τ1"

fixes X2
defines X2_def [simp]: "X2 ≡

⋃
τ2"

fixes f

assumes fmapAssum: "f: X1 → X2"

fixes isContinuous ("_ {is continuous}" [50] 50)

defines isContinuous_def [simp]: "g {is continuous} ≡ IsContinuous(τ1,τ2,g)"

fixes cl1
defines cl1_def [simp]: "cl1(A) ≡ Closure(A,τ1)"

fixes cl2
defines cl2_def [simp]: "cl2(A) ≡ Closure(A,τ2)"

First we show that theorems proven in locale topology0 are valid when
applied to topologies τ1 and τ2.

lemma (in two_top_spaces0) topol_cntxs_valid:

shows "topology0(τ1)" and "topology0(τ2)"
using tau1_is_top tau2_is_top topology0_def by auto

For continuous functions the inverse image of a closed set is closed.

lemma (in two_top_spaces0) TopZF_2_1_L1:

assumes A1: "f {is continuous}" and A2: "D {is closed in} τ2"
shows "f-‘‘(D) {is closed in} τ1"

proof -

from fmapAssum have "f-‘‘(D) ⊆ X1" using func1_1_L3 by simp

moreover from fmapAssum have "f-‘‘(X2 - D) = X1 - f-‘‘(D)"

using Pi_iff function_vimage_Diff func1_1_L4 by auto

ultimately have "X1 - f-‘‘(X2 - D) = f-‘‘(D)" by auto

moreover from A1 A2 have "(X1 - f-‘‘(X2 - D)) {is closed in} τ1"
using IsClosed_def IsContinuous_def topol_cntxs_valid topology0.Top_3_L9

by simp

ultimately show "f-‘‘(D) {is closed in} τ1" by simp

qed

If the inverse image of every closed set is closed, then the image of a closure
is contained in the closure of the image.

lemma (in two_top_spaces0) Top_ZF_2_1_L2:

assumes A1: "∀ D. ((D {is closed in} τ2) −→ f-‘‘(D) {is closed in}

τ1)"
and A2: "A ⊆ X1"
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shows "f‘‘(cl1(A)) ⊆ cl2(f‘‘(A))"

proof -

from fmapAssum have "f‘‘(A) ⊆ cl2(f‘‘(A))"

using func1_1_L6 topol_cntxs_valid topology0.cl_contains_set

by simp

with fmapAssum have "f-‘‘(f‘‘(A)) ⊆ f-‘‘(cl2(f‘‘(A)))"

by auto

moreover from fmapAssum A2 have "A ⊆ f-‘‘(f‘‘(A))"

using func1_1_L9 by simp

ultimately have "A ⊆ f-‘‘(cl2(f‘‘(A)))" by auto

with fmapAssum A1 have "f‘‘(cl1(A)) ⊆ f‘‘(f-‘‘(cl2(f‘‘(A))))"

using func1_1_L6 func1_1_L8 IsClosed_def

topol_cntxs_valid topology0.cl_is_closed topology0.Top_3_L13

by simp

moreover from fmapAssum have "f‘‘(f-‘‘(cl2(f‘‘(A)))) ⊆ cl2(f‘‘(A))"

using fun_is_function function_image_vimage by simp

ultimately show "f‘‘(cl1(A)) ⊆ cl2(f‘‘(A))"

by auto

qed

If f
(
A
)
⊆ f(A) (the image of the closure is contained in the closure of the

image), then f−1(B) ⊆ f−1
(
B
)

(the inverse image of the closure contains
the closure of the inverse image).

lemma (in two_top_spaces0) Top_ZF_2_1_L3:

assumes A1: "∀ A. ( A ⊆ X1 −→ f‘‘(cl1(A)) ⊆ cl2(f‘‘(A)))"

shows "∀ B. ( B ⊆ X2 −→ cl1(f-‘‘(B)) ⊆ f-‘‘(cl2(B)) )"

proof -

{ fix B assume "B ⊆ X2"

from fmapAssum A1 have "f‘‘(cl1(f-‘‘(B))) ⊆ cl2(f‘‘(f-‘‘(B)))"

using func1_1_L3 by simp

moreover from fmapAssum ‘B ⊆ X2‘ have "cl2(f‘‘(f-‘‘(B))) ⊆ cl2(B)"

using fun_is_function function_image_vimage func1_1_L6

topol_cntxs_valid topology0.top_closure_mono

by simp

ultimately have "f-‘‘(f‘‘(cl1(f-‘‘(B)))) ⊆ f-‘‘(cl2(B))"

using fmapAssum fun_is_function by auto

moreover from fmapAssum ‘B ⊆ X2‘ have
"cl1(f-‘‘(B)) ⊆ f-‘‘(f‘‘(cl1(f-‘‘(B))))"

using func1_1_L3 func1_1_L9 IsClosed_def

topol_cntxs_valid topology0.cl_is_closed by simp

ultimately have "cl1(f-‘‘(B)) ⊆ f-‘‘(cl2(B))" by auto

} then show ?thesis by simp

qed

If f−1(B) ⊆ f−1
(
B
)

(the inverse image of a closure contains the clo-
sure of the inverse image), then the function is continuous. This lemma
closes a series of implications in lemmas Top_ZF_2_1_L1, Top_ZF_2_1_L2 and
Top_ZF_2_1_L3 showing equivalence of four definitions of continuity.
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lemma (in two_top_spaces0) Top_ZF_2_1_L4:

assumes A1: "∀ B. ( B ⊆ X2 −→ cl1(f-‘‘(B)) ⊆ f-‘‘(cl2(B)) )"

shows "f {is continuous}"

proof -

{ fix U assume "U ∈ τ2"
then have "(X2 - U) {is closed in} τ2"

using topol_cntxs_valid topology0.Top_3_L9 by simp

moreover have "X2 - U ⊆
⋃
τ2" by auto

ultimately have "cl2(X2 - U) = X2 - U"

using topol_cntxs_valid topology0.Top_3_L8 by simp

moreover from A1 have "cl1(f-‘‘(X2 - U)) ⊆ f-‘‘(cl2(X2 - U))"

by auto

ultimately have "cl1(f-‘‘(X2 - U)) ⊆ f-‘‘(X2 - U)" by simp

moreover from fmapAssum have "f-‘‘(X2 - U) ⊆ cl1(f-‘‘(X2 - U))"

using func1_1_L3 topol_cntxs_valid topology0.cl_contains_set

by simp

ultimately have "f-‘‘(X2 - U) {is closed in} τ1"
using fmapAssum func1_1_L3 topol_cntxs_valid topology0.Top_3_L8

by auto

with fmapAssum have "f-‘‘(U) ∈ τ1"
using fun_is_function function_vimage_Diff func1_1_L4

func1_1_L3 IsClosed_def double_complement by simp

} then have "∀ U∈τ2. f-‘‘(U) ∈ τ1" by simp

then show ?thesis using IsContinuous_def by simp

qed

Another condition for continuity: it is sufficient to check if the inverse image
of every set in a base is open.

lemma (in two_top_spaces0) Top_ZF_2_1_L5:

assumes A1: "B {is a base for} τ2" and A2: "∀ U∈B. f-‘‘(U) ∈ τ1"
shows "f {is continuous}"

proof -

{ fix V assume A3: "V ∈ τ2"
with A1 obtain A where "A ⊆ B" "V =

⋃
A"

using IsAbaseFor_def by auto

with A2 have "{f-‘‘(U). U∈A} ⊆ τ1" by auto

with tau1_is_top have "
⋃

{f-‘‘(U). U∈A} ∈ τ1"
using IsATopology_def by simp

moreover from ‘A ⊆ B‘ ‘V =
⋃
A‘ have "f-‘‘(V) =

⋃
{f-‘‘(U). U∈A}"

by auto

ultimately have "f-‘‘(V) ∈ τ1" by simp

} then show "f {is continuous}" using IsContinuous_def

by simp

qed

We can strenghten the previous lemma: it is sufficient to check if the inverse
image of every set in a subbase is open. The proof is rather awkward, as
usual when we deal with general intersections. We have to keep track of the
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case when the collection is empty.

lemma (in two_top_spaces0) Top_ZF_2_1_L6:

assumes A1: "B {is a subbase for} τ2" and A2: "∀ U∈B. f-‘‘(U) ∈ τ1"

shows "f {is continuous}"

proof -

let ?C = "{
⋂
A. A ∈ FinPow(B)}"

from A1 have "?C {is a base for} τ2"
using IsAsubBaseFor_def by simp

moreover have "∀ U∈?C. f-‘‘(U) ∈ τ1"
proof

fix U assume "U∈?C"
{ assume "f-‘‘(U) = 0"

with tau1_is_top have "f-‘‘(U) ∈ τ1"
using empty_open by simp }

moreover
{ assume "f-‘‘(U) 6= 0"

then have "U 6=0" by (rule func1_1_L13)

moreover from ‘U∈?C‘ obtain A where
"A ∈ FinPow(B)" and "U =

⋂
A"

by auto

ultimately have "
⋂
A6=0" by simp

then have "A 6=0" by (rule inter_nempty_nempty)

then have "{f-‘‘(W). W∈A} 6= 0" by simp

moreover from A2 ‘A ∈ FinPow(B)‘ have "{f-‘‘(W). W∈A} ∈ FinPow(τ1)"
by (rule fin_image_fin)

ultimately have "
⋂
{f-‘‘(W). W∈A} ∈ τ1"

using topol_cntxs_valid topology0.fin_inter_open_open by simp

moreover
from ‘A ∈ FinPow(B)‘ have "A ⊆ B" using FinPow_def by simp

with tau2_is_top A1 have "A ⊆ Pow(X2)"

using IsAsubBaseFor_def IsATopology_def by auto

with fmapAssum ‘A6=0‘ ‘U =
⋂
A‘ have "f-‘‘(U) =

⋂
{f-‘‘(W). W∈A}"

using func1_1_L12 by simp

ultimately have "f-‘‘(U) ∈ τ1" by simp }
ultimately show "f-‘‘(U) ∈ τ1" by blast

qed
ultimately show "f {is continuous}"

using Top_ZF_2_1_L5 by simp

qed

A dual of Top_ZF_2_1_L5: a function that maps base sets to open sets is open.

lemma (in two_top_spaces0) base_image_open:

assumes A1: "B {is a base for} τ1" and A2: "∀ B∈B. f‘‘(B) ∈ τ2" and
A3: "U∈τ1"

shows "f‘‘(U) ∈ τ2"
proof -

from A1 A3 obtain E where "E ∈ Pow(B)" and "U =
⋃
E" using Top_1_2_L1

by blast

655



with A1 have "f‘‘(U) =
⋃
{f‘‘(E). E ∈ E}" using Top_1_2_L5 fmapAssum

image_of_Union

by auto

moreover
from A2 ‘E ∈ Pow(B)‘ have "{f‘‘(E). E ∈ E} ∈ Pow(τ2)" by auto

then have "
⋃
{f‘‘(E). E ∈ E} ∈ τ2" using tau2_is_top IsATopology_def

by simp

ultimately show ?thesis using tau2_is_top IsATopology_def by auto

qed

A composition of two continuous functions is continuous.

lemma comp_cont: assumes "IsContinuous(T,S,f)" and "IsContinuous(S,R,g)"

shows "IsContinuous(T,R,g O f)"

using assms IsContinuous_def vimage_comp by simp

A composition of three continuous functions is continuous.

lemma comp_cont3:

assumes "IsContinuous(T,S,f)" and "IsContinuous(S,R,g)" and "IsContinuous(R,P,h)"

shows "IsContinuous(T,P,h O g O f)"

using assms IsContinuous_def vimage_comp by simp

52.2 Homeomorphisms

This section studies ”homeomorphisms” - continous bijections whose in-
verses are also continuous. Notions that are preserved by (commute with)
homeomorphisms are called ”topological invariants”.

Homeomorphism is a bijection that preserves open sets.

definition "IsAhomeomorphism(T,S,f) ≡
f ∈ bij(

⋃
T,
⋃
S) ∧ IsContinuous(T,S,f) ∧ IsContinuous(S,T,converse(f))"

Inverse (converse) of a homeomorphism is a homeomorphism.

lemma homeo_inv: assumes "IsAhomeomorphism(T,S,f)"

shows "IsAhomeomorphism(S,T,converse(f))"

using assms IsAhomeomorphism_def bij_converse_bij bij_converse_converse

by auto

Homeomorphisms are open maps.

lemma homeo_open: assumes "IsAhomeomorphism(T,S,f)" and "U∈T"
shows "f‘‘(U) ∈ S"

using assms image_converse IsAhomeomorphism_def IsContinuous_def by
simp

A continuous bijection that is an open map is a homeomorphism.

lemma bij_cont_open_homeo:

assumes "f ∈ bij(
⋃
T,
⋃
S)" and "IsContinuous(T,S,f)" and "∀ U∈T. f‘‘(U)

∈ S"
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shows "IsAhomeomorphism(T,S,f)"

using assms image_converse IsAhomeomorphism_def IsContinuous_def by
auto

A continuous bijection that maps base to open sets is a homeomorphism.

lemma (in two_top_spaces0) bij_base_open_homeo:

assumes A1: "f ∈ bij(X1,X2)" and A2: "B {is a base for} τ1" and A3:

"C {is a base for} τ2" and
A4: "∀ U∈C. f-‘‘(U) ∈ τ1" and A5: "∀ V∈B. f‘‘(V) ∈ τ2"
shows "IsAhomeomorphism(τ1,τ2,f)"
using assms tau2_is_top tau1_is_top bij_converse_bij bij_is_fun two_top_spaces0_def

image_converse two_top_spaces0.Top_ZF_2_1_L5 IsAhomeomorphism_def by
simp

A bijection that maps base to base is a homeomorphism.

lemma (in two_top_spaces0) bij_base_homeo:

assumes A1: "f ∈ bij(X1,X2)" and A2: "B {is a base for} τ1" and
A3: "{f‘‘(B). B∈B} {is a base for} τ2"
shows "IsAhomeomorphism(τ1,τ2,f)"

proof -

note A1

moreover have "f {is continuous}"

proof -

{ fix C assume "C ∈ {f‘‘(B). B∈B}"
then obtain B where "B∈B" and I: "C = f‘‘(B)" by auto

with A2 have "B ⊆ X1" using Top_1_2_L5 by auto

with A1 A2 ‘B∈B‘ I have "f-‘‘(C) ∈ τ1"
using bij_def inj_vimage_image base_sets_open by auto

} hence "∀ C ∈ {f‘‘(B). B∈B}. f-‘‘(C) ∈ τ1" by auto

with A3 show ?thesis by (rule Top_ZF_2_1_L5)

qed
moreover
from A3 have "∀ B∈B. f‘‘(B) ∈ τ2" using base_sets_open by auto

with A2 have "∀ U∈τ1. f‘‘(U) ∈ τ2" using base_image_open by simp

ultimately show ?thesis using bij_cont_open_homeo by simp

qed

Interior is a topological invariant.

theorem int_top_invariant: assumes A1: "A⊆
⋃
T" and A2: "IsAhomeomorphism(T,S,f)"

shows "f‘‘(Interior(A,T)) = Interior(f‘‘(A),S)"

proof -

let ?A = "{U∈T. U⊆A}"
have I: "{f‘‘(U). U∈?A} = {V∈S. V ⊆ f‘‘(A)}"

proof
from A2 show "{f‘‘(U). U∈?A} ⊆ {V∈S. V ⊆ f‘‘(A)}"

using homeo_open by auto

{ fix V assume "V ∈ {V∈S. V ⊆ f‘‘(A)}"

hence "V∈S" and II: "V ⊆ f‘‘(A)" by auto
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let ?U = "f-‘‘(V)"

from II have "?U ⊆ f-‘‘(f‘‘(A))" by auto

moreover from assms have "f-‘‘(f‘‘(A)) = A"

using IsAhomeomorphism_def bij_def inj_vimage_image by auto

moreover from A2 ‘V∈S‘ have "?U∈T"
using IsAhomeomorphism_def IsContinuous_def by simp

moreover
from ‘V∈S‘ have "V ⊆

⋃
S" by auto

with A2 have "V = f‘‘(?U)"

using IsAhomeomorphism_def bij_def surj_image_vimage by auto

ultimately have "V ∈ {f‘‘(U). U∈?A}" by auto

} thus "{V∈S. V ⊆ f‘‘(A)} ⊆ {f‘‘(U). U∈?A}" by auto

qed
have "f‘‘(Interior(A,T)) = f‘‘(

⋃
?A)" unfolding Interior_def by simp

also from A2 have ". . . =
⋃
{f‘‘(U). U∈?A}"

using IsAhomeomorphism_def bij_def inj_def image_of_Union by auto

also from I have ". . . = Interior(f‘‘(A),S)" unfolding Interior_def by
simp

finally show ?thesis by simp

qed

52.3 Topologies induced by mappings

In this section we consider various ways a topology may be defined on a set
that is the range (or the domain) of a function whose domain (or range) is
a topological space.

A bijection from a topological space induces a topology on the range.

theorem bij_induced_top: assumes A1: "T {is a topology}" and A2: "f

∈ bij(
⋃
T,Y)"

shows
"{f‘‘(U). U∈T} {is a topology}" and
"{ {f‘(x).x∈U}. U∈T} {is a topology}" and
"(
⋃
{f‘‘(U). U∈T}) = Y" and

"IsAhomeomorphism(T, {f‘‘(U). U∈T},f)"
proof -

from A2 have "f ∈ inj(
⋃
T,Y)" using bij_def by simp

then have "f:
⋃
T→Y" using inj_def by simp

let ?S = "{f‘‘(U). U∈T}"
{ fix M assume "M ∈ Pow(?S)"

let ?MT = "{f-‘‘(V). V∈M}"
have "?MT ⊆ T"

proof
fix W assume "W∈?MT "
then obtain V where "V∈M" and I: "W = f-‘‘(V)" by auto

with ‘M ∈ Pow(?S)‘ have "V∈?S" by auto

then obtain U where "U∈T" and "V = f‘‘(U)" by auto

with I have "W = f-‘‘(f‘‘(U))" by simp
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with ‘f ∈ inj(
⋃
T,Y)‘ ‘U∈T‘ have "W = U" using inj_vimage_image

by blast

with ‘U∈T‘ show "W∈T" by simp

qed
with A1 have "(

⋃
?MT ) ∈ T" using IsATopology_def by simp

hence "f‘‘(
⋃
?MT ) ∈ ?S" by auto

moreover have "f‘‘(
⋃
?MT ) =

⋃
M"

proof -

from ‘f:
⋃
T→Y‘ ‘?MT ⊆ T‘ have "f‘‘(

⋃
?MT ) =

⋃
{f‘‘(U). U∈?MT }"

using image_of_Union by auto

moreover have "{f‘‘(U). U∈?MT } = M"

proof -

from ‘f:
⋃
T→Y‘ have "∀ U∈T. f‘‘(U) ⊆ Y" using func1_1_L6 by

simp

with ‘M ∈ Pow(?S)‘ have "M ⊆ Pow(Y)" by auto

with A2 show "{f‘‘(U). U∈?MT } = M" using bij_def surj_subsets

by auto

qed
ultimately show "f‘‘(

⋃
?MT ) =

⋃
M" by simp

qed
ultimately have "

⋃
M ∈ ?S" by auto

} then have "∀ M∈Pow(?S).
⋃
M ∈ ?S" by auto

moreover
{ fix U V assume "U∈?S" "V∈?S"

then obtain UT VT where "UT ∈ T" "VT ∈ T" and
I: "U = f‘‘(UT )" "V = f‘‘(VT )"

by auto

with A1 have "UT∩VT ∈ T" using IsATopology_def by simp

hence "f‘‘(UT∩VT ) ∈ ?S" by auto

moreover have "f‘‘(UT∩VT ) = U∩V"
proof -

from ‘UT ∈ T‘ ‘VT ∈ T‘ have "UT ⊆
⋃
T" "VT ⊆

⋃
T"

using bij_def by auto

with ‘f ∈ inj(
⋃
T,Y)‘ I show "f‘‘(UT∩VT ) = U∩V" using inj_image_inter

by simp

qed
ultimately have "U∩V ∈ ?S" by simp

} then have "∀ U∈?S. ∀ V∈?S. U∩V ∈ ?S" by auto

ultimately show "?S {is a topology}" using IsATopology_def by simp

moreover from ‘f:
⋃
T→Y‘ have "∀ U∈T. f‘‘(U) = {f‘(x).x∈U}"

using func_imagedef by blast

ultimately show "{ {f‘(x).x∈U}. U∈T} {is a topology}" by simp

show "
⋃
?S = Y"

proof
from ‘f:

⋃
T→Y‘ have "∀ U∈T. f‘‘(U) ⊆ Y" using func1_1_L6 by simp

thus "
⋃
?S ⊆ Y" by auto

from A1 have "f‘‘(
⋃
T) ⊆

⋃
?S" using IsATopology_def by auto

with A2 show "Y ⊆
⋃
?S" using bij_def surj_range_image_domain
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by auto

qed
show "IsAhomeomorphism(T,?S,f)"

proof -

from A2 ‘
⋃
?S = Y‘ have "f ∈ bij(

⋃
T,
⋃
?S)" by simp

moreover have "IsContinuous(T,?S,f)"

proof -

{ fix V assume "V∈?S"
then obtain U where "U∈T" and "V = f‘‘(U)" by auto

hence "U ⊆
⋃
T" and "f-‘‘(V) = f-‘‘(f‘‘(U))" by auto

with ‘f ∈ inj(
⋃
T,Y)‘ ‘U∈T‘ have "f-‘‘(V) ∈ T" using inj_vimage_image

by simp

} then show "IsContinuous(T,?S,f)" unfolding IsContinuous_def by
auto

qed
ultimately show"IsAhomeomorphism(T,?S,f)" using bij_cont_open_homeo

by auto

qed
qed

52.4 Partial functions and continuity

Suppose we have two topologies τ1, τ2 on sets Xi =
⋃
τi, i = 1, 2. Consider

some function f : A → X2, where A ⊆ X1 (we will call such function
”partial”). In such situation we have two natural possibilities for the pairs
of topologies with respect to which this function may be continuous. One
is obvously the original τ1, τ2 and in the second one the first element of the
pair is the topology relative to the domain of the function: {A∩U |U ∈ τ1}.
These two possibilities are not exactly the same and the goal of this section
is to explore the differences.

If a function is continuous, then its restriction is continous in relative topol-
ogy.

lemma (in two_top_spaces0) restr_cont:

assumes A1: "A ⊆ X1" and A2: "f {is continuous}"

shows "IsContinuous(τ1 {restricted to} A, τ2,restrict(f,A))"
proof -

let ?g = "restrict(f,A)"

{ fix U assume "U ∈ τ2"
with A2 have "f-‘‘(U) ∈ τ1" using IsContinuous_def by simp

moreover from A1 have "?g-‘‘(U) = f-‘‘(U) ∩ A"

using fmapAssum func1_2_L1 by simp

ultimately have "?g-‘‘(U) ∈ (τ1 {restricted to} A)"

using RestrictedTo_def by auto

} then show ?thesis using IsContinuous_def by simp

qed
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If a function is continuous, then it is continuous when we restrict the topol-
ogy on the range to the image of the domain.

lemma (in two_top_spaces0) restr_image_cont:

assumes A1: "f {is continuous}"

shows "IsContinuous(τ1, τ2 {restricted to} f‘‘(X1),f)"

proof -

have "∀ U ∈ τ2 {restricted to} f‘‘(X1). f-‘‘(U) ∈ τ1"
proof

fix U assume "U ∈ τ2 {restricted to} f‘‘(X1)"

then obtain V where "V ∈ τ2" and "U = V ∩ f‘‘(X1)"

using RestrictedTo_def by auto

with A1 show "f-‘‘(U) ∈ τ1"
using fmapAssum inv_im_inter_im IsContinuous_def

by simp

qed
then show ?thesis using IsContinuous_def by simp

qed

A combination of restr_cont and restr_image_cont.

lemma (in two_top_spaces0) restr_restr_image_cont:

assumes A1: "A ⊆ X1" and A2: "f {is continuous}" and
A3: "g = restrict(f,A)" and
A4: "τ3 = τ1 {restricted to} A"

shows "IsContinuous(τ3, τ2 {restricted to} g‘‘(A),g)"

proof -

from A1 A4 have "
⋃
τ3 = A"

using union_restrict by auto

have "two_top_spaces0(τ3, τ2, g)"

proof -

from A4 have
"τ3 {is a topology}" and "τ2 {is a topology}"

using tau1_is_top tau2_is_top

topology0_def topology0.Top_1_L4 by auto

moreover from A1 A3 ‘
⋃
τ3 = A‘ have "g:

⋃
τ3 →

⋃
τ2"

using fmapAssum restrict_type2 by simp

ultimately show ?thesis using two_top_spaces0_def

by simp

qed
moreover from assms have "IsContinuous(τ3, τ2, g)"

using restr_cont by simp

ultimately have "IsContinuous(τ3, τ2 {restricted to} g‘‘(
⋃
τ3),g)"

by (rule two_top_spaces0.restr_image_cont)

moreover note ‘
⋃
τ3 = A‘

ultimately show ?thesis by simp

qed

We need a context similar to two_top_spaces0 but without the global func-
tion f : X1 → X2.

locale two_top_spaces1 =
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fixes τ1
assumes tau1_is_top: "τ1 {is a topology}"

fixes τ2
assumes tau2_is_top: "τ2 {is a topology}"

fixes X1
defines X1_def [simp]: "X1 ≡

⋃
τ1"

fixes X2
defines X2_def [simp]: "X2 ≡

⋃
τ2"

If a partial function g : X1 ⊇ A→ X2 is continuous with respect to (τ1, τ2),
then A is open (in τ1) and the function is continuous in the relative topology.

lemma (in two_top_spaces1) partial_fun_cont:

assumes A1: "g:A→X2" and A2: "IsContinuous(τ1,τ2,g)"
shows "A ∈ τ1" and "IsContinuous(τ1 {restricted to} A, τ2, g)"

proof -

from A2 have "g-‘‘(X2) ∈ τ1"
using tau2_is_top IsATopology_def IsContinuous_def by simp

with A1 show "A ∈ τ1" using func1_1_L4 by simp

{ fix V assume "V ∈ τ2"
with A2 have "g-‘‘(V) ∈ τ1" using IsContinuous_def by simp

moreover
from A1 have "g-‘‘(V) ⊆ A" using func1_1_L3 by simp

hence "g-‘‘(V) = A ∩ g-‘‘(V)" by auto

ultimately have "g-‘‘(V) ∈ (τ1 {restricted to} A)"

using RestrictedTo_def by auto

} then show "IsContinuous(τ1 {restricted to} A, τ2, g)"

using IsContinuous_def by simp

qed

For partial function defined on open sets continuity in the whole and relative
topologies are the same.

lemma (in two_top_spaces1) part_fun_on_open_cont:

assumes A1: "g:A→X2" and A2: "A ∈ τ1"
shows "IsContinuous(τ1,τ2,g) ←→

IsContinuous(τ1 {restricted to} A, τ2, g)"

proof
assume "IsContinuous(τ1,τ2,g)"
with A1 show "IsContinuous(τ1 {restricted to} A, τ2, g)"

using partial_fun_cont by simp

next
assume I: "IsContinuous(τ1 {restricted to} A, τ2, g)"

{ fix V assume "V ∈ τ2"
with I have "g-‘‘(V) ∈ (τ1 {restricted to} A)"

using IsContinuous_def by simp

then obtain W where "W ∈ τ1" and "g-‘‘(V) = A∩W"
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using RestrictedTo_def by auto

with A2 have "g-‘‘(V) ∈ τ1" using tau1_is_top IsATopology_def

by simp

} then show "IsContinuous(τ1,τ2,g)" using IsContinuous_def

by simp

qed

52.5 Product topology and continuity

We start with three topological spaces (τ1, X1), (τ2, X2) and (τ3, X3) and a
function f : X1 ×X2 → X3. We will study the properties of f with respect
to the product topology τ1× τ2 and τ3. This situation is similar as in locale
two_top_spaces0 but the first topological space is assumed to be a product
of two topological spaces.

First we define a locale with three topological spaces.

locale prod_top_spaces0 =

fixes τ1
assumes tau1_is_top: "τ1 {is a topology}"

fixes τ2
assumes tau2_is_top: "τ2 {is a topology}"

fixes τ3
assumes tau3_is_top: "τ3 {is a topology}"

fixes X1
defines X1_def [simp]: "X1 ≡

⋃
τ1"

fixes X2
defines X2_def [simp]: "X2 ≡

⋃
τ2"

fixes X3
defines X3_def [simp]: "X3 ≡

⋃
τ3"

fixes η
defines eta_def [simp]: "η ≡ ProductTopology(τ1,τ2)"

Fixing the first variable in a two-variable continuous function results in a
continuous function.

lemma (in prod_top_spaces0) fix_1st_var_cont:

assumes "f: X1×X2→X3" and "IsContinuous(η,τ3,f)"
and "x∈X1"
shows "IsContinuous(τ2,τ3,Fix1stVar(f,x))"
using assms fix_1st_var_vimage IsContinuous_def tau1_is_top tau2_is_top

prod_sec_open1 by simp
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Fixing the second variable in a two-variable continuous function results in
a continuous function.

lemma (in prod_top_spaces0) fix_2nd_var_cont:

assumes "f: X1×X2→X3" and "IsContinuous(η,τ3,f)"
and "y∈X2"
shows "IsContinuous(τ1,τ3,Fix2ndVar(f,y))"
using assms fix_2nd_var_vimage IsContinuous_def tau1_is_top tau2_is_top

prod_sec_open2 by simp

Having two constinuous mappings we can construct a third one on the carte-
sian product of the domains.

lemma cart_prod_cont:

assumes A1: "τ1 {is a topology}" "τ2 {is a topology}" and
A2: "η1 {is a topology}" "η2 {is a topology}" and
A3a: "f1:

⋃
τ1→

⋃
η1" and A3b: "f2:

⋃
τ2→

⋃
η2" and

A4: "IsContinuous(τ1,η1,f1)" "IsContinuous(τ2,η2,f2)" and
A5: "g = {〈p,〈f1‘(fst(p)),f2‘(snd(p))〉〉. p ∈

⋃
τ1×

⋃
τ2}"

shows "IsContinuous(ProductTopology(τ1,τ2),ProductTopology(η1,η2),g)"
proof -

let ?τ = "ProductTopology(τ1,τ2)"
let ?η = "ProductTopology(η1,η2)"
let ?X1 = "

⋃
τ1"

let ?X2 = "
⋃
τ2"

let ?Y1 = "
⋃
η1"

let ?Y2 = "
⋃
η2"

let ?B = "ProductCollection(η1,η2)"
from A1 A2 have "?τ {is a topology}" and "?η {is a topology}"

using Top_1_4_T1 by auto

moreover have "g: ?X1×?X2 → ?Y1×?Y2"
proof -

{ fix p assume "p ∈ ?X1×?X2"
hence "fst(p) ∈ ?X1" and "snd(p) ∈ ?X2" by auto

from A3a ‘fst(p) ∈ ?X1‘ have "f1‘(fst(p)) ∈ ?Y1"

by (rule apply_funtype)

moreover from A3b ‘snd(p) ∈ ?X2‘ have "f2‘(snd(p)) ∈ ?Y2"

by (rule apply_funtype)

ultimately have "〈f1‘(fst(p)),f2‘(snd(p))〉 ∈
⋃
η1×

⋃
η2" by auto

} hence "∀ p ∈ ?X1×?X2. 〈f1‘(fst(p)),f2‘(snd(p))〉 ∈ ?Y1×?Y2"
by simp

with A5 show "g: ?X1×?X2 → ?Y1×?Y2" using ZF_fun_from_total

by simp

qed
moreover from A1 A2 have "

⋃
?τ = ?X1×?X2" and "

⋃
?η = ?Y1×?Y2"

using Top_1_4_T1 by auto

ultimately have "two_top_spaces0(?τ,?η,g)" using two_top_spaces0_def

by simp

moreover from A2 have "?B {is a base for} ?η" using Top_1_4_T1

by simp

moreover have "∀ U∈?B. g-‘‘(U) ∈ ?τ"
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proof
fix U assume "U∈?B"
then obtain V W where "V ∈ η1" "W ∈ η2" and "U = V×W"

using ProductCollection_def by auto

with A3a A3b A5 have "g-‘‘(U) = f1-‘‘(V) × f2-‘‘(W)"

using cart_prod_fun_vimage by simp

moreover from A1 A4 ‘V ∈ η1‘ ‘W ∈ η2‘ have "f1-‘‘(V) × f2-‘‘(W)

∈ ?τ"
using IsContinuous_def prod_open_open_prod by simp

ultimately show "g-‘‘(U) ∈ ?τ" by simp

qed
ultimately show ?thesis using two_top_spaces0.Top_ZF_2_1_L5

by simp

qed

A reformulation of the cart_prod_cont lemma above in slightly different
notation.

theorem (in two_top_spaces0) product_cont_functions:

assumes "f:X1→X2" "g:
⋃
τ3→

⋃
τ4"

"IsContinuous(τ1,τ2,f)" "IsContinuous(τ3,τ4,g)"
"τ4{is a topology}" "τ3{is a topology}"

shows "IsContinuous(ProductTopology(τ1,τ3),ProductTopology(τ2,τ4),{〈〈x,y〉,〈f‘x,g‘y〉〉.
〈x,y〉∈X1×

⋃
τ3})"

proof -

have "{〈〈x,y〉,〈f‘x,g‘y〉〉. 〈x,y〉∈X1×
⋃
τ3} = {〈p,〈f‘(fst(p)),g‘(snd(p))〉〉.

p ∈ X1×
⋃
τ3}"

by force

with tau1_is_top tau2_is_top assms show ?thesis using cart_prod_cont

by simp

qed

A special case of cart_prod_cont when the function acting on the second
axis is the identity.

lemma cart_prod_cont1:

assumes A1: "τ1 {is a topology}" and A1a: "τ2 {is a topology}" and
A2: "η1 {is a topology}" and
A3: "f1:

⋃
τ1→

⋃
η1" and A4: "IsContinuous(τ1,η1,f1)" and

A5: "g = {〈p, 〈f1‘(fst(p)),snd(p)〉〉. p ∈
⋃
τ1×

⋃
τ2}"

shows "IsContinuous(ProductTopology(τ1,τ2),ProductTopology(η1,τ2),g)"
proof -

let ?f2 = "id(
⋃
τ2)"

have "∀ x∈
⋃
τ2. ?f2‘(x) = x" using id_conv by blast

hence I: "∀ p ∈
⋃
τ1×

⋃
τ2. snd(p) = ?f2‘(snd(p))" by simp

note A1 A1a A2 A1a A3

moreover have "?f2:
⋃
τ2→

⋃
τ2" using id_type by simp

moreover note A4

moreover have "IsContinuous(τ2,τ2,?f2)" using id_cont by simp

moreover have "g = {〈p, 〈f1‘(fst(p)),?f2‘(snd(p))〉 〉. p ∈
⋃
τ1×

⋃
τ2}"

proof
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from A5 I show "g ⊆ {〈p, 〈f1‘(fst(p)),?f2‘(snd(p))〉〉. p ∈
⋃
τ1×

⋃
τ2}"

by auto

from A5 I show "{〈p, 〈f1‘(fst(p)),?f2‘(snd(p))〉〉. p ∈
⋃
τ1×

⋃
τ2} ⊆

g"

by auto

qed
ultimately show ?thesis by (rule cart_prod_cont)

qed

52.6 Pasting lemma

The classical pasting lemma states that if U1, U2 are both open (or closed)
and a function is continuous when restricted to both U1 and U2 then it is
continuous when restricted to U1 ∪ U2. In this section we prove a gener-
alization statement stating that the set {U ∈ τ1|f |U is continuous } is a
topology.

A typical statement of the pasting lemma uses the notion of a function re-
stricted to a set being continuous without specifying the topologies with
respect to which this continuity holds. In two_top_spaces0 context the no-
tation g {is continuous} means continuity wth respect to topologies τ1, τ2.
The next lemma is a special case of partial_fun_cont and states that if for
some set A ⊆ X1 =

⋃
τ1 the function f |A is continuous (with respect to

(τ1, τ2)), then A has to be open. This clears up terminology and indicates
why we need to pay attention to the issue of which topologies we talk about
when we say that the restricted (to some closed set for example) function is
continuos.

lemma (in two_top_spaces0) restriction_continuous1:

assumes A1: "A ⊆ X1" and A2: "restrict(f,A) {is continuous}"

shows "A ∈ τ1"
proof -

from assms have "two_top_spaces1(τ1,τ2)" and
"restrict(f,A):A→X2" and "restrict(f,A) {is continuous}"

using tau1_is_top tau2_is_top two_top_spaces1_def fmapAssum restrict_fun

by auto

then show ?thesis using two_top_spaces1.partial_fun_cont by simp

qed

If a fuction is continuous on each set of a collection of open sets, then it is
continuous on the union of them. We could use continuity with respect to
the relative topology here, but we know that on open sets this is the same
as the original topology.

lemma (in two_top_spaces0) pasting_lemma1:

assumes A1: "M ⊆ τ1" and A2: "∀ U∈M. restrict(f,U) {is continuous}"

shows "restrict(f,
⋃
M) {is continuous}"

proof -

{ fix V assume "V∈τ2"

666



from A1 have "
⋃
M ⊆ X1" by auto

then have "restrict(f,
⋃
M)-‘‘(V) = f-‘‘(V) ∩ (

⋃
M)"

using func1_2_L1 fmapAssum by simp

also have ". . . =
⋃

{f-‘‘(V) ∩ U. U∈M}" by auto

finally have "restrict(f,
⋃
M)-‘‘(V) =

⋃
{f-‘‘(V) ∩ U. U∈M}" by simp

moreover
have "{f-‘‘(V) ∩ U. U∈M} ∈ Pow(τ1)"
proof -

{ fix W assume "W ∈ {f-‘‘(V) ∩ U. U∈M}"
then obtain U where "U∈M" and I: "W = f-‘‘(V) ∩ U" by auto

with A2 have "restrict(f,U) {is continuous}" by simp

with ‘V∈τ2‘ have "restrict(f,U)-‘‘(V) ∈ τ1"
using IsContinuous_def by simp

moreover from ‘
⋃
M ⊆ X1‘ and ‘U∈M‘

have "restrict(f,U)-‘‘(V) = f-‘‘(V) ∩ U"

using fmapAssum func1_2_L1 by blast

ultimately have "f-‘‘(V) ∩ U ∈ τ1" by simp

with I have "W ∈ τ1" by simp

} then show ?thesis by auto

qed
then have "

⋃
{f-‘‘(V) ∩ U. U∈M} ∈ τ1"

using tau1_is_top IsATopology_def by auto

ultimately have "restrict(f,
⋃
M)-‘‘(V) ∈ τ1"

by simp

} then show ?thesis using IsContinuous_def by simp

qed

If a function is continuous on two sets, then it is continuous on intersection.

lemma (in two_top_spaces0) cont_inter_cont:

assumes A1: "A ⊆ X1" "B ⊆ X1" and
A2: "restrict(f,A) {is continuous}" "restrict(f,B) {is continuous}"

shows "restrict(f,A∩B) {is continuous}"

proof -

{ fix V assume "V∈τ2"
with assms have
"restrict(f,A)-‘‘(V) = f-‘‘(V) ∩ A" "restrict(f,B)-‘‘(V) = f-‘‘(V)

∩ B" and
"restrict(f,A)-‘‘(V) ∈ τ1" and "restrict(f,B)-‘‘(V) ∈ τ1"

using func1_2_L1 fmapAssum IsContinuous_def by auto

then have "(restrict(f,A)-‘‘(V)) ∩ (restrict(f,B)-‘‘(V)) = f-‘‘(V)

∩ (A∩B)"
by auto

moreover
from A2 ‘V∈τ2‘ have
"restrict(f,A)-‘‘(V) ∈ τ1" and "restrict(f,B)-‘‘(V) ∈ τ1"
using IsContinuous_def by auto

then have "(restrict(f,A)-‘‘(V)) ∩ (restrict(f,B)-‘‘(V)) ∈ τ1"
using tau1_is_top IsATopology_def by simp

moreover
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from A1 have "(A∩B) ⊆ X1" by auto

then have "restrict(f,A∩B)-‘‘(V) = f-‘‘(V) ∩ (A∩B)"
using func1_2_L1 fmapAssum by simp

ultimately have "restrict(f,A∩B)-‘‘(V) ∈ τ1" by simp

} then show ?thesis using IsContinuous_def by auto

qed

The collection of open sets U such that f restricted to U is continuous, is a
topology.

theorem (in two_top_spaces0) pasting_theorem:

shows "{U ∈ τ1. restrict(f,U) {is continuous}} {is a topology}"

proof -

let ?T = "{U ∈ τ1. restrict(f,U) {is continuous}}"

have "∀ M∈Pow(?T).
⋃
M ∈ ?T"

proof
fix M assume "M ∈ Pow(?T)"

then have "restrict(f,
⋃
M) {is continuous}"

using pasting_lemma1 by auto

with ‘M ∈ Pow(?T)‘ show "
⋃
M ∈ ?T"

using tau1_is_top IsATopology_def by auto

qed
moreover have "∀ U∈?T.∀ V∈?T. U∩V ∈ ?T"

using cont_inter_cont tau1_is_top IsATopology_def by auto

ultimately show ?thesis using IsATopology_def by simp

qed

0 is continuous.

corollary (in two_top_spaces0) zero_continuous: shows "0 {is continuous}"

proof -

let ?T = "{U ∈ τ1. restrict(f,U) {is continuous}}"

have "?T {is a topology}" by (rule pasting_theorem)

then have "0∈?T" by (rule empty_open)

hence "restrict(f,0) {is continuous}" by simp

moreover have "restrict(f,0) = 0" by simp

ultimately show ?thesis by simp

qed

end

53 Topology 3

theory Topology_ZF_3 imports Topology_ZF_2 FiniteSeq_ZF

begin

Topology_ZF_1 theory describes how we can define a topology on a product
of two topological spaces. One way to generalize that is to construct topol-
ogy for a cartesian product of n topological spaces. The cartesian product

668



approach is somewhat inconvenient though. Another way to approach prod-
uct topology on Xn is to model cartesian product as sets of sequences (of
length n) of elements of X. This means that having a topology on X we
want to define a toplogy on the space n→ X, where n is a natural number
(recall that n = {0, 1, ..., n − 1} in ZF). However, this in turn can be done
more generally by defining a topology on any function space I → X, where
I is any set of indices. This is what we do in this theory.

53.1 The base of the product topology

In this section we define the base of the product topology.

Suppose X = I →
⋃
T is a space of functions from some index set I to the

carrier of a topology T . Then take a finite collection of open sets W : N → T
indexed by N ⊆ I. We can define a subset of X that models the cartesian
product of W .

definition
"FinProd(X,W) ≡ {x∈X. ∀ i∈domain(W). x‘(i) ∈ W‘(i)}"

Now we define the base of the product topology as the collection of all finite
products (in the sense defined above) of open sets.

definition
"ProductTopBase(I,T) ≡

⋃
N∈FinPow(I).{FinProd(I→

⋃
T,W). W∈N→T}"

Finally, we define the product topology on sequences. We use the ”Seq”
prefix although the definition is good for any index sets, not only natural
numbers.

definition
"SeqProductTopology(I,T) ≡ {

⋃
B. B ∈ Pow(ProductTopBase(I,T))}"

Product topology base is closed with respect to intersections.

lemma prod_top_base_inter:

assumes A1: "T {is a topology}" and
A2: "U ∈ ProductTopBase(I,T)" "V ∈ ProductTopBase(I,T)"

shows "U∩V ∈ ProductTopBase(I,T)"

proof -

let ?X = "I→
⋃
T"

from A2 obtain N1 W1 N2 W2 where
I: "N1 ∈ FinPow(I)" "W1∈N1→T" "U = FinProd(?X,W1)" and
II: "N2 ∈ FinPow(I)" "W2∈N2→T" "V = FinProd(?X,W2)"
using ProductTopBase_def by auto

let ?N3 = "N1 ∪ N2"

let ?W3 = "{〈i,if i ∈ N1-N2 then W1‘(i)

else if i ∈ N2-N1 then W2‘(i)

else (W1‘(i)) ∩ (W2‘(i))〉. i ∈ ?N3}"

from A1 I II have "∀ i ∈ N1 ∩ N2. (W1‘(i) ∩ W2‘(i)) ∈ T"
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using apply_funtype IsATopology_def by auto

moreover from I II have "∀ i∈N1-N2. W1‘(i) ∈ T" and "∀ i∈N2-N1. W2‘(i)

∈ T"

using apply_funtype by auto

ultimately have "?W3:?N3→T" by (rule fun_union_overlap)

with I II have "FinProd(?X,?W3) ∈ ProductTopBase(I,T)" using union_finpow

ProductTopBase_def

by auto

moreover have "U∩V = FinProd(?X,?W3)"
proof
{ fix x assume "x∈U" and "x∈V"

with ‘U = FinProd(?X,W1)‘ ‘W1∈N1→T‘ and ‘V = FinProd(?X,W2)‘
‘W2∈N2→T‘

have "x∈?X" and "∀ i∈N1. x‘(i) ∈ W1‘(i)" and "∀ i∈N2. x‘(i) ∈
W2‘(i)"

using func1_1_L1 FinProd_def by auto

with ‘?W3:?N3→T‘ ‘x∈?X‘ have "x ∈ FinProd(?X,?W3)"
using ZF_fun_from_tot_val func1_1_L1 FinProd_def by auto

} thus "U∩V ⊆ FinProd(?X,?W3)" by auto

{ fix x assume "x ∈ FinProd(?X,?W3)"
with ‘?W3:?N3→T‘ have "x:I→

⋃
T" and III: "∀ i∈?N3. x‘(i) ∈ ?W3‘(i)"

using FinProd_def func1_1_L1 by auto

{ fix i assume "i∈N1"
with ‘?W3:?N3→T‘ have "?W3‘(i) ⊆ W1‘(i)" using ZF_fun_from_tot_val

by auto

with III ‘i∈N1‘ have "x‘(i) ∈ W1‘(i)" by auto

} with ‘W1∈N1→T‘ ‘x:I→
⋃
T‘ ‘U = FinProd(?X,W1)‘

have "x ∈ U" using func1_1_L1 FinProd_def by auto

moreover
{ fix i assume "i∈N2"

with ‘?W3:?N3→T‘ have "?W3‘(i) ⊆ W2‘(i)" using ZF_fun_from_tot_val

by auto

with III ‘i∈N2‘ have "x‘(i) ∈ W2‘(i)" by auto

} with ‘W2∈N2→T‘ ‘x:I→
⋃
T‘ ‘V = FinProd(?X,W2)‘ have "x∈V"

using func1_1_L1 FinProd_def by auto

ultimately have "x ∈ U∩V" by simp

} thus "FinProd(?X,?W3) ⊆ U∩V" by auto

qed
ultimately show ?thesis by simp

qed

In the next theorem we show the collection of sets defined above as ProductTopBase(X,T)
satisfies the base condition. This is a condition, defined in Topology_ZF_1

that allows to claim that this collection is a base for some topology.

theorem prod_top_base_is_base: assumes "T {is a topology}"

shows "ProductTopBase(I,T) {satisfies the base condition}"

using assms prod_top_base_inter inter_closed_base by simp

The (sequence) product topology is indeed a topology on the space of se-
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quences. In the proof we are using the fact that (∅ → X) = {∅}.
theorem seq_prod_top_is_top: assumes "T {is a topology}"

shows
"SeqProductTopology(I,T) {is a topology}" and
"ProductTopBase(I,T) {is a base for} SeqProductTopology(I,T)" and
"
⋃
SeqProductTopology(I,T) = (I→

⋃
T)"

proof -

from assms show "SeqProductTopology(I,T) {is a topology}" and
I: "ProductTopBase(I,T) {is a base for} SeqProductTopology(I,T)"

using prod_top_base_is_base SeqProductTopology_def Top_1_2_T1

by auto

from I have "
⋃
SeqProductTopology(I,T) =

⋃
ProductTopBase(I,T)"

using Top_1_2_L5 by simp

also have "
⋃
ProductTopBase(I,T) = (I→

⋃
T)"

proof
show "

⋃
ProductTopBase(I,T) ⊆ (I→

⋃
T)" using ProductTopBase_def

FinProd_def

by auto

have "0 ∈ FinPow(I)" using empty_in_finpow by simp

hence "{FinProd(I→
⋃
T,W). W∈0→T} ⊆ (

⋃
N∈FinPow(I).{FinProd(I→

⋃
T,W).

W∈N→T})"

by blast

then show "(I→
⋃
T) ⊆

⋃
ProductTopBase(I,T)" using ProductTopBase_def

FinProd_def

by auto

qed
finally show "

⋃
SeqProductTopology(I,T) = (I→

⋃
T)" by simp

qed

53.2 Finite product of topologies

As a special case of the space of functions I → X we can consider space of
lists of elements of X, i.e. space n→ X, where n is a natural number (recall
that in ZF set theory n = {0, 1, ..., n−1}). Such spaces model finite cartesian
products Xn but are easier to deal with in formalized way (than the said
products). This section discusses natural topology defined on n→ X where
X is a topological space.

When the index set is finite, the definition of ProductTopBase(I,T) can be
simplifed.

lemma fin_prod_def_nat: assumes A1: "n∈nat" and A2: "T {is a topology}"

shows "ProductTopBase(n,T) = {FinProd(n→
⋃
T,W). W∈n→T}"

proof
from A1 have "n ∈ FinPow(n)" using nat_finpow_nat fin_finpow_self by

auto

then show "{FinProd(n→
⋃
T,W). W∈n→T} ⊆ ProductTopBase(n,T)" using

ProductTopBase_def
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by auto

{ fix B assume "B ∈ ProductTopBase(n,T)"

then obtain N W where "N ∈ FinPow(n)" and "W ∈ N→T" and "B = FinProd(n→
⋃
T,W)"

using ProductTopBase_def by auto

let ?Wn = "{〈i,if i∈N then W‘(i) else
⋃
T〉. i∈n}"

from A2 ‘N ∈ FinPow(n)‘ ‘W∈N→T‘ have "∀ i∈n. (if i∈N then W‘(i)

else
⋃
T) ∈ T"

using apply_funtype FinPow_def IsATopology_def by auto

then have "?Wn:n→T" by (rule ZF_fun_from_total)

moreover have "B = FinProd(n→
⋃
T,?Wn)"

proof
{ fix x assume "x∈B"

with ‘B = FinProd(n→
⋃
T,W)‘ have "x ∈ n→

⋃
T" using FinProd_def

by simp

moreover have "∀ i∈domain(?Wn). x‘(i) ∈ ?Wn‘(i)"

proof
fix i assume "i ∈ domain(?Wn)"

with ‘?Wn:n→T‘ have "i∈n" using func1_1_L1 by simp

with ‘x:n→
⋃
T‘ have "x‘(i) ∈

⋃
T" using apply_funtype by blast

with ‘x∈B‘ ‘B = FinProd(n→
⋃
T,W)‘ ‘W ∈ N→T‘ ‘?Wn:n→T‘ ‘i∈n‘

show "x‘(i) ∈ ?Wn‘(i)" using func1_1_L1 FinProd_def ZF_fun_from_tot_val

by simp

qed
ultimately have "x ∈ FinProd(n→

⋃
T,?Wn)" using FinProd_def by

simp

} thus "B ⊆ FinProd(n→
⋃
T,?Wn)" by auto

next
{ fix x assume "x ∈ FinProd(n→

⋃
T,?Wn)"

then have "x ∈ n→
⋃
T" and "∀ i∈domain(?Wn). x‘(i) ∈ ?Wn‘(i)"

using FinProd_def by auto

with ‘?Wn:n→T‘ and ‘N ∈ FinPow(n)‘ have "∀ i∈N. x‘(i) ∈ ?Wn‘(i)"

using func1_1_L1 FinPow_def by auto

moreover from ‘?Wn:n→T‘ and ‘N ∈ FinPow(n)‘

have "∀ i∈N. ?Wn‘(i) = W‘(i)"

using ZF_fun_from_tot_val FinPow_def by auto

ultimately have "∀ i∈N. x‘(i) ∈ W‘(i)" by simp

with ‘W ∈ N→T‘ ‘x ∈ n→
⋃
T‘ ‘B = FinProd(n→

⋃
T,W)‘ have "x∈B"

using func1_1_L1 FinProd_def by simp

} thus "FinProd(n→
⋃
T,?Wn) ⊆ B" by auto

qed
ultimately have "B ∈ {FinProd(n→

⋃
T,W). W∈n→T}" by auto

} thus "ProductTopBase(n,T) ⊆ {FinProd(n→
⋃
T,W). W∈n→T}" by auto

qed

A technical lemma providing a formula for finite product on one topological
space.

lemma single_top_prod: assumes A1: "W:1→τ"
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shows "FinProd(1→
⋃
τ,W) = { {〈0,y〉}. y ∈ W‘(0)}"

proof -

have "1 = {0}" by auto

from A1 have "domain(W) = {0}" using func1_1_L1 by auto

then have "FinProd(1→
⋃
τ,W) = {x ∈ 1→

⋃
τ. x‘(0) ∈ W‘(0)}"

using FinProd_def by simp

also have "{x ∈ 1→
⋃
τ. x‘(0) ∈ W‘(0)} = { {〈0,y〉}. y ∈ W‘(0)}"

proof
from ‘1 = {0}‘ show "{x ∈ 1→

⋃
τ. x‘(0) ∈ W‘(0)} ⊆ { {〈0,y〉}. y

∈ W‘(0)}"

using func_singleton_pair by auto

{ fix x assume "x ∈ { {〈0,y〉}. y ∈ W‘(0)}"

then obtain y where "x = {〈0,y〉}" and II: "y ∈ W‘(0)" by auto

with A1 have "y ∈
⋃
τ" using apply_funtype by auto

with ‘x = {〈0,y〉}‘ ‘1 = {0}‘ have "x:1→
⋃
τ" using pair_func_singleton

by auto

with ‘x = {〈0,y〉}‘ II have "x ∈ {x ∈ 1→
⋃
τ. x‘(0) ∈ W‘(0)}"

using pair_val by simp

} thus "{ {〈0,y〉}. y ∈ W‘(0)} ⊆ {x ∈ 1→
⋃
τ. x‘(0) ∈ W‘(0)}" by auto

qed
finally show ?thesis by simp

qed

Intuitively, the topological space of singleton lists valued in X is the same
as X. However, each element of this space is a list of length one, i.e a set
consisting of a pair 〈0, x〉 where x is an element of X. The next lemma
provides a formula for the product topology in the corner case when we
have only one factor and shows that the product topology of one space is
essentially the same as the space.

lemma singleton_prod_top: assumes A1: "τ {is a topology}"

shows
"SeqProductTopology(1,τ) = { { {〈0,y〉}. y∈U }. U∈τ}" and
"IsAhomeomorphism(τ,SeqProductTopology(1,τ),{〈y,{〈0,y〉}〉.y ∈

⋃
τ})"

proof -

have "{0} = 1" by auto

let ?b = "{〈y,{〈0,y〉}〉.y ∈
⋃
τ}"

have "?b ∈ bij(
⋃
τ,1→

⋃
τ)" using list_singleton_bij by blast

with A1 have "{?b‘‘(U). U∈τ} {is a topology}" and "IsAhomeomorphism(τ,
{?b‘‘(U). U∈τ},?b)"

using bij_induced_top by auto

moreover have "∀ U∈τ. ?b‘‘(U) = { {〈0,y〉}. y∈U }"

proof
fix U assume "U∈τ"
from ‘?b ∈ bij(

⋃
τ,1→

⋃
τ)‘ have "?b:

⋃
τ→(1→

⋃
τ)" using bij_def

inj_def

by simp

{ fix y assume "y ∈
⋃
τ"

with ‘?b:
⋃
τ→(1→

⋃
τ)‘ have "?b‘(y) = {〈0,y〉}" using ZF_fun_from_tot_val

by simp
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} hence "∀ y ∈
⋃
τ. ?b‘(y) = {〈0,y〉}" by auto

with ‘U∈τ‘ ‘?b:
⋃
τ→(1→

⋃
τ)‘ show " ?b‘‘(U) = { {〈0,y〉}. y∈U }"

using func_imagedef by auto

qed
moreover have "ProductTopBase(1,τ) = { { {〈0,y〉}. y∈U }. U∈τ}"
proof
{ fix V assume "V ∈ ProductTopBase(1,τ)"

with A1 obtain W where "W:1→τ" and "V = FinProd(1→
⋃
τ,W)"

using fin_prod_def_nat by auto

then have "V ∈ { { {〈0,y〉}. y∈U }. U∈τ}" using apply_funtype single_top_prod

by auto

} thus "ProductTopBase(1,τ) ⊆ { { {〈0,y〉}. y∈U }. U∈τ}" by auto

{ fix V assume "V ∈ { { {〈0,y〉}. y∈U }. U∈τ}"
then obtain U where "U∈τ" and "V = { {〈0,y〉}. y∈U }" by auto

let ?W = "{〈0,U〉}"
from ‘U∈τ‘ have "?W:{0}→τ" using pair_func_singleton by simp

with ‘{0} = 1‘ have "?W:1→τ" and "?W‘(0) = U" using pair_val by
auto

with ‘V = { {〈0,y〉}. y∈U }‘ have "V = FinProd(1→
⋃
τ,?W)"

using single_top_prod by simp

with A1 ‘?W:1→τ‘ have "V ∈ ProductTopBase(1,τ)" using fin_prod_def_nat

by auto

} thus "{ { {〈0,y〉}. y∈U }. U∈τ} ⊆ ProductTopBase(1,τ)" by auto

qed
ultimately have I: "ProductTopBase(1,τ) {is a topology}" and

II: "IsAhomeomorphism(τ, ProductTopBase(1,τ),?b)" by auto

from A1 have "ProductTopBase(1,τ) {is a base for} SeqProductTopology(1,τ)"

using seq_prod_top_is_top by simp

with I have "ProductTopBase(1,τ) = SeqProductTopology(1,τ)" by (rule

base_topology)

with ‘ProductTopBase(1,τ) = { { {〈0,y〉}. y∈U }. U∈τ}‘ II show
"SeqProductTopology(1,τ) = { { {〈0,y〉}. y∈U }. U∈τ}" and
"IsAhomeomorphism(τ,SeqProductTopology(1,τ),{〈y,{〈0,y〉}〉.y ∈

⋃
τ})"

by auto

qed

A special corner case of finite_top_prod_homeo: a space X is homeomorphic
to the space of one element lists of X.

theorem singleton_prod_top1: assumes A1: "τ {is a topology}"

shows "IsAhomeomorphism(SeqProductTopology(1,τ),τ,{〈x,x‘(0)〉. x∈1→
⋃
τ})"

proof -

have "{〈x,x‘(0)〉. x∈1→
⋃
τ} = converse({〈y,{〈0,y〉}〉.y∈

⋃
τ})"

using list_singleton_bij by blast

with A1 show ?thesis using singleton_prod_top homeo_inv by simp

qed

A technical lemma describing the carrier of a (cartesian) product topology
of the (sequence) product topology of n copies of topology τ and another
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copy of τ .

lemma finite_prod_top: assumes "τ {is a topology}" and "T = SeqProductTopology(n,τ)"
shows "(

⋃
ProductTopology(T,τ)) = (n→

⋃
τ)×

⋃
τ"

using assms Top_1_4_T1 seq_prod_top_is_top by simp

If U is a set from the base of Xn and V is open in X, then U × V is in the
base of Xn+1. The next lemma is an analogue of this fact for the function
space approach.

lemma finite_prod_succ_base: assumes A1: "τ {is a topology}" and A2:

"n ∈ nat" and
A3: "U ∈ ProductTopBase(n,τ)" and A4: "V∈τ"
shows "{x ∈ succ(n)→

⋃
τ. Init(x) ∈ U ∧ x‘(n) ∈ V} ∈ ProductTopBase(succ(n),τ)"

proof -

let ?B = "{x ∈ succ(n)→
⋃
τ. Init(x) ∈ U ∧ x‘(n) ∈ V}"

from A1 A2 have "ProductTopBase(n,τ) = {FinProd(n→
⋃
τ,W). W∈n→τ}"

using fin_prod_def_nat by simp

with A3 obtain WU where "WU:n→τ" and "U =FinProd(n→
⋃
τ,WU)" by

auto

let ?W = "Append(WU,V)"

from A4 and ‘WU:n→τ‘ have "?W:succ(n)→τ" using append_props by
simp

moreover have "?B = FinProd(succ(n)→
⋃
τ,?W)"

proof
{ fix x assume "x∈?B"

with ‘?W:succ(n)→τ‘ have "x ∈ succ(n)→
⋃
τ" and "domain(?W)

= succ(n)" using func1_1_L1

by auto

moreover from A2 A4 ‘x∈?B‘ ‘U =FinProd(n→
⋃
τ,WU)‘ ‘WU:n→τ‘

‘x ∈ succ(n)→
⋃
τ‘

have "∀ i∈succ(n). x‘(i) ∈ ?W‘(i)" using func1_1_L1 FinProd_def

init_props append_props

by simp

ultimately have "x ∈ FinProd(succ(n)→
⋃
τ,?W)" using FinProd_def

by simp

} thus "?B ⊆ FinProd(succ(n)→
⋃
τ,?W)" by auto

next
{ fix x assume "x ∈ FinProd(succ(n)→

⋃
τ,?W)"

then have "x:succ(n)→
⋃
τ" and I: "∀ i ∈ domain(?W). x‘(i) ∈

?W‘(i)"

using FinProd_def by auto

moreover have "Init(x) ∈ U"

proof -

from A2 and ‘x:succ(n)→
⋃
τ‘ have "Init(x):n→

⋃
τ" using init_props

by simp

moreover have "∀ i∈domain(WU). Init(x)‘(i) ∈ WU‘(i)"

proof -

from A2 ‘x ∈ FinProd(succ(n)→
⋃
τ,?W)‘ ‘?W:succ(n)→τ‘ have

"∀ i∈n. x‘(i) ∈ ?W‘(i)"

using FinProd_def func1_1_L1 by simp
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moreover from A2 ‘x: succ(n)→
⋃
τ‘ have "∀ i∈n. Init(x)‘(i)

= x‘(i)"

using init_props by simp

moreover from A4 and ‘WU:n→τ‘ have "∀ i∈n. ?W‘(i) = WU‘(i)"

using append_props by simp

ultimately have "∀ i∈n. Init(x)‘(i) ∈ WU‘(i)" by simp

with ‘WU:n→τ‘ show ?thesis using func1_1_L1 by simp

qed
ultimately have "Init(x) ∈ FinProd(n→

⋃
τ,WU)" using FinProd_def

by simp

with ‘U =FinProd(n→
⋃
τ,WU)‘ show ?thesis by simp

qed
moreover have "x‘(n) ∈ V"

proof -

from ‘?W:succ(n)→τ‘ I have "x‘(n) ∈ ?W‘(n)" using func1_1_L1

by simp

moreover from A4 ‘WU:n→τ‘ have "?W‘(n) = V" using append_props

by simp

ultimately show ?thesis by simp

qed
ultimately have "x∈?B" by simp

} thus "FinProd(succ(n)→
⋃
τ,?W) ⊆ ?B" by auto

qed
moreover from A1 A2 have
"ProductTopBase(succ(n),τ) = {FinProd(succ(n)→

⋃
τ,W). W∈succ(n)→τ}"

using fin_prod_def_nat by simp

ultimately show ?thesis by auto

qed

If U is open in Xn and V is open in X, then U × V is open in Xn+1. The
next lemma is an analogue of this fact for the function space approach.

lemma finite_prod_succ: assumes A1: "τ {is a topology}" and A2: "n

∈ nat" and
A3: "U ∈ SeqProductTopology(n,τ)" and A4: "V∈τ"
shows "{x ∈ succ(n)→

⋃
τ. Init(x) ∈ U ∧ x‘(n) ∈ V} ∈ SeqProductTopology(succ(n),τ)"

proof -

from A1 have "ProductTopBase(n,τ) {is a base for} SeqProductTopology(n,τ)"
and

I: "ProductTopBase(succ(n),τ) {is a base for} SeqProductTopology(succ(n),τ)"
and

II: "SeqProductTopology(succ(n),τ) {is a topology}"

using seq_prod_top_is_top by auto

with A3 have "∃B ∈ Pow(ProductTopBase(n,τ)). U =
⋃
B" using Top_1_2_L1

by simp

then obtain B where "B ⊆ ProductTopBase(n,τ)" and "U =
⋃
B" by

auto

then have
"{x:succ(n)→

⋃
τ. Init(x) ∈ U ∧ x‘(n) ∈ V} = (

⋃
B∈B.{x:succ(n)→

⋃
τ.

Init(x) ∈ B ∧ x‘(n) ∈ V})"
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by auto

moreover from A1 A2 A4 ‘B ⊆ ProductTopBase(n,τ)‘ have
"∀ B∈B. ({x:succ(n)→

⋃
τ. Init(x) ∈ B ∧ x‘(n) ∈ V} ∈ ProductTopBase(succ(n),τ))"

using finite_prod_succ_base by auto

with I II have
"(
⋃
B∈B.{x:succ(n)→

⋃
τ. Init(x) ∈ B ∧ x‘(n) ∈ V}) ∈ SeqProductTopology(succ(n),τ)"

using base_sets_open union_indexed_open by auto

ultimately show ?thesis by simp

qed

In the Topology_ZF_2 theory we define product topology of two topological
spaces. The next lemma explains in what sense the topology on finite lists
of length n of elements of topological space X can be thought as a model
of the product topology on the cartesian product of n copies of that space.
Namely, we show that the space of lists of length n + 1 of elements of X
is homeomorphic to the product topology (as defined in Topology_ZF_2) of
two spaces: the space of lists of length n and X. Recall that if B is a base
(i.e. satisfies the base condition), then the collection {

⋃
B|B ∈ Pow(B)} is

a topology (generated by B).

theorem finite_top_prod_homeo: assumes A1: "τ {is a topology}" and A2:

"n ∈ nat" and
A3: "f = {〈x,〈Init(x),x‘(n)〉〉. x ∈ succ(n)→

⋃
τ}" and

A4: "T = SeqProductTopology(n,τ)" and
A5: "S = SeqProductTopology(succ(n),τ)"

shows "IsAhomeomorphism(S,ProductTopology(T,τ),f)"
proof -

let ?C = "ProductCollection(T,τ)"
let ?B = "ProductTopBase(succ(n),τ)"
from A1 A4 have "T {is a topology}" using seq_prod_top_is_top by simp

with A1 A5 have "S {is a topology}" and " ProductTopology(T,τ) {is

a topology}"

using seq_prod_top_is_top Top_1_4_T1 by auto

moreover
from assms have "f ∈ bij(

⋃
S,
⋃
ProductTopology(T,τ))"

using lists_cart_prod seq_prod_top_is_top Top_1_4_T1 by simp

then have "f:
⋃
S→
⋃
ProductTopology(T,τ)" using bij_is_fun by simp

ultimately have "two_top_spaces0(S,ProductTopology(T,τ),f)" using two_top_spaces0_def

by simp

moreover note ‘f ∈ bij(
⋃
S,
⋃
ProductTopology(T,τ))‘

moreover from A1 A5 have "?B {is a base for} S"

using seq_prod_top_is_top by simp

moreover from A1 ‘T {is a topology}‘ have "?C {is a base for} ProductTopology(T,τ)"

using Top_1_4_T1 by auto

moreover have "∀ W∈?C. f-‘‘(W) ∈ S"

proof
fix W assume "W∈?C"
then obtain U V where "U∈T" "V∈τ" and "W = U×V" using ProductCollection_def
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by auto

from A1 A5 ‘f:
⋃
S→
⋃
ProductTopology(T,τ)‘ have "f: (succ(n)→

⋃
τ)→

⋃
ProductTopology(T,τ)"

using seq_prod_top_is_top by simp

with assms ‘W = U×V‘ ‘U∈T‘ ‘V∈τ‘ show "f-‘‘(W) ∈ S"

using ZF_fun_from_tot_val func1_1_L15 finite_prod_succ by simp

qed
moreover have "∀ V∈?B. f‘‘(V) ∈ ProductTopology(T,τ)"
proof

fix V assume "V∈?B"
with A1 A2 obtain WV where "WV ∈ succ(n)→τ" and "V = FinProd(succ(n)→

⋃
τ,WV )"

using fin_prod_def_nat by auto

let ?U = "FinProd(n→
⋃
τ,Init(WV ))"

let ?W = "WV ‘(n)"

have "?U ∈ T"

proof -

from A1 A2 ‘WV ∈ succ(n)→τ‘ have "?U ∈ ProductTopBase(n,τ)"
using fin_prod_def_nat init_props by auto

with A1 A4 show ?thesis using seq_prod_top_is_top base_sets_open

by blast

qed
from A1 ‘WV ∈ succ(n)→τ‘ ‘T {is a topology}‘ ‘?U ∈ T‘ have "?U×?W

∈ ProductTopology(T,τ)"
using apply_funtype prod_open_open_prod by simp

moreover have "f‘‘(V) = ?U×?W"
proof -

from A2 ‘WV : succ(n)→τ‘ have "Init(WV ): n→τ" and III: "∀ k∈n.
Init(WV )‘(k) = WV ‘(k)"

using init_props by auto

then have "domain(Init(WV )) = n" using func1_1_L1 by simp

have "f‘‘(V) = {〈Init(x),x‘(n)〉. x∈V}"
proof -

have "f‘‘(V) = {f‘(x). x∈V}"
proof -

from A1 A5 have "?B {is a base for} S" using seq_prod_top_is_top

by simp

with ‘V∈?B‘ have "V ⊆
⋃
S" using IsAbaseFor_def by auto

with ‘f:
⋃
S→
⋃
ProductTopology(T,τ)‘ show ?thesis using func_imagedef

by simp

qed
moreover have "∀ x∈V. f‘(x) = 〈Init(x),x‘(n)〉"
proof -

from A1 A3 A5 ‘V = FinProd(succ(n)→
⋃
τ,WV )‘ have "V ⊆

⋃
S"

and
fdef: "f = {〈x,〈Init(x),x‘(n)〉〉. x ∈

⋃
S}" using seq_prod_top_is_top

FinProd_def

by auto

from ‘f:
⋃
S→
⋃
ProductTopology(T,τ)‘ fdef have "∀ x ∈

⋃
S.
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f‘(x) = 〈Init(x),x‘(n)〉"
by (rule ZF_fun_from_tot_val0)

with ‘V ⊆
⋃
S‘ show ?thesis by auto

qed
ultimately show ?thesis by simp

qed
also have "{〈Init(x),x‘(n)〉. x∈V} = ?U×?W"
proof
{ fix y assume "y ∈ {〈Init(x),x‘(n)〉. x∈V}"

then obtain x where I: "y = 〈Init(x),x‘(n)〉" and "x∈V" by
auto

with ‘V = FinProd(succ(n)→
⋃
τ,WV )‘ have

"x:succ(n)→
⋃
τ" and II: "∀ k∈domain(WV ). x‘(k) ∈ WV ‘(k)"

unfolding FinProd_def by auto

with A2 ‘WV : succ(n)→τ‘ have IV: "∀ k∈n. Init(x)‘(k) = x‘(k)"

using init_props by simp

have "Init(x) ∈ ?U"

proof -

from A2 ‘x:succ(n)→
⋃
τ‘ have "Init(x): n→

⋃
τ" using init_props

by simp

moreover have "∀ k∈domain(Init(WV )). Init(x)‘(k) ∈ Init(WV )‘(k)"

proof -

from A2 ‘WV : succ(n)→τ‘ have "Init(WV ): n→τ" using init_props

by simp

then have "domain(Init(WV )) = n" using func1_1_L1 by simp

note III IV ‘domain(Init(WV )) = n‘

moreover from II ‘WV ∈ succ(n)→τ‘ have "∀ k∈n. x‘(k)

∈ WV ‘(k)"

using func1_1_L1 by simp

ultimately show ?thesis by simp

qed
ultimately show "Init(x) ∈ ?U" using FinProd_def by simp

qed
moreover from ‘WV : succ(n)→τ‘ II have "x‘(n) ∈ ?W" using

func1_1_L1 by simp

ultimately have "〈Init(x),x‘(n)〉 ∈ ?U×?W" by simp

with I have "y ∈ ?U×?W" by simp

} thus "{〈Init(x),x‘(n)〉. x∈V} ⊆ ?U×?W" by auto

{ fix y assume "y ∈ ?U×?W"
then have "fst(y) ∈ ?U" and "snd(y) ∈ ?W" by auto

with ‘domain(Init(WV )) = n‘ have "fst(y): n→
⋃
τ" and

V: "∀ k∈n. fst(y)‘(k) ∈ Init(WV )‘(k)"

using FinProd_def by auto

from ‘WV : succ(n)→τ‘ have "?W ∈ τ" using apply_funtype by
simp

with ‘snd(y) ∈ ?W‘ have "snd(y) ∈
⋃
τ" by auto

let ?x = "Append(fst(y),snd(y))"
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have "?x∈V"
proof -

from ‘fst(y): n→
⋃
τ‘ ‘snd(y) ∈

⋃
τ‘ have "?x:succ(n)→

⋃
τ"

using append_props by simp

moreover have "∀ i∈domain(WV ). ?x‘(i) ∈ WV ‘(i)"

proof -

from ‘fst(y): n→
⋃
τ‘ ‘snd(y) ∈

⋃
τ‘

have "∀ k∈n. ?x‘(k) = fst(y)‘(k)" and "?x‘(n) = snd(y)"

using append_props by auto

moreover from III V have "∀ k∈n. fst(y)‘(k) ∈ WV ‘(k)"

by simp

moreover note ‘snd(y) ∈ ?W‘

ultimately have "∀ i∈succ(n). ?x‘(i) ∈ WV ‘(i)" by simp

with ‘WV ∈ succ(n)→τ‘ show ?thesis using func1_1_L1 by
simp

qed
ultimately have "?x ∈ FinProd(succ(n)→

⋃
τ,WV )" using FinProd_def

by simp

with ‘V = FinProd(succ(n)→
⋃
τ,WV )‘ show "?x∈V" by simp

qed
moreover from A2 ‘y ∈ ?U×?W‘ ‘fst(y): n→

⋃
τ‘ ‘snd(y) ∈

⋃
τ‘

have "y = 〈Init(?x),?x‘(n)〉"
using init_append append_props by auto

ultimately have "y ∈ {〈Init(x),x‘(n)〉. x∈V}" by auto

} thus "?U×?W ⊆ {〈Init(x),x‘(n)〉. x∈V}" by auto

qed
finally show "f‘‘(V) = ?U×?W" by simp

qed
ultimately show "f‘‘(V) ∈ ProductTopology(T,τ)" by simp

qed
ultimately show ?thesis using two_top_spaces0.bij_base_open_homeo by

simp

qed

end

54 Topology 4

theory Topology_ZF_4 imports Topology_ZF_1 Order_ZF func1

begin

This theory deals with convergence in topological spaces. Contributed by
Daniel de la Concepcion.
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54.1 Nets

Nets are a generalization of sequences. It is known that sequences do not
determine the behavior of the topological spaces that are not first count-
able; i.e., have a countable neighborhood base for each point. To solve this
problem, nets were defined so that the behavior of any topological space can
be thought in terms of convergence of nets.

First we need to define what a directed set is:

definition
IsDirectedSet ("_ directs _" 90)

where "r directs D ≡ refl(D,r) ∧ trans(r) ∧ (∀ x∈D. ∀ y∈D. ∃ z∈D. 〈x,z〉∈r
∧ 〈y,z〉∈r)"

Any linear order is a directed set; in particular (N,≤).

lemma linorder_imp_directed:

assumes "IsLinOrder(X,r)"

shows "r directs X"

proof-
from assms have "trans(r)" using IsLinOrder_def by auto

moreover
from assms have r:"refl(X,r)" using IsLinOrder_def total_is_refl by

auto

moreover
{

fix x y

assume R: "x∈X" "y∈X"
with assms have "〈x,y〉∈r ∨ 〈y,x〉∈r" using IsLinOrder_def IsTotal_def

by auto

with r have "(〈x,y〉∈r ∧ 〈y,y〉∈r)∨(〈y,x〉∈r ∧ 〈x,x〉∈r)" using R refl_def

by auto

then have "∃ z∈X. 〈x,z〉∈r ∧ 〈y,z〉∈r" using R by auto

}
ultimately show ?thesis using IsDirectedSet_def function_def by auto

qed

corollary Le_directs_nat:

shows "IsLinOrder(nat,Le)" "Le directs nat"

proof-
have "antisym(Le)" unfolding antisym_def Le_def using le_anti_sym by

auto moreover
have "trans(Le)" unfolding trans_def Le_def using le_trans by auto

moreover
{

fix n m assume "n∈nat" "m∈nat"
then have "Ord(n)" "Ord(m)" using nat_into_Ord by auto

then have "n≤m ∨ m≤n" using Ord_linear_le[where thesis="n≤m ∨ m≤n"]
by auto

}
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then have "Le{is total on}nat" unfolding IsTotal_def Le_def by auto

ultimately show "IsLinOrder(nat,Le)" unfolding IsLinOrder_def by auto

then show "Le directs nat" using linorder_imp_directed by auto

qed

We are able to define the concept of net, now that we now what a directed
set is.

definition
IsNet ("_ {is a net on} _" 90)

where "N {is a net on} X ≡ fst(N):domain(fst(N))→X ∧ (snd(N) directs

domain(fst(N))) ∧ domain(fst(N))6=0"

Provided a topology and a net directed on its underlying set, we can talk
about convergence of the net in the topology.

definition (in topology0)

NetConverges ("_ →N _" 90)

where "N {is a net on}
⋃
T =⇒ N →N x ≡

(x∈
⋃
T) ∧ (∀ U∈Pow(

⋃
T). (x∈int(U) −→ (∃ t∈domain(fst(N)). ∀ m∈domain(fst(N)).

(〈t,m〉∈snd(N) −→ fst(N)‘m∈U))))"

One of the most important directed sets, is the neighborhoods of a point.

theorem (in topology0) directedset_neighborhoods:

assumes "x∈
⋃
T"

defines "Neigh≡{U∈Pow(
⋃
T). x∈int(U)}"

defines "r≡{〈U,V〉∈(Neigh × Neigh). V⊆U}"
shows "r directs Neigh"

proof-
{

fix U

assume "U ∈ Neigh"

then have "〈U,U〉 ∈ r" using r_def by auto

}
then have "refl(Neigh,r)" using refl_def by auto

moreover
{

fix U V W

assume "〈U,V〉 ∈ r" "〈V,W〉 ∈ r"

then have "U ∈ Neigh" "W ∈ Neigh" "W⊆U" using r_def by auto

then have "〈U,W〉∈r" using r_def by auto

}
then have "trans(r)" using trans_def by blast

moreover
{

fix A B

assume p: "A∈Neigh" "B∈Neigh"
have "A∩B ∈ Neigh"

proof-
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from p have "A∩B ∈ Pow(
⋃
T)" using Neigh_def by auto

moreover
{ from p have "x∈int(A)""x∈int(B)" using Neigh_def by auto

then have "x∈int(A)∩int(B)" by auto

moreover
{ have "int(A)∩int(B)⊆A∩B" using Top_2_L1 by auto

moreover have "int(A)∩int(B)∈T"
using Top_2_L2 Top_2_L2 topSpaceAssum IsATopology_def by blast

ultimately have "int(A)∩int(B)⊆int(A∩B)"
using Top_2_L5 by auto

}
ultimately have "x ∈ int(A∩B)" by auto

}
ultimately show ?thesis using Neigh_def by auto

qed
moreover from ‘A∩B ∈ Neigh‘ have "〈A,A∩B〉∈r ∧ 〈B,A∩B〉∈r"

using r_def p by auto

ultimately
have "∃ z∈Neigh. 〈A,z〉∈r ∧ 〈B,z〉∈r" by auto

}
ultimately show ?thesis using IsDirectedSet_def by auto

qed

There can be nets directed by the neighborhoods that converge to the point;
if there is a choice function.

theorem (in topology0) net_direct_neigh_converg:

assumes "x∈
⋃
T"

defines "Neigh≡{U∈Pow(
⋃
T). x∈int(U)}"

defines "r≡{〈U,V〉∈(Neigh × Neigh). V⊆U}"
assumes "f:Neigh→

⋃
T" "∀ U∈Neigh. f‘(U) ∈ U"

shows "〈f,r〉 →N x"

proof -

from assms(4) have dom_def: "Neigh = domain(f)" using Pi_def by auto

moreover
have "

⋃
T∈T" using topSpaceAssum IsATopology_def by auto

then have "int(
⋃
T)=
⋃
T" using Top_2_L3 by auto

with assms(1) have "
⋃
T∈Neigh" using Neigh_def by auto

then have "
⋃
T∈domain(fst(〈f,r〉))" using dom_def by auto

moreover from assms(4) dom_def have "fst(〈f,r〉):domain(fst(〈f,r〉))→
⋃
T"

by auto

moreover from assms(1,2,3) dom_def have "snd(〈f,r〉) directs domain(fst(〈f,r〉))"

using directedset_neighborhoods by simp

ultimately have Net: "〈f,r〉 {is a net on}
⋃
T" unfolding IsNet_def by

auto

{
fix U

assume "U ∈ Pow(
⋃
T)" "x ∈ int(U)"
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then have "U ∈ Neigh" using Neigh_def by auto

then have t: "U ∈ domain(f)" using dom_def by auto

{
fix W

assume A: "W∈domain(f)" "〈U,W〉∈r"
then have "W∈Neigh" using dom_def by auto

with assms(5) have "f‘W∈W" by auto

with A(2) r_def have "f‘W∈U" by auto

}
then have "∀ W∈domain(f). (〈U,W〉∈r −→ f‘W∈U)" by auto

with t have "∃ V∈domain(f). ∀ W∈domain(f). (〈V,W〉∈r −→ f‘W∈U)" by
auto

}
then have "∀ U∈Pow(

⋃
T). (x∈int(U) −→ (∃ V∈domain(f). ∀ W∈domain(f).

(〈V,W〉∈r −→ f‘(W) ∈ U)))"

by auto

with assms(1) Net show ?thesis using NetConverges_def by auto

qed

54.2 Filters

Nets are a generalization of sequences that can make us see that not all
topological spaces can be described by sequences. Nevertheless, nets are not
always the tool used to deal with convergence. The reason is that they make
use of directed sets which are completely unrelated with the topology.

The topological tools to deal with convergence are what is called filters.

definition
IsFilter ("_ {is a filter on} _" 90)

where "F {is a filter on} X ≡ (0/∈F) ∧ (X∈F) ∧ (F⊆Pow(X)) ∧
(∀ A∈F. ∀ B∈F. A∩B∈F) ∧ (∀ B∈F. ∀ C∈Pow(X). B⊆C −→ C∈F)"

Not all the sets of a filter are needed to be consider at all times; as it happens
with a topology we can consider bases.

definition
IsBaseFilter ("_ {is a base filter} _" 90)

where "C {is a base filter} F ≡ C⊆F ∧ F={A∈Pow(
⋃

F). (∃ D∈C. D⊆A)}"

Not every set is a base for a filter, as it happens with topologies, there is a
condition to be satisfied.

definition
SatisfiesFilterBase ("_ {satisfies the filter base condition}" 90)

where "C {satisfies the filter base condition} ≡ (∀ A∈C. ∀ B∈C. ∃ D∈C.
D⊆A∩B) ∧ C6=0 ∧ 0/∈C"

Every set of a filter contains a set from the filter’s base.

lemma basic_element_filter:

assumes "A∈F" and "C {is a base filter} F"
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shows "∃ D∈C. D⊆A"
proof-

from assms(2) have t:"F={A∈Pow(
⋃
F). (∃ D∈C. D⊆A)}" using IsBaseFilter_def

by auto

with assms(1) have "A∈{A∈Pow(
⋃

F). (∃ D∈C. D⊆A)}" by auto

then have "A∈Pow(
⋃
F)" "∃ D∈C. D⊆A" by auto

then show ?thesis by auto

qed

The following two results state that the filter base condition is necessary
and sufficient for the filter generated by a base, to be an actual filter. The
third result, rewrites the previous two.

theorem basic_filter_1:

assumes "C {is a base filter} F" and "C {satisfies the filter base

condition}"

shows "F {is a filter on}
⋃
F"

proof-
{

fix A B

assume AF: "A∈F" and BF: "B∈F"
with assms(1) have "∃ DA∈C. DA⊆A" using basic_element_filter by

simp

then obtain DA where perA: "DA∈C" and subA: "DA⊆A" by auto

from BF assms have "∃ DB∈C. DB⊆B" using basic_element_filter by
simp

then obtain DB where perB: "DB∈C" and subB: "DB⊆B" by auto

from assms(2) perA perB have "∃ D∈C. D⊆DA∩DB"
unfolding SatisfiesFilterBase_def by auto

then obtain D where "D∈C" "D⊆DA∩DB" by auto

with subA subB AF BF have "A∩B∈{A ∈ Pow(
⋃
F) . ∃ D∈C. D ⊆ A}" by

auto

with assms(1) have "A∩B∈F" unfolding IsBaseFilter_def by auto

}
moreover
{

fix A B

assume AF: "A∈F" and BS: "B∈Pow(
⋃

F)" and sub: "A⊆B"
from assms(1) AF have "∃ D∈C. D⊆A" using basic_element_filter by

auto

then obtain D where "D⊆A" "D∈C" by auto

with sub BS have "B∈{A∈Pow(
⋃
F). ∃ D∈C. D⊆A}" by auto

with assms(1) have "B∈F" unfolding IsBaseFilter_def by auto

}
moreover
from assms(2) have "C 6=0" using SatisfiesFilterBase_def by auto

then obtain D where "D∈C" by auto

with assms(1) have "D⊆
⋃

F" using IsBaseFilter_def by auto

with ‘D∈C‘ have "
⋃
F∈{A∈Pow(

⋃
F). ∃ D∈C. D⊆A}" by auto

with assms(1) have "
⋃
F∈F" unfolding IsBaseFilter_def by auto
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moreover
{

assume "0∈F"
with assms(1) have "∃ D∈C. D⊆0" using basic_element_filter by simp

then obtain D where "D∈C""D⊆0" by auto

then have "D∈C" "D=0" by auto

with assms(2) have "False" using SatisfiesFilterBase_def by auto

}
then have "0/∈F" by auto

ultimately show ?thesis using IsFilter_def by auto

qed

A base filter satisfies the filter base condition.

theorem basic_filter_2:

assumes "C {is a base filter} F" and "F {is a filter on}
⋃

F"
shows "C {satisfies the filter base condition}"

proof-
{

fix A B

assume AF: "A∈C" and BF: "B∈C"
then have "A∈F" and "B∈F" using assms(1) IsBaseFilter_def by auto

then have "A∩B∈F" using assms(2) IsFilter_def by auto

then have "∃ D∈C. D⊆A∩B" using assms(1) basic_element_filter by blast

}
then have "∀ A∈C. ∀ B∈C. ∃ D∈C. D⊆A∩B" by auto

moreover
{

assume "0∈C"
then have "0∈F" using assms(1) IsBaseFilter_def by auto

then have "False" using assms(2) IsFilter_def by auto

}
then have "0/∈C" by auto

moreover
{

assume "C=0"

then have "F=0" using assms(1) IsBaseFilter_def by auto

then have "False" using assms(2) IsFilter_def by auto

}
then have "C6=0" by auto

ultimately show ?thesis using SatisfiesFilterBase_def by auto

qed

A base filter for a collection satisfies the filter base condition iff that collec-
tion is in fact a filter.

theorem basic_filter:

assumes "C {is a base filter} F"
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shows "(C {satisfies the filter base condition}) ←→ (F {is a filter

on}
⋃
F)"

using assms basic_filter_1 basic_filter_2 by auto

A base for a filter determines a filter up to the underlying set.

theorem base_unique_filter:

assumes "C {is a base filter} F1"and "C {is a base filter} F2"
shows "F1=F2 ←→

⋃
F1=

⋃
F2"

using assms unfolding IsBaseFilter_def by auto

Suppose that we take any nonempty collection C of subsets of some set X.
Then this collection is a base filter for the collection of all supersets (in X)
of sets from C.

theorem base_unique_filter_set1:

assumes "C ⊆ Pow(X)" and "C 6=0"

shows "C {is a base filter} {A∈Pow(X). ∃ D∈C. D⊆A}" and "
⋃
{A∈Pow(X).

∃ D∈C. D⊆A}=X"
proof-

from assms(1) have "C⊆{A∈Pow(X). ∃ D∈C. D⊆A}" by auto

moreover
from assms(2) obtain D where "D∈C" by auto

then have "D⊆X" using assms(1) by auto

with ‘D∈C‘ have "X∈{A∈Pow(X). ∃ D∈C. D⊆A}" by auto

then show "
⋃
{A∈Pow(X). ∃ D∈C. D⊆A}=X" by auto

ultimately
show "C {is a base filter} {A∈Pow(X). ∃ D∈C. D⊆A}" using IsBaseFilter_def

by auto

qed

A collection C that satisfies the filter base condition is a base filter for some
other collection F iff F is the collection of supersets of C.

theorem base_unique_filter_set2:

assumes "C⊆Pow(X)" and "C {satisfies the filter base condition}"

shows "((C {is a base filter} F) ∧
⋃

F=X) ←→ F={A∈Pow(X). ∃ D∈C.
D⊆A}"

using assms IsBaseFilter_def SatisfiesFilterBase_def base_unique_filter_set1

by auto

A simple corollary from the previous lemma.

corollary base_unique_filter_set3:

assumes "C⊆Pow(X)" and "C {satisfies the filter base condition}"

shows "C {is a base filter} {A∈Pow(X). ∃ D∈C. D⊆A}" and "
⋃
{A∈Pow(X).

∃ D∈C. D⊆A} = X"

proof -

let ?F = "{A∈Pow(X). ∃ D∈C. D⊆A}"
from assms have "(C {is a base filter} ?F) ∧

⋃
?F=X"

using base_unique_filter_set2 by simp

thus "C {is a base filter} ?F" and "
⋃
?F = X"
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by auto

qed

The convergence for filters is much easier concept to write. Given a topol-
ogy and a filter on the same underlying set, we can define convergence as
containing all the neighborhoods of the point.

definition (in topology0)

FilterConverges ("_ →F _" 50) where
"F{is a filter on}

⋃
T =⇒ F→F x ≡

x∈
⋃
T ∧ ({U∈Pow(

⋃
T). x∈int(U)} ⊆ F)"

The neighborhoods of a point form a filter that converges to that point.

lemma (in topology0) neigh_filter:

assumes "x∈
⋃
T"

defines "Neigh≡{U∈Pow(
⋃
T). x∈int(U)}"

shows "Neigh {is a filter on}
⋃
T" and "Neigh →F x"

proof-
{

fix A B

assume p:"A∈Neigh" "B∈Neigh"
have "A∩B∈Neigh"
proof-

from p have "A∩B∈Pow(
⋃
T)" using Neigh_def by auto

moreover
{from p have "x∈int(A)" "x∈int(B)" using Neigh_def by auto

then have "x∈int(A)∩int(B)" by auto

moreover
{ have "int(A)∩int(B)⊆A∩B" using Top_2_L1 by auto

moreover have "int(A)∩int(B)∈T"
using Top_2_L2 topSpaceAssum IsATopology_def by blast

ultimately have "int(A)∩int(B)⊆int(A∩B)" using Top_2_L5 by auto}
ultimately have "x∈int(A∩B)" by auto

}
ultimately show ?thesis using Neigh_def by auto

qed
}

moreover
{

fix A B

assume A: "A∈Neigh" and B: "B∈Pow(
⋃
T)" and sub: "A⊆B"

from sub have "int(A)∈T" "int(A)⊆B" using Top_2_L2 Top_2_L1

by auto

then have "int(A)⊆int(B)" using Top_2_L5 by auto

with A have "x∈int(B)" using Neigh_def by auto

with B have "B∈Neigh" using Neigh_def by auto

}
moreover
{

assume "0∈Neigh"
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then have "x∈Interior(0,T)" using Neigh_def by auto

then have "x∈0" using Top_2_L1 by auto

then have "False" by auto

}
then have "0/∈Neigh" by auto

moreover
have "

⋃
T∈T" using topSpaceAssum IsATopology_def by auto

then have "Interior(
⋃
T,T)=

⋃
T" using Top_2_L3 by auto

with assms(1) have ab: "
⋃
T∈Neigh" unfolding Neigh_def by auto

moreover have "Neigh⊆Pow(
⋃
T)" using Neigh_def by auto

ultimately show "Neigh {is a filter on}
⋃
T" using IsFilter_def

by auto

moreover from ab have "
⋃
Neigh=

⋃
T" unfolding Neigh_def by auto

ultimately show "Neigh →F x" using FilterConverges_def assms(1) Neigh_def

by auto

qed

Note that with the net we built in a previous result, it wasn’t clear that we
could construct an actual net that converged to the given point without the
axiom of choice. With filters, there is no problem.

Another positive point of filters is due to the existence of filter basis. If
we have a basis for a filter, then the filter converges to a point iff every
neighborhood of that point contains a basic filter element.

theorem (in topology0) convergence_filter_base1:

assumes "F {is a filter on}
⋃
T" and "C {is a base filter} F" and

"F →F x"

shows "∀ U∈Pow(
⋃
T). x∈int(U) −→ (∃ D∈C. D⊆U)" and "x∈

⋃
T"

proof -

{ fix U

assume "U⊆(
⋃
T)" and "x∈int(U)"

with assms(1,3) have "U∈F" using FilterConverges_def by auto

with assms(2) have "∃ D∈C. D⊆U" using basic_element_filter by blast

} thus "∀ U∈Pow(
⋃
T). x∈int(U) −→ (∃ D∈C. D⊆U)" by auto

from assms(1,3) show "x∈
⋃
T" using FilterConverges_def by auto

qed

A sufficient condition for a filter to converge to a point.

theorem (in topology0) convergence_filter_base2:

assumes "F {is a filter on}
⋃
T" and "C {is a base filter} F"

and "∀ U∈Pow(
⋃
T). x∈int(U) −→ (∃ D∈C. D⊆U)" and "x∈

⋃
T"

shows "F →F x"

proof-
{

fix U

assume AS: "U∈Pow(
⋃
T)" "x∈int(U)"

then obtain D where pD:"D∈C" and s:"D⊆U" using assms(3) by blast

with assms(2) AS have "D∈F" and "D⊆U" and "U∈Pow(
⋃
T)"

using IsBaseFilter_def by auto
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with assms(1) have "U∈F" using IsFilter_def by auto

}
with assms(1,4) show ?thesis using FilterConverges_def by auto

qed

A necessary and sufficient condition for a filter to converge to a point.

theorem (in topology0) convergence_filter_base_eq:

assumes "F {is a filter on}
⋃
T" and "C {is a base filter} F"

shows "(F →F x) ←→ ((∀ U∈Pow(
⋃
T). x∈int(U) −→ (∃ D∈C. D⊆U)) ∧

x∈
⋃
T)"

proof
assume "F →F x"

with assms show "((∀ U∈Pow(
⋃
T). x∈int(U) −→ (∃ D∈C. D⊆U)) ∧ x∈

⋃
T)"

using convergence_filter_base1 by simp

next
assume "(∀ U∈Pow(

⋃
T). x∈int(U) −→ (∃ D∈C. D⊆U)) ∧ x∈

⋃
T"

with assms show "F →F x" using convergence_filter_base2

by auto

qed

54.3 Relation between nets and filters

In this section we show that filters do not generalize nets, but still nets and
filter are in w way equivalent as far as convergence is considered.

Let’s build now a net from a filter, such that both converge to the same
points.

definition
NetOfFilter ("Net(_)" 40) where
"F {is a filter on}

⋃
F =⇒ Net(F) ≡

〈{〈A,fst(A)〉. A∈{〈x,F〉∈(
⋃

F)×F. x∈F}},{〈A,B〉∈{〈x,F〉∈(
⋃

F)×F. x∈F}×{〈x,F〉∈(
⋃
F)×F.

x∈F}. snd(B)⊆snd(A)}〉"

Net of a filter is indeed a net.

theorem net_of_filter_is_net:

assumes "F {is a filter on} X"

shows "(Net(F)) {is a net on} X"

proof-
from assms have "X∈F" "F⊆Pow(X)" using IsFilter_def by auto

then have uu:"
⋃
F=X" by blast

let ?f = "{〈A,fst(A)〉. A∈{〈x,F〉∈(
⋃

F)×F. x∈F}}"
let ?r = "{〈A,B〉∈{〈x,F〉∈(

⋃
F)×F. x∈F}×{〈x,F〉∈(

⋃
F)×F. x∈F}. snd(B)⊆snd(A)}"

have "function(?f)" using function_def by auto

moreover have "relation(?f)" using relation_def by auto

ultimately have "?f:domain(?f)→range(?f)" using function_imp_Pi

by auto

have dom:"domain(?f)={〈x,F〉∈(
⋃
F)×F. x∈F}" by auto

have "range(?f)⊆
⋃
F" by auto
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with ‘?f:domain(?f)→range(?f)‘ have "?f:domain(?f)→
⋃

F" using fun_weaken_type

by auto

moreover
{
{

fix t

assume pp:"t∈domain(?f)"
then have "snd(t)⊆snd(t)" by auto

with dom pp have "〈t,t〉∈?r" by auto

}
then have "refl(domain(?f),?r)" using refl_def by auto

moreover
{

fix t1 t2 t3

assume "〈t1,t2〉∈?r" "〈t2,t3〉∈?r"
then have "snd(t3)⊆snd(t1)" "t1∈domain(?f)" "t3∈domain(?f)" us-

ing dom by auto

then have "〈t1,t3〉∈?r" by auto

}
then have "trans(?r)" using trans_def by auto

moreover
{

fix x y

assume as:"x∈domain(?f)""y∈domain(?f)"
then have "snd(x)∈F" "snd(y)∈F" by auto

then have p:"snd(x)∩snd(y)∈F" using assms IsFilter_def by auto

{
assume "snd(x)∩snd(y)=0"
with p have "0∈F" by auto

then have "False" using assms IsFilter_def by auto

}
then have "snd(x)∩snd(y)6=0" by auto

then obtain xy where "xy∈snd(x)∩snd(y)" by auto

then have "xy∈snd(x)∩snd(y)" "〈xy,snd(x)∩snd(y)〉∈(
⋃

F)×F" us-
ing p by auto

then have "〈xy,snd(x)∩snd(y)〉∈{〈x,F〉∈(
⋃

F)×F. x∈F}" by auto

with dom have d:"〈xy,snd(x)∩snd(y)〉∈domain(?f)" by auto

with as have "〈x,〈xy,snd(x)∩snd(y)〉〉∈?r ∧ 〈y,〈xy,snd(x)∩snd(y)〉〉∈?r"
by auto

with d have "∃ z∈domain(?f). 〈x,z〉∈?r ∧ 〈y,z〉∈?r" by blast

}
then have "∀ x∈domain(?f). ∀ y∈domain(?f). ∃ z∈domain(?f). 〈x,z〉∈?r

∧ 〈y,z〉∈?r" by blast

ultimately have "?r directs domain(?f)" using IsDirectedSet_def by
blast

}
moreover
{

have p:"X∈F" and "0/∈F" using assms IsFilter_def by auto
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then have "X 6=0" by auto

then obtain q where "q∈X" by auto

with p dom have "〈q,X〉∈domain(?f)" by auto

then have "domain(?f) 6=0" by blast

}
ultimately have "〈?f,?r〉 {is a net on}

⋃
F" using IsNet_def by auto

then show "(Net(F)) {is a net on} X" using NetOfFilter_def assms uu

by auto

qed

If a filter converges to some point then its net converges to the same point.

theorem (in topology0) filter_conver_net_of_filter_conver:

assumes "F {is a filter on}
⋃
T" and "F →F x"

shows "(Net(F)) →N x"

proof-
from assms have "

⋃
T∈F" "F⊆Pow(

⋃
T)" using IsFilter_def by auto

then have uu: "
⋃
F=
⋃
T" by blast

from assms(1) have func: "fst(Net(F))={〈A,fst(A)〉. A∈{〈x,F〉∈(
⋃

F)×F.
x∈F}}"

and dir: "snd(Net(F))={〈A,B〉∈{〈x,F〉∈(
⋃

F)×F. x∈F}×{〈x,F〉∈(
⋃

F)×F.
x∈F}. snd(B)⊆snd(A)}"

using NetOfFilter_def uu by auto

then have dom_def: "domain(fst(Net(F)))={〈x,F〉∈(
⋃
F)×F. x∈F}" by auto

from func have fun: "fst(Net(F)): {〈x,F〉∈(
⋃

F)×F. x∈F} → (
⋃

F)"
using ZF_fun_from_total by simp

from assms(1) have NN: "(Net(F)) {is a net on}
⋃
T" using net_of_filter_is_net

by auto

moreover from assms have "x∈
⋃
T" using FilterConverges_def

by auto

moreover
{

fix U

assume AS: "U∈Pow(
⋃
T)" "x∈int(U)"

with assms have "U∈F" "x∈U" using Top_2_L1 FilterConverges_def by
auto

then have pp: "〈x,U〉∈domain(fst(Net(F)))" using dom_def by auto

{
fix m

assume ASS: "m∈domain(fst(Net(F)))" "〈〈x,U〉,m〉∈snd(Net(F))"
from ASS(1) fun func have "fst(Net(F))‘(m) = fst(m)"

using func1_1_L1 ZF_fun_from_tot_val by simp

with dir ASS have "fst(Net(F))‘(m) ∈ U" using dom_def by auto

}
then have "∀ m∈domain(fst(Net(F))). (〈〈x,U〉,m〉∈snd(Net(F)) −→ fst(Net(F))‘m∈U)"

by auto

with pp have "∃ t∈domain(fst(Net(F))). ∀ m∈domain(fst(Net(F))). (〈t,m〉∈snd(Net(F))
−→ fst(Net(F))‘m∈U)"

by auto
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}
then have "∀ U∈Pow(

⋃
T).

(x∈int(U) −→ (∃ t∈domain(fst(Net(F))). ∀ m∈domain(fst(Net(F))).
(〈t,m〉∈snd(Net(F)) −→ fst(Net(F))‘m∈U)))"

by auto

ultimately show ?thesis using NetConverges_def by auto

qed

If a net converges to a point, then a filter also converges to a point.

theorem (in topology0) net_of_filter_conver_filter_conver:

assumes "F {is a filter on}
⋃
T" and "(Net(F)) →N x"

shows "F →F x"

proof-
from assms have "

⋃
T∈F" "F⊆Pow(

⋃
T)" using IsFilter_def by auto

then have uu: "
⋃
F=
⋃
T" by blast

have "x∈
⋃
T" using assms NetConverges_def net_of_filter_is_net by auto

moreover
{

fix U

assume "U∈Pow(
⋃
T)" "x∈int(U)"

then obtain t where t: "t∈domain(fst(Net(F)))" and
reg: "∀ m∈domain(fst(Net(F))). 〈t,m〉∈snd(Net(F)) −→ fst(Net(F))‘m∈U"

using assms net_of_filter_is_net NetConverges_def by blast

with assms(1) uu obtain t1 t2 where t_def: "t=〈t1,t2〉" and "t1∈t2"
and tFF: "t2∈F"

using NetOfFilter_def by auto

{
fix s

assume "s∈t2"
then have "〈s,t2〉∈{〈q1,q2〉∈

⋃
F×F. q1∈q2}" using tFF by auto

moreover
from assms(1) uu have "domain(fst(Net(F)))={〈q1,q2〉∈

⋃
F×F. q1∈q2}"

using NetOfFilter_def

by auto

ultimately
have tt: "〈s,t2〉∈domain(fst(Net(F)))" by auto

moreover
from assms(1) uu t t_def tt have "〈〈t1,t2〉,〈s,t2〉〉∈snd(Net(F))"

using NetOfFilter_def

by auto

ultimately
have "fst(Net(F))‘〈s,t2〉∈U" using reg t_def by auto

moreover
from assms(1) uu have "function(fst(Net(F)))" using NetOfFilter_def

function_def

by auto

moreover
from tt assms(1) uu have "〈〈s,t2〉,s〉∈fst(Net(F))" using NetOfFilter_def

by auto
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ultimately
have "s∈U" using NetOfFilter_def function_apply_equality by auto

}
then have "t2⊆U" by auto

with tFF assms(1) ‘U∈Pow(
⋃
T)‘ have "U∈F" using IsFilter_def by auto

}
then have "{U∈Pow(

⋃
T). x∈int(U)} ⊆ F" by auto

ultimately
show ?thesis using FilterConverges_def assms(1) by auto

qed

A filter converges to a point if and only if its net converges to the point.

theorem (in topology0) filter_conver_iff_net_of_filter_conver:

assumes "F {is a filter on}
⋃
T"

shows "(F →F x) ←→ ((Net(F)) →N x)"

using filter_conver_net_of_filter_conver net_of_filter_conver_filter_conver

assms

by auto

The previous result states that, when considering convergence, the filters do
not generalize nets. When considering a filter, there is always a net that
converges to the same points of the original filter.

Now we see that with nets, results come naturally applying the axiom of
choice; but with filters, the results come, may be less natural, but with
no choice. The reason is that Net(F) is a net that doesn’t come into our
attention as a first choice; maybe because we restrict ourselves to the anti-
symmetry property of orders without realizing that a directed set is not an
order.

The following results will state that filters are not just a subclass of nets,
but that nets and filters are equivalent on convergence: for every filter there
is a net converging to the same points, and also, for every net there is a filter
converging to the same points.

definition
FilterOfNet ("Filter (_ .. _)" 40) where
"(N {is a net on} X) =⇒ Filter N..X ≡ {A∈Pow(X). ∃ D∈{{fst(N)‘snd(s).

s∈{s∈domain(fst(N))×domain(fst(N)). s∈snd(N) ∧ fst(s)=t0}}. t0∈domain(fst(N))}.
D⊆A}"

Filter of a net is indeed a filter

theorem filter_of_net_is_filter:

assumes "N {is a net on} X"

shows "(Filter N..X) {is a filter on} X" and
"{{fst(N)‘snd(s). s∈{s∈domain(fst(N))×domain(fst(N)). s∈snd(N) ∧

fst(s)=t0}}. t0∈domain(fst(N))} {is a base filter} (Filter N..X)"

proof -

let ?C = "{{fst(N)‘(snd(s)). s∈{s∈domain(fst(N))×domain(fst(N)). s∈snd(N)
∧ fst(s)=t0}}. t0∈domain(fst(N))}"
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have "?C⊆Pow(X)"
proof -

{
fix t

assume "t∈?C"
then obtain t1 where "t1∈domain(fst(N))" and
t_Def: "t={fst(N)‘snd(s). s∈{s∈domain(fst(N))×domain(fst(N)).

s∈snd(N) ∧ fst(s)=t1}}"

by auto

{
fix x

assume "x∈t"
with t_Def obtain ss where "ss∈{s∈domain(fst(N))×domain(fst(N)).

s∈snd(N) ∧ fst(s)=t1}" and
x_def: "x = fst(N)‘(snd(ss))" by blast

then have "snd(ss) ∈ domain(fst(N))" by auto

from assms have "fst(N):domain(fst(N))→X" unfolding IsNet_def

by simp

with ‘snd(ss) ∈ domain(fst(N))‘ have "x∈X" using apply_funtype

x_def

by auto

}
hence "t⊆X" by auto

}
thus ?thesis by blast

qed
have sat: "?C {satisfies the filter base condition}"

proof -

from assms obtain t1 where "t1∈domain(fst(N))" using IsNet_def by
blast

hence "{fst(N)‘snd(s). s∈{s∈domain(fst(N))×domain(fst(N)). s∈snd(N)
∧ fst(s)=t1}}∈?C"

by auto

hence "?C6=0" by auto

moreover
{

fix U

assume "U∈?C"
then obtain q where q_dom: "q∈domain(fst(N))" and
U_def: "U={fst(N)‘snd(s). s∈{s∈domain(fst(N))×domain(fst(N)).

s∈snd(N) ∧ fst(s)=q}}"

by blast

with assms have "〈q,q〉∈snd(N) ∧ fst(〈q,q〉)=q" unfolding IsNet_def

IsDirectedSet_def refl_def

by auto

with q_dom have "〈q,q〉∈{s∈domain(fst(N))×domain(fst(N)). s∈snd(N)
∧ fst(s)=q}"

by auto

with U_def have "fst(N)‘(snd(〈q,q〉)) ∈ U" by blast
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hence "U6=0" by auto

}
then have "0/∈?C" by auto

moreover
have "∀ A∈?C. ∀ B∈?C. (∃ D∈?C. D⊆A∩B)"
proof

fix A

assume pA: "A∈?C"
show "∀ B∈?C. ∃ D∈?C. D⊆A∩B"
proof
{

fix B

assume "B∈?C"
with pA obtain qA qB where per: "qA∈domain(fst(N))" "qB∈domain(fst(N))"

and
A_def: "A={fst(N)‘snd(s). s∈{s∈domain(fst(N))×domain(fst(N)).

s∈snd(N) ∧ fst(s)=qA}}" and
B_def: "B={fst(N)‘snd(s). s∈{s∈domain(fst(N))×domain(fst(N)).

s∈snd(N) ∧ fst(s)=qB}}"

by blast

have dir: "snd(N) directs domain(fst(N))" using assms IsNet_def

by auto

with per obtain qD where ine: "〈qA,qD〉∈snd(N)" "〈qB,qD〉∈snd(N)"
and

perD: "qD∈domain(fst(N))" unfolding IsDirectedSet_def

by blast

let ?D = "{fst(N)‘snd(s). s∈{s∈domain(fst(N))×domain(fst(N)).
s∈snd(N) ∧ fst(s)=qD}}"

from perD have "?D∈?C" by auto

moreover
{

fix d

assume "d∈?D"
then obtain sd where "sd∈{s∈domain(fst(N))×domain(fst(N)).

s∈snd(N) ∧ fst(s)=qD}" and
d_def: "d=fst(N)‘snd(sd)" by blast

then have sdN: "sd∈snd(N)" and qdd: "fst(sd)=qD" and "sd∈domain(fst(N))×domain(fst(N))"

by auto

then obtain qI aa where "sd = 〈aa,qI〉" "qI ∈ domain(fst(N))"

"aa ∈ domain(fst(N))"

by auto

with qdd have sd_def: "sd=〈qD,qI〉" and qIdom: "qI∈domain(fst(N))"
by auto

with sdN have "〈qD,qI〉∈snd(N)" by auto

from dir have "trans(snd(N))" unfolding IsDirectedSet_def

by auto

then have "〈qA,qD〉∈snd(N) ∧ 〈qD,qI〉∈snd(N) −→ 〈qA,qI〉∈snd(N)"
and
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"〈qB,qD〉∈snd(N) ∧ 〈qD,qI〉∈snd(N)−→〈qB,qI〉∈snd(N)"
using trans_def by auto

with ine ‘〈qD,qI〉∈snd(N)‘ have "〈qA,qI〉∈snd(N)" "〈qB,qI〉∈snd(N)"
by auto

with qIdom per have "〈qA,qI〉∈{s∈domain(fst(N))×domain(fst(N)).
s∈snd(N) ∧ fst(s)=qA}"

"〈qB,qI〉∈{s∈domain(fst(N))×domain(fst(N)). s∈snd(N) ∧ fst(s)=qB}"

by auto

then have "fst(N)‘(qI) ∈ A∩B" using A_def B_def by auto

then have "fst(N)‘(snd(sd)) ∈ A∩B" using sd_def by auto

then have "d ∈ A∩B" using d_def by auto

}
then have "?D ⊆ A∩B" by blast

ultimately show "∃ D∈?C. D⊆A∩B" by blast

}
qed

qed
ultimately
show ?thesis unfolding SatisfiesFilterBase_def by blast

qed
have
Base: "?C {is a base filter} {A∈Pow(X). ∃ D∈?C. D⊆A}" "

⋃
{A∈Pow(X).

∃ D∈?C. D⊆A}=X"
proof -

from ‘?C⊆Pow(X)‘ sat show "?C {is a base filter} {A∈Pow(X). ∃ D∈?C.
D⊆A}"

by (rule base_unique_filter_set3)

from ‘?C⊆Pow(X)‘ sat show "
⋃
{A∈Pow(X). ∃ D∈?C. D⊆A}=X"

by (rule base_unique_filter_set3)

qed
with sat show "(Filter N..X) {is a filter on} X"

using sat basic_filter FilterOfNet_def assms by auto

from Base(1) show "?C {is a base filter} (Filter N..X)"

using FilterOfNet_def assms by auto

qed

Convergence of a net implies the convergence of the corresponding filter.

theorem (in topology0) net_conver_filter_of_net_conver:

assumes "N {is a net on}
⋃
T" and "N →N x"

shows "(Filter N..(
⋃
T)) →F x"

proof -

let ?C = "{{fst(N)‘snd(s). s∈{s∈domain(fst(N))×domain(fst(N)). s∈snd(N)
∧ fst(s)=t}}.

t∈domain(fst(N))}"
from assms(1) have
"(Filter N..(

⋃
T)) {is a filter on} (

⋃
T)" and "?C {is a base filter}

Filter N..(
⋃
T)"

using filter_of_net_is_filter by auto
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moreover have "∀ U∈Pow(
⋃
T). x∈int(U) −→ (∃ D∈?C. D⊆U)"

proof -

{
fix U

assume "U∈Pow(
⋃
T)" "x∈int(U)"

with assms have "∃ t∈domain(fst(N)). (∀ m∈domain(fst(N)). (〈t,m〉∈snd(N)
−→ fst(N)‘m∈U))"

using NetConverges_def by auto

then obtain t where "t∈domain(fst(N))" and
reg: "∀ m∈domain(fst(N)). (〈t,m〉∈snd(N) −→ fst(N)‘m∈U)" by

auto

{
fix f

assume "f∈{fst(N)‘snd(s). s∈{s∈domain(fst(N))×domain(fst(N)).
s∈snd(N) ∧ fst(s)=t}}"

then obtain s where "s∈{s∈domain(fst(N))×domain(fst(N)). s∈snd(N)
∧ fst(s)=t}" and

f_def: "f=fst(N)‘snd(s)" by blast

hence "s∈domain(fst(N))×domain(fst(N))" and "s∈snd(N)" and "fst(s)=t"

by auto

hence "s=〈t,snd(s)〉" and "snd(s)∈domain(fst(N))" by auto

with ‘s∈snd(N)‘ reg have "fst(N)‘snd(s)∈U" by auto

with f_def have "f∈U" by auto

}
hence "{fst(N)‘snd(s). s∈{s∈domain(fst(N))×domain(fst(N)). s∈snd(N)

∧ fst(s)=t}} ⊆ U"

by blast

with ‘t∈domain(fst(N))‘ have "∃ D∈?C. D⊆U"
by auto

} thus "∀ U∈Pow(
⋃
T). x∈int(U) −→ (∃ D∈?C. D⊆U)" by auto

qed
moreover from assms have "x∈

⋃
T" using NetConverges_def by auto

ultimately show "(Filter N..(
⋃
T)) →F x" by (rule convergence_filter_base2)

qed

Convergence of a filter corresponding to a net implies convergence of the
net.

theorem (in topology0) filter_of_net_conver_net_conver:

assumes "N {is a net on}
⋃
T" and "(Filter N..(

⋃
T)) →F x"

shows "N →N x"

proof -

let ?C = "{{fst(N)‘snd(s). s∈{s∈domain(fst(N))×domain(fst(N)). s∈snd(N)
∧ fst(s)=t}}.

t∈domain(fst(N))}"
from assms have I: "(Filter N..(

⋃
T)) {is a filter on} (

⋃
T)"

"?C {is a base filter} (Filter N..(
⋃
T))" "(Filter N..(

⋃
T)) →F x"

using filter_of_net_is_filter by auto

then have reg: "∀ U∈Pow(
⋃
T). x∈int(U) −→ (∃ D∈?C. D⊆U)"
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by (rule convergence_filter_base1)

from I have "x∈
⋃
T" by (rule convergence_filter_base1)

moreover
{

fix U

assume "U∈Pow(
⋃
T)" "x∈int(U)"

with reg have "∃ D∈?C. D⊆U" by auto

then obtain D where "D∈?C" "D⊆U"
by auto

then obtain td where "td∈domain(fst(N))" and
D_def: "D={fst(N)‘snd(s). s∈{s∈domain(fst(N))×domain(fst(N)). s∈snd(N)

∧ fst(s)=td}}"

by auto

{
fix m

assume "m∈domain(fst(N))" "〈td,m〉∈snd(N)"
with ‘td∈domain(fst(N))‘ have
"〈td,m〉∈{s∈domain(fst(N))×domain(fst(N)). s∈snd(N) ∧ fst(s)=td}"

by auto

with D_def have "fst(N)‘m∈D" by auto

with ‘D⊆U‘ have "fst(N)‘m∈U" by auto

}
then have "∀ m∈domain(fst(N)). 〈td,m〉∈snd(N) −→ fst(N)‘m∈U" by auto

with ‘td∈domain(fst(N))‘ have
"∃ t∈domain(fst(N)). ∀ m∈domain(fst(N)). 〈t,m〉∈snd(N) −→ fst(N)‘m∈U"
by auto

}
then have
"∀ U∈Pow(

⋃
T). x∈int(U) −→

(∃ t∈domain(fst(N)). ∀ m∈domain(fst(N)). 〈t,m〉∈snd(N) −→ fst(N)‘m∈U)"
by auto

ultimately show "?thesis" using NetConverges_def assms(1) by auto

qed

Filter of net converges to a point x if and only the net converges to x.

theorem (in topology0) filter_of_net_conv_iff_net_conv:

assumes "N {is a net on}
⋃
T"

shows "((Filter N..(
⋃
T)) →F x) ←→ (N →N x)"

using assms filter_of_net_conver_net_conver net_conver_filter_of_net_conver

by auto

We know now that filters and nets are the same thing, when working conver-
gence of topological spaces. Sometimes, the nature of filters makes it easier
to generalized them as follows.

Instead of considering all subsets of some set X, we can consider only open
sets (we get an open filter) or closed sets (we get a closed filter). There are
many more useful examples that characterize topological properties.
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This type of generalization cannot be done with nets.

Also a filter can give us a topology in the following way:

theorem top_of_filter:

assumes "F {is a filter on}
⋃

F"
shows "(F ∪ {0}) {is a topology}"

proof -

{
fix A B

assume "A∈(F ∪ {0})""B∈(F ∪ {0})"

then have "(A∈F ∧ B∈F) ∨ (A∩B=0)" by auto

with assms have "A∩B∈(F ∪ {0})" unfolding IsFilter_def

by blast

}
then have "∀ A∈(F ∪ {0}). ∀ B∈(F ∪ {0}). A∩B∈(F ∪ {0})" by auto

moreover
{

fix M

assume A:"M∈Pow(F ∪ {0})"

then have "M=0∨M={0}∨(∃ T∈M. T∈F)" by blast

then have "
⋃
M=0∨(∃ T∈M. T∈F)" by auto

then obtain T where "
⋃
M=0∨(T∈F ∧ T∈M)" by auto

then have "
⋃
M=0∨(T∈F ∧ T⊆

⋃
M)" by auto

moreover from this A have "
⋃
M⊆
⋃

F" by auto

ultimately have "
⋃
M∈(F∪{0})" using IsFilter_def assms by auto

}
then have "∀ M∈Pow(F∪{0}).

⋃
M∈(F∪{0})" by auto

ultimately show ?thesis using IsATopology_def by auto

qed

We can use topology0 locale with filters.

lemma topology0_filter:

assumes "F {is a filter on}
⋃

F"
shows "topology0(F ∪ {0})"

using top_of_filter topology0_def assms by auto

The next abbreviation introduces notation where we want to specify the
space where the filter convergence takes place.

abbreviation FilConvTop("_ →F _ {in} _")

where "F →F x {in} T ≡ topology0.FilterConverges(T,F,x)"

The next abbreviation introduces notation where we want to specify the
space where the net convergence takes place.

abbreviation NetConvTop("_ →N _ {in} _")

where "N →N x {in} T ≡ topology0.NetConverges(T,N,x)"

Each point of a the union of a filter is a limit of that filter.

lemma lim_filter_top_of_filter:
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assumes "F {is a filter on}
⋃

F" and "x∈
⋃
F"

shows "F →F x {in} (F∪{0})"
proof-

have "
⋃
F=
⋃
(F∪{0})" by auto

with assms(1) have assms1: "F {is a filter on}
⋃
(F∪{0})" by auto

{
fix U

assume "U∈Pow(
⋃
(F∪{0}))" "x∈Interior(U,(F∪{0}))"

with assms(1) have "Interior(U,(F∪{0}))∈F" using topology0_def top_of_filter

topology0.Top_2_L2 by blast

moreover
from assms(1) have "Interior(U,(F∪{0}))⊆U" using topology0_def top_of_filter

topology0.Top_2_L1 by auto

moreover
from ‘U∈Pow(

⋃
(F∪{0}))‘ have "U∈Pow(

⋃
F)" by auto

ultimately have "U∈F" using assms(1) IsFilter_def by auto

}
with assms assms1 show ?thesis using topology0.FilterConverges_def

top_of_filter

topology0_def by auto

qed

end

55 Topology - examples

theory Topology_ZF_examples imports Topology_ZF Cardinal_ZF

begin

This theory deals with some concrete examples of topologies.

55.1 CoCardinal Topology of a set X

55.2 CoCardinal topology is a topology.

The collection of subsets of a set whose complement is strictly bounded by
a cardinal is a topology given some assumptions on the cardinal.

definition Cocardinal ("CoCardinal _ _" 50) where
"CoCardinal X T ≡ {F∈Pow(X). X-F ≺ T}∪ {0}"

For any set and any infinite cardinal; we prove that CoCardinal X Q forms a
topology. The proof is done with an infinite cardinal, but it is obvious that
the set Q can be any set equipollent with an infinite cardinal. It is a topology
also if the set where the topology is defined is too small or the cardinal too
large; in this case, as it is later proved the topology is a discrete topology.
And the last case corresponds with Q = 1 which translates in the indiscrete
topology.
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lemma CoCar_is_topology:

assumes "InfCard (Q)"

shows "(CoCardinal X Q) {is a topology}"

proof-
let ?T="(CoCardinal X Q)"

{
fix M

assume A:"M∈Pow(?T)"
hence "M⊆?T" by auto

then have "M⊆Pow(X)" using Cocardinal_def by auto

then have "
⋃
M∈Pow(X)" by auto

moreover
{

assume B:"M=0"

then have "
⋃
M∈?T" using Cocardinal_def by auto

}
moreover
{

assume B:"M={0}"

then have "
⋃
M∈?T" using Cocardinal_def by auto

}
moreover
{

assume B:"M 6=0" "M 6={0}"

from B obtain T where C:"T∈M" and "T 6=0" by auto

with A have D:"X-T ≺ (Q)" using Cocardinal_def by auto

from C have "X-
⋃
M⊆X-T" by blast

with D have "X-
⋃
M≺ (Q)" using subset_imp_lepoll lesspoll_trans1

by blast

}
ultimately have "

⋃
M∈?T" using Cocardinal_def by auto

}
moreover
{

fix U and V

assume "U∈?T" and "V∈?T"
hence A:"U=0 ∨ (U∈Pow(X) ∧ X-U≺ (Q))" and

B:"V=0 ∨ (V∈Pow(X) ∧ X-V≺ (Q))" using Cocardinal_def by auto

hence D:"U∈Pow(X)""V∈Pow(X)" by auto

have C:"X-(U ∩ V)=(X-U)∪(X-V)" by fast

with A B C have "U∩V=0∨(U∩V∈Pow(X) ∧ X-(U ∩ V)≺ (Q))" using less_less_imp_un_less

assms

by auto

hence "U∩V∈?T" using Cocardinal_def by auto

}
ultimately show ?thesis using IsATopology_def by auto

qed

theorem topology0_CoCardinal:
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assumes "InfCard(T)"

shows "topology0(CoCardinal X T)"

using topology0_def CoCar_is_topology assms by auto

It can also be proven that, if CoCardinal X T is a topology, X 6= 0, Card(T)
and T 6= 0; then T is an infinite cardinal, X ≺ T or T=1. It follows from the
fact that the union of two closed sets is closed.

Choosing the appropriate cardinals, the cofinite and the cocountable topolo-
gies are obtained.

The cofinite topology is a very special topology because is extremely related
to the separation axiom T1. It also appears naturally in algebraic geometry.

definition
Cofinite ("CoFinite _" 90) where
"CoFinite X ≡ CoCardinal X nat"

definition
Cocountable ("CoCountable _" 90) where
"CoCountable X ≡ CoCardinal X csucc(nat)"

55.3 Total set, Closed sets, Interior, Closure and Boundary

There are several assertions that can be done to the CoCardinal X T topol-
ogy. In each case, we will not assume sufficient conditions for CoCardinal X

T to be a topology, but they will be enough to do the calculations in every
posible case.

The topology is defined in the set X

lemma union_cocardinal:

assumes "T 6=0"

shows "
⋃

(CoCardinal X T)=X"

proof-
have X:"X-X=0" by auto

have "0 . 0" by auto

with assms have "0≺1""1 .T" using not_0_is_lepoll_1 lepoll_imp_lesspoll_succ

by auto

then have "0≺T" using lesspoll_trans2 by auto

with X have "(X-X)≺T" by auto

then have "X∈(CoCardinal X T)" using Cocardinal_def by auto

hence "X⊆
⋃

(CoCardinal X T)" by blast

then show "
⋃

(CoCardinal X T)=X" using Cocardinal_def by auto

qed

The closed sets are the small subsets of X and X itself.

lemma closed_sets_cocardinal:

assumes "T 6=0"

shows "D {is closed in} (CoCardinal X T) ←→ (D∈Pow(X) & D≺T)∨ D=X"
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proof-
{

assume A:"D ⊆ X" "X - D ∈ (CoCardinal X T) "" D 6= X"

from A(1,3) have "X-(X-D)=D" "X-D 6=0" by (safe,blast+)

with A(2) have "D≺T" using Cocardinal_def by simp

}
with assms have "D {is closed in} (CoCardinal X T) −→ (D∈Pow(X) &

D≺T)∨ D=X" using IsClosed_def

union_cocardinal by auto

moreover
{

assume A:"D ≺ T""D ⊆ X"

from A(2) have "X-(X-D)=D" by blast

with A(1) have "X-(X-D)≺ T" by auto

then have "X-D∈ (CoCardinal X T)" using Cocardinal_def by auto

}
with assms have "(D∈Pow(X) & D≺T)−→ D {is closed in} (CoCardinal X

T)" using union_cocardinal

IsClosed_def by auto

moreover
have "X-X=0" by auto

then have "X-X∈ (CoCardinal X T)"using Cocardinal_def by auto

with assms have "X{is closed in} (CoCardinal X T)" using union_cocardinal

IsClosed_def by auto

ultimately show ?thesis by auto

qed

The interior of a set is itself if it is open or 0 if it isn’t open.

lemma interior_set_cocardinal:

assumes noC: "T6=0" and "A⊆X"
shows "Interior(A,(CoCardinal X T))= (if ((X-A) ≺ T) then A else 0)"

proof-
from assms(2) have dif_dif:"X-(X-A)=A" by blast

{
assume "(X-A) ≺ T"

then have "(X-A)∈Pow(X) &(X-A) ≺ T" by auto

with noC have "(X-A) {is closed in} (CoCardinal X T)" using closed_sets_cocardinal

by auto

with noC have "X-(X-A)∈(CoCardinal X T)" using IsClosed_def union_cocardinal

by auto

with dif_dif have "A∈(CoCardinal X T)" by auto

hence "A∈{U∈(CoCardinal X T). U ⊆ A}" by auto

hence a1:"A⊆
⋃
{U∈(CoCardinal X T). U ⊆ A}" by auto

have a2:"
⋃
{U∈(CoCardinal X T). U ⊆ A}⊆A" by blast

from a1 a2 have "Interior(A,(CoCardinal X T))=A" using Interior_def

by auto}
moreover
{

assume as:"~((X-A) ≺ T)"
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{
fix U

assume "U ⊆A"
hence "X-A ⊆ X-U" by blast

then have Q:"X-A . X-U" using subset_imp_lepoll by auto

{
assume "X-U≺ T"

with Q have "X-A≺ T" using lesspoll_trans1 by auto

with as have "False" by auto

}
hence "~((X-U) ≺ T)" by auto

then have "U/∈(CoCardinal X T)∨U=0" using Cocardinal_def by auto

}
hence "{U∈(CoCardinal X T). U ⊆ A}⊆{0}" by blast

then have "Interior(A,(CoCardinal X T))=0" using Interior_def by
auto

}
ultimately show ?thesis by auto

qed

X is a closed set that contains A. This lemma is necessary because we
cannot use the lemmas proven in the topology0 context since T 6= 0 is too
weak for CoCardinal X T to be a topology.

lemma X_closedcov_cocardinal:

assumes "T6=0""A⊆X"
shows "X∈ClosedCovers(A,(CoCardinal X T))" using ClosedCovers_def

using union_cocardinal closed_sets_cocardinal assms by auto

The closure of a set is itself if it is closed or X if it isn’t closed.

lemma closure_set_cocardinal:

assumes "T6=0""A⊆X"
shows "Closure(A,(CoCardinal X T))=(if (A ≺ T) then A else X)"

proof-
{

assume "A ≺ T"

with assms have "A {is closed in} (CoCardinal X T)" using closed_sets_cocardinal

by auto

with assms(2) have "A∈ {D ∈ Pow(X). D {is closed in} (CoCardinal

X T) ∧ A⊆D}" by auto

with assms(1) have S:"A∈ClosedCovers(A,(CoCardinal X T))" using ClosedCovers_def

using union_cocardinal by auto

hence l1:"
⋂
ClosedCovers(A,(CoCardinal X T))⊆A" by blast

from S have l2:"A⊆
⋂
ClosedCovers(A,(CoCardinal X T))"

using ClosedCovers_def[where T="CoCardinal X T" and A="A"] by
auto

from l1 l2 have "Closure(A,(CoCardinal X T))=A" using Closure_def

by auto

}
moreover
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{
assume as:"¬ A ≺ T"

{
fix U

assume "A⊆U"
then have Q:"A . U" using subset_imp_lepoll by auto

{
assume "U≺ T"

with Q have "A≺ T" using lesspoll_trans1 by auto

with as have "False" by auto

}
hence "¬ U ≺ T" by auto

with assms(1) have "¬(U {is closed in} (CoCardinal X T)) ∨ U=X"

using closed_sets_cocardinal

by auto

}
with assms(1) have "∀ U∈Pow(X). U{is closed in}(CoCardinal X T)∧A⊆U−→U=X"

by auto

with assms(1) have "ClosedCovers(A,(CoCardinal X T))⊆{X}"
using union_cocardinal using ClosedCovers_def by auto

with assms have "ClosedCovers(A,(CoCardinal X T))={X}" using X_closedcov_cocardinal

by auto

then have " Closure(A, CoCardinal X T) = X " using Closure_def by
auto

}
ultimately show ?thesis by auto

qed

The boundary of a set is 0 if A and X−A are closed, X if not A neither X−A
are closed and; if only one is closed, then the closed one is its boundary.

lemma boundary_cocardinal:

assumes "T 6=0""A ⊆X"
shows "Boundary(A,(CoCardinal X T))=(if A≺ T then (if (X-A)≺ T then

0 else A) else (if (X-A)≺ T then X-A else X))"

proof-
{

assume AS:"A≺ T""X-A≺ T"

from AS(2) assms have "Closure(X-A,(CoCardinal X T))=X-A" using closure_set_cocardinal[where
A="X-A" and T="T" and X="X"] by auto

moreover
from AS(1) assms have "Closure(A,(CoCardinal X T))=A"

using closure_set_cocardinal by auto

with calculation assms(1) have "Boundary(A,(CoCardinal X T))=0"using
Boundary_def using

union_cocardinal by auto

}
moreover
{

assume AS:"~(A≺ T)""X-A≺ T"
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from AS(2) assms have "Closure(X-A,(CoCardinal X T))=X-A" using closure_set_cocardinal[where
A="X-A" and T="T" and X="X"] by auto

moreover
from AS(1) assms have "Closure(A,(CoCardinal X T))=X"

using closure_set_cocardinal by auto

with calculation assms(1) have "Boundary(A,(CoCardinal X T))=X-A"

using Boundary_def

union_cocardinal by auto

}
moreover
{

assume AS:"~(A≺ T)""~(X-A≺ T)"

from AS(2) assms have "Closure(X-A,(CoCardinal X T))=X" using closure_set_cocardinal[where
A="X-A" and T="T" and X="X"] by auto

moreover
from AS(1) assms have "Closure(A,(CoCardinal X T))=X"

using closure_set_cocardinal by auto

with calculation assms(1) have "Boundary(A,(CoCardinal X T))=X"using
Boundary_def

union_cocardinal by auto

}
moreover
{

assume AS:"A≺ T""~(X-A≺ T)"

from AS(2) assms have "Closure(X-A,(CoCardinal X T))=X" using closure_set_cocardinal[where
A="X-A" and T="T" and X="X"] by auto

moreover
from AS(1) assms have "Closure(A,(CoCardinal X T))=A"

using closure_set_cocardinal by auto

with calculation assms have "Boundary(A,(CoCardinal X T))=A" using
Boundary_def

union_cocardinal by auto

}
ultimately show ?thesis by auto

qed

55.4 Special cases and subspaces

If the set is too small or the cardinal too large, then the topology is just the
discrete topology.

lemma discrete_cocardinal:

assumes "X≺ T"

shows "(CoCardinal X T)=(Pow (X))"

proof
{

fix U

assume "U∈(CoCardinal X T)"

then have "U∈Pow (X)" using Cocardinal_def by auto

}
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then show "(CoCardinal X T)⊆(Pow (X))" by auto

{
fix U

assume A:"U∈Pow(X)"
then have "X-U ⊆ X" by auto

then have "X-U .X" using subset_imp_lepoll by auto

then have "X-U≺ T" using lesspoll_trans1 assms by auto

with A have "U∈(CoCardinal X T)" using Cocardinal_def

by auto

}
then show "Pow(X)⊆(CoCardinal X T)" by auto

qed

If the cardinal is taken as T = 1 then the topology is indiscrete.

lemma indiscrete_cocardinal:

shows "(CoCardinal X 1)={0,X}"

proof
{

fix Q

assume "Q∈(CoCardinal X 1)"

then have "Q∈Pow(X)""Q=0∨X-Q≺1" using Cocardinal_def by auto

then have "Q∈Pow(X)""Q=0∨X-Q=0" using lesspoll_succ_iff lepoll_0_iff

by (safe,blast)

then have "Q=0∨Q=X" by blast

}
then show "(CoCardinal X 1) ⊆ {0, X}" by auto

have "0∈(CoCardinal X 1)" using Cocardinal_def by auto

moreover
have "0≺1""X-X=0" using lesspoll_succ_iff by auto

then have "X∈(CoCardinal X 1)" using Cocardinal_def by auto

ultimately show "{0, X} ⊆ (CoCardinal X 1) " by auto

qed

The topological subspaces of the CoCardinal X T topology are also CoCar-
dinal topologies.

lemma subspace_cocardinal:

shows "(CoCardinal X T) {restricted to} Y=(CoCardinal (Y ∩ X) T)"

proof
{

fix M

assume "M∈((CoCardinal X T) {restricted to} Y)"

then obtain A where A1:"A:(CoCardinal X T)" "M=Y ∩ A" using RestrictedTo_def

by auto

then have "M∈Pow(X ∩ Y)" using Cocardinal_def by auto

moreover
from A1 have "(Y ∩ X)-M=(Y ∩ X)-A" using Cocardinal_def by auto

have "(Y ∩ X)-A ⊆ X-A" by blast

with ‘(Y ∩ X)-M=(Y ∩ X)-A‘ have "(Y ∩ X)-M⊆ X-A" by auto

then have "(Y ∩ X)-M . X-A" using subset_imp_lepoll by auto
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with A1 have "(Y ∩ X)-M ≺ T ∨ M=0" using lesspoll_trans1 using Cocardinal_def

by (cases "A=0",simp,cases "Y ∩ A=0",simp+)

ultimately have "M∈(CoCardinal (Y ∩ X) T)" using Cocardinal_def

by auto

}
then show "(CoCardinal X T) {restricted to} Y ⊆(CoCardinal (Y ∩ X)

T)" by auto

{
fix M

let ?A="M ∪ (X-Y)"

assume A:"M∈(CoCardinal (Y ∩ X) T)"

{
assume "M=0"

hence "M=0 ∩ Y" by auto

then have "M∈(CoCardinal X T) {restricted to} Y" using RestrictedTo_def

Cocardinal_def by auto

}
moreover
{

assume AS:"M6=0"

from A AS have A1:"(M∈Pow(Y ∩ X) ∧ (Y ∩ X)-M≺ T)" using Cocardinal_def

by auto

hence "?A∈Pow(X)" by blast

moreover
have "X-?A=(Y ∩ X)-M" by blast

with A1 have "X-?A≺ T" by auto

ultimately have "?A∈(CoCardinal X T)" using Cocardinal_def by auto

then have AT:"Y ∩ ?A∈(CoCardinal X T) {restricted to} Y" using
RestrictedTo_def

by auto

have "Y ∩ ?A=Y ∩ M" by blast

also with A1 have ". . .=M" by auto

finally have "Y ∩ ?A=M".
with AT have "M∈(CoCardinal X T) {restricted to} Y"

by auto

}
ultimately have "M∈(CoCardinal X T) {restricted to} Y" by auto

}
then show "(CoCardinal (Y ∩ X) T) ⊆ (CoCardinal X T) {restricted to}

Y" by auto

qed

55.5 Excluded Set Topology

In this seccion, we consider all the subsets of a set which have empty inter-
section with a fixed set.
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55.6 Excluded set topology is a topology.

definition
ExcludedSet ("ExcludedSet _ _" 50) where
"ExcludedSet X U ≡ {F∈Pow(X). U ∩ F=0}∪ {X}"

For any set; we prove that ExcludedSet X Q forms a topology.

theorem excludedset_is_topology:

shows "(ExcludedSet X Q) {is a topology}"

proof-
{

fix M

assume "M∈Pow(ExcludedSet X Q)"

then have A:"M⊆{F∈Pow(X). Q ∩ F=0}∪ {X}" using ExcludedSet_def by
auto

hence "
⋃
M∈Pow(X)" by auto

moreover
{

have B:"Q ∩
⋃
M=
⋃
{Q ∩T. T∈M}" by auto

{
assume "X/∈M"
with A have "M⊆{F∈Pow(X). Q ∩ F=0}" by auto

with B have "Q ∩
⋃
M=0" by auto

}
moreover
{

assume "X∈M"
with A have "

⋃
M=X" by auto

}
ultimately have "Q ∩

⋃
M=0 ∨

⋃
M=X" by auto

}
ultimately have "

⋃
M∈(ExcludedSet X Q)" using ExcludedSet_def by

auto

}
moreover
{

fix U V

assume "U∈(ExcludedSet X Q)" "V∈(ExcludedSet X Q)"

then have "U∈Pow(X)""V∈Pow(X)""U=X∨ U ∩ Q=0""V=X∨ V ∩ Q=0" using
ExcludedSet_def by auto

hence "U∈Pow(X)""V∈Pow(X)""(U ∩ V)=X ∨ Q∩(U ∩ V)=0" by auto

then have "(U ∩ V)∈(ExcludedSet X Q)" using ExcludedSet_def by auto

}
ultimately show ?thesis using IsATopology_def by auto

qed

theorem topology0_excludedset:

shows "topology0(ExcludedSet X T)"

using topology0_def excludedset_is_topology by auto
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Choosing a singleton set, it is considered a point excluded topology.

definition
ExcludedPoint ("ExcludedPoint _ _" 90) where
"ExcludedPoint X p≡ ExcludedSet X {p}"

55.7 Total set, Closed sets, Interior, Closure and Boundary

The topology is defined in the set X

lemma union_excludedset:

shows "
⋃

(ExcludedSet X T)=X"

proof-
have "X∈(ExcludedSet X T)" using ExcludedSet_def by auto

then show ?thesis using ExcludedSet_def by auto

qed

The closed sets are those which contain the set (X ∩ T) and 0.

lemma closed_sets_excludedset:

shows "D {is closed in} (ExcludedSet X T) ←→ (D∈Pow(X) & (X ∩ T)

⊆D)∨ D=0"

proof-
{

fix x

assume A:"D ⊆ X" "X - D ∈ (ExcludedSet X T) "" D 6= 0""x:T""x:X"

from A(1) have B:"X-(X-D)=D" by auto

from A(2) have "T∩(X-D)=0∨ X-D=X" using ExcludedSet_def by auto

hence "T∩(X-D)=0∨ X-(X-D)=X-X" by auto

with B have "T∩(X-D)=0∨ D=X-X" by auto

hence "T∩(X-D)=0∨ D=0" by auto

with A(3) have "T∩(X-D)=0" by auto

with A(4) have "x/∈X-D" by auto

with A(5) have "x∈D" by auto

}
moreover
{

assume A:"X∩T⊆D""D⊆X"
from A(1) have "X-D⊆X-(X∩T)" by auto

also have ". . .=X-T" by auto

finally have "T∩(X-D)=0" by auto

moreover
have "X-D∈Pow(X)" by auto

ultimately have "X-D∈(ExcludedSet X T)" using ExcludedSet_def by
auto

}
ultimately show ?thesis using IsClosed_def union_excludedset

ExcludedSet_def by auto

qed

The interior of a set is itself if it is X or the difference with the set T
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lemma interior_set_excludedset:

assumes "A⊆X"
shows "Interior(A,(ExcludedSet X T))= (if A=X then X else A-T)"

proof-
{

assume A:"A6=X"

from assms have "A-T∈(ExcludedSet X T)" using ExcludedSet_def by
auto

then have "A-T⊆Interior(A,(ExcludedSet X T))"

using Interior_def by auto

moreover
{

fix U

assume "U∈(ExcludedSet X T)""U⊆A"
then have "T∩U=0 ∨ U=X""U⊆A" using ExcludedSet_def by auto

with A assms have "T∩U=0""U⊆A" by auto

then have "U-T=U""U-T⊆A-T" by (safe,blast+)

then have "U⊆A-T" by auto

}
then have "Interior(A,(ExcludedSet X T))⊆A-T" using Interior_def

by auto

ultimately have "Interior(A,(ExcludedSet X T))=A-T" by auto

}
moreover
have "X∈(ExcludedSet X T)" using ExcludedSet_def

union_excludedset by auto

then have "Interior(X,(ExcludedSet X T))=X" using topology0.Top_2_L3

topology0_excludedset by auto

ultimately show ?thesis by auto

qed

The closure of a set is itself if it is 0 or the union with T.

lemma closure_set_excludedset:

assumes "A⊆X"
shows "Closure(A,(ExcludedSet X T))=(if A=0 then 0 else A ∪(X∩ T))"

proof-
have "0∈ClosedCovers(0,(ExcludedSet X T))" using ClosedCovers_def

closed_sets_excludedset by auto

then have "Closure(0,(ExcludedSet X T))⊆0" using Closure_def by auto

hence "Closure(0,(ExcludedSet X T))=0" by blast

moreover
{

assume A:"A6=0"

then have "(A ∪(X∩ T)) {is closed in} (ExcludedSet X T)"

using closed_sets_excludedset[of "A ∪(X∩ T)"] assms A

by blast

then have "(A ∪(X∩ T))∈ {D ∈ Pow(X). D {is closed in} (ExcludedSet

X T) ∧ A⊆D}"
using assms by auto
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then have "(A ∪(X∩ T))∈ClosedCovers(A,(ExcludedSet X T))" unfold-
ing ClosedCovers_def

using union_excludedset by auto

then have l1:"
⋂
ClosedCovers(A,(ExcludedSet X T))⊆(A ∪(X∩ T))" by

blast

{
fix U

assume "U∈ClosedCovers(A,(ExcludedSet X T))"

then have "U{is closed in}(ExcludedSet X T)""A⊆U" using ClosedCovers_def

union_excludedset by auto

then have "U=0∨(X∩T)⊆U""A⊆U" using closed_sets_excludedset

by auto

then have "(X∩T)⊆U""A⊆U" using A by auto

then have "(X∩T)∪A⊆U" by auto

}
then have "(A ∪(X∩ T))⊆

⋂
ClosedCovers(A,(ExcludedSet X T))" using

topology0.Top_3_L3

topology0_excludedset union_excludedset assms by auto

with l1 have "
⋂
ClosedCovers(A,(ExcludedSet X T))=(A ∪(X∩ T))" by

auto

then have "Closure(A, ExcludedSet X T) = (A ∪(X∩ T)) "

using Closure_def by auto

}
ultimately show ?thesis by auto

qed

The boundary of a set is 0 if A is X or 0, and X∩T in other case.

lemma boundary_excludedset:

assumes "A ⊆X"
shows "Boundary(A,(ExcludedSet X T))=(if A=0∨A=X then 0 else X∩T)"

proof-
{

have "Closure(0,(ExcludedSet X T))=0""Closure(X - 0,(ExcludedSet X

T))=X"

using closure_set_excludedset by auto

then have "Boundary(0,(ExcludedSet X T))=0"using Boundary_def us-
ing

union_excludedset assms by auto

}
moreover
{

have "X-X=0" by blast

then have "Closure(X,(ExcludedSet X T))=X""Closure(X-X,(ExcludedSet

X T))=0"

using closure_set_excludedset by auto

then have "Boundary(X,(ExcludedSet X T))=0"unfolding Boundary_def

using
union_excludedset by auto

}
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moreover
{

assume AS:"(A6=0)∧(A 6=X)"

then have "(A6=0)""(X-A 6=0)" using assms by (safe,blast)

then have "Closure(A,(ExcludedSet X T))=A ∪ (X∩T)""Closure(X-A,(ExcludedSet
X T))=(X-A) ∪ (X∩T)"

using closure_set_excludedset[where A="A" and X="X"] assms closure_set_excludedset[where
A="X-A"

and X="X"] by auto

then have "Boundary(A,(ExcludedSet X T))=X∩T" unfolding Boundary_def

using
union_excludedset by auto

}
ultimately show ?thesis by auto

qed

55.8 Special cases and subspaces

The topology is equal in the sets T and X∩T.

lemma smaller_excludedset:

shows "(ExcludedSet X T)=(ExcludedSet X (X∩T))"
using ExcludedSet_def by (simp,blast)

If the set which is excluded is disjoint with X, then the topology is discrete.

lemma empty_excludedset:

assumes "T∩X=0"
shows "(ExcludedSet X T)=Pow(X)"

using smaller_excludedset assms ExcludedSet_def by (simp,blast)

The topological subspaces of the ExcludedSet X T topology are also Exclud-
edSet topologies.

lemma subspace_excludedset:

shows "(ExcludedSet X T) {restricted to} Y=(ExcludedSet (Y ∩ X) T)"

proof
{

fix M

assume "M∈((ExcludedSet X T) {restricted to} Y)"

then obtain A where A1:"A:(ExcludedSet X T)" "M=Y ∩ A" unfolding
RestrictedTo_def by auto

then have "M∈Pow(X ∩ Y)" unfolding ExcludedSet_def by auto

moreover
from A1 have "T∩M=0∨M=Y∩X" unfolding ExcludedSet_def by blast

ultimately have "M∈(ExcludedSet (Y ∩ X) T)" unfolding ExcludedSet_def

by auto

}
then show "(ExcludedSet X T) {restricted to} Y ⊆(ExcludedSet (Y ∩

X) T)" by auto

{
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fix M

let ?A="M ∪ ((X∩Y-T)-Y)"
assume A:"M∈(ExcludedSet (Y ∩ X) T)"

{
assume "M=Y ∩ X"

then have "M∈(ExcludedSet X T) {restricted to} Y" unfolding RestrictedTo_def

ExcludedSet_def by auto

}
moreover
{

assume AS:"M6=Y ∩ X"

from A AS have A1:"(M∈Pow(Y ∩ X) ∧ T∩M=0)" unfolding ExcludedSet_def

by auto

then have "?A∈Pow(X)" by blast

moreover
have "T∩?A=T∩M" by blast

with A1 have "T∩?A=0" by auto

ultimately have "?A∈(ExcludedSet X T)" unfolding ExcludedSet_def

by auto

then have AT:"Y ∩ ?A∈(ExcludedSet X T) {restricted to} Y"unfolding
RestrictedTo_def

by auto

have "Y ∩ ?A=Y ∩ M" by blast

also have ". . .=M" using A1 by auto

finally have "Y ∩ ?A=M".
then have "M∈(ExcludedSet X T) {restricted to} Y" using AT

by auto

}
ultimately have "M∈(ExcludedSet X T) {restricted to} Y" by auto

}
then show "(ExcludedSet (Y ∩ X) T) ⊆ (ExcludedSet X T) {restricted

to} Y" by auto

qed

55.9 Included Set Topology

In this section we consider the subsets of a set which contain a fixed set.

The family defined in this section and the one in the previous section are
dual; meaning that the closed set of one are the open sets of the other.

55.10 Included set topology is a topology.

definition
IncludedSet ("IncludedSet _ _" 50) where
"IncludedSet X U ≡ {F∈Pow(X). U ⊆ F}∪ {0}"

For any set; we prove that IncludedSet X Q forms a topology.

theorem includedset_is_topology:
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shows "(IncludedSet X Q) {is a topology}"

proof-
{

fix M

assume "M∈Pow(IncludedSet X Q)"

then have A:"M⊆{F∈Pow(X). Q ⊆ F}∪ {0}" using IncludedSet_def by
auto

then have "
⋃
M∈Pow(X)" by auto

moreover
have"Q ⊆

⋃
M∨

⋃
M=0" using A by blast

ultimately have "
⋃
M∈(IncludedSet X Q)" using IncludedSet_def by

auto

}
moreover
{

fix U V

assume "U∈(IncludedSet X Q)" "V∈(IncludedSet X Q)"

then have "U∈Pow(X)""V∈Pow(X)""U=0∨ Q⊆U""V=0∨ Q⊆V" using IncludedSet_def

by auto

then have "U∈Pow(X)""V∈Pow(X)""(U ∩ V)=0 ∨ Q⊆(U ∩ V)" by auto

then have "(U ∩ V)∈(IncludedSet X Q)" using IncludedSet_def by auto

}
ultimately show ?thesis using IsATopology_def by auto

qed

theorem topology0_includedset:

shows "topology0(IncludedSet X T)"

using topology0_def includedset_is_topology by auto

Choosing a singleton set, it is considered a point excluded topology. In the
following lemmas and theorems, when neccessary it will be considered that
T 6= 0 and T ⊆ X. Theese cases will appear in the special cases section.

definition
IncludedPoint ("IncludedPoint _ _" 90) where
"IncludedPoint X p≡ IncludedSet X {p}"

55.11 Total set, Closed sets, Interior, Closure and Boundary

The topology is defined in the set X.

lemma union_includedset:

assumes "T⊆X "

shows "
⋃

(IncludedSet X T)=X"

proof-
from assms have "X∈(IncludedSet X T)" using IncludedSet_def by auto

then show "
⋃

(IncludedSet X T)=X" using IncludedSet_def by auto

qed

The closed sets are those which are disjoint with T and X.
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lemma closed_sets_includedset:

assumes "T⊆X"
shows "D {is closed in} (IncludedSet X T) ←→ (D∈Pow(X) & (D ∩ T)=0)∨

D=X"

proof-
have "X-X=0" by blast

then have "X-X∈(IncludedSet X T)" using IncludedSet_def by auto

moreover
{

assume A:"D ⊆ X" "X - D ∈ (IncludedSet X T) "" D 6= X"

from A(2) have "T⊆(X-D)∨ X-D=0" using IncludedSet_def by auto

with A(1) have "T⊆(X-D)∨ D=X" by blast

with A(3) have "T⊆(X-D)" by auto

hence "D∩T=0" by blast

}
moreover
{

assume A:"D∩T=0""D⊆X"
from A(1) assms have "T⊆(X-D)" by blast

then have "X-D∈(IncludedSet X T)" using IncludedSet_def by auto

}
ultimately show ?thesis using IsClosed_def union_includedset assms

by auto

qed

The interior of a set is itself if it is open or 0 if it isn’t.

lemma interior_set_includedset:

assumes "A⊆X"
shows "Interior(A,(IncludedSet X T))= (if T⊆A then A else 0)"

proof-
{

fix x

assume A:"Interior(A, IncludedSet X T) 6= 0 ""x∈T"
have "Interior(A,IncludedSet X T)∈(IncludedSet X T)" using

topology0.Top_2_L2 topology0_includedset by auto

with A(1) have "T⊆Interior(A, IncludedSet X T)" using IncludedSet_def

by auto

with A(2) have "x∈Interior(A, IncludedSet X T)" by auto

then have "x∈A" using topology0.Top_2_L1 topology0_includedset by
auto}

moreover
{

assume "T⊆A"
with assms have "A∈(IncludedSet X T)" using IncludedSet_def by auto

then have "Interior(A,IncludedSet X T)=A" using topology0.Top_2_L3

topology0_includedset by auto

}
ultimately show ?thesis by auto

qed
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The closure of a set is itself if it is closed or X if it isn’t.

lemma closure_set_includedset:

assumes "A⊆X""T⊆X"
shows "Closure(A,(IncludedSet X T))= (if T∩A=0 then A else X)"

proof-
{

assume AS:"T∩A=0"
then have "A {is closed in} (IncludedSet X T)" using closed_sets_includedset

assms by auto

with assms(1) have "Closure(A,(IncludedSet X T))=A" using topology0.Top_3_L8

topology0_includedset union_includedset assms(2) by auto

}
moreover
{

assume AS:"T∩A 6=0"

have "X∈ClosedCovers(A,(IncludedSet X T))" using ClosedCovers_def

closed_sets_includedset union_includedset assms by auto

then have l1:"
⋂
ClosedCovers(A,(IncludedSet X T))⊆X" using Closure_def

by auto

moreover
{

fix U

assume "U∈ClosedCovers(A,(IncludedSet X T))"

then have "U{is closed in}(IncludedSet X T)""A⊆U" using ClosedCovers_def

by auto

then have "U=X∨(T∩U)=0""A⊆U" using closed_sets_includedset assms(2)

by auto

then have "U=X∨(T∩A)=0" by auto

then have "U=X" using AS by auto

}
then have "X⊆

⋂
ClosedCovers(A,(IncludedSet X T))" using topology0.Top_3_L3

topology0_includedset union_includedset assms by auto

ultimately have "
⋂
ClosedCovers(A,(IncludedSet X T))=X" by auto

then have "Closure(A, IncludedSet X T) = X "

using Closure_def by auto

}
ultimately show ?thesis by auto

qed

The boundary of a set is X-A if A contains T completely, is A if X−A contains
T completely and X if T is divided between the two sets. The case where T =

0 is considered as an special case.

lemma boundary_includedset:

assumes "A ⊆X""T ⊆X""T6=0"

shows "Boundary(A,(IncludedSet X T))=(if T⊆A then X-A else (if T∩A=0
then A else X))"

proof-
{

assume AS:"(T⊆A)"
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then have "T∩A6=0""T∩(X-A)=0" using assms(2,3) by (auto,blast)

then have "Closure(A,(IncludedSet X T))=X""Closure(X-A,(IncludedSet

X T))=(X-A)"

using closure_set_includedset[where A="A" and X="X"and T="T"]

assms(1,2) closure_set_includedset[where A="X-A"

and X="X"and T="T"] by auto

then have "Boundary(A,(IncludedSet X T))=X-A" unfolding Boundary_def

using
union_includedset assms(2) by auto

}
moreover
{

assume AS:"~(T⊆A)""T∩A=0"
then have "T∩A=0""T∩(X-A)6=0" using assms(2) by (safe,blast+)

then have "Closure(A,(IncludedSet X T))=A""Closure(X-A,(IncludedSet

X T))=X"

using closure_set_includedset[where A="A" and X="X"and T="T"]

assms(1,2) closure_set_includedset[where A="X-A"

and X="X"and T="T"] by auto

then have "Boundary(A,(IncludedSet X T))=A" unfolding Boundary_def

using
union_includedset assms(1,2) by auto

}
moreover
{

assume AS:"~(T⊆A)""T∩A6=0"

then have "T∩A6=0""T∩(X-A) 6=0" using assms(2) by (safe,blast+)

then have "Closure(A,(IncludedSet X T))=X""Closure(X-A,(IncludedSet

X T))=X"

using closure_set_includedset[where A="A" and X="X"and T="T"]

assms(1,2) closure_set_includedset[where A="X-A"

and X="X"and T="T"] by auto

then have "Boundary(A,(IncludedSet X T))=X" unfolding Boundary_def

using
union_includedset assms(2) by auto

}
ultimately show ?thesis by auto

qed

55.12 Special cases and subspaces

The topology is discrete if T = 0

lemma smaller_includedset:

shows "(IncludedSet X 0)=Pow(X)"

using IncludedSet_def by (simp,blast)

If the set which is included is not a subset of X, then the topology is trivial.

lemma empty_includedset:

assumes "~(T⊆X)"
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shows "(IncludedSet X T)={0}"

using assms IncludedSet_def by (simp,blast)

The topological subspaces of the IncludedSet X T topology are also Includ-
edSet topologies. The trivial case does not fit the idea in the demonstration;
because if Y ⊆ X then IncludedSet (Y ∩ X) (Y∩T) is never trivial. There is
no need of a separate proof because the only subspace of the trivial topology
is itself.

lemma subspace_includedset:

assumes "T⊆X"
shows "(IncludedSet X T) {restricted to} Y=(IncludedSet (Y ∩ X) (Y∩T))"

proof
{

fix M

assume "M∈((IncludedSet X T) {restricted to} Y)"

then obtain A where A1:"A:(IncludedSet X T)" "M=Y ∩ A" unfolding
RestrictedTo_def by auto

then have "M∈Pow(X ∩ Y)" unfolding IncludedSet_def by auto

moreover
from A1 have "Y∩T⊆M∨M=0" unfolding IncludedSet_def by blast

ultimately have "M∈(IncludedSet (Y ∩ X) (Y∩T))" unfolding IncludedSet_def

by auto

}
then show "(IncludedSet X T) {restricted to} Y ⊆(IncludedSet (Y ∩

X) (Y∩T))" by auto

{
fix M

let ?A="M ∪ T"

assume A:"M∈(IncludedSet (Y ∩ X) (Y∩T))"
{

assume "M=0"

then have "M∈(IncludedSet X T) {restricted to} Y" unfolding RestrictedTo_def

IncludedSet_def by auto

}
moreover
{

assume AS:"M6=0"

from A AS have A1:"(M∈Pow(Y ∩ X) ∧ Y ∩T⊆M)" unfolding IncludedSet_def

by auto

then have "?A∈Pow(X)" using assms by blast

moreover
have "T⊆?A" by blast

ultimately have "?A∈(IncludedSet X T)" unfolding IncludedSet_def

by auto

then have AT:"Y ∩ ?A∈(IncludedSet X T) {restricted to} Y"unfolding
RestrictedTo_def

by auto

from A1 have "Y ∩ ?A=Y ∩ M" by blast

also with A1 have ". . .=M" by auto
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finally have "Y ∩ ?A=M".
with AT have "M∈(IncludedSet X T) {restricted to} Y"

by auto

}
ultimately have "M∈(IncludedSet X T) {restricted to} Y" by auto

}
thus "(IncludedSet (Y ∩ X) (Y ∩ T)) ⊆ (IncludedSet X T) {restricted

to} Y" by auto

qed

end

56 More examples in topology

theory Topology_ZF_examples_1

imports Topology_ZF_1 Order_ZF

begin

In this theory file we reformulate the concepts related to a topology in
relation with a base of the topology and we give examples of topologies
defined by bases or subbases.

56.1 New ideas using a base for a topology

56.2 The topology of a base

Given a family of subsets satisfiying the base condition, it is posible to
construct a topology where that family is a base. Even more, it is the only
topology with such characteristics.

definition
TopologyWithBase ("TopologyBase _ " 50) where
"U {satisfies the base condition} =⇒ TopologyBase U ≡ THE T. U {is

a base for} T"

theorem Base_topology_is_a_topology:

assumes "U {satisfies the base condition}"

shows "(TopologyBase U) {is a topology}" and "U {is a base for} (TopologyBase

U)"

proof-
from assms obtain T where "U {is a base for} T" using

Top_1_2_T1(2) by blast

then have "∃ !T. U {is a base for} T" using same_base_same_top ex1I[where
P=

"λT. U {is a base for} T"] by blast

with assms show "U {is a base for} (TopologyBase U) " using theI[where
P=

"λT. U {is a base for} T"] TopologyWithBase_def by auto

with assms show "(TopologyBase U) {is a topology}" using Top_1_2_T1(1)
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IsAbaseFor_def by auto

qed

A base doesn’t need the empty set.

lemma base_no_0:

shows "B{is a base for}T ←→ (B-{0}){is a base for}T"

proof-
{

fix M

assume "M∈{
⋃
A . A ∈ Pow(B)}"

then obtain Q where "M=
⋃
Q""Q∈Pow(B)" by auto

hence "M=
⋃
(Q-{0})""Q-{0}∈Pow(B-{0})" by auto

hence "M∈{
⋃
A . A ∈ Pow(B - {0})}" by auto

}
hence "{

⋃
A . A ∈ Pow(B)} ⊆ {

⋃
A . A ∈ Pow(B - {0})}" by blast

moreover
{

fix M

assume "M∈{
⋃
A . A ∈ Pow(B-{0})}"

then obtain Q where "M=
⋃
Q""Q∈Pow(B-{0})" by auto

hence "M=
⋃
(Q)""Q∈Pow(B)" by auto

hence "M∈{
⋃
A . A ∈ Pow(B)}" by auto

}
hence " {

⋃
A . A ∈ Pow(B - {0})} ⊆ {

⋃
A . A ∈ Pow(B)} "

by auto

ultimately have "{
⋃
A . A ∈ Pow(B - {0})} = {

⋃
A . A ∈ Pow(B)} " by

auto

then show "B{is a base for}T ←→ (B-{0}){is a base for}T" using IsAbaseFor_def

by auto

qed

The interior of a set is the union of all the sets of the base which are fully
contained by it.

lemma interior_set_base_topology:

assumes "U {is a base for} T""T{is a topology}"

shows "Interior(A,T)=
⋃
{T∈U. T⊆A}"

proof
have "{T∈U. T⊆A}⊆U" by auto

with assms(1) have "
⋃
{T∈U. T⊆A}∈T"

using IsAbaseFor_def by auto

moreover
have "

⋃
{T∈U. T⊆A}⊆A" by blast

with calculation assms(2) show "
⋃
{T∈U. T⊆A}⊆Interior(A,T)"

using topology0.Top_2_L5 topology0_def by auto

{
fix x

assume "x∈Interior(A,T)"
with assms obtain V where "V∈U""V⊆Interior(A,T)""x∈V"

using point_open_base_neigh
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topology0.Top_2_L2 topology0_def by blast

with assms have "V∈U""x∈V""V⊆A" using topology0.Top_2_L1 topology0_def

by(safe,blast)
hence "x∈

⋃
{T∈U. T⊆A}" by auto

}
thus "Interior(A, T) ⊆

⋃
{T ∈ U . T ⊆ A} " by auto

qed

In the following, we offer another lemma about the closure of a set given a ba-
sis for a topology. This lemma is based on cl_inter_neigh and inter_neigh_cl.
It states that it is only necessary to check the sets of the base, not all the
open sets.

lemma closure_set_base_topology:

assumes "U {is a base for} Q""Q{is a topology}""A⊆
⋃
Q"

shows "Closure(A,Q)={x∈
⋃
Q. ∀ T∈U. x∈T−→A∩T6=0}"

proof
{

fix x

assume A:"x∈Closure(A,Q)"
with assms(2,3) have B:"x∈

⋃
Q" using topology0_def topology0.Top_3_L11(1)

by blast

moreover
{

fix T

assume "T∈U""x∈T"
with assms(1) have "T∈Q""x∈T" using base_sets_open

by auto

with assms(2,3) A have "A∩T6=0" using topology0_def

topology0.cl_inter_neigh[where U="T" and T="Q" and A="A"]

by auto

}
hence "∀ T∈U. x∈T−→A∩T 6=0" by auto

ultimately have "x∈{x∈
⋃
Q. ∀ T∈U. x∈T−→A∩T6=0}" by auto

}
thus "Closure(A, Q) ⊆{x∈

⋃
Q. ∀ T∈U. x∈T−→A∩T 6=0}"

by auto

{
fix x

assume AS:"x∈{x ∈
⋃
Q . ∀ T∈U. x ∈ T −→ A ∩ T 6= 0}"

hence "x∈
⋃
Q" by blast

moreover
{

fix R

assume "R∈Q"
with assms(1) obtain W where RR:"W⊆U""R=

⋃
W" using

IsAbaseFor_def by auto

{
assume "x∈R"
with RR(2) obtain WW where TT:"WW∈W""x∈WW" by auto
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{
assume "R∩A=0"
with RR(2) TT(1) have "WW∩A=0" by auto

with TT(1) RR(1) have "WW∈U""WW∩A=0" by auto

with AS have "x∈
⋃
Q-WW" by auto

with TT(2) have "False" by auto

}
hence "R∩A6=0" by auto

}
}
hence "∀ U∈Q. x∈U −→ U∩A6=0" by auto

with calculation assms(2,3) have "x∈Closure(A,Q)" using topology0_def

topology0.inter_neigh_cl by auto

}
then show "{x ∈

⋃
Q . ∀ T∈U. x ∈ T −→ A ∩ T 6= 0}⊆Closure(A,Q)"

by auto

qed

The restriction of a base is a base for the restriction.

lemma subspace_base_topology:

assumes "B{is a base for}T"

shows "(B{restricted to}Y){is a base for}(T{restricted to}Y)"

proof-
{

fix t

assume "t∈RepFun({
⋃
A . A ∈ Pow(B)}, op ∩(Y))"

then obtain x where A:"t=Y∩x""x∈{
⋃
A . A ∈ Pow(B)}" by auto

then obtain A where B:"x=
⋃
A""A∈Pow(B)" by auto

from A(1) B(1) have "t=
⋃
(A {restricted to} Y)" using RestrictedTo_def

by auto

with B(2) have "t∈{
⋃
A . A ∈ Pow(RepFun(B, op ∩(Y)))}" unfolding

RestrictedTo_def

by blast

}
hence "RepFun({

⋃
A . A ∈ Pow(B)}, op ∩(Y)) ⊆ {

⋃
A . A ∈ Pow(RepFun(B,

op ∩(Y)))}" by(auto+)
moreover
{

fix t

assume "t∈{
⋃
A . A ∈ Pow(RepFun(B, op ∩(Y)))}"

then obtain A where A:"A⊆ B{restricted to}Y""t=
⋃
A" using RestrictedTo_def

by auto

let ?AA="{C∈B. Y∩C∈A}"
from A(1) have "?AA⊆B""A=?AA {restricted to}Y" using RestrictedTo_def

by auto

with A(2) have "?AA⊆B""t=
⋃
(?AA {restricted to}Y)" by auto

then have "?AA⊆B""t=Y∩(
⋃
?AA)" using RestrictedTo_def by auto

hence "t∈RepFun({
⋃
A . A ∈ Pow(B)}, op ∩(Y))" by auto
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}
hence "{

⋃
A . A ∈ Pow(RepFun(B, op ∩(Y)))} ⊆ RepFun({

⋃
A . A ∈ Pow(B)},

op ∩(Y)) " by (auto+)

ultimately have "{
⋃
A . A ∈ Pow(RepFun(B, op ∩(Y)))} = RepFun({

⋃
A .

A ∈ Pow(B)}, op ∩(Y))" by auto

with assms show ?thesis using RestrictedTo_def IsAbaseFor_def by auto

qed

If the base of a topology is contained in the base of another topology, then
the topologies maintain the same relation.

theorem base_subset:

assumes "B{is a base for}T""B2{is a base for}T2""B⊆B2"
shows "T⊆T2"

proof
{

fix x

assume "x∈T"
with assms(1) obtain M where "M⊆B""x=

⋃
M" using IsAbaseFor_def by

auto

with assms(3) have "M⊆B2""x=
⋃
M" by auto

with assms(2) show "x∈T2" using IsAbaseFor_def by auto

}
qed

56.3 Dual Base for Closed Sets

A dual base for closed sets is the collection of complements of sets of a base
for the topology.

definition
DualBase ("DualBase _ _" 80) where
"B{is a base for}T =⇒ DualBase B T≡{

⋃
T-U. U∈B}∪{

⋃
T}"

lemma closed_inter_dual_base:

assumes "D{is closed in}T""B{is a base for}T"

obtains M where "M⊆DualBase B T""D=
⋂
M"

proof-
assume K:"

∧
M. M ⊆ DualBase B T =⇒ D =

⋂
M =⇒ thesis"

{
assume AS:"D 6=

⋃
T"

from assms(1) have D:"D∈Pow(
⋃
T)""

⋃
T-D∈T" using IsClosed_def by

auto

hence A:"
⋃
T-(
⋃
T-D)=D""

⋃
T-D∈T" by auto

with assms(2) obtain Q where QQ:"Q∈Pow(B)""
⋃
T-D=

⋃
Q" using IsAbaseFor_def

by auto

{
assume "Q=0"

then have "
⋃
Q=0" by auto
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with QQ(2) have "
⋃
T-D=0" by auto

with D(1) have "D=
⋃
T" by auto

with AS have "False" by auto

}
hence QNN:"Q6=0" by auto

from QQ(2) A(1) have "D=
⋃
T-
⋃
Q" by auto

with QNN have "D=
⋂
{
⋃
T-R. R∈Q}" by auto

moreover
with assms(2) QQ(1) have "{

⋃
T-R. R∈Q}⊆DualBase B T" using DualBase_def

by auto

with calculation K have "thesis" by auto

}
moreover
{

assume AS:"D=
⋃
T"

with assms(2) have "{
⋃
T}⊆DualBase B T" using DualBase_def by auto

moreover
have "

⋃
T =

⋂
{
⋃
T}" by auto

with calculation K AS have thesis by auto

}
ultimately show thesis by auto

qed

We have already seen for a base that whenever there is a union of open sets,
we can consider only basic open sets due to the fact that any open set is a
union of basic open sets. What we should expect now is that when there is
an intersection of closed sets, we can consider only dual basic closed sets.

lemma closure_dual_base:

assumes "U {is a base for} Q""Q{is a topology}""A⊆
⋃
Q"

shows "Closure(A,Q)=
⋂
{T∈DualBase U Q. A⊆T}"

proof
from assms(1) have T:"

⋃
Q∈DualBase U Q" using DualBase_def by auto

moreover
{

fix T

assume A:"T∈DualBase U Q" "A⊆T"
with assms(1) obtain R where "(T=

⋃
Q-R∧R∈U)∨T=

⋃
Q" using DualBase_def

by auto

with A(2) assms(1,2) have "(T{is closed in}Q)""A⊆T""T∈Pow(
⋃
Q)"

using topology0.Top_3_L1 topology0_def

topology0.Top_3_L9 base_sets_open by auto

}
then have SUB:"{T∈DualBase U Q. A⊆T}⊆{T∈Pow(

⋃
Q). (T{is closed in}Q)∧A⊆T}"

by blast

with calculation assms(3) have "
⋂
{T∈Pow(

⋃
Q). (T{is closed in}Q)∧A⊆T}⊆

⋂
{T∈DualBase

U Q. A⊆T}"
by auto

then show "Closure(A,Q)⊆
⋂
{T∈DualBase U Q. A⊆T}" using Closure_def

ClosedCovers_def
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by auto

{
fix x

assume A:"x∈
⋂
{T∈DualBase U Q. A⊆T}"

{
fix T

assume B:"x∈T""T∈U"
{

assume C:"A∩T=0"
from B(2) assms(1) have "

⋃
Q-T∈DualBase U Q" using DualBase_def

by auto

moreover
from C assms(3) have "A⊆

⋃
Q-T" by auto

moreover
from B(1) have "x/∈

⋃
Q-T" by auto

ultimately have "x/∈
⋂
{T∈DualBase U Q. A⊆T}" by auto

with A have "False" by auto

}
hence "A∩T6=0" by auto

}
hence "∀ T∈U. x∈T−→A∩T 6=0" by auto

moreover
from T A assms(3) have "x∈

⋃
Q" by auto

with calculation assms have "x∈Closure(A,Q)" using closure_set_base_topology

by auto

}
thus "

⋂
{T ∈ DualBase U Q . A ⊆ T} ⊆ Closure(A, Q)" by auto

qed

56.4 Partition topology

In the theory file Partitions ZF.thy; there is a definition to work with par-
titions. In this setting is much easier to work with a family of subsets.

definition
IsAPartition ("_{is a partition of}_" 90) where
"(U {is a partition of} X) ≡ (

⋃
U=X ∧ (∀ A∈U. ∀ B∈U. A=B∨ A∩B=0)∧ 0/∈U)"

A subcollection of a partition is a partition of its union.

lemma subpartition:

assumes "U {is a partition of} X" "V⊆U"
shows "V{is a partition of}

⋃
V"

using assms unfolding IsAPartition_def by auto

A restriction of a partition is a partition. If the empty set appears it has to
be removed.

lemma restriction_partition:

assumes "U {is a partition of}X"

shows "((U {restricted to} Y)-{0}) {is a partition of} (X∩Y)"
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using assms unfolding IsAPartition_def RestrictedTo_def

by fast

Given a partition, the complement of a union of a subfamily is a union of a
subfamily.

lemma diff_union_is_union_diff:

assumes "R⊆P" "P {is a partition of} X"

shows "X -
⋃
R=
⋃
(P-R)"

proof
{

fix x

assume "x∈X -
⋃
R"

hence P:"x∈X""x/∈
⋃
R" by auto

{
fix T

assume "T∈R"
with P(2) have "x/∈T" by auto

}
with P(1) assms(2) obtain Q where "Q∈(P-R)""x∈Q" using IsAPartition_def

by auto

hence "x∈
⋃
(P-R)" by auto

}
thus "X -

⋃
R⊆
⋃
(P-R)" by auto

{
fix x

assume "x∈
⋃
(P-R)"

then obtain Q where "Q∈P-R""x∈Q" by auto

hence C: "Q∈P""Q/∈R""x∈Q" by auto

then have "x∈
⋃
P" by auto

with assms(2) have "x∈X" using IsAPartition_def by auto

moreover
{

assume "x∈
⋃
R"

then obtain t where G:"t∈R" "x∈t" by auto

with C(3) assms(1) have "t∩Q 6=0""t∈P" by auto

with assms(2) C(1,3) have "t=Q" using IsAPartition_def

by blast

with C(2) G(1) have "False" by auto

}
hence "x/∈

⋃
R" by auto

ultimately have "x∈X-
⋃
R" by auto

}
thus "

⋃
(P-R)⊆X -

⋃
R" by auto

qed

56.5 Partition topology is a topology.

A partition satisfies the base condition.

lemma partition_base_condition:

728



assumes "P {is a partition of} X"

shows "P {satisfies the base condition}"

proof-
{

fix U V

assume AS:"U∈P∧V∈P"
with assms have A:"U=V∨ U∩V=0" using IsAPartition_def by auto

{
fix x

assume ASS:"x∈U∩V"
with A have "U=V" by auto

with AS ASS have "U∈P""x∈U∧ U⊆U∩V" by auto

hence "∃ W∈P. x∈W∧ W⊆U∩V" by auto

}
hence "(∀ x ∈ U∩V. ∃ W∈P. x∈W ∧ W ⊆ U∩V)" by auto

}
then show ?thesis using SatisfiesBaseCondition_def by auto

qed

Since a partition is a base of a topology, and this topology is uniquely de-
termined; we can built it. In the definition we have to make sure that we
have a partition.

definition
PartitionTopology ("PTopology _ _" 50) where
"(U {is a partition of} X) =⇒ PTopology X U ≡ TopologyBase U"

theorem Ptopology_is_a_topology:

assumes "U {is a partition of} X"

shows "(PTopology X U) {is a topology}" and "U {is a base for} (PTopology

X U)"

using assms Base_topology_is_a_topology partition_base_condition

PartitionTopology_def by auto

lemma topology0_ptopology:

assumes "U {is a partition of} X"

shows "topology0(PTopology X U)"

using Ptopology_is_a_topology topology0_def assms by auto

56.6 Total set, Closed sets, Interior, Closure and Boundary

The topology is defined in the set X

lemma union_ptopology:

assumes "U {is a partition of} X"

shows "
⋃
(PTopology X U)=X"

using assms Ptopology_is_a_topology(2) Top_1_2_L5

IsAPartition_def by auto

The closed sets are the open sets.
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lemma closed_sets_ptopology:

assumes "T {is a partition of} X"

shows"D {is closed in} (PTopology X T) ←→ D∈(PTopology X T)"

proof
from assms

have B:"T{is a base for}(PTopology X T)" using Ptopology_is_a_topology(2)

by auto

{
fix D

assume "D {is closed in} (PTopology X T)"

with assms have A:"D∈Pow(X)""X-D∈(PTopology X T)"

using IsClosed_def union_ptopology by auto

from A(2) B obtain R where Q:"R⊆T" "X-D=
⋃
R" using Top_1_2_L1[where

B="T" and U="X-D"]

by auto

from A(1) have "X-(X-D)=D" by blast

with Q(2) have "D=X-
⋃
R" by auto

with Q(1) assms have "D=
⋃
(T-R)" using diff_union_is_union_diff

by auto

with B show "D∈(PTopology X T)" using IsAbaseFor_def by auto

}
{

fix D

assume "D∈(PTopology X T)"

with B obtain R where Q:"R⊆T""D=
⋃
R" using IsAbaseFor_def by auto

hence "X-D=X-
⋃
R" by auto

with Q(1) assms have "X-D=
⋃
(T-R)" using diff_union_is_union_diff

by auto

with B have "X-D∈(PTopology X T)" using IsAbaseFor_def by auto

moreover
from Q have "D⊆

⋃
T" by auto

with assms have "D⊆X" using IsAPartition_def by auto

with calculation assms show "D{is closed in} (PTopology X T)"

using IsClosed_def union_ptopology by auto

}
qed

There is a formula for the interior given by an intersection of sets of the dual
base. Is the intersection of all the closed sets of the dual basis such that
they do not complement A to X. Since the interior of X must be inside X,
we have to enter X as one of the sets to be intersected.

lemma interior_set_ptopology:

assumes "U {is a partition of} X""A⊆X"
shows "Interior(A,(PTopology X U))=

⋂
{T∈DualBase U (PTopology X U).

T=X∨T∪A6=X}"

proof
{

fix x

assume "x∈Interior(A,(PTopology X U))"
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with assms obtain R where A:"x∈R""R∈(PTopology X U)""R⊆A"
using topology0.open_open_neigh topology0_ptopology

topology0.Top_2_L2 topology0.Top_2_L1

by auto

with assms obtain B where B:"B⊆U""R=
⋃
B" using Ptopology_is_a_topology(2)

IsAbaseFor_def by auto

from A(1,3) assms have XX:"x∈X""X∈{T∈DualBase U (PTopology X U).

T=X∨T∪A6=X}"

using union_ptopology[of "U""X"] DualBase_def[of"U"] Ptopology_is_a_topology(2)[of

"U""X"] by (safe,blast,auto)

moreover
from B(2) A(1) obtain S where C:"S∈B""x∈S" by auto

{
fix T

assume AS:"T∈DualBase U (PTopology X U)""T ∪A6=X"

from AS(1) assms obtain w where "(T=X-w∧w∈U)∨(T=X)"
using DualBase_def union_ptopology Ptopology_is_a_topology(2)

by auto

with assms(2) AS(2) have D:"T=X-w""w∈U" by auto

from D(2) have "w⊆
⋃
U" by auto

with assms(1) have "w⊆
⋃
(PTopology X U)" using Ptopology_is_a_topology(2)

Top_1_2_L5[of "U""PTopology X U"]

by auto

with assms(1) have "w⊆X" using union_ptopology by auto

with D(1) have "X-T=w" by auto

with D(2) have "X-T∈U" by auto

{
assume "x∈X-T"
with C B(1) have "S∈U""S∩(X-T)6=0" by auto

with ‘X-T∈U‘ assms(1) have "X-T=S" using IsAPartition_def by
auto

with ‘X-T=w‘‘T=X-w‘ have "X-S=T" by auto

with AS(2) have "X-S∪A6=X" by auto

from A(3) B(2) C(1) have "S⊆A" by auto

hence "X-A⊆X-S" by auto

with assms(2) have "X-S∪A=X" by auto

with ‘X-S∪A6=X‘ have "False" by auto

}
then have "x∈T" using XX by auto

}
ultimately have "x∈

⋂
{T∈DualBase U (PTopology X U). T=X∨T∪A 6=X}"

by auto

}
thus "Interior(A,(PTopology X U))⊆

⋂
{T∈DualBase U (PTopology X U).

T=X∨T∪A 6=X}" by auto

{
fix x

assume p:"x∈
⋂
{T∈DualBase U (PTopology X U). T=X∨T∪A6=X}"

hence noE:"
⋂
{T∈DualBase U (PTopology X U). T=X∨T∪A6=X}6=0" by auto
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{
fix T

assume "T∈DualBase U (PTopology X U)"

with assms(1) obtain w where "T=X∨(w∈U∧T=X-w)" using DualBase_def

Ptopology_is_a_topology(2) union_ptopology by auto

with assms(1) have "T=X∨(w∈(PTopology X U)∧T=X-w)" using base_sets_open

Ptopology_is_a_topology(2) by blast

with assms(1) have "T{is closed in}(PTopology X U)" using topology0.Top_3_L1[where
T="PTopology X U"]

topology0_ptopology topology0.Top_3_L9[where T="PTopology X U"]

union_ptopology

by auto

}
moreover
from assms(1) p have "X∈{T∈DualBase U (PTopology X U). T=X∨T∪A6=X}"and

X:"x∈X" using Ptopology_is_a_topology(2)

DualBase_def union_ptopology by auto

with calculation assms(1) have "(
⋂
{T∈DualBase U (PTopology X U).

T=X∨T∪A6=X}) {is closed in}(PTopology X U)"

using topology0.Top_3_L4[where K="{T∈DualBase U (PTopology X U).

T=X∨T∪A6=X}"] topology0_ptopology[where U="U" and X="X"]

by auto

with assms(1) have ab:"(
⋂
{T∈DualBase U (PTopology X U). T=X∨T∪A 6=X})∈(PTopology

X U)"

using closed_sets_ptopology by auto

with assms(1) obtain B where "B∈Pow(U)""(
⋂
{T∈DualBase U (PTopology

X U). T=X∨T∪A6=X})=
⋃
B"

using Ptopology_is_a_topology(2) IsAbaseFor_def by auto

with p obtain R where "x∈R""R∈U""R⊆(
⋂
{T∈DualBase U (PTopology X

U). T=X∨T∪A 6=X})"

by auto

with assms(1) have R:"x∈R""R∈(PTopology X U)""R⊆(
⋂
{T∈DualBase U

(PTopology X U). T=X∨T∪A6=X})""X-R∈DualBase U (PTopology X U)"

using base_sets_open Ptopology_is_a_topology(2) DualBase_def union_ptopology

by (safe,blast,simp,blast)

{
assume "(X-R) ∪A6=X"

with R(4) have "X-R∈{T∈DualBase U (PTopology X U). T=X∨T∪A6=X}"

by auto

hence "
⋂
{T∈DualBase U (PTopology X U). T=X∨T∪A6=X}⊆X-R" by auto

with R(3) have "R⊆X-R" using subset_trans[where A="R" and C="X-R"]

by auto

hence "R=0" by blast

with R(1) have "False" by auto

}
hence I:"(X-R) ∪A=X" by auto

{
fix y

assume ASR:"y∈R"
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with R(2) have "y∈
⋃
(PTopology X U)" by auto

with assms(1) have XX:"y∈X" using union_ptopology by auto

with I have "y∈(X-R) ∪A" by auto

with XX have "y/∈R∨y∈A" by auto

with ASR have "y∈A" by auto

}
hence "R⊆A" by auto

with R(1,2) have "∃ R∈(PTopology X U). (x∈R∧R⊆A)" by auto

with assms(1) have "x∈Interior(A,(PTopology X U))" using topology0.Top_2_L6

topology0_ptopology by auto

}
thus "

⋂
{T ∈ DualBase U PTopology X U . T = X ∨ T ∪ A 6= X} ⊆ Interior(A,

PTopology X U)"

by auto

qed

The closure of a set is the union of all the sets of the partition which intersect
with A.

lemma closure_set_ptopology:

assumes "U {is a partition of} X""A⊆X"
shows "Closure(A,(PTopology X U))=

⋃
{T∈U. T∩A6=0}"

proof
{

fix x

assume A:"x∈Closure(A,(PTopology X U))"

with assms have "x∈
⋃
(PTopology X U)" using topology0.Top_3_L11(1)[where

T="PTopology X U"

and A="A"] topology0_ptopology union_ptopology by auto

with assms(1) have "x∈
⋃
U" using Top_1_2_L5[where B="U" and T="PTopology

X U"] Ptopology_is_a_topology(2) by auto

then obtain W where B:"x∈W""W∈U" by auto

with A have "x∈Closure(A,(PTopology X U))∩W" by auto

moreover
from assms B(2) have "W∈(PTopology X U)""A⊆X" using base_sets_open

Ptopology_is_a_topology(2)

by (safe,blast)

with calculation assms(1) have "A∩W 6=0" using topology0_ptopology[where
U="U" and X="X"]

topology0.cl_inter_neigh union_ptopology by auto

with B have "x∈
⋃
{T∈U. T∩A6=0}" by blast

}
thus "Closure(A, PTopology X U) ⊆

⋃
{T ∈ U . T ∩ A 6= 0}" by auto

{
fix x

assume "x∈
⋃
{T ∈ U . T ∩ A 6= 0}"

then obtain T where A:"x∈T""T∈U""T∩A 6=0" by auto

from assms have "A⊆
⋃
(PTopology X U)" using union_ptopology by auto

moreover
from A(1,2) assms(1) have "x∈

⋃
(PTopology X U)" using Top_1_2_L5[where
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B="U" and T="PTopology X U"]

Ptopology_is_a_topology(2) by auto

moreover
{

fix Q

assume B:"Q∈(PTopology X U)""x∈Q"
with assms(1) obtain M where C:"Q=

⋃
M""M⊆U" using

Ptopology_is_a_topology(2)

IsAbaseFor_def by auto

from B(2) C(1) obtain R where D:"R∈M""x∈R" by auto

with C(2) A(1,2) have "R∩T6=0""R∈U""T∈U" by auto

with assms(1) have "R=T" using IsAPartition_def by auto

with C(1) D(1) have "T⊆Q" by auto

with A(3) have "Q∩A 6=0" by auto

}
then have "∀ Q∈(PTopology X U). x∈Q −→ Q∩A6=0" by auto

with calculation assms(1) have "x∈Closure(A,(PTopology X U))" us-
ing topology0.inter_neigh_cl

topology0_ptopology by auto

}
then show "

⋃
{T ∈ U . T ∩ A 6= 0} ⊆ Closure(A, PTopology X U) " by

auto

qed

The boundary of a set is given by the union of the sets of the partition which
have non empty intersection with the set but that are not fully contained in
it. Another equivalent statement would be: the union of the sets of the par-
tition which have non empty intersection with the set and its complement.

lemma boundary_set_ptopology:

assumes "U {is a partition of} X""A⊆X"
shows "Boundary(A,(PTopology X U))=

⋃
{T∈U. T∩A6=0 ∧ ~(T⊆A)}"

proof-
from assms have "Closure(A,(PTopology X U))=

⋃
{T ∈ U . T ∩ A 6= 0}"

using
closure_set_ptopology by auto

moreover
from assms(1) have "Interior(A,(PTopology X U))=

⋃
{T ∈ U . T ⊆ A}"

using
interior_set_base_topology Ptopology_is_a_topology[where U="U" and

X="X"] by auto

with calculation assms have A:"Boundary(A,(PTopology X U))=
⋃
{T ∈ U

. T ∩ A 6= 0} -
⋃
{T ∈ U . T ⊆ A}"

using topology0.Top_3_L12 topology0_ptopology union_ptopology

by auto

from assms(1) have "({T ∈ U . T ∩ A 6= 0}) {is a partition of}
⋃
({T

∈ U . T ∩ A 6= 0})"

using subpartition by blast

moreover
{
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fix T

assume "T∈U""T⊆A"
with assms(1) have "T∩A=T""T6=0" using IsAPartition_def by auto

with ‘T∈U‘ have "T∩A 6=0""T∈U" by auto

}
then have "{T ∈ U . T ⊆ A}⊆{T ∈ U . T ∩ A 6= 0}" by auto

ultimately have "
⋃
{T ∈ U . T ∩ A 6= 0} -

⋃
{T ∈ U . T ⊆ A}=

⋃
(({T

∈ U . T ∩ A 6= 0})-({T ∈ U . T ⊆ A}))"

using diff_union_is_union_diff by auto

also have ". . .=
⋃
({T ∈ U . T ∩ A 6= 0 ∧ ~(T⊆A)})" by blast

with calculation A show ?thesis by auto

qed

56.7 Special cases and subspaces

The discrete and the indiscrete topologies appear as special cases of this
partition topologies.

lemma discrete_partition:

shows "{{x}.x∈X} {is a partition of}X"

using IsAPartition_def by auto

lemma indiscrete_partition:

assumes "X 6=0"

shows "{X} {is a partition of} X"

using assms IsAPartition_def by auto

theorem discrete_ptopology:

shows "(PTopology X {{x}.x∈X})=Pow(X)"
proof
{

fix t

assume "t∈(PTopology X {{x}.x∈X})"
hence "t⊆

⋃
(PTopology X {{x}.x∈X})" by auto

then have "t∈Pow(X)" using union_ptopology

discrete_partition by auto

}
thus "(PTopology X {{x}.x∈X})⊆Pow(X)" by auto

{
fix t

assume A:"t∈Pow(X)"
have "

⋃
({{x}. x∈t})=t" by auto

moreover
from A have "{{x}. x∈t}∈Pow({{x}.x∈X})" by auto

hence "
⋃
({{x}. x∈t})∈{

⋃
A . A ∈ Pow({{x} . x ∈ X})}" by auto

ultimately
have "t∈(PTopology X {{x} . x ∈ X})" using Ptopology_is_a_topology(2)

discrete_partition IsAbaseFor_def by auto

}
thus "Pow(X) ⊆ (PTopology X {{x} . x ∈ X}) " by auto
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qed

theorem indiscrete_ptopology:

assumes "X 6=0"

shows "(PTopology X {X})={0,X}"

proof
{

fix T

assume "T∈(PTopology X {X})"

with assms obtain M where "M⊆{X}""
⋃
M=T" using Ptopology_is_a_topology(2)

indiscrete_partition IsAbaseFor_def by auto

then have "T=0∨T=X" by auto

}
then show "(PTopology X {X})⊆{0,X}" by auto

from assms have "0∈(PTopology X {X})" using Ptopology_is_a_topology(1)

empty_open

indiscrete_partition by auto

moreover
from assms have "

⋃
(PTopology X {X})∈(PTopology X {X})" using union_open

Ptopology_is_a_topology(1)

indiscrete_partition by auto

with assms have "X∈(PTopology X {X})" using union_ptopology indiscrete_partition

by auto

ultimately show "{0,X}⊆(PTopology X {X})" by auto

qed

The topological subspaces of the (PTopology X U) are partition topologies.

lemma subspace_ptopology:

assumes "U{is a partition of}X"

shows "(PTopology X U) {restricted to} Y=(PTopology (X∩Y) ((U {restricted

to} Y)-{0}))"

proof-
from assms have "U{is a base for}(PTopology X U)" using Ptopology_is_a_topology(2)

by auto

then have "(U{restricted to} Y){is a base for}(PTopology X U){restricted

to} Y"

using subspace_base_topology by auto

then have "((U{restricted to} Y)-{0}){is a base for}(PTopology X U){restricted

to} Y" using base_no_0

by auto

moreover
from assms have "((U{restricted to} Y)-{0}) {is a partition of} (X∩Y)"

using restriction_partition by auto

then have "((U{restricted to} Y)-{0}){is a base for}(PTopology (X∩Y)
((U {restricted to} Y)-{0}))"

using Ptopology_is_a_topology(2) by auto

ultimately show ?thesis using same_base_same_top by auto

qed
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56.8 Order topologies

56.9 Order topology is a topology

Given a totally ordered set, several topologies can be defined using the order
relation. First we define an open interval, notice that the set defined as
Interval is a closed interval; and open rays.

definition
IntervalX where
"IntervalX(X,r,b,c)≡(Interval(r,b,c)∩X)-{b,c}"

definition
LeftRayX where
"LeftRayX(X,r,b)≡{c∈X. 〈c,b〉∈r}-{b}"

definition
RightRayX where
"RightRayX(X,r,b)≡{c∈X. 〈b,c〉∈r}-{b}"

Intersections of intervals and rays.

lemma inter_two_intervals:

assumes "bu∈X""bv∈X""cu∈X""cv∈X""IsLinOrder(X,r)"
shows "IntervalX(X,r,bu,cu)∩IntervalX(X,r,bv,cv)=IntervalX(X,r,GreaterOf(r,bu,bv),SmallerOf(r,cu,cv))"

proof
have T:"GreaterOf(r,bu,bv)∈X""SmallerOf(r,cu,cv)∈X" using assms

GreaterOf_def SmallerOf_def by (cases "〈bu,bv〉∈r",simp,simp,cases
"〈cu,cv〉∈r",simp,simp)
{

fix x

assume ASS:"x∈IntervalX(X,r,bu,cu)∩IntervalX(X,r,bv,cv)"
then have "x∈IntervalX(X,r,bu,cu)""x∈IntervalX(X,r,bv,cv)" by auto

then have BB:"x∈X""x∈Interval(r,bu,cu)""x6=bu""x6=cu""x∈Interval(r,bv,cv)""x6=bv""x 6=cv"

using IntervalX_def assms by auto

then have "x∈X" by auto

moreover
have "x6=GreaterOf(r,bu,bv)""x6=SmallerOf(r,cu,cv)"

proof-
show "x6=GreaterOf(r,bu,bv)" using GreaterOf_def BB(6,3) by (cases

"〈bu,bv〉∈r",simp+)
show "x6=SmallerOf(r,cu,cv)" using SmallerOf_def BB(7,4) by (cases

"〈cu,cv〉∈r",simp+)
qed
moreover
have "〈bu,x〉∈r""〈x,cu〉∈r""〈bv,x〉∈r""〈x,cv〉∈r" using BB(2,5) Order_ZF_2_L1A

by auto

then have "〈GreaterOf(r,bu,bv),x〉∈r""〈x,SmallerOf(r,cu,cv)〉∈r" us-
ing GreaterOf_def SmallerOf_def

by (cases "〈bu,bv〉∈r",simp,simp,cases "〈cu,cv〉∈r",simp,simp)
then have "x∈Interval(r,GreaterOf(r,bu,bv),SmallerOf(r,cu,cv))" us-

ing Order_ZF_2_L1 by auto

ultimately
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have "x∈IntervalX(X,r,GreaterOf(r,bu,bv),SmallerOf(r,cu,cv))" us-
ing IntervalX_def T by auto

}
then show "IntervalX(X, r, bu, cu) ∩ IntervalX(X, r, bv, cv) ⊆ IntervalX(X,

r, GreaterOf(r, bu, bv), SmallerOf(r, cu, cv))"

by auto

{
fix x

assume "x∈IntervalX(X,r,GreaterOf(r,bu,bv),SmallerOf(r,cu,cv))"
then have BB:"x∈X""x∈Interval(r,GreaterOf(r,bu,bv),SmallerOf(r,cu,cv))""x6=GreaterOf(r,bu,bv)""x 6=SmallerOf(r,cu,cv)"

using IntervalX_def T by auto

then have "x∈X" by auto

moreover
from BB(2) have CC:"〈GreaterOf(r,bu,bv),x〉∈r""〈x,SmallerOf(r,cu,cv)〉∈r"

using Order_ZF_2_L1A by auto

{
{

assume AS:"〈bu,bv〉∈r"
then have "GreaterOf(r,bu,bv)=bv" using GreaterOf_def by auto

then have "〈bv,x〉∈r" using CC(1) by auto

with AS have "〈bu,x〉∈r" "〈bv,x〉∈r" using assms IsLinOrder_def

trans_def by (safe, blast)

}
moreover
{

assume AS:"〈bu,bv〉/∈r"
then have "GreaterOf(r,bu,bv)=bu" using GreaterOf_def by auto

then have "〈bu,x〉∈r" using CC(1) by auto

from AS have "〈bv,bu〉∈r" using assms IsLinOrder_def IsTotal_def

assms by auto

with ‘〈bu,x〉∈r‘ have "〈bu,x〉∈r" "〈bv,x〉∈r" using assms IsLinOrder_def

trans_def by (safe, blast)

}
ultimately have R:"〈bu,x〉∈r" "〈bv,x〉∈r" by auto

moreover
{

assume AS:"x=bu"

then have "〈bv,bu〉∈r" using R(2) by auto

then have "GreaterOf(r,bu,bv)=bu" using GreaterOf_def assms IsLinOrder_def

antisym_def by auto

then have "False" using AS BB(3) by auto

}
moreover
{

assume AS:"x=bv"

then have "〈bu,bv〉∈r" using R(1) by auto

then have "GreaterOf(r,bu,bv)=bv" using GreaterOf_def by auto

then have "False" using AS BB(3) by auto

}
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ultimately have "〈bu,x〉∈r" "〈bv,x〉∈r""x 6=bu""x 6=bv" by auto

}
moreover
{
{

assume AS:"〈cu,cv〉∈r"
then have "SmallerOf(r,cu,cv)=cu" using SmallerOf_def by auto

then have "〈x,cu〉∈r" using CC(2) by auto

with AS have "〈x,cu〉∈r" "〈x,cv〉∈r" using assms IsLinOrder_def

trans_def by(safe ,blast)

}
moreover
{

assume AS:"〈cu,cv〉/∈r"
then have "SmallerOf(r,cu,cv)=cv" using SmallerOf_def by auto

then have "〈x,cv〉∈r" using CC(2) by auto

from AS have "〈cv,cu〉∈r" using assms IsLinOrder_def IsTotal_def

by auto

with ‘〈x,cv〉∈r‘ have "〈x,cv〉∈r" "〈x,cu〉∈r" using assms IsLinOrder_def

trans_def by(safe ,blast)

}
ultimately have R:"〈x,cv〉∈r" "〈x,cu〉∈r" by auto

moreover
{

assume AS:"x=cv"

then have "〈cv,cu〉∈r" using R(2) by auto

then have "SmallerOf(r,cu,cv)=cv" using SmallerOf_def assms IsLinOrder_def

antisym_def by auto

then have "False" using AS BB(4) by auto

}
moreover
{

assume AS:"x=cu"

then have "〈cu,cv〉∈r" using R(1) by auto

then have "SmallerOf(r,cu,cv)=cu" using SmallerOf_def by auto

then have "False" using AS BB(4) by auto

}
ultimately have "〈x,cu〉∈r" "〈x,cv〉∈r""x 6=cu""x6=cv" by auto

}
ultimately
have "x∈IntervalX(X,r,bu,cu)" "x∈IntervalX(X,r,bv,cv)" using Order_ZF_2_L1

IntervalX_def

assms by auto

then have "x∈IntervalX(X, r, bu, cu) ∩ IntervalX(X, r, bv, cv) "

by auto

}
then show "IntervalX(X,r,GreaterOf(r,bu,bv),SmallerOf(r,cu,cv)) ⊆ IntervalX(X,

r, bu, cu) ∩ IntervalX(X, r, bv, cv)"

by auto
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qed

lemma inter_rray_interval:

assumes "bv∈X""bu∈X""cv∈X""IsLinOrder(X,r)"
shows "RightRayX(X,r,bu)∩IntervalX(X,r,bv,cv)=IntervalX(X,r,GreaterOf(r,bu,bv),cv)"

proof
{

fix x

assume "x∈RightRayX(X,r,bu)∩IntervalX(X,r,bv,cv)"
then have "x∈RightRayX(X,r,bu)""x∈IntervalX(X,r,bv,cv)" by auto

then have BB:"x∈X""x6=bu""x 6=bv""x 6=cv""〈bu,x〉∈r""x∈Interval(r,bv,cv)"
using RightRayX_def IntervalX_def

by auto

then have "〈bv,x〉∈r""〈x,cv〉∈r" using Order_ZF_2_L1A by auto

with ‘〈bu,x〉∈r‘ have "〈GreaterOf(r,bu,bv),x〉∈r" using GreaterOf_def

by (cases "〈bu,bv〉∈r",simp+)
with ‘〈x,cv〉∈r‘ have "x∈Interval(r,GreaterOf(r,bu,bv),cv)" using

Order_ZF_2_L1 by auto

then have "x∈IntervalX(X,r,GreaterOf(r,bu,bv),cv)" using BB(1-4)

IntervalX_def GreaterOf_def

by (simp)

}
then show "RightRayX(X, r, bu) ∩ IntervalX(X, r, bv, cv) ⊆ IntervalX(X,

r, GreaterOf(r, bu, bv), cv)" by auto

{
fix x

assume "x∈IntervalX(X, r, GreaterOf(r, bu, bv), cv)"

then have "x∈X""x∈Interval(r,GreaterOf(r, bu, bv), cv)""x6=cv""x 6=GreaterOf(r,

bu, bv)" using IntervalX_def by auto

then have R:"〈GreaterOf(r, bu, bv),x〉∈r""〈x,cv〉∈r" using Order_ZF_2_L1A

by auto

with ‘x 6=cv‘ have "〈x,cv〉∈r""x 6=cv" by auto

moreover
{
{

assume AS:"〈bu,bv〉∈r"
then have "GreaterOf(r,bu,bv)=bv" using GreaterOf_def by auto

then have "〈bv,x〉∈r" using R(1) by auto

with AS have "〈bu,x〉∈r" "〈bv,x〉∈r" using assms unfolding IsLinOrder_def

trans_def by (safe,blast)

}
moreover
{

assume AS:"〈bu,bv〉/∈r"
then have "GreaterOf(r,bu,bv)=bu" using GreaterOf_def by auto

then have "〈bu,x〉∈r" using R(1) by auto

from AS have "〈bv,bu〉∈r" using assms unfolding IsLinOrder_def

IsTotal_def using assms by auto

with ‘〈bu,x〉∈r‘ have "〈bu,x〉∈r" "〈bv,x〉∈r" using assms unfold-
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ing IsLinOrder_def trans_def by (safe,blast)

}
ultimately have T:"〈bu,x〉∈r" "〈bv,x〉∈r" by auto

moreover
{

assume AS:"x=bu"

then have "〈bv,bu〉∈r" using T(2) by auto

then have "GreaterOf(r,bu,bv)=bu" unfolding GreaterOf_def us-
ing assms unfolding IsLinOrder_def

antisym_def by auto

with ‘x6=GreaterOf(r,bu,bv)‘ have "False" using AS by auto

}
moreover
{

assume AS:"x=bv"

then have "〈bu,bv〉∈r" using T(1) by auto

then have "GreaterOf(r,bu,bv)=bv" unfolding GreaterOf_def by
auto

with ‘x6=GreaterOf(r,bu,bv)‘ have "False" using AS by auto

}
ultimately have "〈bu,x〉∈r" "〈bv,x〉∈r""x 6=bu""x 6=bv" by auto

}
with calculation ‘x∈X‘ have "x∈RightRayX(X, r, bu)""x∈IntervalX(X,

r, bv, cv)" unfolding RightRayX_def IntervalX_def

using Order_ZF_2_L1 by auto

then have "x∈RightRayX(X, r, bu) ∩ IntervalX(X, r, bv, cv) " by auto

}
then show "IntervalX(X, r, GreaterOf(r, bu, bv), cv) ⊆ RightRayX(X,

r, bu) ∩ IntervalX(X, r, bv, cv) " by auto

qed

lemma inter_lray_interval:

assumes "bv∈X""cu∈X""cv∈X""IsLinOrder(X,r)"
shows "LeftRayX(X,r,cu)∩IntervalX(X,r,bv,cv)=IntervalX(X,r,bv,SmallerOf(r,cu,cv))"

proof
{

fix x assume "x∈LeftRayX(X,r,cu)∩IntervalX(X,r,bv,cv)"
then have B:"x6=cu""x∈X""〈x,cu〉∈r""〈bv,x〉∈r""〈x,cv〉∈r""x6=bv""x 6=cv"

unfolding LeftRayX_def IntervalX_def Interval_def

by auto

from ‘〈x,cu〉∈r‘ ‘〈x,cv〉∈r‘ have C:"〈x,SmallerOf(r, cu, cv)〉∈r" us-
ing SmallerOf_def by (cases "〈cu,cv〉∈r",simp+)

from B(7,1) have "x6=SmallerOf(r,cu,cv)" using SmallerOf_def by (cases

"〈cu,cv〉∈r",simp+)
then have "x∈IntervalX(X,r,bv,SmallerOf(r,cu,cv))" using B C IntervalX_def

Order_ZF_2_L1 by auto

}
then show "LeftRayX(X, r, cu) ∩ IntervalX(X, r, bv, cv) ⊆ IntervalX(X,
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r, bv, SmallerOf(r, cu, cv))" by auto

{
fix x assume "x∈IntervalX(X,r,bv,SmallerOf(r,cu,cv))"
then have R:"x∈X""〈bv,x〉∈r""〈x,SmallerOf(r,cu,cv)〉∈r""x6=bv""x 6=SmallerOf(r,cu,cv)"

using IntervalX_def Interval_def

by auto

then have "〈bv,x〉∈r""x6=bv" by auto

moreover
{
{

assume AS:"〈cu,cv〉∈r"
then have "SmallerOf(r,cu,cv)=cu" using SmallerOf_def by auto

then have "〈x,cu〉∈r" using R(3) by auto

with AS have "〈x,cu〉∈r" "〈x,cv〉∈r" using assms unfolding IsLinOrder_def

trans_def by (safe, blast)

}
moreover
{

assume AS:"〈cu,cv〉/∈r"
then have "SmallerOf(r,cu,cv)=cv" using SmallerOf_def by auto

then have "〈x,cv〉∈r" using R(3) by auto

from AS have "〈cv,cu〉∈r" using assms IsLinOrder_def IsTotal_def

assms by auto

with ‘〈x,cv〉∈r‘ have "〈x,cv〉∈r" "〈x,cu〉∈r" using assms IsLinOrder_def

trans_def by (safe, blast)

}
ultimately have T:"〈x,cv〉∈r" "〈x,cu〉∈r" by auto

moreover
{

assume AS:"x=cu"

then have "〈cu,cv〉∈r" using T(1) by auto

then have "SmallerOf(r,cu,cv)=cu" using SmallerOf_def assms IsLinOrder_def

antisym_def by auto

with ‘x6=SmallerOf(r,cu,cv)‘ have "False" using AS by auto

}
moreover
{

assume AS:"x=cv"

then have "〈cv,cu〉∈r" using T(2) by auto

then have "SmallerOf(r,cu,cv)=cv" using SmallerOf_def assms IsLinOrder_def

antisym_def by auto

with ‘x6=SmallerOf(r,cu,cv)‘ have "False" using AS by auto

}
ultimately have "〈x,cu〉∈r" "〈x,cv〉∈r""x 6=cu""x 6=cv" by auto

}
with calculation ‘x∈X‘ have "x∈LeftRayX(X,r,cu)""x∈IntervalX(X, r,

bv, cv)" using LeftRayX_def IntervalX_def Interval_def

by auto

then have "x∈LeftRayX(X, r, cu) ∩ IntervalX(X, r, bv, cv)" by auto
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}
then show "IntervalX(X, r, bv, SmallerOf(r, cu, cv)) ⊆ LeftRayX(X,

r, cu) ∩ IntervalX(X, r, bv, cv) " by auto

qed

lemma inter_lray_rray:

assumes "bu∈X""cv∈X""IsLinOrder(X,r)"
shows "LeftRayX(X,r,bu)∩RightRayX(X,r,cv)=IntervalX(X,r,cv,bu)"
unfolding LeftRayX_def RightRayX_def IntervalX_def Interval_def by auto

lemma inter_lray_lray:

assumes "bu∈X""cv∈X""IsLinOrder(X,r)"
shows "LeftRayX(X,r,bu)∩LeftRayX(X,r,cv)=LeftRayX(X,r,SmallerOf(r,bu,cv))"

proof
{

fix x

assume "x∈LeftRayX(X,r,bu)∩LeftRayX(X,r,cv)"
then have B:"x∈X""〈x,bu〉∈r""〈x,cv〉∈r""x6=bu""x6=cv" using LeftRayX_def

by auto

then have C:"〈x,SmallerOf(r,bu,cv)〉∈r" using SmallerOf_def by (cases

"〈bu,cv〉∈r", auto)

from B have D:"x6=SmallerOf(r,bu,cv)" using SmallerOf_def by (cases

"〈bu,cv〉∈r", auto)

from B C D have "x∈LeftRayX(X,r,SmallerOf(r,bu,cv))" using LeftRayX_def

by auto

}
then show "LeftRayX(X, r, bu) ∩ LeftRayX(X, r, cv) ⊆ LeftRayX(X, r,

SmallerOf(r, bu, cv))" by auto

{
fix x

assume "x∈LeftRayX(X, r, SmallerOf(r, bu, cv))"

then have R:"x∈X""〈x,SmallerOf(r,bu,cv)〉∈r""x 6=SmallerOf(r,bu,cv)"

using LeftRayX_def by auto

{
{

assume AS:"〈bu,cv〉∈r"
then have "SmallerOf(r,bu,cv)=bu" using SmallerOf_def by auto

then have "〈x,bu〉∈r" using R(2) by auto

with AS have "〈x,bu〉∈r" "〈x,cv〉∈r" using assms IsLinOrder_def

trans_def by(safe, blast)

}
moreover
{

assume AS:"〈bu,cv〉/∈r"
then have "SmallerOf(r,bu,cv)=cv" using SmallerOf_def by auto

then have "〈x,cv〉∈r" using R(2) by auto

from AS have "〈cv,bu〉∈r" using assms IsLinOrder_def IsTotal_def

assms by auto

with ‘〈x,cv〉∈r‘ have "〈x,cv〉∈r" "〈x,bu〉∈r" using assms IsLinOrder_def
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trans_def by(safe, blast)

}
ultimately have T:"〈x,cv〉∈r" "〈x,bu〉∈r" by auto

moreover
{

assume AS:"x=bu"

then have "〈bu,cv〉∈r" using T(1) by auto

then have "SmallerOf(r,bu,cv)=bu" using SmallerOf_def assms IsLinOrder_def

antisym_def by auto

with ‘x6=SmallerOf(r,bu,cv)‘ have "False" using AS by auto

}
moreover
{

assume AS:"x=cv"

then have "〈cv,bu〉∈r" using T(2) by auto

then have "SmallerOf(r,bu,cv)=cv" using SmallerOf_def assms IsLinOrder_def

antisym_def by auto

with ‘x6=SmallerOf(r,bu,cv)‘ have "False" using AS by auto

}
ultimately have "〈x,bu〉∈r" "〈x,cv〉∈r""x 6=bu""x 6=cv" by auto

}
with ‘x∈X‘ have "x∈ LeftRayX(X, r, bu) ∩ LeftRayX(X, r, cv)" us-

ing LeftRayX_def by auto

}
then show "LeftRayX(X, r, SmallerOf(r, bu, cv)) ⊆ LeftRayX(X, r, bu)

∩ LeftRayX(X, r, cv) " by auto

qed

lemma inter_rray_rray:

assumes "bu∈X""cv∈X""IsLinOrder(X,r)"
shows "RightRayX(X,r,bu)∩RightRayX(X,r,cv)=RightRayX(X,r,GreaterOf(r,bu,cv))"

proof
{

fix x

assume "x∈RightRayX(X,r,bu)∩RightRayX(X,r,cv)"
then have B:"x∈X""〈bu,x〉∈r""〈cv,x〉∈r""x 6=bu""x6=cv" using RightRayX_def

by auto

then have C:"〈GreaterOf(r,bu,cv),x〉∈r" using GreaterOf_def by (cases

"〈bu,cv〉∈r",auto)
from B have D:"x6=GreaterOf(r,bu,cv)" using GreaterOf_def by (cases

"〈bu,cv〉∈r",auto)
from B C D have "x∈RightRayX(X,r,GreaterOf(r,bu,cv))" using RightRayX_def

by auto

}
then show " RightRayX(X, r, bu) ∩ RightRayX(X, r, cv) ⊆ RightRayX(X,

r, GreaterOf(r, bu, cv))" by auto

{
fix x

assume "x∈RightRayX(X, r, GreaterOf(r, bu, cv))"
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then have R:"x∈X""〈GreaterOf(r,bu,cv),x〉∈r""x6=GreaterOf(r,bu,cv)"

using RightRayX_def by auto

{
{

assume AS:"〈bu,cv〉∈r"
then have "GreaterOf(r,bu,cv)=cv" using GreaterOf_def by auto

then have "〈cv,x〉∈r" using R(2) by auto

with AS have "〈bu,x〉∈r" "〈cv,x〉∈r" using assms IsLinOrder_def

trans_def by(safe, blast)

}
moreover
{

assume AS:"〈bu,cv〉/∈r"
then have "GreaterOf(r,bu,cv)=bu" using GreaterOf_def by auto

then have "〈bu,x〉∈r" using R(2) by auto

from AS have "〈cv,bu〉∈r" using assms IsLinOrder_def IsTotal_def

assms by auto

with ‘〈bu,x〉∈r‘ have "〈cv,x〉∈r" "〈bu,x〉∈r" using assms IsLinOrder_def

trans_def by(safe, blast)

}
ultimately have T:"〈cv,x〉∈r" "〈bu,x〉∈r" by auto

moreover
{

assume AS:"x=bu"

then have "〈cv,bu〉∈r" using T(1) by auto

then have "GreaterOf(r,bu,cv)=bu" using GreaterOf_def assms IsLinOrder_def

antisym_def by auto

with ‘x6=GreaterOf(r,bu,cv)‘ have "False" using AS by auto

}
moreover
{

assume AS:"x=cv"

then have "〈bu,cv〉∈r" using T(2) by auto

then have "GreaterOf(r,bu,cv)=cv" using GreaterOf_def assms IsLinOrder_def

antisym_def by auto

with ‘x6=GreaterOf(r,bu,cv)‘ have "False" using AS by auto

}
ultimately have "〈bu,x〉∈r" "〈cv,x〉∈r""x 6=bu""x 6=cv" by auto

}
with ‘x∈X‘ have "x∈ RightRayX(X, r, bu) ∩ RightRayX(X, r, cv) " us-

ing RightRayX_def by auto

}
then show "RightRayX(X, r, GreaterOf(r, bu, cv)) ⊆ RightRayX(X, r,

bu) ∩ RightRayX(X, r, cv)" by auto

qed

The open intervals and rays satisfy the base condition.

lemma intervals_rays_base_condition:

assumes "IsLinOrder(X,r)"
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shows "{IntervalX(X,r,b,c). 〈b,c〉∈X×X}∪{LeftRayX(X,r,b). b∈X}∪{RightRayX(X,r,b).
b∈X} {satisfies the base condition}"

proof-
let ?I="{IntervalX(X,r,b,c). 〈b,c〉∈X×X}"
let ?R="{RightRayX(X,r,b). b∈X}"
let ?L="{LeftRayX(X,r,b). b∈X}"
let ?B="{IntervalX(X,r,b,c). 〈b,c〉∈X×X}∪{LeftRayX(X,r,b). b∈X}∪{RightRayX(X,r,b).

b∈X}"
{

fix U V

assume A:"U∈?B""V∈?B"
then have dU:"U∈?I∨U∈?L∨U∈?R"and dV:"V∈?I∨V∈?L∨V∈?R" by auto

{
assume S:"V∈?I"
{

assume "U∈?I"
with S obtain bu cu bv cv where A:"U=IntervalX(X,r,bu,cu)""V=IntervalX(X,r,bv,cv)""bu∈X""cu∈X""bv∈X""cv∈X"

by auto

then have "SmallerOf(r,cu,cv)∈X""GreaterOf(r,bu,bv)∈X" by (cases

"〈cu,cv〉∈r",simp add:SmallerOf_def A,simp add:SmallerOf_def A,

cases "〈bu,bv〉∈r",simp add:GreaterOf_def A,simp add:GreaterOf_def

A)

with A have "U∩V∈?B" using inter_two_intervals assms by auto

}
moreover
{

assume "U∈?L"
with S obtain bu bv cv where A:"U=LeftRayX(X, r,bu)""V=IntervalX(X,r,bv,cv)""bu∈X""bv∈X""cv∈X"
by auto

then have "SmallerOf(r,bu,cv)∈X" using SmallerOf_def by (cases

"〈bu,cv〉∈r",auto)
with A have "U∩V∈?B" using inter_lray_interval assms by auto

}
moreover
{

assume "U∈?R"
with S obtain cu bv cv where A:"U=RightRayX(X,r,cu)""V=IntervalX(X,r,bv,cv)""cu∈X""bv∈X""cv∈X"
by auto

then have "GreaterOf(r,cu,bv)∈X" using GreaterOf_def by (cases

"〈cu,bv〉∈r",auto)
with A have "U∩V∈?B" using inter_rray_interval assms by auto

}
ultimately have "U∩V∈?B" using dU by auto

}
moreover
{

assume S:"V∈?L"
{

assume "U∈?I"
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with S obtain bu bv cv where A:"V=LeftRayX(X, r,bu)""U=IntervalX(X,r,bv,cv)""bu∈X""bv∈X""cv∈X"
by auto

then have "SmallerOf(r,bu,cv)∈X" using SmallerOf_def by (cases

"〈bu,cv〉∈r", auto)

have "U∩V=V∩U" by auto

with A ‘SmallerOf(r,bu,cv)∈X‘ have "U∩V∈?B" using inter_lray_interval

assms by auto

}
moreover
{

assume "U∈?R"
with S obtain bu cv where A:"V=LeftRayX(X,r,bu)""U=RightRayX(X,r,cv)""bu∈X""cv∈X"
by auto

have "U∩V=V∩U" by auto

with A have "U∩V∈?B" using inter_lray_rray assms by auto

}
moreover
{

assume "U∈?L"
with S obtain bu bv where A:"U=LeftRayX(X,r,bu)""V=LeftRayX(X,r,bv)""bu∈X""bv∈X"
by auto

then have "SmallerOf(r,bu,bv)∈X" using SmallerOf_def by (cases

"〈bu,bv〉∈r", auto)

with A have "U∩V∈?B" using inter_lray_lray assms by auto

}
ultimately have "U∩V∈?B" using dU by auto

}
moreover
{

assume S:"V∈?R"
{

assume "U∈?I"
with S obtain cu bv cv where A:"V=RightRayX(X,r,cu)""U=IntervalX(X,r,bv,cv)""cu∈X""bv∈X""cv∈X"
by auto

then have "GreaterOf(r,cu,bv)∈X" using GreaterOf_def by (cases

"〈cu,bv〉∈r",auto)
have "U∩V=V∩U" by auto

with A ‘GreaterOf(r,cu,bv)∈X‘ have "U∩V∈?B" using inter_rray_interval

assms by auto

}
moreover
{

assume "U∈?L"
with S obtain bu cv where A:"U=LeftRayX(X,r,bu)""V=RightRayX(X,r,cv)""bu∈X""cv∈X"
by auto

then have "U∩V∈?B" using inter_lray_rray assms by auto

}
moreover
{
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assume "U∈?R"
with S obtain cu cv where A:"U=RightRayX(X,r,cu)""V=RightRayX(X,r,cv)""cu∈X""cv∈X"
by auto

then have "GreaterOf(r,cu,cv)∈X" using GreaterOf_def by (cases

"〈cu,cv〉∈r",auto)
with A have "U∩V∈?B" using inter_rray_rray assms by auto

}
ultimately have "U∩V∈?B" using dU by auto

}
ultimately have S:"U∩V∈?B" using dV by auto

{
fix x

assume "x∈U∩V"
then have "x∈U∩V∧U∩V⊆U∩V" by auto

then have "∃ W. W∈(?B)∧ x∈W ∧ W ⊆ U∩V" using S by blast

then have "∃ W∈(?B). x∈W ∧ W ⊆ U∩V" by blast

}
hence "(∀ x ∈ U∩V. ∃ W∈(?B). x∈W ∧ W ⊆ U∩V)" by auto

}
then show ?thesis using SatisfiesBaseCondition_def by auto

qed

Since the intervals and rays form a base of a topology, and this topology is
uniquely determined; we can built it. In the definition we have to make sure
that we have a totally ordered set.

definition
OrderTopology ("OrdTopology _ _" 50) where
"IsLinOrder(X,r) =⇒ OrdTopology X r ≡ TopologyBase {IntervalX(X,r,b,c).

〈b,c〉∈X×X}∪{LeftRayX(X,r,b). b∈X}∪{RightRayX(X,r,b). b∈X}"

theorem Ordtopology_is_a_topology:

assumes "IsLinOrder(X,r)"

shows "(OrdTopology X r) {is a topology}" and "{IntervalX(X,r,b,c).

〈b,c〉∈X×X}∪{LeftRayX(X,r,b). b∈X}∪{RightRayX(X,r,b). b∈X} {is a base

for} (OrdTopology X r)"

using assms Base_topology_is_a_topology intervals_rays_base_condition

OrderTopology_def by auto

lemma topology0_ordtopology:

assumes "IsLinOrder(X,r)"

shows "topology0(OrdTopology X r)"

using Ordtopology_is_a_topology topology0_def assms by auto

56.10 Total set

The topology is defined in the set X, when X has more than one point

lemma union_ordtopology:
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assumes "IsLinOrder(X,r)""∃ x y. x6=y ∧ x∈X∧ y∈X"
shows "

⋃
(OrdTopology X r)=X"

proof
let ?B="{IntervalX(X,r,b,c). 〈b,c〉∈X×X}∪{LeftRayX(X,r,b). b∈X}∪{RightRayX(X,r,b).

b∈X}"
have base:"?B {is a base for} (OrdTopology X r)" using Ordtopology_is_a_topology(2)

assms(1)

by auto

from assms(2) obtain x y where T:"x 6=y ∧ x∈X∧ y∈X" by auto

then have B:"x∈LeftRayX(X,r,y)∨x∈RightRayX(X,r,y)" using LeftRayX_def

RightRayX_def

assms(1) IsLinOrder_def IsTotal_def by auto

then have "x∈
⋃
?B" using T by auto

then have x:"x∈
⋃
(OrdTopology X r)" using Top_1_2_L5 base by auto

{
fix z

assume z:"z∈X"
{

assume "x=z"

then have "z∈
⋃
(OrdTopology X r)" using x by auto

}
moreover
{

assume "x6=z"

with z T have "z∈LeftRayX(X,r,x)∨z∈RightRayX(X,r,x)""x∈X" using
LeftRayX_def RightRayX_def

assms(1) IsLinOrder_def IsTotal_def by auto

then have "z∈
⋃
?B" by auto

then have "z∈
⋃
(OrdTopology X r)" using Top_1_2_L5 base by auto

}
ultimately have "z∈

⋃
(OrdTopology X r)" by auto

}
then show "X⊆

⋃
(OrdTopology X r)" by auto

have "
⋃
?B⊆X" using IntervalX_def LeftRayX_def RightRayX_def by auto

then show "
⋃
(OrdTopology X r)⊆X" using Top_1_2_L5 base by auto

qed

The interior, closure and boundary can be calculated using the formulas
proved in the section that deals with the base.

The subspace of an order topology doesn’t have to be an order topology.

56.11 Right order and Left order topologies.

Notice that the left and right rays are closed under intersection, hence they
form a base of a topology. They are called right order topology and left
order topology respectively.

If the order in X has a minimal or a maximal element, is necessary to
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consider X as an element of the base or that limit point wouldn’t be in any
basic open set.

56.11.1 Right and Left Order topologies are topologies

lemma leftrays_base_condition:

assumes "IsLinOrder(X,r)"

shows "{LeftRayX(X,r,b). b∈X}∪{X} {satisfies the base condition}"

proof-
{

fix U V

assume "U∈{LeftRayX(X,r,b). b∈X}∪{X}""V∈{LeftRayX(X,r,b). b∈X}∪{X}"
then obtain b c where A:"(b∈X∧U=LeftRayX(X,r,b))∨U=X""(c∈X∧V=LeftRayX(X,r,c))∨V=X""U⊆X""V⊆X"
unfolding LeftRayX_def by auto

then have "(U∩V=LeftRayX(X,r,SmallerOf(r,b,c))∧b∈X∧c∈X)∨U∩V=X∨(U∩V=LeftRayX(X,r,c)∧c∈X)∨(U∩V=LeftRayX(X,r,b)∧b∈X)"
using inter_lray_lray assms by auto

moreover
have "b∈X∧c∈X −→ SmallerOf(r,b,c)∈X" unfolding SmallerOf_def by

(cases "〈b,c〉∈r",auto)
ultimately have "U∩V∈{LeftRayX(X,r,b). b∈X}∪{X}" by auto

hence "∀ x∈U∩V. ∃ W∈{LeftRayX(X,r,b). b∈X}∪{X}. x∈W∧W⊆U∩V" by blast

}
moreover
then show ?thesis using SatisfiesBaseCondition_def by auto

qed

lemma rightrays_base_condition:

assumes "IsLinOrder(X,r)"

shows "{RightRayX(X,r,b). b∈X}∪{X} {satisfies the base condition}"

proof-
{

fix U V

assume "U∈{RightRayX(X,r,b). b∈X}∪{X}""V∈{RightRayX(X,r,b). b∈X}∪{X}"
then obtain b c where A:"(b∈X∧U=RightRayX(X,r,b))∨U=X""(c∈X∧V=RightRayX(X,r,c))∨V=X""U⊆X""V⊆X"
unfolding RightRayX_def by auto

then have "(U∩V=RightRayX(X,r,GreaterOf(r,b,c))∧b∈X∧c∈X)∨U∩V=X∨(U∩V=RightRayX(X,r,c)∧c∈X)∨(U∩V=RightRayX(X,r,b)∧b∈X)"

using inter_rray_rray assms by auto

moreover
have "b∈X∧c∈X −→ GreaterOf(r,b,c)∈X" using GreaterOf_def by (cases

"〈b,c〉∈r",auto)
ultimately have "U∩V∈{RightRayX(X,r,b). b∈X}∪{X}" by auto

hence "∀ x∈U∩V. ∃ W∈{RightRayX(X,r,b). b∈X}∪{X}. x∈W∧W⊆U∩V" by blast

}
then show ?thesis using SatisfiesBaseCondition_def by auto

qed

definition
LeftOrderTopology ("LOrdTopology _ _" 50) where
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"IsLinOrder(X,r) =⇒ LOrdTopology X r ≡ TopologyBase {LeftRayX(X,r,b).

b∈X}∪{X}"

definition
RightOrderTopology ("ROrdTopology _ _" 50) where
"IsLinOrder(X,r) =⇒ ROrdTopology X r ≡ TopologyBase {RightRayX(X,r,b).

b∈X}∪{X}"

theorem LOrdtopology_ROrdtopology_are_topologies:

assumes "IsLinOrder(X,r)"

shows "(LOrdTopology X r) {is a topology}" and "{LeftRayX(X,r,b). b∈X}∪{X}
{is a base for} (LOrdTopology X r)"

and "(ROrdTopology X r) {is a topology}" and "{RightRayX(X,r,b). b∈X}∪{X}
{is a base for} (ROrdTopology X r)"

using Base_topology_is_a_topology leftrays_base_condition assms rightrays_base_condition

LeftOrderTopology_def RightOrderTopology_def by auto

lemma topology0_lordtopology_rordtopology:

assumes "IsLinOrder(X,r)"

shows "topology0(LOrdTopology X r)" and "topology0(ROrdTopology X

r)"

using LOrdtopology_ROrdtopology_are_topologies topology0_def assms by
auto

56.11.2 Total set

The topology is defined on the set X

lemma union_lordtopology_rordtopology:

assumes "IsLinOrder(X,r)"

shows "
⋃
(LOrdTopology X r)=X" and "

⋃
(ROrdTopology X r)=X"

using Top_1_2_L5[OF LOrdtopology_ROrdtopology_are_topologies(2)[OF assms]]

Top_1_2_L5[OF LOrdtopology_ROrdtopology_are_topologies(4)[OF assms]]

unfolding LeftRayX_def RightRayX_def by auto

56.12 Union of Topologies

The union of two topologies is not a topology. A way to overcome this fact
is to define the following topology:

definition
joinT ("joinT _" 90) where
"(∀ T∈M. T{is a topology} ∧ (∀ Q∈M.

⋃
Q=
⋃
T)) =⇒ (joinT M ≡ THE T.

(
⋃
M){is a subbase for} T)"

First let’s proof that given a family of sets, then it is a subbase for a topology.

The first result states that from any family of sets we get a base using finite
intersections of them. The second one states that any family of sets is a
subbase of some topology.
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theorem subset_as_subbase:

shows "{
⋂
A. A ∈ FinPow(B)} {satisfies the base condition}"

proof-
{

fix U V

assume A:"U∈{
⋂
A. A ∈ FinPow(B)} ∧ V∈{

⋂
A. A ∈ FinPow(B)}"

then obtain M R where MR:"Finite(M)""Finite(R)""M⊆B""R⊆B"
"U=
⋂
M""V=

⋂
R"

using FinPow_def by auto

{
fix x

assume AS:"x∈U∩V"
then have N:"M6=0""R6=0" using MR(5,6) by auto

have "Finite(M ∪R)" using MR(1,2) by auto

moreover
have "M ∪ R∈Pow(B)" using MR(3,4) by auto

ultimately have "M∪R∈FinPow(B)" using FinPow_def by auto

then have "
⋂
(M∪R)∈{

⋂
A. A ∈ FinPow(B)}" by auto

moreover
from N have "

⋂
(M∪R)⊆

⋂
M""
⋂
(M∪R)⊆

⋂
R" by auto

then have "
⋂
(M∪R)⊆U∩V" using MR(5,6) by auto

moreover
{

fix S

assume "S∈M ∪ R"

then have "S∈M∨S∈R" by auto

then have "x∈S" using AS MR(5,6) by auto

}
then have "x∈

⋂
(M ∪ R)" using N by auto

ultimately have "∃ W∈{
⋂
A. A ∈ FinPow(B)}. x∈W∧W⊆U∩V" by blast

}
then have "(∀ x ∈ U∩V. ∃ W∈{

⋂
A. A ∈ FinPow(B)}. x∈W ∧ W ⊆ U∩V)"

by auto

}
then have "∀ U V. ((U∈{

⋂
A. A ∈ FinPow(B)} ∧ V∈{

⋂
A. A ∈ FinPow(B)})

−→
(∀ x ∈ U∩V. ∃ W∈{

⋂
A. A ∈ FinPow(B)}. x∈W ∧ W ⊆ U∩V))" by auto

then show "{
⋂
A. A ∈ FinPow(B)} {satisfies the base condition}"

using SatisfiesBaseCondition_def by auto

qed

theorem Top_subbase:

assumes "T = {
⋃
A. A∈Pow({

⋂
A. A ∈ FinPow(B)})}"

shows "T {is a topology}" and "B {is a subbase for} T"

proof-
{

fix S

assume "S∈B"
then have "{S}∈FinPow(B)""

⋂
{S}=S" using FinPow_def by auto
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then have "{S}∈Pow({
⋂
A. A ∈ FinPow(B)})" by (blast+)

then have "
⋃
{S}∈{

⋃
A. A∈Pow({

⋂
A. A ∈ FinPow(B)})}" by blast

then have "S∈{
⋃
A. A∈Pow({

⋂
A. A ∈ FinPow(B)})}" by auto

then have "S∈T" using assms by auto

}
then have "B⊆T" by auto

moreover
have "{

⋂
A. A ∈ FinPow(B)} {satisfies the base condition}"

using subset_as_subbase by auto

then have "T {is a topology}" and "{
⋂
A. A ∈ FinPow(B)} {is a base

for} T"

using Top_1_2_T1 assms by auto

ultimately show "T {is a topology}" and "B{is a subbase for}T"

using IsAsubBaseFor_def by auto

qed

A subbase defines a unique topology.

theorem same_subbase_same_top:

assumes "B {is a subbase for} T" and "B {is a subbase for} S"

shows "T = S"

using IsAsubBaseFor_def assms same_base_same_top

by auto

end

57 Properties in Topology

theory Topology_ZF_properties imports Topology_ZF_examples Topology_ZF_examples_1

begin

This theory deals with topological properties which make use of cardinals.

57.1 Properties of compactness

It is already defined what is a compact topological space, but the is a gen-
eralization which may be useful sometimes.

definition
IsCompactOfCard ("_{is compact of cardinal}_ {in}_" 90)

where "K{is compact of cardinal} Q{in}T ≡ (Card(Q) ∧ K ⊆
⋃
T ∧

(∀ M∈Pow(T). K ⊆
⋃
M −→ (∃ N ∈ Pow(M). K ⊆

⋃
N ∧ N≺Q)))"

The usual compact property is the one defined over the cardinal of the
natural numbers.

lemma Compact_is_card_nat:

shows "K{is compact in}T ←→ (K{is compact of cardinal} nat {in}T)"

proof
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{
assume "K{is compact in}T"

then have sub:"K ⊆
⋃
T" and reg:"(∀ M∈Pow(T). K ⊆

⋃
M −→ (∃ N

∈ FinPow(M). K ⊆
⋃
N))"

using IsCompact_def by auto

{
fix M

assume "M∈Pow(T)""K⊆
⋃
M"

with reg obtain N where "N∈FinPow(M)" "K⊆
⋃
N" by blast

then have "Finite(N)" using FinPow_def by auto

then obtain n where A:"n∈nat""N ≈n" using Finite_def by auto

from A(1) have "n≺nat" using n_lesspoll_nat by auto

with A(2) have "N.nat" using lesspoll_def eq_lepoll_trans by auto

moreover
{

assume "N ≈nat"
then have "nat ≈ N" using eqpoll_sym by auto

with A(2) have "nat ≈n" using eqpoll_trans by blast

then have "n ≈nat" using eqpoll_sym by auto

with ‘n≺nat‘ have "False" using lesspoll_def by auto

}
then have "~(N ≈nat)" by auto

with calculation ‘K⊆
⋃
N‘‘N∈FinPow(M)‘ have "N≺nat""K⊆

⋃
N""N∈Pow(M)"

using lesspoll_def

FinPow_def by auto

hence "(∃ N ∈ Pow(M). K ⊆
⋃
N ∧ N≺nat)" by auto

}
with sub show "K{is compact of cardinal} nat {in}T" using IsCompactOfCard_def

Card_nat by auto

}
{

assume "(K{is compact of cardinal} nat {in}T)"

then have sub:"K⊆
⋃
T" and reg:"(∀ M∈Pow(T). K ⊆

⋃
M −→ (∃ N ∈

Pow(M). K ⊆
⋃
N ∧ N≺nat))"

using IsCompactOfCard_def by auto

{
fix M

assume "M∈Pow(T)""K⊆
⋃
M"

with reg have "(∃ N ∈ Pow(M). K ⊆
⋃
N ∧ N≺nat)" by auto

then obtain N where "N∈Pow(M)""K⊆
⋃
N""N≺nat" by blast

then have "N∈FinPow(M)""K⊆
⋃
N" using lesspoll_nat_is_Finite FinPow_def

by auto

hence "∃ N∈FinPow(M). K⊆
⋃
N" by auto

}
with sub show "K{is compact in}T" using IsCompact_def by auto

}
qed

Another property of this kind widely used is the Lindeloef property; it is
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the one on the successor of the natural numbers.

definition
IsLindeloef ("_{is lindeloef in}_" 90) where
"K {is lindeloef in} T≡K{is compact of cardinal}csucc(nat){in}T"

It would be natural to think that every countable set with any topology is
Lindeloef; but this statement is not provable in ZF. The reason is that to
build a subcover, most of the time we need to choose sets from an infinite
collection which cannot be done in ZF. Additional axioms are needed, but
strictly weaker than the axiom of choice.

However, if the topology has not many open sets, then the topological space
is indeed compact.

theorem card_top_comp:

assumes "Card(Q)" "T≺Q" "K⊆
⋃
T"

shows "(K){is compact of cardinal}Q{in}T"

proof-
{

fix M assume M:"M⊆T" "K⊆
⋃
M"

from M(1) assms(2) have "M≺Q" using subset_imp_lepoll lesspoll_trans1

by blast

with M(2) have "∃ N∈Pow(M). K⊆
⋃
N ∧ N≺Q" by auto

}
with assms(1,3) show ?thesis unfolding IsCompactOfCard_def by auto

qed

The union of two compact sets, is compact; of any cardinality.

theorem union_compact:

assumes "K{is compact of cardinal}Q{in}T" "K1{is compact of cardinal}Q{in}T"

"InfCard(Q)"

shows "(K ∪ K1){is compact of cardinal}Q{in}T" unfolding IsCompactOfCard_def

proof(safe)
from assms(1) show "Card(Q)" unfolding IsCompactOfCard_def by auto

fix x assume "x∈K" then show "x∈
⋃
T" using assms(1) unfolding IsCompactOfCard_def

by blast

next
fix x assume "x∈K1" then show "x∈

⋃
T" using assms(2) unfolding IsCompactOfCard_def

by blast

next
fix M assume "M⊆T" "K∪K1⊆

⋃
M"

then have "K⊆
⋃
M""K1⊆

⋃
M" by auto

with ‘M⊆T‘ have "∃ N∈Pow(M). K ⊆
⋃
N ∧ N ≺ Q""∃ N∈Pow(M). K1 ⊆

⋃
N

∧ N ≺ Q" using assms unfolding IsCompactOfCard_def

by auto

then obtain NK NK1 where "NK∈Pow(M)""NK1∈Pow(M)""K ⊆
⋃
NK""K1 ⊆

⋃
NK1""NK

≺ Q""NK1 ≺ Q" by auto

then have "NK∪NK1 ≺ Q""K∪K1⊆
⋃
(NK∪NK1)""NK∪NK1∈Pow(M)" using assms(3)

less_less_imp_un_less by auto
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then show "∃ N∈Pow(M). K∪K1⊆
⋃
N ∧ N≺Q" by auto

qed

If a set is compact of cardinality Q for some topology, it is compact of car-
dinality Q for every coarser topology.

theorem compact_coarser:

assumes "T1⊆T" and "
⋃
T1=
⋃
T" and "(K){is compact of cardinal}Q{in}T"

shows "(K){is compact of cardinal}Q{in}T1"

proof-
{

fix M

assume AS:"M∈Pow(T1)""K⊆
⋃
M"

then have "M∈Pow(T)""K⊆
⋃
M" using assms(1) by auto

then have "∃ N∈Pow(M).K⊆
⋃
N∧N≺Q" using assms(3) unfolding IsCompactOfCard_def

by auto

}
then show "(K){is compact of cardinal}Q{in}T1" using assms(3,2) un-

folding IsCompactOfCard_def by auto

qed

If some set is compact for some cardinal, it is compact for any greater
cardinal.

theorem compact_greater_card:

assumes "Q.Q1" and "(K){is compact of cardinal}Q{in}T" and "Card(Q1)"

shows "(K){is compact of cardinal}Q1{in}T"

proof-
{

fix M

assume AS: "M∈Pow(T)""K⊆
⋃
M"

then have "∃ N∈Pow(M).K⊆
⋃
N∧N≺Q" using assms(2) unfolding IsCompactOfCard_def

by auto

then have "∃ N∈Pow(M).K⊆
⋃
N∧N≺Q1" using assms(1) lesspoll_trans2

unfolding IsCompactOfCard_def by auto

}
then show ?thesis using assms(2,3) unfolding IsCompactOfCard_def by

auto

qed

A closed subspace of a compact space of any cardinality, is also compact of
the same cardinality.

theorem compact_closed:

assumes "K {is compact of cardinal} Q {in} T"

and "R {is closed in} T"

shows "(K∩R) {is compact of cardinal} Q {in} T"

proof-
{

fix M

assume AS:"M∈Pow(T)""K∩R⊆
⋃
M"
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have "
⋃
T-R∈T" using assms(2) IsClosed_def by auto

have "K-R⊆(
⋃
T-R)" using assms(1) IsCompactOfCard_def by auto

with ‘
⋃
T-R∈T‘ have "K⊆

⋃
(M ∪{

⋃
T-R})" and "M ∪{

⋃
T-R}∈Pow(T)"

proof (safe)

{
fix x

assume "x∈M"
with AS(1) show "x∈T" by auto

}
{

fix x

assume "x∈K"
have "x∈R∨x/∈R" by auto

with ‘x∈K‘ have "x∈K∩R∨x∈K-R" by auto

with AS(2) ‘K-R⊆(
⋃
T-R)‘ have "x∈

⋃
M∨x∈(

⋃
T-R)" by auto

then show "x∈
⋃
(M ∪{

⋃
T-R})" by auto

}
qed
with assms(1) have "∃ N∈Pow(M∪{

⋃
T-R}). K ⊆

⋃
N ∧ N ≺ Q" unfold-

ing IsCompactOfCard_def by auto

then obtain N where cub:"N∈Pow(M∪{
⋃
T-R})" "K⊆

⋃
N" "N≺Q" by auto

have "N-{
⋃
T-R}∈Pow(M)""K∩R⊆

⋃
(N-{

⋃
T-R})" "N-{

⋃
T-R}≺Q"

proof (safe)

{
fix x

assume "x∈N""x/∈M"
then show "x=

⋃
T-R" using cub(1) by auto

}
{

fix x

assume "x∈K""x∈R"
then have "x/∈

⋃
T-R""x∈K" by auto

then show "x∈
⋃
(N-{

⋃
T-R})" using cub(2) by blast

}
have "N-{

⋃
T-R}⊆N" by auto

with cub(3) show "N-{
⋃
T-R}≺Q" using subset_imp_lepoll lesspoll_trans1

by blast

qed
then have "∃ N∈Pow(M). K∩R⊆

⋃
N ∧ N≺Q" by auto

}
then have "∀ M∈Pow(T). (K ∩ R ⊆

⋃
M −→ (∃ N∈Pow(M). K ∩ R ⊆

⋃
N ∧

N ≺ Q))" by auto

then show ?thesis using IsCompactOfCard_def assms(1) by auto

qed

57.2 Properties of numerability

The properties of numerability deal with cardinals of some sets built from
the topology. The properties which are normally used are the ones related
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to the cardinal of the natural numbers or its successor.

definition
IsFirstOfCard ("_ {is of first type of cardinal}_" 90) where
"(T {is of first type of cardinal} Q) ≡ ∀ x∈

⋃
T. (∃ B. (B {is a base

for} T) ∧ ({b∈B. x∈b} ≺ Q))"

definition
IsSecondOfCard ("_ {is of second type of cardinal}_" 90) where
"(T {is of second type of cardinal}Q) ≡ (∃ B. (B {is a base for} T)

∧ (B ≺ Q))"

definition
IsSeparableOfCard ("_{is separable of cardinal}_" 90) where
"T{is separable of cardinal}Q≡ ∃ U∈Pow(

⋃
T). Closure(U,T)=

⋃
T ∧ U≺Q"

definition
IsFirstCountable ("_ {is first countable}" 90) where
"(T {is first countable}) ≡ T {is of first type of cardinal} csucc(nat)"

definition
IsSecondCountable ("_ {is second countable}" 90) where
"(T {is second countable}) ≡ (T {is of second type of cardinal}csucc(nat))"

definition
IsSeparable ("_{is separable}" 90) where
"T{is separable}≡ T{is separable of cardinal}csucc(nat)"

If a set is of second type of cardinal Q, then it is of first type of that same
cardinal.

theorem second_imp_first:

assumes "T{is of second type of cardinal}Q"

shows "T{is of first type of cardinal}Q"

proof-
from assms have "∃ B. (B {is a base for} T) ∧ (B ≺ Q)" using IsSecondOfCard_def

by auto

then obtain B where base:"(B {is a base for} T) ∧ (B ≺ Q)" by auto

{
fix x

assume "x∈
⋃
T"

have "{b∈B. x∈b}⊆B" by auto

then have "{b∈B. x∈b}.B" using subset_imp_lepoll by auto

with base have "{b∈B. x∈b}≺Q" using lesspoll_trans1 by auto

with base have "(B {is a base for} T) ∧ {b∈B. x∈b}≺Q" by auto

}
then have "∀ x∈

⋃
T. ∃ B. (B {is a base for} T) ∧ {b∈B. x∈b}≺Q" by auto

then show ?thesis using IsFirstOfCard_def by auto

qed

A set is dense iff it intersects all non-empty, open sets of the topology.
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lemma dense_int_open:

assumes "T{is a topology}" and "A⊆
⋃
T"

shows "Closure(A,T)=
⋃
T ←→ (∀ U∈T. U6=0 −→ A∩U 6=0)"

proof
assume AS:"Closure(A,T)=

⋃
T"

{
fix U

assume Uopen:"U∈T" and "U 6=0"

then have "U∩
⋃
T6=0" by auto

with AS have "U∩Closure(A,T) 6=0" by auto

with assms Uopen have "U∩A6=0" using topology0.cl_inter_neigh topology0_def

by blast

}
then show "∀ U∈T. U6=0 −→ A∩U6=0" by auto

next
assume AS:"∀ U∈T. U6=0 −→ A∩U 6=0"

{
fix x

assume A:"x∈
⋃
T"

then have "∀ U∈T. x∈U −→ U∩A6=0" using AS by auto

with assms A have "x∈Closure(A,T)" using topology0.inter_neigh_cl

topology0_def by auto

}
then have "

⋃
T⊆Closure(A,T)" by auto

with assms show "Closure(A,T)=
⋃
T" using topology0.Top_3_L11(1) topology0_def

by blast

qed

57.3 Relations between numerability properties and choice
principles

It is known that some statements in topology aren’t just derived from choice
axioms, but also equivalent to them. Here is an example

The following are equivalent:

� Every topological space of second cardinality csucc(Q) is separable of
cardinality csucc(Q).

� The axiom of Q choice.

In the article [4] there is a proof of this statement for Q= N, with more
equivalences.

If a topology is of second type of cardinal csucc(Q), then it is separable of
the same cardinal. This result makes use of the axiom of choice for the
cardinal Q on subsets of

⋃
T.

theorem Q_choice_imp_second_imp_separable:

assumes "T{is of second type of cardinal}csucc(Q)"
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and "{the axiom of} Q {choice holds for subsets}
⋃
T"

and "T{is a topology}"

shows "T{is separable of cardinal}csucc(Q)"

proof-
from assms(1) have "∃ B. (B {is a base for} T) ∧ (B ≺ csucc(Q))" us-

ing IsSecondOfCard_def by auto

then obtain B where base:"(B {is a base for} T) ∧ (B ≺ csucc(Q))"

by auto

let ?N="λb∈B. b"

let ?B="B-{0}"

have "B-{0}⊆B" by auto

with base have prec:"B-{0}≺csucc(Q)" using subset_imp_lepoll lesspoll_trans1

by blast

from base have baseOpen:"∀ b∈B. ?N‘b∈T" using base_sets_open by auto

from assms(2) have car:"Card(Q)" and reg:"(∀ M N. (M .Q ∧ (∀ t∈M.
N‘t6=0 ∧ N‘t⊆

⋃
T)) −→ (∃ f. f:Pi(M,λt. N‘t) ∧ (∀ t∈M. f‘t∈N‘t)))"

using AxiomCardinalChoice_def by auto

then have "(?B .Q ∧ (∀ t∈?B. ?N‘t6=0 ∧ ?N‘t⊆
⋃
T)) −→ (∃ f. f:Pi(?B,λt.

?N‘t) ∧ (∀ t∈?B. f‘t∈?N‘t))" by blast

with prec have "(∀ t∈?B. ?N‘t⊆
⋃
T) −→ (∃ f. f:Pi(?B,λt. ?N‘t) ∧ (∀ t∈?B.

f‘t∈?N‘t))" using Card_less_csucc_eq_le car by auto

with baseOpen have "∃ f. f:Pi(?B,λt. ?N‘t) ∧ (∀ t∈?B. f‘t∈?N‘t)" by
blast

then obtain f where f:"f:Pi(?B,λt. ?N‘t)" and f2:"∀ t∈?B. f‘t∈?N‘t"
by auto

{
fix U

assume "U∈T" and "U 6=0"

then obtain b where A1:"b∈B-{0}" and "b⊆U" using Top_1_2_L1 base

by blast

with f2 have "f‘b∈U" by auto

with A1 have "{f‘b. b∈?B}∩U6=0" by auto

}
then have r:"∀ U∈T. U6=0 −→ {f‘b. b∈?B}∩U6=0" by auto

have "{f‘b. b∈?B}⊆
⋃
T" using f2 baseOpen by auto

moreover
with r have "Closure({f‘b. b∈?B},T)=

⋃
T" using dense_int_open assms(3)

by auto

moreover
have ffun:"f:?B→range(f)" using f range_of_fun by auto

then have "f∈surj(?B,range(f))" using fun_is_surj by auto

then have des1:"range(f).?B" using surj_fun_inv_2[of "f""?B""range(f)""Q"]

prec Card_less_csucc_eq_le car

Card_is_Ord by auto

then have "{f‘b. b∈?B}⊆range(f)" using apply_rangeI[OF ffun] by auto

then have "{f‘b. b∈?B}.range(f)" using subset_imp_lepoll by auto

with des1 have "{f‘b. b∈?B}.?B" using lepoll_trans by blast

with prec have "{f‘b. b∈?B}≺csucc(Q)" using lesspoll_trans1 by auto

ultimately show ?thesis using IsSeparableOfCard_def by auto
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qed

The next theorem resolves that the axiom of Q choice for subsets of
⋃
T

is necessary for second type spaces to be separable of the same cardinal
csucc(Q).

theorem second_imp_separable_imp_Q_choice:

assumes "∀ T. (T{is a topology} ∧ (T{is of second type of cardinal}csucc(Q)))

−→ (T{is separable of cardinal}csucc(Q))"

and "Card(Q)"

shows "{the axiom of} Q {choice holds}"

proof-
{

fix N M

assume AS:"M .Q ∧ (∀ t∈M. N‘t6=0)"

then obtain h where inj:"h∈inj(M,Q)" using lepoll_def by auto

then have bij:"converse(h):bij(range(h),M)" using inj_bij_range bij_converse_bij

by auto

let ?T="{(N‘(converse(h)‘i))×{i}. i∈range(h)}"
{

fix j

assume AS2:"j∈range(h)"
from bij have "converse(h):range(h)→M" using bij_def inj_def by

auto

with AS2 have "converse(h)‘j∈M" by simp

with AS have "N‘(converse(h)‘j)6=0" by auto

then have "(N‘(converse(h)‘j))×{j}6=0" by auto

}
then have noEmpty:"0/∈?T" by auto

moreover
{

fix A B

assume AS2:"A∈?T""B∈?T""A∩B 6=0"

then obtain j t where A_def:"A=N‘(converse(h)‘j)×{j}" and B_def:"B=N‘(converse(h)‘t)×{t}"
and Range:"j∈range(h)" "t∈range(h)" by auto

from AS2(3) obtain x where "x∈A∩B" by auto

with A_def B_def have "j=t" by auto

with A_def B_def have "A=B" by auto

}
then have "(∀ A∈?T. ∀ B∈?T. A=B∨ A∩B=0)" by auto

ultimately
have Part:"?T {is a partition of}

⋃
?T" unfolding IsAPartition_def

by auto

let ?τ="PTopology
⋃
?T ?T"

from Part have top:"?τ {is a topology}" and base:"?T {is a base for}?τ"
using Ptopology_is_a_topology by auto

let ?f="{〈i,(N‘(converse(h)‘i))×{i}〉. i∈range(h)}"
have "?f:range(h)→?T" using functionI[of "?f"] Pi_def by auto

then have "?f∈surj(range(h),?T)" unfolding surj_def using apply_equality
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by auto

moreover
have "range(h)⊆Q" using inj unfolding inj_def range_def domain_def

Pi_def by auto

ultimately have "?T. Q" using surj_fun_inv[of "?f""range(h)""?T""Q"]

assms(2) Card_is_Ord lepoll_trans

subset_imp_lepoll by auto

then have "?T≺csucc(Q)" using Card_less_csucc_eq_le assms(2) by
auto

with base have "(?τ{is of second type of cardinal}csucc(Q))" using
IsSecondOfCard_def by auto

with top have "?τ{is separable of cardinal}csucc(Q)" using assms(1)

by auto

then obtain D where sub:"D∈Pow(
⋃
?τ)" and clos:"Closure(D,?τ)=

⋃
?τ"

and cardd:"D≺csucc(Q)"
using IsSeparableOfCard_def by auto

then have "D.Q" using Card_less_csucc_eq_le assms(2) by auto

then obtain r where r:"r∈inj(D,Q)" using lepoll_def by auto

then have bij2:"converse(r):bij(range(r),D)" using inj_bij_range

bij_converse_bij by auto

then have surj2:"converse(r):surj(range(r),D)" using bij_def by auto

let ?R="λi∈range(h). {j∈range(r). converse(r)‘j∈((N‘(converse(h)‘i))×{i})}"
{

fix i

assume AS:"i∈range(h)"
then have T:"(N‘(converse(h)‘i))×{i}∈?T" by auto

then have op:"(N‘(converse(h)‘i))×{i}∈?τ" using base unfolding
IsAbaseFor_def by blast

with top sub clos have "∀ U∈?τ. U6=0 −→ D∩U6=0" using dense_int_open

by auto

with op have "(N‘(converse(h)‘i))×{i}6=0 −→ D∩(N‘(converse(h)‘i))×{i}6=0"

by auto

with T noEmpty have "D∩(N‘(converse(h)‘i))×{i}6=0" by auto

then obtain x where "x∈D" and px:"x∈(N‘(converse(h)‘i))×{i}"
by auto

with surj2 obtain j where "j∈range(r)" and "converse(r)‘j=x" un-
folding surj_def by blast

with px have "j∈{j∈range(r). converse(r)‘j∈((N‘(converse(h)‘i))×{i})}"
by auto

then have "?R‘i 6=0" using beta_if[of "range(h)" _ i] AS by auto

}
then have nonE:"∀ i∈range(h). ?R‘i6=0" by auto

{
fix i j

assume i:"i∈range(h)" and j:"j∈?R‘i"
from j i have "converse(r)‘j∈((N‘(converse(h)‘i))×{i})" using beta_if

by auto

}
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then have pp:"∀ i∈range(h). ∀ j∈?R‘i. converse(r)‘j∈((N‘(converse(h)‘i))×{i})"
by auto

let ?E="{〈m,fst(converse(r)‘(µ j. j∈?R‘(h‘m)))〉. m∈M}"
have ff:"function(?E)" unfolding function_def by auto

moreover

{
fix m

assume M:"m∈M"
with inj have hm:"h‘m∈range(h)" using apply_rangeI inj_def by auto

{
fix j

assume "j∈?R‘(h‘m)"
with hm have "j∈range(r)" using beta_if by auto

from r have "r:surj(D,range(r))" using fun_is_surj inj_def by
auto

with ‘j∈range(r)‘ obtain d where "d∈D" and "r‘d=j" using surj_def

by auto

then have "j∈Q" using r inj_def by auto

}
then have subcar:"?R‘(h‘m)⊆Q" by blast

from nonE hm obtain ee where P:"ee∈?R‘(h‘m)" by blast

with subcar have "ee∈Q" by auto

then have "Ord(ee)" using assms(2) Card_is_Ord Ord_in_Ord by auto

with P have "(µ j. j∈?R‘(h‘m))∈?R‘(h‘m)" using LeastI[where i=ee

and P="λj. j∈?R‘(h‘m)"]
by auto

with pp hm have "converse(r)‘(µ j. j∈?R‘(h‘m))∈((N‘(converse(h)‘(h‘m)))×{(h‘m)})"
by auto

then have "converse(r)‘(µ j. j∈?R‘(h‘m))∈((N‘(m))×{(h‘m)})" us-
ing left_inverse[OF inj M]

by simp

then have "fst(converse(r)‘(µ j. j∈?R‘(h‘m)))∈(N‘(m))" by auto

}
ultimately have thesis1:"∀ m∈M. ?E‘m∈(N‘(m))" using function_apply_equality

by auto

{
fix e

assume "e∈?E"
then obtain m where "m∈M" and "e=〈m,?E‘m〉" using function_apply_equality

ff by auto

with thesis1 have "e∈Sigma(M,λt. N‘t)" by auto

}
then have "?E∈Pow(Sigma(M,λt. N‘t))" by auto

with ff have "?E∈Pi(M,λm. N‘m)" using Pi_iff by auto

then have "(∃ f. f:Pi(M,λt. N‘t) ∧ (∀ t∈M. f‘t∈N‘t))" using thesis1

by auto

}
then show ?thesis using AxiomCardinalChoiceGen_def assms(2) by auto
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qed

Here is the equivalence from the two previous results.

theorem Q_choice_eq_secon_imp_sepa:

assumes "Card(Q)"

shows "(∀ T. (T{is a topology} ∧ (T{is of second type of cardinal}csucc(Q)))

−→ (T{is separable of cardinal}csucc(Q)))

←→({the axiom of} Q {choice holds})"

using Q_choice_imp_second_imp_separable choice_subset_imp_choice

using second_imp_separable_imp_Q_choice assms by auto

Given a base injective with a set, then we can find a base whose elements
are indexed by that set.

lemma base_to_indexed_base:

assumes "B .Q" "B {is a base for}T"

shows "∃ N. {N‘i. i∈Q}{is a base for}T"

proof-
from assms obtain f where f_def:"f∈inj(B,Q)" unfolding lepoll_def by

auto

let ?ff="{〈b,f‘b〉. b∈B}"
have "domain(?ff)=B" by auto

moreover
have "relation(?ff)" unfolding relation_def by auto

moreover
have "function(?ff)" unfolding function_def by auto

ultimately
have fun:"?ff:B→range(?ff)" using function_imp_Pi[of "?ff"] by auto

then have injj:"?ff∈inj(B,range(?ff))" unfolding inj_def

proof
{

fix w x

assume AS:"w∈B""x∈B""{〈b, f ‘ b〉 . b ∈ B} ‘ w = {〈b, f ‘ b〉 . b

∈ B} ‘ x"

then have "f‘w=f‘x" using apply_equality[OF _ fun] by auto

then have "w=x" using f_def inj_def AS(1,2) by auto

}
then show "∀ w∈B. ∀ x∈B. {〈b, f ‘ b〉 . b ∈ B} ‘ w = {〈b, f ‘ b〉 . b

∈ B} ‘ x −→ w = x" by auto

qed
then have bij:"?ff∈bij(B,range(?ff))" using inj_bij_range by auto

from fun have "range(?ff)={f‘b. b∈B}" by auto

with f_def have ran:"range(?ff)⊆Q" using inj_def by auto

let ?N="{〈i,(if i∈range(?ff) then converse(?ff)‘i else 0)〉. i∈Q}"
have FN:"function(?N)" unfolding function_def by auto

have "B ⊆{?N‘i. i∈Q}"
proof

fix t

assume a:"t∈B"
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from bij have rr:"?ff:B→range(?ff)" unfolding bij_def inj_def by
auto

have ig:"?ff‘t=f‘t" using a apply_equality[OF _ rr] by auto

have r:"?ff‘t∈range(?ff)" using apply_type[OF rr a].
from ig have t:"?ff‘t∈Q" using apply_type[OF _ a] f_def unfolding

inj_def by auto

with r have "?N‘(?ff‘t)=converse(?ff)‘(?ff‘t)" using function_apply_equality[OF

_ FN] by auto

then have "?N‘(?ff‘t)=t" using left_inverse[OF injj a] by auto

then have "t=?N‘(?ff‘t)" by auto

then have "∃ i∈Q. t=?N‘i" using t(1) by auto

then show "t∈{?N‘i. i∈Q}" by simp

qed
moreover
have "∀ r∈{?N‘i. i∈Q}-B. r=0"

proof
fix r

assume "r∈{?N‘i. i∈Q}-B"
then obtain j where R:"j∈Q""r=?N‘j""r/∈B" by auto

{
assume AS:"j∈range(?ff)"
with R(1) have "?N‘j=converse(?ff)‘j" using function_apply_equality[OF

_ FN] by auto

then have "?N‘j∈B" using apply_funtype[OF inj_is_fun[OF bij_is_inj[OF

bij_converse_bij[OF bij]]] AS]

by auto

then have "False" using R(3,2) by auto

}
then have "j/∈range(?ff)" by auto

then show "r=0" using function_apply_equality[OF _ FN] R(1,2) by
auto

qed
ultimately have "{?N‘i. i∈Q}=B∨{?N‘i. i∈Q}=B ∪{0}" by blast

moreover
have "(B ∪{0})-{0}=B-{0}" by blast

then have "(B ∪{0})-{0} {is a base for}T" using base_no_0[of "B""T"]

assms(2) by auto

then have "B ∪{0} {is a base for}T" using base_no_0[of "B ∪{0}""T"]
by auto

ultimately
have "{?N‘i. i∈Q}{is a base for}T" using assms(2) by auto

then show ?thesis by auto

qed

57.4 Relation between numerability and compactness

If the axiom of Q choice holds, then any topology of second type of cardinal
csucc(Q) is compact of cardinal csucc(Q)

theorem compact_of_cardinal_Q:
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assumes "{the axiom of} Q {choice holds for subsets} (Pow(Q))"

"T{is of second type of cardinal}csucc(Q)"

"T{is a topology}"

shows "((
⋃
T){is compact of cardinal}csucc(Q){in}T)"

proof-
from assms(1) have CC:"Card(Q)" and reg:"

∧
M N. (M .Q ∧ (∀ t∈M. N‘t6=0∧N‘t⊆Pow(Q)))

−→ (∃ f. f:Pi(M,λt. N‘t) ∧ (∀ t∈M. f‘t∈N‘t))" using
AxiomCardinalChoice_def by auto

from assms(2) obtain R where "R.Q""R{is a base for}T" unfolding IsSecondOfCard_def

using Card_less_csucc_eq_le CC by auto

with base_to_indexed_base obtain N where base:"{N‘i. i∈Q}{is a base

for}T" by blast

{
fix M

assume A:"
⋃
T⊆
⋃
M""M∈Pow(T)"

let ?α="λU∈M. {i∈Q. N‘(i)⊆U}"
have inj:"?α∈inj(M,Pow(Q))" unfolding inj_def

proof
{

show "(λU∈M. {i ∈ Q . N ‘ i ⊆ U}) ∈ M → Pow(Q)" using lam_type[of

"M""λU. {i ∈ Q . N‘(i) ⊆ U}""%t. Pow(Q)"] by auto

{
fix w x

assume AS:"w∈M""x∈M""{i ∈ Q . N‘(i) ⊆ w} = {i ∈ Q . N‘(i) ⊆
x}"

from AS(1,2) A(2) have "w∈T""x∈T" by auto

then have "w=Interior(w,T)""x=Interior(x,T)" using assms(3) topology0.Top_2_L3[of

"T"]

topology0_def[of "T"] by auto

then have UN:"w=(
⋃
{B∈{N‘(i). i∈Q}. B⊆w})""x=(

⋃
{B∈{N‘(i). i∈Q}.

B⊆x})"
using interior_set_base_topology assms(3) base by auto

{
fix b

assume "b∈w"
then have "b∈

⋃
{B∈{N‘(i). i∈Q}. B⊆w}" using UN(1) by auto

then obtain S where S:"S∈{N‘(i). i∈Q}" "b∈S" "S⊆w" by blast

then obtain j where j:"j∈Q""S=N‘(j)" by auto

then have "j∈{i ∈ Q . N‘(i) ⊆ w}" using S(3) by auto

then have "N‘(j)⊆x""b∈N‘(j)""j∈Q" using S(2) AS(3) j by auto

then have "b∈(
⋃
{B∈{N‘(i). i∈Q}. B⊆x})" by auto

then have "b∈x" using UN(2) by auto

}
moreover
{

fix b

assume "b∈x"
then have "b∈

⋃
{B∈{N‘(i). i∈Q}. B⊆x}" using UN(2) by auto

then obtain S where S:"S∈{N‘(i). i∈Q}" "b∈S" "S⊆x" by blast
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then obtain j where j:"j∈Q""S=N‘(j)" by auto

then have "j∈{i ∈ Q . N‘(i) ⊆ x}" using S(3) by auto

then have "j∈{i ∈ Q . N‘(i) ⊆ w}" using AS(3) by auto

then have "N‘(j)⊆w""b∈N‘(j)""j∈Q" using S(2) j(2) by auto

then have "b∈(
⋃
{B∈{N‘(i). i∈Q}. B⊆w})" by auto

then have "b∈w" using UN(2) by auto

}
ultimately have "w=x" by auto

}
then show "∀ w∈M. ∀ x∈M. (λU∈M. {i ∈ Q . N ‘ i ⊆ U}) ‘ w = (λU∈M.

{i ∈ Q . N ‘ i ⊆ U}) ‘ x −→ w = x" by auto

}
qed
let ?X="λi∈Q. {?α‘U. U∈{V∈M. N‘(i)⊆V}}"
let ?M="{i∈Q. ?X‘i6=0}"

have subMQ:"?M⊆Q" by auto

then have ddd:"?M .Q" using subset_imp_lepoll by auto

then have "?M .Q""∀ i∈?M. ?X‘i6=0""∀ i∈?M. ?X‘i⊆Pow(Q)" by auto

then have "?M .Q""∀ i∈?M. ?X‘i6=0""∀ i∈?M. ?X‘i . Pow(Q)" using subset_imp_lepoll

by auto

then have "(∃ f. f:Pi(?M,λt. ?X‘t) ∧ (∀ t∈?M. f‘t∈?X‘t))" using reg[of

"?M""?X"] by auto

then obtain f where f:"f:Pi(?M,λt. ?X‘t)""(!!t. t∈?M =⇒ f‘t∈?X‘t)"
by auto

{
fix m

assume S:"m∈?M"
from f(2) S obtain YY where YY:"(YY∈M)" "(f‘m=?α‘YY)" by auto

then have Y:"(YY∈M)∧(f‘m=?α‘YY)" by auto

moreover
{

fix U

assume "U∈M∧(f‘m=?α‘U)"
then have "U=YY" using inj inj_def YY by auto

}
then have r:"

∧
x. x∈M∧(f‘m=?α‘x) =⇒ x=YY" by blast

have "∃ !YY. YY∈M ∧ f‘m=?α‘YY" using ex1I[of "%Y. Y∈M∧ f‘m=?α‘Y",OF
Y r] by auto

}
then have ex1YY:"∀ m∈?M. ∃ !YY. YY∈M ∧ f‘m=?α‘YY" by auto

let ?YYm="{〈m,(THE YY. YY∈M ∧ f‘m=?α‘YY)〉. m∈?M}"
have aux:"

∧
m. m∈?M =⇒ ?YYm‘m=(THE YY. YY∈M ∧ f‘m=?α‘YY)" unfold-

ing apply_def by auto

have ree:"∀ m∈?M. (?YYm‘m)∈M ∧ f‘m=?α‘(?YYm‘m)"
proof

fix m

assume C:"m∈?M"
then have "∃ !YY. YY∈M ∧ f‘m=?α‘YY" using ex1YY by auto

then have "(THE YY. YY∈M ∧ f‘m=?α‘YY)∈M∧f‘m=?α‘(THE YY. YY∈M ∧
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f‘m=?α‘YY)"
using theI[of "%Y. Y∈M∧ f‘m=?α‘Y"] by blast

then show "(?YYm‘m)∈M ∧ f‘m=?α‘(?YYm‘m)" apply (simp only: aux[OF

C]) done
qed
have tt:"

∧
m. m∈?M =⇒ N‘(m)⊆?YYm‘m"

proof-
fix m

assume D:"m∈?M"
then have QQ:"m∈Q" by auto

from D have t:"(?YYm‘m)∈M ∧ f‘m=?α‘(?YYm‘m)" using ree by blast

then have "f‘m=?α‘(?YYm‘m)" by blast

then have "(?α‘(?YYm‘m))∈(λi∈Q. {?α‘U. U∈{V∈M. N‘(i)⊆V}})‘m"
using f(2)[OF D]

by auto

then have "(?α‘(?YYm‘m))∈{?α‘U. U∈{V∈M. N‘(m)⊆V}}" using QQ by
auto

then obtain U where "U∈{V∈M. N‘(m)⊆V}""?α‘(?YYm‘m)=?α‘U" by auto

then have r:"U∈M""N‘(m)⊆U""?α‘(?YYm‘m)=?α‘U""(?YYm‘m)∈M" using
t by auto

then have "?YYm‘m=U" using inj_apply_equality[OF inj] by blast

then show "N‘(m)⊆?YYm‘m" using r by auto

qed
then have "(

⋃
m∈?M. N‘(m))⊆(

⋃
m∈?M. ?YYm‘m)"

proof-
{

fix s

assume "s∈(
⋃
m∈?M. N‘(m))"

then obtain t where r:"t∈?M""s∈N‘(t)" by auto

then have "s∈?YYm‘t" using tt[OF r(1)] by blast

then have "s∈(
⋃
m∈?M. ?YYm‘m)" using r(1) by blast

}
then show ?thesis by blast

qed
moreover
{

fix x

assume AT:"x∈
⋃
T"

with A obtain U where BB:"U∈M""U∈T""x∈U" by auto

then obtain j where BC:"j∈Q" "N‘(j)⊆U""x∈N‘(j)" using point_open_base_neigh[OF

base,of "U""x"] by auto

then have "?X‘j 6=0" using BB(1) by auto

then have "j∈?M" using BC(1) by auto

then have "x∈(
⋃
m∈?M. N‘(m))" using BC(3) by auto

}
then have "

⋃
T⊆(

⋃
m∈?M. N‘(m))" by blast

ultimately have covers:"
⋃
T⊆(

⋃
m∈?M. ?YYm‘m)" using subset_trans[of

"
⋃
T""(

⋃
m∈?M. N‘(m))""(

⋃
m∈?M. ?YYm‘m)"]

by auto
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have "relation(?YYm)" unfolding relation_def by auto

moreover
have f:"function(?YYm)" unfolding function_def by auto

moreover
have d:"domain(?YYm)=?M" by auto

moreover
have r:"range(?YYm)=?YYm‘‘?M" by auto

ultimately
have fun:"?YYm:?M→?YYm‘‘?M" using function_imp_Pi[of "?YYm"] by auto

have "?YYm∈surj(?M,?YYm‘‘?M)" using fun_is_surj[OF fun] r by auto

with surj_fun_inv[OF this subMQ Card_is_Ord[OF CC]]

have "?YYm‘‘?M . ?M" by auto

with ddd have Rw:"?YYm‘‘?M .Q" using lepoll_trans by blast

{
fix m assume "m∈?M"
then have "〈m,?YYm‘m〉∈?YYm" using function_apply_Pair[OF f] d by

blast

then have "?YYm‘m∈?YYm‘‘?M" by auto}
then have l1:"{?YYm‘m. m∈?M}⊆?YYm‘‘?M" by blast

{
fix t assume "t∈?YYm‘‘?M"
then have "∃ x∈?M. 〈x,t〉∈?YYm" unfolding image_def by auto

then obtain r where S:"r∈?M""〈r,t〉∈?YYm" by auto

have "?YYm‘r=t" using apply_equality[OF S(2) fun] by auto

with S(1) have "t∈{?YYm‘m. m∈?M}" by auto

}
with l1 have "{?YYm‘m. m∈?M}=?YYm‘‘?M" by blast

with Rw have "{?YYm‘m. m∈?M} .Q" by auto

with covers have "{?YYm‘m. m∈?M}∈Pow(M)∧
⋃
T⊆
⋃
{?YYm‘m. m∈?M}∧{?YYm‘m.

m∈?M} ≺csucc(Q)" using ree

Card_less_csucc_eq_le[OF CC] by blast

then have "∃ N∈Pow(M).
⋃
T⊆
⋃
N∧N≺csucc(Q)" by auto

}
then have "∀ M∈Pow(T).

⋃
T ⊆

⋃
M −→ (∃ N∈Pow(M).

⋃
T ⊆

⋃
N ∧ N ≺ csucc(Q))"

by auto

then show ?thesis using IsCompactOfCard_def Card_csucc CC Card_is_Ord

by auto

qed

In the following proof, we have chosen an infinite cardinal to be able to apply
the equation Q × Q ≈ Q. For finite cardinals; both, the assumption and the
axiom of choice, are always true.

theorem second_imp_compact_imp_Q_choice_PowQ:

assumes "∀ T. (T{is a topology} ∧ (T{is of second type of cardinal}csucc(Q)))

−→ ((
⋃
T){is compact of cardinal}csucc(Q){in}T)"

and "InfCard(Q)"

shows "{the axiom of} Q {choice holds for subsets} (Pow(Q))"

proof-
{
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fix N M

assume AS:"M .Q ∧ (∀ t∈M. N‘t6=0 ∧ N‘t⊆Pow(Q))"
then obtain h where "h∈inj(M,Q)" using lepoll_def by auto

have discTop:"Pow(Q×M) {is a topology}" using Pow_is_top by auto

{
fix A

assume AS:"A∈Pow(Q×M)"
have "A=

⋃
{{i}. i∈A}" by auto

with AS have "∃ T∈Pow({{i}. i∈Q×M}). A=
⋃
T" by auto

then have "A∈{
⋃
U. U∈Pow({{i}. i∈Q×M})}" by auto

}
moreover
{

fix A

assume AS:"A∈{
⋃
U. U∈Pow({{i}. i∈Q×M})}"

then have "A∈Pow(Q×M)" by auto

}
ultimately
have base:"{{x}. x∈Q×M} {is a base for} Pow(Q×M)" unfolding IsAbaseFor_def

by blast

let ?f="{〈i,{i}〉. i∈Q×M}"
have fff:"?f∈Q×M→{{i}. i∈Q×M}" using Pi_def function_def by auto

then have "?f∈inj(Q×M,{{i}. i∈Q×M})" unfolding inj_def using apply_equality

by auto

then have "?f∈bij(Q×M,{{i}. i∈Q×M})" unfolding bij_def surj_def

using fff

apply_equality fff by auto

then have "Q×M≈{{i}. i∈Q×M}" using eqpoll_def by auto

then have "{{i}. i∈Q×M}≈Q×M" using eqpoll_sym by auto

then have "{{i}. i∈Q×M}.Q×M" using eqpoll_imp_lepoll by auto

then have "{{i}. i∈Q×M}.Q×Q" using AS prod_lepoll_mono[of "Q""Q""M""Q"]

lepoll_refl[of "Q"]

lepoll_trans by blast

then have "{{i}. i∈Q×M}.Q" using InfCard_square_eqpoll assms(2)

lepoll_eq_trans by auto

then have "{{i}. i∈Q×M}≺csucc(Q)" using Card_less_csucc_eq_le assms(2)

InfCard_is_Card by auto

then have "Pow(Q×M) {is of second type of cardinal} csucc(Q)" us-
ing IsSecondOfCard_def base by auto

then have comp:"(Q×M) {is compact of cardinal}csucc(Q){in}Pow(Q×M)"
using discTop assms(1) by auto

{
fix W

assume "W∈Pow(Q×M)"
then have T:"W{is closed in} Pow(Q×M)" and "(Q×M)∩W=W" using IsClosed_def

by auto

with compact_closed[OF comp T] have "(W {is compact of cardinal}csucc(Q){in}Pow(Q×M))"
by auto
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}
then have subCompact:"∀ W∈Pow(Q×M). (W {is compact of cardinal}csucc(Q){in}Pow(Q×M))"

by auto

let ?cub="
⋃
{{(U)×{t}. U∈N‘t}. t∈M}"

from AS have "(
⋃
?cub)∈Pow((Q)×M)" by auto

with subCompact have Ncomp:"((
⋃
?cub) {is compact of cardinal}csucc(Q){in}Pow(Q×M))"

by auto

have cond:"(?cub)∈Pow(Pow(Q×M))∧
⋃
?cub⊆

⋃
?cub" using AS by auto

have "∃ S∈Pow(?cub). (
⋃
?cub) ⊆

⋃
S ∧ S ≺ csucc(Q)"

proof-
{

have "((
⋃
?cub) {is compact of cardinal}csucc(Q){in}Pow(Q×M))"

using Ncomp by auto

then have "∀ M∈Pow(Pow(Q×M)).
⋃
?cub ⊆

⋃
M −→ (∃ Na∈Pow(M).⋃

?cub ⊆
⋃
Na ∧ Na ≺ csucc(Q))"

unfolding IsCompactOfCard_def by auto

with cond have "∃ S∈Pow(?cub).
⋃
?cub ⊆

⋃
S ∧ S ≺ csucc(Q)" by

auto

}
then show ?thesis by auto

qed
then have ttt:"∃ S∈Pow(?cub). (

⋃
?cub) ⊆

⋃
S ∧ S . Q" using Card_less_csucc_eq_le

assms(2) InfCard_is_Card by auto

then obtain S where S_def:"S∈Pow(?cub)""(
⋃
?cub) ⊆

⋃
S" "S . Q"

by auto

{
fix t

assume AA:"t∈M""N‘t6={0}"

from AA(1) AS have "N‘t6=0" by auto

with AA(2) obtain U where G:"U∈N‘t" and notEm:"U6=0" by blast

then have "U×{t}∈?cub" using AA by auto

then have "U×{t}⊆
⋃
?cub" by auto

with G notEm AA have "∃ s. 〈s,t〉∈
⋃
?cub" by auto

}
then have "∀ t∈M. (N‘t6={0})−→ (∃ s. 〈s,t〉∈

⋃
?cub)" by auto

then have A:"∀ t∈M. (N‘t6={0})−→ (∃ s. 〈s,t〉∈
⋃
S)" using S_def(2)

by blast

from S_def(1) have B:"∀ f∈S. ∃ t∈M. ∃ U∈N‘t. f=U×{t}" by blast

from A B have "∀ t∈M. (N‘t6={0})−→ (∃ U∈N‘t. U×{t}∈S)" by blast

then have noEmp:"∀ t∈M. (N‘t6={0})−→ (S∩({U×{t}. U∈N‘t}) 6=0)" by
auto

from S_def(3) obtain r where r:"r:inj(S,Q)" using lepoll_def by
auto

then have bij2:"converse(r):bij(range(r),S)" using inj_bij_range

bij_converse_bij by auto

then have surj2:"converse(r):surj(range(r),S)" using bij_def by auto

let ?R="λt∈M. {j∈range(r). converse(r)‘j∈({U×{t}. U∈N‘t})}"
{

fix t
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assume AA:"t∈M""N‘t6={0}"

then have "(S∩({U×{t}. U∈N‘t})6=0)" using noEmp by auto

then obtain s where ss:"s∈S""s∈{U×{t}. U∈N‘t}" by blast

then obtain j where "converse(r)‘j=s" "j∈range(r)" using surj2

unfolding surj_def by blast

then have "j∈{j∈range(r). converse(r)‘j∈({U×{t}. U∈N‘t})}" us-
ing ss by auto

then have "?R‘t 6=0" using beta_if AA by auto

}
then have nonE:"∀ t∈M. N‘t6={0}−→?R‘t6=0" by auto

{
fix t j

assume "t∈M""j∈?R‘t"
then have "converse(r)‘j∈{U×{t}. U∈N‘t}" using beta_if by auto

}
then have pp:"∀ t∈M. ∀ j∈?R‘t. converse(r)‘j∈{U×{t}. U∈N‘t}" by auto

have reg:"∀ t U V. U×{t}=V×{t}−→U=V"

proof-
{

fix t U V

assume AA:"U×{t}=V×{t}"
{

fix v

assume "v∈V"
then have "〈v,t〉∈V ×{t}" by auto

then have "〈v,t〉∈U ×{t}" using AA by auto

then have "v∈U" by auto

}
then have "V⊆U" by auto

moreover
{

fix u

assume "u∈U"
then have "〈u,t〉∈U ×{t}" by auto

then have "〈u,t〉∈V ×{t}" using AA by auto

then have "u∈V" by auto

}
then have "U⊆V" by auto

ultimately have "U=V" by auto

}
then show ?thesis by auto

qed

let ?E="{〈t,if N‘t={0} then 0 else (THE U. converse(r)‘(µ j. j∈?R‘t)=U×{t})〉.
t∈M}"

have ff:"function(?E)" unfolding function_def by auto

moreover
{

fix t
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assume pm:"t∈M"
{ assume nonEE:"N‘t6={0}"

{
fix j

assume "j∈?R‘t"
with pm(1) have "j∈range(r)" using beta_if by auto

from r have "r:surj(S,range(r))" using fun_is_surj inj_def by
auto

with ‘j∈range(r)‘ obtain d where "d∈S" and "r‘d=j" using surj_def

by auto

then have "j∈Q" using r inj_def by auto

}
then have sub:"?R‘t⊆Q" by blast

from nonE pm nonEE obtain ee where P:"ee∈?R‘t" by blast

with sub have "ee∈Q" by auto

then have "Ord(ee)" using assms(2) Card_is_Ord Ord_in_Ord InfCard_is_Card

by blast

with P have "(µ j. j∈?R‘t)∈?R‘t" using LeastI[where i=ee and P="λj.
j∈?R‘t"] by auto

with pp pm have "converse(r)‘(µ j. j∈?R‘t)∈{U×{t}. U∈N‘t}" by
auto

then obtain W where "converse(r)‘(µ j. j∈?R‘t)=W×{t}" and s:"W∈N‘t"
by auto

then have "(THE U. converse(r)‘(µ j. j∈?R‘t)=U×{t})=W" using reg

by auto

with s have "(THE U. converse(r)‘(µ j. j∈?R‘t)=U×{t})∈N‘t" by
auto

}
then have "(if N‘t={0} then 0 else (THE U. converse(r)‘(µ j. j∈?R‘t)=U×{t}))∈N‘t"

by auto

}
ultimately have thesis1:"∀ t∈M. ?E‘t∈N‘t" using function_apply_equality

by auto

{
fix e

assume "e∈?E"
then obtain m where "m∈M" and "e=〈m,?E‘m〉" using function_apply_equality

ff by auto

with thesis1 have "e∈Sigma(M,λt. N‘t)" by auto

}
then have "?E∈Pow(Sigma(M,λt. N‘t))" by auto

with ff have "?E∈Pi(M,λm. N‘m)" using Pi_iff by auto

then have "(∃ f. f:Pi(M,λt. N‘t) ∧ (∀ t∈M. f‘t∈N‘t))" using thesis1

by auto}
then show ?thesis using AxiomCardinalChoice_def assms(2) InfCard_is_Card

by auto

qed

The two previous results, state the following equivalence:
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theorem Q_choice_Pow_eq_secon_imp_comp:

assumes "InfCard(Q)"

shows "(∀ T. (T{is a topology} ∧ (T{is of second type of cardinal}csucc(Q)))

−→ ((
⋃
T){is compact of cardinal}csucc(Q){in}T))

←→({the axiom of} Q {choice holds for subsets} (Pow(Q)))"

using second_imp_compact_imp_Q_choice_PowQ compact_of_cardinal_Q assms

by auto

In the next result we will prove that if the space (κ, Pow(κ)), for κ an infinite
cardinal, is compact of its successor cardinal; then all topologycal spaces
which are of second type of the successor cardinal of κ are also compact of
that cardinal.

theorem Q_csuccQ_comp_eq_Q_choice_Pow:

assumes "InfCard(Q)" "(Q){is compact of cardinal}csucc(Q){in}Pow(Q)"

shows "∀ T. (T{is a topology} ∧ (T{is of second type of cardinal}csucc(Q)))

−→ ((
⋃
T){is compact of cardinal}csucc(Q){in}T)"

proof
fix T

{
assume top:"T {is a topology}" and sec:"T{is of second type of cardinal}csucc(Q)"

from assms have "Card(csucc(Q))" "Card(Q)" using InfCard_is_Card

Card_is_Ord Card_csucc by auto

moreover
have "

⋃
T⊆
⋃
T" by auto

moreover
{

fix M

assume MT:"M∈Pow(T)" and cover:"
⋃
T⊆
⋃
M"

from sec obtain B where "B {is a base for} T" "B≺csucc(Q)" us-
ing IsSecondOfCard_def by auto

with ‘Card(Q)‘ obtain N where base:"{N‘i. i∈Q}{is a base for}T"

using Card_less_csucc_eq_le

base_to_indexed_base by blast

let ?S="{〈u,{i∈Q. N‘i⊆u}〉. u∈M}"
have "function(?S)" unfolding function_def by auto

then have "?S:M→Pow(Q)" using Pi_iff by auto

then have "?S∈inj(M,Pow(Q))" unfolding inj_def

proof
{

fix w x

assume AS:"w∈M""x∈M""{〈u, {i ∈ Q . N ‘ i ⊆ u}〉 . u ∈ M} ‘

w = {〈u, {i ∈ Q . N ‘ i ⊆ u}〉 . u ∈ M} ‘ x"

with ‘?S:M→Pow(Q)‘ have ASS:"{i ∈ Q . N ‘ i ⊆ w}={i ∈ Q .

N ‘ i ⊆ x}" using apply_equality by auto

from AS(1,2) MT have "w∈T""x∈T" by auto

then have "w=Interior(w,T)""x=Interior(x,T)" using top topology0.Top_2_L3[of

"T"]

topology0_def[of "T"] by auto

then have UN:"w=(
⋃
{B∈{N‘(i). i∈Q}. B⊆w})""x=(

⋃
{B∈{N‘(i).
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i∈Q}. B⊆x})"
using interior_set_base_topology top base by auto

{
fix b

assume "b∈w"
then have "b∈

⋃
{B∈{N‘(i). i∈Q}. B⊆w}" using UN(1) by auto

then obtain S where S:"S∈{N‘(i). i∈Q}" "b∈S" "S⊆w" by blast

then obtain j where j:"j∈Q""S=N‘(j)" by auto

then have "j∈{i ∈ Q . N‘(i) ⊆ w}" using S(3) by auto

then have "N‘(j)⊆x""b∈N‘(j)""j∈Q" using S(2) ASS j by auto

then have "b∈(
⋃
{B∈{N‘(i). i∈Q}. B⊆x})" by auto

then have "b∈x" using UN(2) by auto

}
moreover
{

fix b

assume "b∈x"
then have "b∈

⋃
{B∈{N‘(i). i∈Q}. B⊆x}" using UN(2) by auto

then obtain S where S:"S∈{N‘(i). i∈Q}" "b∈S" "S⊆x" by blast

then obtain j where j:"j∈Q""S=N‘(j)" by auto

then have "j∈{i ∈ Q . N‘(i) ⊆ x}" using S(3) by auto

then have "j∈{i ∈ Q . N‘(i) ⊆ w}" using ASS by auto

then have "N‘(j)⊆w""b∈N‘(j)""j∈Q" using S(2) j(2) by auto

then have "b∈(
⋃
{B∈{N‘(i). i∈Q}. B⊆w})" by auto

then have "b∈w" using UN(2) by auto

}
ultimately have "w=x" by auto

}
then show "∀ w∈M. ∀ x∈M. {〈u, {i ∈ Q . N ‘ i ⊆ u}〉 . u ∈ M} ‘

w = {〈u, {i ∈ Q . N ‘ i ⊆ u}〉 . u ∈ M} ‘ x −→ w = x" by auto

qed
then have "?S∈bij(M,range(?S))" using fun_is_surj unfolding bij_def

inj_def surj_def by force

have "range(?S)⊆Pow(Q)" by auto

then have "range(?S)∈Pow(Pow(Q))" by auto

moreover
have "(

⋃
(range(?S))) {is closed in} Pow(Q)" "Q∩(

⋃
range(?S))=(

⋃
range(?S))"

using IsClosed_def by auto

from this(2) compact_closed[OF assms(2) this(1)] have "(
⋃
range(?S)){is

compact of cardinal}csucc(Q) {in}Pow(Q)"

by auto

moreover
have "

⋃
(range(?S))⊆

⋃
(range(?S))" by auto

ultimately have "∃ S∈Pow(range(?S)). (
⋃
(range(?S)))⊆

⋃
S ∧ S≺ csucc(Q)"

using IsCompactOfCard_def by auto

then obtain SS where SS_def:"SS⊆range(?S)" "(
⋃
(range(?S)))⊆

⋃
SS"

"SS≺ csucc(Q)" by auto

with ‘?S∈bij(M,range(?S))‘ have con:"converse(?S)∈bij(range(?S),M)"
using bij_converse_bij by auto
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then have r1:"restrict(converse(?S),SS)∈bij(SS,converse(?S)‘‘SS)"
using restrict_bij bij_def SS_def(1) by auto

then have rr:"converse(restrict(converse(?S),SS))∈bij(converse(?S)‘‘SS,SS)"
using bij_converse_bij by auto

{
fix x

assume "x∈
⋃
T"

with cover have "x∈
⋃
M" by auto

then obtain R where "R∈M" "x∈R" by auto

with MT have "R∈T" "x∈R" by auto

then have "∃ V∈{N‘i. i∈Q}. V⊆R ∧ x∈V" using point_open_base_neigh

base by force

then obtain j where "j∈Q" "N‘j⊆R" and x_p:"x∈N‘j" by auto

with ‘R∈M‘ ‘?S:M→Pow(Q)‘ ‘?S∈bij(M,range(?S))‘ have "?S‘R∈range(?S)
∧ j∈?S‘R" using apply_equality

bij_def inj_def by auto

from exI[where P="λt. t∈range(?S) ∧ j∈t", OF this] have "∃ A∈range(?S).
j∈A" unfolding Bex_def

by auto

then have "j∈(
⋃
(range(?S)))" by auto

then have "j∈
⋃
SS" using SS_def(2) by blast

then obtain SR where "SR∈SS" "j∈SR" by auto

moreover
have "converse(restrict(converse(?S),SS))∈surj(converse(?S)‘‘SS,SS)"

using rr bij_def by auto

ultimately obtain RR where "converse(restrict(converse(?S),SS))‘RR=SR"

and p:"RR∈converse(?S)‘‘SS" unfolding surj_def by blast

then have "converse(converse(restrict(converse(?S),SS)))‘(converse(restrict(converse(?S),SS))‘RR)=converse(converse(restrict(converse(?S),SS)))‘SR"

by auto

moreover
have "converse(restrict(converse(?S),SS))∈inj(converse(?S)‘‘SS,SS)"

using rr unfolding bij_def by auto

moreover
ultimately have "RR=converse(converse(restrict(converse(?S),SS)))‘SR"

using left_inverse[OF _ p]

by force

moreover
with r1 have "restrict(converse(?S),SS)∈SS→converse(?S)‘‘SS"

unfolding bij_def inj_def by auto

then have "relation(restrict(converse(?S),SS))" using Pi_def

relation_def by auto

then have "converse(converse(restrict(converse(?S),SS)))=restrict(converse(?S),SS)"

using relation_converse_converse by auto

ultimately have "RR=restrict(converse(?S),SS)‘SR" by auto

with ‘SR∈SS‘ have eq:"RR=converse(?S)‘SR" unfolding restrict

by auto

then have "converse(converse(?S))‘RR=converse(converse(?S))‘(converse(?S)‘SR)"

by auto

moreover
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with ‘SR∈SS‘ have "SR∈range(?S)" using SS_def(1) by auto

from con left_inverse[OF _ this] have "converse(converse(?S))‘(converse(?S)‘SR)=SR"

unfolding bij_def

by auto

ultimately have "converse(converse(?S))‘RR=SR" by auto

then have "?S‘RR=SR" using relation_converse_converse[of "?S"]

unfolding relation_def by auto

moreover
have "converse(?S):range(?S)→M" using con bij_def inj_def by

auto

with ‘SR∈range(?S)‘ have "converse(?S)‘SR∈M" using apply_funtype

by auto

with eq have "RR∈M" by auto

ultimately have "SR={i∈Q. N‘i⊆RR}" using ‘?S:M→Pow(Q)‘ apply_equality

by auto

then have "N‘j⊆RR" using ‘j∈SR‘ by auto

with x_p have "x∈RR" by auto

with p have "x∈
⋃
(converse(?S)‘‘SS)" by auto

}
then have "

⋃
T⊆
⋃
(converse(?S)‘‘SS)" by blast

moreover
{

from con have "converse(?S)‘‘SS={converse(?S)‘R. R∈SS}" using
image_function[of "converse(?S)" "SS"]

SS_def(1) unfolding range_def bij_def inj_def Pi_def by auto

have "{converse(?S)‘R. R∈SS}⊆{converse(?S)‘R. R∈range(?S)}" us-
ing SS_def(1) by auto

moreover
have "converse(?S):range(?S)→M" using con unfolding bij_def inj_def

by auto

then have "{converse(?S)‘R. R∈range(?S)}⊆M" using apply_funtype

by force

ultimately
have "(converse(?S)‘‘SS)⊆M" by auto

}
then have "converse(?S)‘‘SS∈Pow(M)" by auto

moreover
with rr have "converse(?S)‘‘SS≈SS" using eqpoll_def by auto

then have "converse(?S)‘‘SS≺csucc(Q)" using SS_def(3) eq_lesspoll_trans

by auto

ultimately
have "∃ N∈Pow(M).

⋃
T⊆
⋃
N ∧ N≺csucc(Q)" by auto

}
then have "∀ M∈Pow(T).

⋃
T⊆
⋃
M −→ (∃ N∈Pow(M).

⋃
T⊆
⋃
N ∧ N≺csucc(Q))"

by auto

ultimately have "(
⋃
T){is compact of cardinal}csucc(Q){in}T" unfold-

ing IsCompactOfCard_def

by auto

}
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then show "(T {is a topology}) ∧ (T {is of second type of cardinal}csucc(Q))

−→ ((
⋃
T){is compact of cardinal}csucc(Q) {in}T)"

by auto

qed

theorem Q_disc_is_second_card_csuccQ:

assumes "InfCard(Q)"

shows "Pow(Q){is of second type of cardinal}csucc(Q)"

proof-
{

fix A

assume AS:"A∈Pow(Q)"
have "A=

⋃
{{i}. i∈A}" by auto

with AS have "∃ T∈Pow({{i}. i∈Q}). A=
⋃
T" by auto

then have "A∈{
⋃
U. U∈Pow({{i}. i∈Q})}" by auto

}
moreover
{

fix A

assume AS:"A∈{
⋃
U. U∈Pow({{i}. i∈Q})}"

then have "A∈Pow(Q)" by auto

}
ultimately
have base:"{{x}. x∈Q} {is a base for} Pow(Q)" unfolding IsAbaseFor_def

by blast

let ?f="{〈i,{i}〉. i∈Q}"
have "?f∈Q→{{x}. x∈Q}" unfolding Pi_def function_def by auto

then have "?f∈inj(Q,{{x}. x∈Q})" unfolding inj_def using apply_equality

by auto

moreover
from ‘?f∈Q→{{x}. x∈Q}‘ have "?f∈surj(Q,{{x}. x∈Q})" unfolding surj_def

using apply_equality

by auto

ultimately have "?f∈bij(Q,{{x}. x∈Q})" unfolding bij_def by auto

then have "Q≈{{x}. x∈Q}" using eqpoll_def by auto

then have "{{x}. x∈Q}≈Q" using eqpoll_sym by auto

then have "{{x}. x∈Q}.Q" using eqpoll_imp_lepoll by auto

then have "{{x}. x∈Q}≺csucc(Q)" using Card_less_csucc_eq_le assms InfCard_is_Card

by auto

with base show ?thesis using IsSecondOfCard_def by auto

qed

This previous results give us another equivalence of the axiom of Q choice
that is apparently weaker (easier to check) to the previous one.

theorem Q_disc_comp_csuccQ_eq_Q_choice_csuccQ:

assumes "InfCard(Q)"

shows "(Q{is compact of cardinal}csucc(Q){in}(Pow(Q))) ←→ ({the axiom

of}Q{choice holds for subsets}(Pow(Q)))"

proof
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assume "Q{is compact of cardinal}csucc(Q) {in}Pow(Q)"

with assms show "{the axiom of}Q{choice holds for subsets}(Pow(Q))"

using Q_choice_Pow_eq_secon_imp_comp Q_csuccQ_comp_eq_Q_choice_Pow

by auto

next
assume "{the axiom of}Q{choice holds for subsets}(Pow(Q))"

with assms show "Q{is compact of cardinal}csucc(Q){in}(Pow(Q))" us-
ing Q_disc_is_second_card_csuccQ Q_choice_Pow_eq_secon_imp_comp Pow_is_top[of

"Q"]

by force

qed

end

58 Topology 5

theory Topology_ZF_5 imports Topology_ZF_examples Topology_ZF_properties

func1 Topology_ZF_examples_1 Topology_ZF_4

begin

58.1 Some results for separation axioms

First we will give a global characterization of T1-spaces; which is interesting
because it involves the cardinal N.

lemma (in topology0) T1_cocardinal_coarser:

shows "(T {is T1}) ←→ (CoFinite (
⋃
T))⊆T"

proof
{

assume AS:"T {is T1}"

{
fix x assume p:"x∈

⋃
T"

{
fix y assume "y∈(

⋃
T)-{x}"

with AS p obtain U where "U∈T" "y∈U" "x/∈U" using isT1_def by
blast

then have "U∈T" "y∈U" "U⊆(
⋃
T)-{x}" by auto

then have "∃ U∈T. y∈U ∧ U⊆(
⋃
T)-{x}" by auto

}
then have "∀ y∈(

⋃
T)-{x}. ∃ U∈T. y∈U ∧ U⊆(

⋃
T)-{x}" by auto

then have "
⋃
T-{x}∈T" using open_neigh_open by auto

with p have "{x} {is closed in}T" using IsClosed_def by auto

}
then have pointCl:"∀ x∈

⋃
T. {x} {is closed in} T" by auto

{
fix A

assume AS2:"A∈FinPow(
⋃
T)"

let ?p="{〈x,{x}〉. x∈A}"
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have "?p∈A→{{x}. x∈A}" using Pi_def unfolding function_def by
auto

then have "?p:bij(A,{{x}. x∈A})" unfolding bij_def inj_def surj_def

using apply_equality

by auto

then have "A≈{{x}. x∈A}" unfolding eqpoll_def by auto

with AS2 have "Finite({{x}. x∈A})" unfolding FinPow_def using eqpoll_imp_Finite_iff

by auto

then have "{{x}. x∈A}∈FinPow({D ∈ Pow(
⋃
T) . D {is closed in} T})"

using AS2 pointCl unfolding FinPow_def

by (safe, blast+)

then have "(
⋃
{{x}. x∈A}) {is closed in} T" using fin_union_cl_is_cl

by auto

moreover
have "

⋃
{{x}. x∈A}=A" by auto

ultimately have "A {is closed in} T" by simp

}
then have reg:"∀ A∈FinPow(

⋃
T). A {is closed in} T" by auto

{
fix U

assume AS2:"U∈(CoCardinal (
⋃
T) nat)"

then have "U∈Pow(
⋃
T)" "U=0 ∨ ((

⋃
T)-U)≺nat" using Cocardinal_def

by auto

then have "U∈Pow(
⋃
T)" "U=0 ∨ Finite(

⋃
T-U)" using lesspoll_nat_is_Finite

by auto

then have "U∈Pow(
⋃
T)" "U∈T∨(

⋃
T-U) {is closed in} T" using empty_open

topSpaceAssum

reg unfolding FinPow_def by auto

then have "U∈Pow(
⋃
T)" "U∈T∨(

⋃
T-(
⋃
T-U))∈T" using IsClosed_def

by auto

moreover
then have "(

⋃
T-(
⋃
T-U))=U" by blast

ultimately have "U∈T" by auto

}
then show "(CoFinite (

⋃
T))⊆T" using Cofinite_def by auto

}
{

assume "(CoFinite (
⋃
T))⊆T"

then have AS:"(CoCardinal (
⋃
T) nat)⊆T" using Cofinite_def by auto

{
fix x y

assume AS2:"x∈
⋃
T" "y∈

⋃
T""x 6=y"

have "Finite({y})" by auto

then obtain n where "{y}≈n" "n∈nat" using Finite_def by auto

then have "{y}≺nat" using n_lesspoll_nat eq_lesspoll_trans by auto

then have "{y} {is closed in} (CoCardinal (
⋃
T) nat)" using closed_sets_cocardinal

AS2(2) by auto

then have "(
⋃
T)-{y}∈(CoCardinal (

⋃
T) nat)" using union_cocardinal

IsClosed_def by auto
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with AS have "(
⋃
T)-{y}∈T" by auto

moreover
with AS2(1,3) have "x∈((

⋃
T)-{y}) ∧ y/∈((

⋃
T)-{y})" by auto

ultimately have "∃ V∈T. x∈V∧y/∈V" by(safe,auto)
}
then show "T {is T1}" using isT1_def by auto

}
qed

In the previous proof, it is obvious that we don’t need to check if ever cofinite
set is open. It is enough to check if every singleton is closed.

corollary(in topology0) T1_iff_singleton_closed:

shows "(T {is T1}) ←→ (∀ x∈
⋃
T. {x}{is closed in}T)"

proof
assume AS:"T {is T1}"

{
fix x assume p:"x∈

⋃
T"

{
fix y assume "y∈(

⋃
T)-{x}"

with AS p obtain U where "U∈T" "y∈U" "x/∈U" using isT1_def by blast

then have "U∈T" "y∈U" "U⊆(
⋃
T)-{x}" by auto

then have "∃ U∈T. y∈U ∧ U⊆(
⋃
T)-{x}" by auto

}
then have "∀ y∈(

⋃
T)-{x}. ∃ U∈T. y∈U ∧ U⊆(

⋃
T)-{x}" by auto

then have "
⋃
T-{x}∈T" using open_neigh_open by auto

with p have "{x} {is closed in}T" using IsClosed_def by auto

}
then show pointCl:"∀ x∈

⋃
T. {x} {is closed in} T" by auto

next
assume pointCl:"∀ x∈

⋃
T. {x} {is closed in} T"

{
fix A

assume AS2:"A∈FinPow(
⋃
T)"

let ?p="{〈x,{x}〉. x∈A}"
have "?p∈A→{{x}. x∈A}" using Pi_def unfolding function_def by auto

then have "?p:bij(A,{{x}. x∈A})" unfolding bij_def inj_def surj_def

using apply_equality

by auto

then have "A≈{{x}. x∈A}" unfolding eqpoll_def by auto

with AS2 have "Finite({{x}. x∈A})" unfolding FinPow_def using eqpoll_imp_Finite_iff

by auto

then have "{{x}. x∈A}∈FinPow({D ∈ Pow(
⋃
T) . D {is closed in} T})"

using AS2 pointCl unfolding FinPow_def

by (safe, blast+)

then have "(
⋃
{{x}. x∈A}) {is closed in} T" using fin_union_cl_is_cl

by auto

moreover
have "

⋃
{{x}. x∈A}=A" by auto

ultimately have "A {is closed in} T" by simp
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}
then have reg:"∀ A∈FinPow(

⋃
T). A {is closed in} T" by auto

{
fix U

assume AS2:"U∈(CoCardinal (
⋃
T) nat)"

then have "U∈Pow(
⋃
T)" "U=0 ∨ ((

⋃
T)-U)≺nat" using Cocardinal_def

by auto

then have "U∈Pow(
⋃
T)" "U=0 ∨ Finite(

⋃
T-U)" using lesspoll_nat_is_Finite

by auto

then have "U∈Pow(
⋃
T)" "U∈T∨(

⋃
T-U) {is closed in} T" using empty_open

topSpaceAssum

reg unfolding FinPow_def by auto

then have "U∈Pow(
⋃
T)" "U∈T∨(

⋃
T-(
⋃
T-U))∈T" using IsClosed_def by

auto

moreover
then have "(

⋃
T-(
⋃
T-U))=U" by blast

ultimately have "U∈T" by auto

}
then have "(CoFinite (

⋃
T))⊆T" using Cofinite_def by auto

then show "T {is T1}" using T1_cocardinal_coarser by auto

qed

Secondly, let’s show that the CoCardinal X Q topologies for different sets
Q are all ordered as the partial order of sets. (The order is linear when
considering only cardinals)

lemma order_cocardinal_top:

fixes X

assumes "Q1.Q2"
shows "(CoCardinal X Q1)⊆(CoCardinal X Q2)"

proof
fix x

assume "x∈(CoCardinal X Q1)"

then have "x∈Pow(X)" "x=0∨(X-x)≺Q1" using Cocardinal_def by auto

with assms have "x∈Pow(X)" "x=0∨(X-x)≺Q2" using lesspoll_trans2 by
auto

then show "x∈(CoCardinal X Q2)" using Cocardinal_def by auto

qed

corollary cocardinal_is_T1:

fixes X K

assumes "InfCard(K)"

shows "(CoCardinal X K) {is T1}"

proof-
have "nat≤K" using InfCard_def assms by auto

then have "nat⊆K" using le_imp_subset by auto

then have "nat.K" "K 6=0"using subset_imp_lepoll by auto

then have "(CoCardinal X nat)⊆(CoCardinal X K)" "
⋃
(CoCardinal X K)=X"

using order_cocardinal_top

union_cocardinal by auto
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then show ?thesis using topology0.T1_cocardinal_coarser topology0_CoCardinal

assms Cofinite_def

by auto

qed

In T2-spaces, filters and nets have at most one limit point.

lemma (in topology0) T2_imp_unique_limit_filter:

assumes "T {is T2}" "F {is a filter on}
⋃
T" "F →F x" "F →F y"

shows "x=y"

proof-
{

assume "x 6=y"

from assms(3,4) have "x∈
⋃
T" "y∈

⋃
T" using FilterConverges_def assms(2)

by auto

with ‘x 6=y‘ have "∃ U∈T. ∃ V∈T. x∈U ∧ y∈V ∧ U∩V=0" using assms(1)

isT2_def by auto

then obtain U V where "x∈U" "y∈V" "U∩V=0" "U∈T" "V∈T" by auto

then have "U∈{A∈Pow(
⋃
T). x∈Interior(A,T)}" "V∈{A∈Pow(

⋃
T). y∈Interior(A,T)}"

using Top_2_L3 by auto

then have "U∈F" "V∈F" using FilterConverges_def assms(2) assms(3,4)

by auto

then have "U∩V∈F" using IsFilter_def assms(2) by auto

with ‘U∩V=0‘ have "0∈F" by auto

then have "False" using IsFilter_def assms(2) by auto

}
then show ?thesis by auto

qed

lemma (in topology0) T2_imp_unique_limit_net:

assumes "T {is T2}" "N {is a net on}
⋃
T" "N →N x" "N →N y"

shows "x=y"

proof-
have "(Filter N..(

⋃
T)) {is a filter on} (

⋃
T)" "(Filter N..(

⋃
T)) →F

x" "(Filter N..(
⋃
T)) →F y"

using filter_of_net_is_filter(1) net_conver_filter_of_net_conver assms(2)

assms(3,4) by auto

with assms(1) show ?thesis using T2_imp_unique_limit_filter by auto

qed

In fact, T2-spaces are characterized by this property. For this proof we build
a filter containing the union of two filters.

lemma (in topology0) unique_limit_filter_imp_T2:

assumes "∀ x∈
⋃
T. ∀ y∈

⋃
T. ∀F. ((F {is a filter on}

⋃
T) ∧ (F →F x)

∧ (F →F y)) −→ x=y"

shows "T {is T2}"

proof-
{

fix x y

assume "x∈
⋃
T" "y∈

⋃
T" "x 6=y"
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{
assume "∀ U∈T. ∀ V∈T. (x∈U ∧ y∈V) −→ U∩V6=0"

let ?Ux="{A∈Pow(
⋃
T). x∈int(A)}"

let ?Uy="{A∈Pow(
⋃
T). y∈int(A)}"

let ?FF="?Ux ∪ ?Uy ∪ {A∩B. 〈A,B〉∈?Ux × ?Uy}"

have sat:"?FF {satisfies the filter base condition}"

proof-
{

fix A B

assume "A∈?FF" "B∈?FF"
{

assume "A∈?Ux"
{

assume "B∈?Ux"
with ‘x∈

⋃
T‘ ‘A∈?Ux‘ have "A∩B∈?Ux" using neigh_filter(1)

IsFilter_def by auto

then have "A∩B∈?FF" by auto

}
moreover
{

assume "B∈?Uy"
with ‘A∈?Ux‘ have "A∩B∈?FF" by auto

}
moreover
{

assume "B∈{A∩B. 〈A,B〉∈?Ux × ?Uy}"

then obtain AA BB where "B=AA∩BB" "AA∈?Ux" "BB∈?Uy" by
auto

with ‘x∈
⋃
T‘ ‘A∈?Ux‘ have "A∩B=(A∩AA)∩BB" "A∩AA∈?Ux" us-

ing neigh_filter(1) IsFilter_def by auto

with ‘BB∈?Uy‘ have "A∩B∈{A∩B. 〈A,B〉∈?Ux × ?Uy}" by auto

then have "A∩B∈?FF" by auto

}
ultimately have "A∩B∈?FF" using ‘B∈?FF‘ by auto

}
moreover
{

assume "A∈?Uy"
{

assume "B∈?Uy"
with ‘y∈

⋃
T‘ ‘A∈?Uy‘ have "A∩B∈?Uy" using neigh_filter(1)

IsFilter_def by auto

then have "A∩B∈?FF" by auto

}
moreover
{

assume "B∈?Ux"
with ‘A∈?Uy‘ have "B∩A∈?FF" by auto

moreover have "A∩B=B∩A" by auto
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ultimately have "A∩B∈?FF" by auto

}
moreover
{

assume "B∈{A∩B. 〈A,B〉∈?Ux × ?Uy}"

then obtain AA BB where "B=AA∩BB" "AA∈?Ux" "BB∈?Uy" by
auto

with ‘y∈
⋃
T‘ ‘A∈?Uy‘ have "A∩B=AA∩(A∩BB)" "A∩BB∈?Uy" us-

ing neigh_filter(1) IsFilter_def by auto

with ‘AA∈?Ux‘ have "A∩B∈{A∩B. 〈A,B〉∈?Ux × ?Uy}" by auto

then have "A∩B∈?FF" by auto

}
ultimately have "A∩B∈?FF" using ‘B∈?FF‘ by auto

}
moreover
{

assume "A∈{A∩B. 〈A,B〉∈?Ux × ?Uy}"

then obtain AA BB where "A=AA∩BB" "AA∈?Ux" "BB∈?Uy" by auto

{
assume "B∈?Uy"
with ‘BB∈?Uy‘ ‘y∈

⋃
T‘ have "B∩BB∈?Uy" using neigh_filter(1)

IsFilter_def by auto

moreover from ‘A=AA∩BB‘ have "A∩B=AA∩(B∩BB)" by auto

ultimately have "A∩B∈?FF" using ‘AA∈?Ux‘ ‘B∩BB∈?Uy‘ by
auto

}
moreover
{

assume "B∈?Ux"
with ‘AA∈?Ux‘ ‘x∈

⋃
T‘ have "B∩AA∈?Ux" using neigh_filter(1)

IsFilter_def by auto

moreover from ‘A=AA∩BB‘ have "A∩B=(B∩AA)∩BB" by auto

ultimately have "A∩B∈?FF" using ‘B∩AA∈?Ux‘ ‘BB∈?Uy‘ by
auto

}
moreover
{

assume "B∈{A∩B. 〈A,B〉∈?Ux × ?Uy}"

then obtain AA2 BB2 where "B=AA2∩BB2" "AA2∈?Ux" "BB2∈?Uy"
by auto

from ‘B=AA2∩BB2‘ ‘A=AA∩BB‘ have "A∩B=(AA∩AA2)∩(BB∩BB2)"
by auto

moreover
from ‘AA∈?Ux‘‘AA2∈?Ux‘‘x∈

⋃
T‘ have "AA∩AA2∈?Ux" using

neigh_filter(1) IsFilter_def by auto

moreover
from ‘BB∈?Uy‘‘BB2∈?Uy‘‘y∈

⋃
T‘ have "BB∩BB2∈?Uy" using

neigh_filter(1) IsFilter_def by auto

ultimately have "A∩B∈?FF" by auto
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}
ultimately have "A∩B∈?FF" using ‘B∈?FF‘ by auto

}
ultimately have "A∩B∈?FF" using ‘A∈?FF‘ by auto

then have "∃ D∈?FF. D⊆A∩B" unfolding Bex_def by auto

}
then have "∀ A∈?FF. ∀ B∈?FF. ∃ D∈?FF. D⊆A∩B" by force

moreover
have "

⋃
T∈?Ux" using ‘x∈

⋃
T‘ neigh_filter(1) IsFilter_def by

auto

then have "?FF6=0" by auto

moreover
{

assume "0∈?FF"
moreover
have "0/∈?Ux" using ‘x∈

⋃
T‘ neigh_filter(1) IsFilter_def by

auto

moreover
have "0/∈?Uy" using ‘y∈

⋃
T‘ neigh_filter(1) IsFilter_def by

auto

ultimately have "0∈{A∩B. 〈A,B〉∈?Ux × ?Uy}" by auto

then obtain A B where "0=A∩B" "A∈?Ux""B∈?Uy" by auto

then have "x∈int(A)""y∈int(B)" by auto

moreover
with ‘0=A∩B‘ have "int(A)∩int(B)=0" using Top_2_L1 by auto

moreover
have "int(A)∈T""int(B)∈T" using Top_2_L2 by auto

ultimately have "False" using ‘∀ U∈T. ∀ V∈T. x∈U∧y∈V −→ U∩V 6=0‘

by auto

}
then have "0/∈?FF" by auto

ultimately show ?thesis using SatisfiesFilterBase_def by auto

qed
moreover
have "?FF⊆Pow(

⋃
T)" by auto

ultimately have bas:"?FF {is a base filter} {A∈Pow(
⋃
T). ∃ D∈?FF.

D⊆A}" "
⋃
{A∈Pow(

⋃
T). ∃ D∈?FF. D⊆A}=

⋃
T"

using base_unique_filter_set2[of "?FF"] by auto

then have fil:"{A∈Pow(
⋃
T). ∃ D∈?FF. D⊆A} {is a filter on}

⋃
T"

using basic_filter sat by auto

have "∀ U∈Pow(
⋃
T). x∈int(U) −→ (∃ D∈?FF. D⊆U)" by auto

then have "{A∈Pow(
⋃
T). ∃ D∈?FF. D⊆A} →F x" using convergence_filter_base2[OF

fil bas(1) _ ‘x∈
⋃
T‘] by auto

moreover
then have "∀ U∈Pow(

⋃
T). y∈int(U) −→ (∃ D∈?FF. D⊆U)" by auto

then have "{A∈Pow(
⋃
T). ∃ D∈?FF. D⊆A} →F y" using convergence_filter_base2[OF

fil bas(1) _ ‘y∈
⋃
T‘] by auto

ultimately have "x=y" using assms fil ‘x∈
⋃
T‘‘y∈

⋃
T‘ by blast

with ‘x 6=y‘ have "False" by auto
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}
then have "∃ U∈T. ∃ V∈T. x∈U ∧ y∈V ∧ U∩V=0" by blast

}
then show ?thesis using isT2_def by auto

qed

lemma (in topology0) unique_limit_net_imp_T2:

assumes "∀ x∈
⋃
T. ∀ y∈

⋃
T. ∀ N. ((N {is a net on}

⋃
T) ∧ (N →N x) ∧

(N →N y)) −→ x=y"

shows "T {is T2}"

proof-
{

fix x y F
assume "x∈

⋃
T" "y∈

⋃
T""F {is a filter on}

⋃
T""F →F x""F →F y"

then have "(Net(F)) {is a net on}
⋃
T""(Net F) →N x""(Net F) →N

y"

using filter_conver_net_of_filter_conver net_of_filter_is_net by
auto

with ‘x∈
⋃
T‘ ‘y∈

⋃
T‘ have "x=y" using assms by blast

}
then have "∀ x∈

⋃
T. ∀ y∈

⋃
T. ∀F. ((F {is a filter on}

⋃
T) ∧ (F →F

x) ∧ (F →F y)) −→ x=y" by auto

then show ?thesis using unique_limit_filter_imp_T2 by auto

qed

This results make easy to check if a space is T2.

The topology which comes from a filter as in ?F {is a filter on}
⋃
?F =⇒

(?F ∪ {0}) {is a topology} is not T2 generally. We will see in this file later
on, that the exceptions are a consequence of the spectrum.

corollary filter_T2_imp_card1:

assumes "(F∪{0}) {is T2}" "F {is a filter on}
⋃
F" "x∈

⋃
F"

shows "
⋃
F={x}"

proof-
{

fix y assume "y∈
⋃
F"

then have "F →F y {in} (F∪{0})" using lim_filter_top_of_filter assms(2)

by auto

moreover
have "F →F x {in} (F∪{0})" using lim_filter_top_of_filter assms(2,3)

by auto

moreover
have "

⋃
F=
⋃
(F∪{0})" by auto

ultimately
have "y=x" using topology0.T2_imp_unique_limit_filter[OF topology0_filter[OF

assms(2)] assms(1)] assms(2)

by auto

}
then have "

⋃
F⊆{x}" by auto
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with assms(3) show ?thesis by auto

qed

There are more separation axioms that just T0, T1 or T2

definition
IsRegular ("_{is regular}" 90)

where "T{is regular} ≡ ∀ A. A{is closed in}T −→ (∀ x∈
⋃
T-A. ∃ U∈T.

∃ V∈T. A⊆U∧x∈V∧U∩V=0)"

definition
isT3 ("_{is T3}" 90)

where "T{is T3} ≡ (T{is T1}) ∧ (T{is regular})"

definition
IsNormal ("_{is normal}" 90)

where "T{is normal} ≡ ∀ A. A{is closed in}T −→ (∀ B. B{is closed in}T

∧ A∩B=0 −→
(∃ U∈T. ∃ V∈T. A⊆U∧B⊆V∧U∩V=0))"

definition
isT4 ("_{is T4}" 90)

where "T{is T4} ≡ (T{is T1}) ∧ (T{is normal})"

lemma (in topology0) T4_is_T3:

assumes "T{is T4}" shows "T{is T3}"

proof-
from assms have nor:"T{is normal}" using isT4_def by auto

from assms have "T{is T1}" using isT4_def by auto

then have "Cofinite (
⋃
T)⊆T" using T1_cocardinal_coarser by auto

{
fix A

assume AS:"A{is closed in}T"

{
fix x

assume "x∈
⋃
T-A"

have "Finite({x})" by auto

then obtain n where "{x}≈n" "n∈nat" unfolding Finite_def by auto

then have "{x}.n" "n∈nat" using eqpoll_imp_lepoll by auto

then have "{x}≺nat" using n_lesspoll_nat lesspoll_trans1 by auto

with ‘x∈
⋃
T-A‘ have "{x} {is closed in} (Cofinite (

⋃
T))" using

Cofinite_def

closed_sets_cocardinal by auto

then have "
⋃
T-{x}∈Cofinite(

⋃
T)" unfolding IsClosed_def using

union_cocardinal Cofinite_def

by auto

with ‘Cofinite (
⋃
T)⊆T‘ have "

⋃
T-{x}∈T" by auto

with ‘x∈
⋃
T-A‘ have "{x}{is closed in}T" "A∩{x}=0" using IsClosed_def

by auto

with nor AS have "∃ U∈T. ∃ V∈T. A⊆U∧{x}⊆V∧U∩V=0" unfolding IsNormal_def
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by blast

then have "∃ U∈T. ∃ V∈T. A⊆U∧ x∈V∧U∩V=0" by auto

}
then have "∀ x∈

⋃
T-A. ∃ U∈T. ∃ V∈T. A⊆U∧ x∈V∧U∩V=0" by auto

}
then have "T{is regular}" using IsRegular_def by blast

with ‘T{is T1}‘ show ?thesis using isT3_def by auto

qed

lemma (in topology0) T3_is_T2:

assumes "T{is T3}" shows "T{is T2}"

proof-
from assms have "T{is regular}" using isT3_def by auto

from assms have "T{is T1}" using isT3_def by auto

then have "Cofinite (
⋃
T)⊆T" using T1_cocardinal_coarser by auto

{
fix x y

assume "x∈
⋃
T""y∈

⋃
T""x6=y"

have "Finite({x})" by auto

then obtain n where "{x}≈n" "n∈nat" unfolding Finite_def by auto

then have "{x}.n" "n∈nat" using eqpoll_imp_lepoll by auto

then have "{x}≺nat" using n_lesspoll_nat lesspoll_trans1 by auto

with ‘x∈
⋃
T‘ have "{x} {is closed in} (Cofinite (

⋃
T))" using Cofinite_def

closed_sets_cocardinal by auto

then have "
⋃
T-{x}∈Cofinite(

⋃
T)" unfolding IsClosed_def using union_cocardinal

Cofinite_def

by auto

with ‘Cofinite (
⋃
T)⊆T‘ have "

⋃
T-{x}∈T" by auto

with ‘x∈
⋃
T‘‘y∈

⋃
T‘‘x 6=y‘ have "{x}{is closed in}T" "y∈

⋃
T-{x}" us-

ing IsClosed_def by auto

with ‘T{is regular}‘ have "∃ U∈T. ∃ V∈T. {x}⊆U∧y∈V∧U∩V=0" unfold-
ing IsRegular_def by force

then have "∃ U∈T. ∃ V∈T. x∈U∧y∈V∧U∩V=0" by auto

}
then show ?thesis using isT2_def by auto

qed

Regularity can be rewritten in terms of existence of certain neighboorhoods.

lemma (in topology0) regular_imp_exist_clos_neig:

assumes "T{is regular}" and "U∈T" and "x∈U"
shows "∃ V∈T. x∈V ∧ cl(V)⊆U"

proof-
from assms(2) have "(

⋃
T-U){is closed in}T" using Top_3_L9 by auto

moreover
from assms(2,3) have "x∈

⋃
T" by auto moreover

note assms(1,3) ultimately obtain A B where "A∈T" and "B∈T" and "A∩B=0"
and "(

⋃
T-U)⊆A" and "x∈B"

unfolding IsRegular_def by blast
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from ‘A∩B=0‘ ‘B∈T‘ have "B⊆
⋃
T-A" by auto

with ‘A∈T‘ have "cl(B)⊆
⋃
T-A" using Top_3_L9 Top_3_L13 by auto

moreover from ‘(
⋃
T-U)⊆A‘ assms(3) have "

⋃
T-A⊆U" by auto

moreover note ‘x∈B‘ ‘B∈T‘
ultimately have "B∈T ∧ x∈B ∧ cl(B)⊆U" by auto

then show ?thesis by auto

qed

lemma (in topology0) exist_clos_neig_imp_regular:

assumes "∀ x∈
⋃
T. ∀ U∈T. x∈U −→ (∃ V∈T. x∈V∧ cl(V)⊆U)"

shows "T{is regular}"

proof-
{

fix F

assume "F{is closed in}T"

{
fix x assume "x∈

⋃
T-F"

with ‘F{is closed in}T‘ have "x∈
⋃
T" "

⋃
T-F∈T" "F⊆

⋃
T" unfold-

ing IsClosed_def by auto

with assms ‘x∈
⋃
T-F‘ have "∃ V∈T. x∈V ∧ cl(V)⊆

⋃
T-F" by auto

then obtain V where "V∈T" "x∈V" "cl(V)⊆
⋃
T-F" by auto

from ‘cl(V)⊆
⋃
T-F‘ ‘F⊆

⋃
T‘ have "F⊆

⋃
T-cl(V)" by auto

moreover from ‘V∈T‘ have "
⋃
T-(
⋃
T-V)=V" by auto

then have "cl(V)=
⋃
T-int(

⋃
T-V)" using Top_3_L11(2)[of "

⋃
T-V"]

by auto

ultimately have "F⊆int(
⋃
T-V)" by auto moreover

have "int(
⋃
T-V)⊆

⋃
T-V" using Top_2_L1 by auto

then have "V∩(int(
⋃
T-V))=0" by auto moreover

note ‘x∈V‘‘V∈T‘ ultimately
have "V∈T" "int(

⋃
T-V)∈T" "F⊆int(

⋃
T-V) ∧ x∈V ∧ (int(

⋃
T-V))∩V=0"

using Top_2_L2

by auto

then have "∃ U∈T. ∃ V∈T. F⊆U ∧ x∈V ∧ U∩V=0" by auto

}
then have "∀ x∈

⋃
T-F. ∃ U∈T. ∃ V∈T. F⊆U ∧ x∈V ∧ U∩V=0" by auto

}
then show ?thesis using IsRegular_def by blast

qed

lemma (in topology0) regular_eq:

shows "T{is regular} ←→ (∀ x∈
⋃
T. ∀ U∈T. x∈U −→ (∃ V∈T. x∈V∧ cl(V)⊆U))"

using regular_imp_exist_clos_neig exist_clos_neig_imp_regular by force

A Hausdorff space separates compact spaces from points.

theorem (in topology0) T2_compact_point:

assumes "T{is T2}" "A{is compact in}T" "x∈
⋃
T" "x/∈A"

shows "∃ U∈T. ∃ V∈T. A⊆U ∧ x∈V ∧ U∩V=0"
proof-
{
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assume "A=0"

then have "A⊆0∧x∈
⋃
T∧(0∩(

⋃
T)=0)" using assms(3) by auto

then have ?thesis using empty_open topSpaceAssum unfolding IsATopology_def

by auto

}
moreover
{

assume noEmpty:"A6=0"

let ?U="{〈U,V〉∈T×T. x∈U∧U∩V=0}"
{

fix y assume "y∈A"
with ‘x/∈A‘ assms(4) have "x6=y" by auto

moreover from ‘y∈A‘ have "x∈
⋃
T""y∈

⋃
T" using assms(2,3) unfold-

ing IsCompact_def by auto

ultimately obtain U V where "U∈T""V∈T""U∩V=0""x∈U""y∈V" using
assms(1) unfolding isT2_def by blast

then have "∃ 〈U,V〉∈?U. y∈V" by auto

}
then have "∀ y∈A. ∃ 〈U,V〉∈?U. y∈V" by auto

then have "A⊆
⋃
{snd(B). B∈?U}" by auto

moreover have "{snd(B). B∈?U}∈Pow(T)" by auto

ultimately have "∃ N∈FinPow({snd(B). B∈?U}). A⊆
⋃
N" using assms(2)

unfolding IsCompact_def by auto

then obtain N where ss:"N∈FinPow({snd(B). B∈?U})" "A⊆
⋃
N" by auto

with ‘{snd(B). B∈?U}∈Pow(T)‘ have "A⊆
⋃
N" "N∈Pow(T)" unfolding FinPow_def

by auto

then have NN:"A⊆
⋃
N" "

⋃
N∈T" using topSpaceAssum unfolding IsATopology_def

by auto

from ss have "Finite(N)""N⊆{snd(B). B∈?U}" unfolding FinPow_def by
auto

then obtain n where "n∈nat" "N≈n" unfolding Finite_def by auto

then have "N.n" using eqpoll_imp_lepoll by auto

from noEmpty ‘A⊆
⋃
N‘ have NnoEmpty:"N6=0" by auto

let ?QQ="{〈n,{fst(B). B∈{A∈?U. snd(A)=n}}〉. n∈N}"
have QQPi:"?QQ:N→{{fst(B). B∈{A∈?U. snd(A)=n}}. n∈N}" unfolding

Pi_def function_def domain_def by auto

{
fix n assume "n∈N"
with ‘N⊆{snd(B). B∈?U}‘ obtain B where "n=snd(B)" "B∈?U" by auto

then have "fst(B)∈{fst(B). B∈{A∈?U. snd(A)=n}}" by auto

then have "{fst(B). B∈{A∈?U. snd(A)=n}}6=0" by auto moreover
from ‘n∈N‘ have "〈n,{fst(B). B∈{A∈?U. snd(A)=n}}〉∈?QQ" by auto

with QQPi have "?QQ‘n={fst(B). B∈{A∈?U. snd(A)=n}}" using apply_equality

by auto

ultimately have "?QQ‘n6=0" by auto

}
then have "∀ n∈N. ?QQ‘n 6=0" by auto

with ‘n∈nat‘ ‘N.n‘ have "∃ f. f∈Pi(N,λt. ?QQ‘t) ∧ (∀ t∈N. f‘t∈?QQ‘t)"
using finite_choice unfolding AxiomCardinalChoiceGen_def
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by auto

then obtain f where fPI:"f∈Pi(N,λt. ?QQ‘t)" "(∀ t∈N. f‘t∈?QQ‘t)"
by auto

from fPI(1) NnoEmpty have "range(f)6=0" unfolding Pi_def range_def

domain_def converse_def by (safe,blast)

{
fix t assume "t∈N"
then have "f‘t∈?QQ‘t" using fPI(2) by auto

with ‘t∈N‘ have "f‘t∈
⋃
(?QQ‘‘N)" "?QQ‘t⊆

⋃
(?QQ‘‘N)" using func_imagedef

QQPi by auto

}
then have reg:"∀ t∈N. f‘t∈

⋃
(?QQ‘‘N)" "∀ t∈N. ?QQ‘t⊆

⋃
(?QQ‘‘N)" by

auto

{
fix tt assume "tt∈f"
with fPI(1) have "tt∈Sigma(N, op‘(?QQ))" unfolding Pi_def by auto

then have "tt∈(
⋃
xa∈N.

⋃
y∈?QQ‘xa. {〈xa,y〉})" unfolding Sigma_def

by auto

then obtain xa y where "xa∈N" "y∈?QQ‘xa" "tt=〈xa,y〉" by auto

with reg(2) have "y∈
⋃
(?QQ‘‘N)" by blast

with ‘tt=〈xa,y〉‘ ‘xa∈N‘ have "tt∈(
⋃
xa∈N.

⋃
y∈
⋃
(?QQ‘‘N). {〈xa,y〉})"

by auto

then have "tt∈N×(
⋃
(?QQ‘‘N))" unfolding Sigma_def by auto

}
then have ffun:"f:N→

⋃
(?QQ‘‘N)" using fPI(1) unfolding Pi_def by

auto

then have "f∈surj(N,range(f))" using fun_is_surj by auto

with ‘N.n‘ ‘n∈nat‘ have "range(f).N" using surj_fun_inv_2 nat_into_Ord

by auto

with ‘N.n‘ have "range(f).n" using lepoll_trans by blast

with ‘n∈nat‘ have "Finite(range(f))" using n_lesspoll_nat lesspoll_nat_is_Finite

lesspoll_trans1 by auto

moreover from ffun have rr:"range(f)⊆
⋃
(?QQ‘‘N)" unfolding Pi_def

by auto

then have "range(f)⊆T" by auto

ultimately have "range(f)∈FinPow(T)" unfolding FinPow_def by auto

then have "
⋂
range(f)∈T" using fin_inter_open_open ‘range(f)6=0‘ by

auto moreover
{

fix S assume "S∈range(f)"
with rr have "S∈

⋃
(?QQ‘‘N)" by blast

then have "∃ B∈(?QQ‘‘N). S ∈ B" using Union_iff by auto

then obtain B where "B∈(?QQ‘‘N)" "S∈B" by auto

then have "∃ rr∈N. 〈rr,B〉∈?QQ" unfolding image_def by auto

then have "∃ rr∈N. B={fst(B). B∈{A∈?U. snd(A)=rr}}" by auto

with ‘S∈B‘ obtain rr where "〈S,rr〉∈?U" by auto

then have "x∈S" by auto

}
then have "x∈

⋂
range(f)" using ‘range(f)6=0‘ by auto moreover
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{
fix y assume "y∈(

⋃
N)∩(

⋂
range(f))"

then have reg:"(∀ S∈range(f). y∈S)∧(∃ t∈N. y∈t)" by auto

then obtain t where "t∈N" "y∈t" by auto

then have "〈t, {fst(B). B∈{A∈?U. snd(A)=t}}〉∈?QQ" by auto

then have "f‘t∈range(f)" using apply_rangeI ffun by auto

with reg have yft:"y∈f‘t" by auto

with ‘t∈N‘ fPI(2) have "f‘t∈?QQ‘t" by auto

with ‘t∈N‘ have "f‘t∈{fst(B). B∈{A∈?U. snd(A)=t}}" using apply_equality

QQPi by auto

then have "〈f‘t,t〉∈?U" by auto

then have "f‘t∩t=0" by auto

with ‘y∈t‘ yft have "False" by auto

}
then have "(

⋃
N)∩(

⋂
range(f))=0" by blast moreover

note NN

ultimately have ?thesis by auto

}
ultimately show ?thesis by auto

qed

A Hausdorff space separates compact spaces from other compact spaces.

theorem (in topology0) T2_compact_compact:

assumes "T{is T2}" "A{is compact in}T" "B{is compact in}T" "A∩B=0"
shows "∃ U∈T. ∃ V∈T. A⊆U ∧ B⊆V ∧ U∩V=0"

proof-
{

assume "B=0"

then have "A⊆
⋃
T∧B⊆0∧((

⋃
T)∩0=0)" using assms(2) unfolding IsCompact_def

by auto moreover
have "0∈T" using empty_open topSpaceAssum by auto moreover
have "

⋃
T∈T" using topSpaceAssum unfolding IsATopology_def by auto

ultimately
have ?thesis by auto

}
moreover
{

assume noEmpty:"B6=0"

let ?U="{〈U,V〉∈T×T. A⊆U ∧ U∩V=0}"
{

fix y assume "y∈B"
then have "y∈

⋃
T" using assms(3) unfolding IsCompact_def by auto

with ‘y∈B‘ have "∃ U∈T. ∃ V∈T. A⊆U ∧ y∈V ∧ U∩V=0" using T2_compact_point

assms(1,2,4) by auto

then have "∃ 〈U,V〉∈?U. y∈V" by auto

}
then have "∀ y∈B. ∃ 〈U,V〉∈?U. y∈V" by auto

then have "B⊆
⋃
{snd(B). B∈?U}" by auto

moreover have "{snd(B). B∈?U}∈Pow(T)" by auto
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ultimately have "∃ N∈FinPow({snd(B). B∈?U}). B⊆
⋃
N" using assms(3)

unfolding IsCompact_def by auto

then obtain N where ss:"N∈FinPow({snd(B). B∈?U})" "B⊆
⋃
N" by auto

with ‘{snd(B). B∈?U}∈Pow(T)‘ have "B⊆
⋃
N" "N∈Pow(T)" unfolding FinPow_def

by auto

then have NN:"B⊆
⋃
N" "

⋃
N∈T" using topSpaceAssum unfolding IsATopology_def

by auto

from ss have "Finite(N)""N⊆{snd(B). B∈?U}" unfolding FinPow_def by
auto

then obtain n where "n∈nat" "N≈n" unfolding Finite_def by auto

then have "N.n" using eqpoll_imp_lepoll by auto

from noEmpty ‘B⊆
⋃
N‘ have NnoEmpty:"N6=0" by auto

let ?QQ="{〈n,{fst(B). B∈{A∈?U. snd(A)=n}}〉. n∈N}"
have QQPi:"?QQ:N→{{fst(B). B∈{A∈?U. snd(A)=n}}. n∈N}" unfolding

Pi_def function_def domain_def by auto

{
fix n assume "n∈N"
with ‘N⊆{snd(B). B∈?U}‘ obtain B where "n=snd(B)" "B∈?U" by auto

then have "fst(B)∈{fst(B). B∈{A∈?U. snd(A)=n}}" by auto

then have "{fst(B). B∈{A∈?U. snd(A)=n}}6=0" by auto moreover
from ‘n∈N‘ have "〈n,{fst(B). B∈{A∈?U. snd(A)=n}}〉∈?QQ" by auto

with QQPi have "?QQ‘n={fst(B). B∈{A∈?U. snd(A)=n}}" using apply_equality

by auto

ultimately have "?QQ‘n6=0" by auto

}
then have "∀ n∈N. ?QQ‘n 6=0" by auto

with ‘n∈nat‘ ‘N.n‘ have "∃ f. f∈Pi(N,λt. ?QQ‘t) ∧ (∀ t∈N. f‘t∈?QQ‘t)"
using finite_choice unfolding AxiomCardinalChoiceGen_def

by auto

then obtain f where fPI:"f∈Pi(N,λt. ?QQ‘t)" "(∀ t∈N. f‘t∈?QQ‘t)"
by auto

from fPI(1) NnoEmpty have "range(f)6=0" unfolding Pi_def range_def

domain_def converse_def by (safe,blast)

{
fix t assume "t∈N"
then have "f‘t∈?QQ‘t" using fPI(2) by auto

with ‘t∈N‘ have "f‘t∈
⋃
(?QQ‘‘N)" "?QQ‘t⊆

⋃
(?QQ‘‘N)" using func_imagedef

QQPi by auto

}
then have reg:"∀ t∈N. f‘t∈

⋃
(?QQ‘‘N)" "∀ t∈N. ?QQ‘t⊆

⋃
(?QQ‘‘N)" by

auto

{
fix tt assume "tt∈f"
with fPI(1) have "tt∈Sigma(N, op‘(?QQ))" unfolding Pi_def by auto

then have "tt∈(
⋃
xa∈N.

⋃
y∈?QQ‘xa. {〈xa,y〉})" unfolding Sigma_def

by auto

then obtain xa y where "xa∈N" "y∈?QQ‘xa" "tt=〈xa,y〉" by auto

with reg(2) have "y∈
⋃
(?QQ‘‘N)" by blast

with ‘tt=〈xa,y〉‘ ‘xa∈N‘ have "tt∈(
⋃
xa∈N.

⋃
y∈
⋃
(?QQ‘‘N). {〈xa,y〉})"
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by auto

then have "tt∈N×(
⋃
(?QQ‘‘N))" unfolding Sigma_def by auto

}
then have ffun:"f:N→

⋃
(?QQ‘‘N)" using fPI(1) unfolding Pi_def by

auto

then have "f∈surj(N,range(f))" using fun_is_surj by auto

with ‘N.n‘ ‘n∈nat‘ have "range(f).N" using surj_fun_inv_2 nat_into_Ord

by auto

with ‘N.n‘ have "range(f).n" using lepoll_trans by blast

with ‘n∈nat‘ have "Finite(range(f))" using n_lesspoll_nat lesspoll_nat_is_Finite

lesspoll_trans1 by auto

moreover from ffun have rr:"range(f)⊆
⋃
(?QQ‘‘N)" unfolding Pi_def

by auto

then have "range(f)⊆T" by auto

ultimately have "range(f)∈FinPow(T)" unfolding FinPow_def by auto

then have "
⋂
range(f)∈T" using fin_inter_open_open ‘range(f)6=0‘ by

auto moreover
{

fix S assume "S∈range(f)"
with rr have "S∈

⋃
(?QQ‘‘N)" by blast

then have "∃ B∈(?QQ‘‘N). S ∈ B" using Union_iff by auto

then obtain B where "B∈(?QQ‘‘N)" "S∈B" by auto

then have "∃ rr∈N. 〈rr,B〉∈?QQ" unfolding image_def by auto

then have "∃ rr∈N. B={fst(B). B∈{A∈?U. snd(A)=rr}}" by auto

with ‘S∈B‘ obtain rr where "〈S,rr〉∈?U" by auto

then have "A⊆S" by auto

}
then have "A⊆

⋂
range(f)" using ‘range(f)6=0‘ by auto moreover

{
fix y assume "y∈(

⋃
N)∩(

⋂
range(f))"

then have reg:"(∀ S∈range(f). y∈S)∧(∃ t∈N. y∈t)" by auto

then obtain t where "t∈N" "y∈t" by auto

then have "〈t, {fst(B). B∈{A∈?U. snd(A)=t}}〉∈?QQ" by auto

then have "f‘t∈range(f)" using apply_rangeI ffun by auto

with reg have yft:"y∈f‘t" by auto

with ‘t∈N‘ fPI(2) have "f‘t∈?QQ‘t" by auto

with ‘t∈N‘ have "f‘t∈{fst(B). B∈{A∈?U. snd(A)=t}}" using apply_equality

QQPi by auto

then have "〈f‘t,t〉∈?U" by auto

then have "f‘t∩t=0" by auto

with ‘y∈t‘ yft have "False" by auto

}
then have "(

⋂
range(f))∩(

⋃
N)=0" by blast moreover

note NN

ultimately have ?thesis by auto

}
ultimately show ?thesis by auto

qed

A compact Hausdorff space is normal.
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corollary (in topology0) T2_compact_is_normal:

assumes "T{is T2}" "(
⋃
T){is compact in}T"

shows "T{is normal}" unfolding IsNormal_def

proof-
from assms(2) have car_nat:"(

⋃
T){is compact of cardinal}nat{in}T"

using Compact_is_card_nat by auto

{
fix A B assume "A{is closed in}T" "B{is closed in}T""A∩B=0"
then have com:"((

⋃
T)∩A){is compact of cardinal}nat{in}T" "((

⋃
T)∩B){is

compact of cardinal}nat{in}T" using compact_closed[OF car_nat]

by auto

from ‘A{is closed in}T‘‘B{is closed in}T‘ have "(
⋃
T)∩A=A""(

⋃
T)∩B=B"

unfolding IsClosed_def by auto

with com have "A{is compact of cardinal}nat{in}T" "B{is compact of

cardinal}nat{in}T" by auto

then have "A{is compact in}T""B{is compact in}T" using Compact_is_card_nat

by auto

with ‘A∩B=0‘ have "∃ U∈T. ∃ V∈T. A⊆U ∧ B⊆V ∧ U∩V=0" using T2_compact_compact

assms(1) by auto

}
then show " ∀ A. A {is closed in} T −→ (∀ B. B {is closed in} T ∧ A

∩ B = 0 −→ (∃ U∈T. ∃ V∈T. A ⊆ U ∧ B ⊆ V ∧ U ∩ V = 0))"

by auto

qed

58.2 Hereditability

A topological property is hereditary if whenever a space has it, every sub-
space also has it.

definition IsHer ("_{is hereditary}" 90)

where "P {is hereditary} ≡ ∀ T. T{is a topology} ∧ P(T) −→ (∀ A∈Pow(
⋃
T).

P(T{restricted to}A))"

lemma subspace_of_subspace:

assumes "A⊆B""B⊆
⋃
T"

shows "T{restricted to}A=(T{restricted to}B){restricted to}A"

proof
from assms have S:"∀ S∈T. A∩(B∩S)=A∩S" by auto

then show "T {restricted to} A ⊆ T {restricted to} B {restricted to}

A" unfolding RestrictedTo_def

by auto

from S show "T {restricted to} B {restricted to} A ⊆ T {restricted

to} A" unfolding RestrictedTo_def

by auto

qed

The separation properties T0, T1, T2 y T3 are hereditary.

theorem regular_here:
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assumes "T{is regular}" "A∈Pow(
⋃
T)" shows "(T{restricted to}A){is

regular}"

proof-
{

fix C

assume A:"C{is closed in}(T{restricted to}A)"

{fix y assume "y∈
⋃
(T{restricted to}A)""y/∈C"

with A have "(
⋃
(T{restricted to}A))-C∈(T{restricted to}A)""C⊆

⋃
(T{restricted

to}A)" "y∈
⋃
(T{restricted to}A)""y/∈C" unfolding IsClosed_def

by auto

moreover
with assms(2) have "

⋃
(T{restricted to}A)=A" unfolding RestrictedTo_def

by auto

ultimately have "A-C∈T{restricted to}A" "y∈A""y/∈C""C∈Pow(A)" by auto

then obtain S where "S∈T" "A∩S=A-C" "y∈A""y/∈C" unfolding RestrictedTo_def

by auto

then have "y∈A-C""A∩S=A-C" by auto

with ‘C∈Pow(A)‘ have "y∈A∩S""C=A-A∩S" by auto

then have "y∈S" "C=A-S" by auto

with assms(2) have "y∈S" "C⊆
⋃
T-S" by auto

moreover
from ‘S∈T‘ have "

⋃
T-(
⋃
T-S)=S" by auto

moreover
with ‘S∈T‘ have "(

⋃
T-S) {is closed in}T" using IsClosed_def by auto

ultimately have "y∈
⋃
T-(
⋃
T-S)" "(

⋃
T-S) {is closed in}T" by auto

with assms(1) have "∀ y∈
⋃
T-(
⋃
T-S). ∃ U∈T. ∃ V∈T. (

⋃
T-S)⊆U∧y∈V∧U∩V=0"

unfolding IsRegular_def by auto

with ‘y∈
⋃
T-(
⋃
T-S)‘ have "∃ U∈T. ∃ V∈T. (

⋃
T-S)⊆U∧y∈V∧U∩V=0" by

auto

then obtain U V where "U∈T""V∈T" "
⋃
T-S⊆U""y∈V""U∩V=0" by auto

then have "A∩U∈(T{restricted to}A)""A∩V∈(T{restricted to}A)" "C⊆U""y∈V""(A∩U)∩(A∩V)=0"
unfolding RestrictedTo_def using ‘C⊆

⋃
T-S‘ by auto

moreover
with ‘C∈Pow(A)‘‘y∈A‘ have "C⊆A∩U""y∈A∩V" by auto

ultimately have "∃ U∈(T{restricted to}A). ∃ V∈(T{restricted to}A).

C⊆U∧y∈V∧U∩V=0" by auto

}
then have "∀ x∈

⋃
(T{restricted to}A)-C. ∃ U∈(T{restricted to}A). ∃ V∈(T{restricted

to}A). C⊆U∧x∈V∧U∩V=0" by auto

}
then have "∀ C. C{is closed in}(T{restricted to}A) −→ (∀ x∈

⋃
(T{restricted

to}A)-C. ∃ U∈(T{restricted to}A). ∃ V∈(T{restricted to}A). C⊆U∧x∈V∧U∩V=0)"
by blast

then show ?thesis using IsRegular_def by auto

qed

corollary here_regular:

shows "IsRegular {is hereditary}" using regular_here IsHer_def by auto
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theorem T1_here:

assumes "T{is T1}" "A∈Pow(
⋃
T)" shows "(T{restricted to}A){is T1}"

proof-
from assms(2) have un:"

⋃
(T{restricted to}A)=A" unfolding RestrictedTo_def

by auto

{
fix x y

assume "x∈A""y∈A""x6=y"

with ‘A∈Pow(
⋃
T)‘ have "x∈

⋃
T""y∈

⋃
T""x6=y" by auto

then have "∃ U∈T. x∈U∧y/∈U" using assms(1) isT1_def by auto

then obtain U where "U∈T""x∈U""y/∈U" by auto

with ‘x∈A‘ have "A∩U∈(T{restricted to}A)" "x∈A∩U" "y/∈A∩U" unfold-
ing RestrictedTo_def by auto

then have "∃ U∈(T{restricted to}A). x∈U∧y/∈U" by blast

}
with un have "∀ x y. x∈

⋃
(T{restricted to}A) ∧ y∈

⋃
(T{restricted to}A)

∧ x 6=y −→ (∃ U∈(T{restricted to}A). x∈U∧y/∈U)"
by auto

then show ?thesis using isT1_def by auto

qed

corollary here_T1:

shows "isT1 {is hereditary}" using T1_here IsHer_def by auto

lemma here_and:

assumes "P {is hereditary}" "Q {is hereditary}"

shows "(λT. P(T) ∧ Q(T)) {is hereditary}" using assms unfolding IsHer_def

by auto

corollary here_T3:

shows "isT3 {is hereditary}" using here_and[OF here_T1 here_regular]

unfolding IsHer_def isT3_def.

lemma T2_here:

assumes "T{is T2}" "A∈Pow(
⋃
T)" shows "(T{restricted to}A){is T2}"

proof-
from assms(2) have un:"

⋃
(T{restricted to}A)=A" unfolding RestrictedTo_def

by auto

{
fix x y

assume "x∈A""y∈A""x6=y"

with ‘A∈Pow(
⋃
T)‘ have "x∈

⋃
T""y∈

⋃
T""x6=y" by auto

then have "∃ U∈T. ∃ V∈T. x∈U∧y∈V∧U∩V=0" using assms(1) isT2_def by
auto

then obtain U V where "U∈T" "V∈T""x∈U""y∈V""U∩V=0" by auto

with ‘x∈A‘‘y∈A‘ have "A∩U∈(T{restricted to}A)""A∩V∈(T{restricted
to}A)" "x∈A∩U" "y∈A∩V" "(A∩U)∩(A∩V)=0"unfolding RestrictedTo_def by
auto

then have "∃ U∈(T{restricted to}A). ∃ V∈(T{restricted to}A). x∈U∧y∈V∧U∩V=0"
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unfolding Bex_def by auto

}
with un have "∀ x y. x∈

⋃
(T{restricted to}A) ∧ y∈

⋃
(T{restricted to}A)

∧ x 6=y −→ (∃ U∈(T{restricted to}A). ∃ V∈(T{restricted to}A). x∈U∧y∈V∧U∩V=0)"
by auto

then show ?thesis using isT2_def by auto

qed

corollary here_T2:

shows "isT2 {is hereditary}" using T2_here IsHer_def by auto

lemma T0_here:

assumes "T{is T0}" "A∈Pow(
⋃
T)" shows "(T{restricted to}A){is T0}"

proof-
from assms(2) have un:"

⋃
(T{restricted to}A)=A" unfolding RestrictedTo_def

by auto

{
fix x y

assume "x∈A""y∈A""x6=y"

with ‘A∈Pow(
⋃
T)‘ have "x∈

⋃
T""y∈

⋃
T""x6=y" by auto

then have "∃ U∈T. (x∈U∧y/∈U)∨(y∈U∧x/∈U)" using assms(1) isT0_def by
auto

then obtain U where "U∈T" "(x∈U∧y/∈U)∨(y∈U∧x/∈U)" by auto

with ‘x∈A‘‘y∈A‘ have "A∩U∈(T{restricted to}A)" "(x∈A∩U∧y/∈A∩U)∨(y∈A∩U∧x/∈A∩U)"
unfolding RestrictedTo_def by auto

then have "∃ U∈(T{restricted to}A). (x∈U∧y/∈U)∨(y∈U∧x/∈U)" unfold-
ing Bex_def by auto

}
with un have "∀ x y. x∈

⋃
(T{restricted to}A) ∧ y∈

⋃
(T{restricted to}A)

∧ x6=y −→ (∃ U∈(T{restricted to}A). (x∈U∧y/∈U)∨(y∈U∧x/∈U))"
by auto

then show ?thesis using isT0_def by auto

qed

corollary here_T0:

shows "isT0 {is hereditary}" using T0_here IsHer_def by auto

58.3 Spectrum and anti-properties

The spectrum of a topological property is a class of sets such that all topolo-
gies defined over that set have that property.

The spectrum of a property gives us the list of sets for which the property
doesn’t give any topological information. Being in the spectrum of a topo-
logical property is an invariant in the category of sets and function; mening
that equipollent sets are in the same spectra.

definition Spec ("_ {is in the spectrum of} _" 99)

where "Spec(K,P) ≡ ∀ T. ((T{is a topology} ∧
⋃
T≈K) −→ P(T))"
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lemma equipollent_spect:

assumes "A≈B" "B {is in the spectrum of} P"

shows "A {is in the spectrum of} P"

proof-
from assms(2) have "∀ T. ((T{is a topology} ∧

⋃
T≈B) −→ P(T))" us-

ing Spec_def by auto

then have "∀ T. ((T{is a topology} ∧
⋃
T≈A) −→ P(T))" using eqpoll_trans[OF

_ assms(1)] by auto

then show ?thesis using Spec_def by auto

qed

theorem eqpoll_iff_spec:

assumes "A≈B"
shows "(B {is in the spectrum of} P) ←→ (A {is in the spectrum of}

P)"

proof
assume "B {is in the spectrum of} P"

with assms equipollent_spect show "A {is in the spectrum of} P" by
auto

next
assume "A {is in the spectrum of} P"

moreover
from assms have "B≈A" using eqpoll_sym by auto

ultimately show "B {is in the spectrum of} P" using equipollent_spect

by auto

qed

From the previous statement, we see that the spectrum could be formed
only by representative of clases of sets. If AC holds, this means that the
spectrum can be taken as a set or class of cardinal numbers.

Here is an example of the spectrum. The proof lies in the indiscrite filter {A}
that can be build for any set. In this proof, we see that without choice, there
is no way to define the sepctrum of a property with cardinals because if a
set is not comparable with any ordinal, its cardinal is defined as 0 without
the set being empty.

theorem T4_spectrum:

shows "(A {is in the spectrum of} isT4) ←→ A . 1"

proof
assume "A {is in the spectrum of} isT4"

then have reg:"∀ T. ((T{is a topology} ∧
⋃
T≈A) −→ (T {is T4}))" us-

ing Spec_def by auto

{
assume "A 6=0"

then obtain x where "x∈A" by auto

then have "x∈
⋃
{A}" by auto

moreover
then have "{A} {is a filter on}

⋃
{A}" using IsFilter_def by auto

moreover
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then have "({A}∪{0}) {is a topology} ∧
⋃
({A}∪{0})=A" using top_of_filter

by auto

then have top:"({A}∪{0}) {is a topology}" "
⋃
({A}∪{0})≈A" using eqpoll_refl

by auto

then have "({A}∪{0}) {is T4}" using reg by auto

then have "({A}∪{0}) {is T2}" using topology0.T3_is_T2 topology0.T4_is_T3

topology0_def top by auto

ultimately have "
⋃
{A}={x}" using filter_T2_imp_card1[of "{A}""x"]

by auto

then have "A={x}" by auto

then have "A≈1" using singleton_eqpoll_1 by auto

}
moreover
have "A=0 −→ A≈0" by auto

ultimately have "A≈1∨A≈0" by blast

then show "A.1" using empty_lepollI eqpoll_imp_lepoll eq_lepoll_trans

by auto

next
assume "A.1"
have "A=0∨A6=0" by auto

then obtain E where "A=0∨E∈A" by auto

then have "A≈0∨E∈A" by auto

with ‘A.1‘ have "A≈0∨A={E}" using lepoll_1_is_sing by auto

then have "A≈0∨A≈1" using singleton_eqpoll_1 by auto

{
fix T

assume AS:"T{is a topology}""
⋃
T≈A"

{
assume "A≈0"
with AS have "T{is a topology}" and empty:"

⋃
T=0" using eqpoll_trans

eqpoll_0_is_0 by auto

then have "T{is T2}" using isT2_def by auto

then have "T{is T1}" using T2_is_T1 by auto

moreover
from empty have "T⊆{0}" by auto

with AS(1) have "T={0}" using empty_open by auto

from empty have rr:"∀ A. A{is closed in}T −→ A=0" using IsClosed_def

by auto

have "∃ U∈T. ∃ V∈T. 0⊆U∧0⊆V∧U∩V=0" using empty_open AS(1) by auto

with rr have "∀ A. A{is closed in}T −→ (∀ B. B{is closed in}T ∧
A∩B=0 −→ (∃ U∈T. ∃ V∈T. A⊆U∧B⊆V∧U∩V=0))"

by blast

then have "T{is normal}" using IsNormal_def by auto

with ‘T{is T1}‘ have "T{is T4}" using isT4_def by auto

}
moreover
{

assume "A≈1"
with AS have "T{is a topology}" and NONempty:"

⋃
T≈1" using eqpoll_trans[of
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"
⋃
T""A""1"] by auto

then have "
⋃
T.1" using eqpoll_imp_lepoll by auto

moreover
{

assume "
⋃
T=0"

then have "0≈
⋃
T" by auto

with NONempty have "0≈1" using eqpoll_trans by blast

then have "0=1" using eqpoll_0_is_0 eqpoll_sym by auto

then have "False" by auto

}
then have "

⋃
T6=0" by auto

then obtain R where "R∈
⋃
T" by blast

ultimately have "
⋃
T={R}" using lepoll_1_is_sing by auto

{
fix x y

assume "x{is closed in}T""y{is closed in}T" "x∩y=0"
then have "x⊆

⋃
T""y⊆

⋃
T" using IsClosed_def by auto

then have "x=0∨y=0" using ‘x∩y=0‘ ‘
⋃
T={R}‘ by force

{
assume "x=0"

then have "x⊆0""y⊆
⋃
T" using ‘y⊆

⋃
T‘ by auto

moreover
have "0∈T""

⋃
T∈T" using AS(1) IsATopology_def empty_open by

auto

ultimately have "∃ U∈T. ∃ V∈T. x⊆U∧y⊆V∧U∩V=0" by auto

}
moreover
{

assume "x 6=0"

with ‘x=0∨y=0‘ have "y=0" by auto

then have "x⊆
⋃
T""y⊆0" using ‘x⊆

⋃
T‘ by auto

moreover
have "0∈T""

⋃
T∈T" using AS(1) IsATopology_def empty_open by

auto

ultimately have "∃ U∈T. ∃ V∈T. x⊆U∧y⊆V∧U∩V=0" by auto

}
ultimately
have "(∃ U∈T. ∃ V∈T. x ⊆ U ∧ y ⊆ V ∧ U ∩ V = 0)" by blast

}
then have "T{is normal}" using IsNormal_def by auto

moreover
{

fix x y

assume "x∈
⋃
T""y∈

⋃
T""x6=y"

with ‘
⋃
T={R}‘ have "False" by auto

then have "∃ U∈T. x∈U∧y/∈U" by auto

}
then have "T{is T1}" using isT1_def by auto

ultimately have "T{is T4}" using isT4_def by auto
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}
ultimately have "T{is T4}" using ‘A≈0∨A≈1‘ by auto

}
then have "∀ T. (T{is a topology} ∧

⋃
T ≈ A) −→ (T{is T4})" by auto

then show "A {is in the spectrum of} isT4" using Spec_def by auto

qed

If the topological properties are related, then so are the spectra.

lemma P_imp_Q_spec_inv:

assumes "∀ T. T{is a topology} −→ (Q(T) −→ P(T))" "A {is in the spectrum

of} Q"

shows "A {is in the spectrum of} P"

proof-
from assms(2) have "∀ T. T{is a topology} ∧

⋃
T ≈ A −→ Q(T)" using

Spec_def by auto

with assms(1) have "∀ T. T{is a topology} ∧
⋃
T ≈ A −→ P(T)" by auto

then show ?thesis using Spec_def by auto

qed

Since we already now the spectrum of T4; if we now the spectrum of T0, it
should be easier to compute the spectrum of T1, T2 and T3.

theorem T0_spectrum:

shows "(A {is in the spectrum of} isT0) ←→ A . 1"

proof
assume "A {is in the spectrum of} isT0"

then have reg:"∀ T. ((T{is a topology} ∧
⋃
T≈A) −→ (T {is T0}))" us-

ing Spec_def by auto

{
assume "A 6=0"

then obtain x where "x∈A" by auto

then have "x∈
⋃
{A}" by auto

moreover
then have "{A} {is a filter on}

⋃
{A}" using IsFilter_def by auto

moreover
then have "({A}∪{0}) {is a topology} ∧

⋃
({A}∪{0})=A" using top_of_filter

by auto

then have "({A}∪{0}) {is a topology} ∧
⋃
({A}∪{0})≈A" using eqpoll_refl

by auto

then have "({A}∪{0}) {is T0}" using reg by auto

{
fix y

assume "y∈A""x6=y"

with ‘({A}∪{0}) {is T0}‘ obtain U where "U∈({A}∪{0})" and dis:"(x

∈ U ∧ y /∈ U) ∨ (y ∈ U ∧ x /∈ U)" using isT0_def by auto

then have "U=A" by auto

with dis ‘y∈A‘ ‘x∈
⋃
{A}‘ have "False" by auto

}
then have "∀ y∈A. y=x" by auto

with ‘x∈
⋃
{A}‘ have "A={x}" by blast
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then have "A≈1" using singleton_eqpoll_1 by auto

}
moreover
have "A=0 −→ A≈0" by auto

ultimately have "A≈1∨A≈0" by blast

then show "A.1" using empty_lepollI eqpoll_imp_lepoll eq_lepoll_trans

by auto

next
assume "A.1"
{

fix T

assume "T{is a topology}"

then have "(T{is T4})−→(T{is T0})" using topology0.T4_is_T3 topology0.T3_is_T2

T2_is_T1 T1_is_T0

topology0_def by auto

}
then have "∀ T. T{is a topology} −→ ((T{is T4})−→(T{is T0}))" by auto

then have "(A {is in the spectrum of} isT4) −→ (A {is in the spectrum

of} isT0)"

using P_imp_Q_spec_inv[of "λT. (T{is T4})""λT. T{is T0}"] by auto

then show "(A {is in the spectrum of} isT0)" using T4_spectrum ‘A.1‘
by auto

qed

theorem T1_spectrum:

shows "(A {is in the spectrum of} isT1) ←→ A . 1"

proof-
note T2_is_T1 topology0.T3_is_T2 topology0.T4_is_T3

then have "(A {is in the spectrum of} isT4) −→ (A {is in the spectrum

of} isT1)"

using P_imp_Q_spec_inv[of "isT4""isT1"] topology0_def by auto

moreover
note T1_is_T0

then have "(A {is in the spectrum of} isT1) −→ (A {is in the spectrum

of}isT0)"

using P_imp_Q_spec_inv[of "isT1""isT0"] by auto

moreover
note T0_spectrum T4_spectrum

ultimately show ?thesis by blast

qed

theorem T2_spectrum:

shows "(A {is in the spectrum of} isT2) ←→ A . 1"

proof-
note topology0.T3_is_T2 topology0.T4_is_T3

then have "(A {is in the spectrum of} isT4) −→ (A {is in the spectrum

of} isT2)"

using P_imp_Q_spec_inv[of "isT4""isT2"] topology0_def by auto

moreover
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note T2_is_T1

then have "(A {is in the spectrum of} isT2) −→ (A {is in the spectrum

of}isT1)"

using P_imp_Q_spec_inv[of "isT2""isT1"] by auto

moreover
note T1_spectrum T4_spectrum

ultimately show ?thesis by blast

qed

theorem T3_spectrum:

shows "(A {is in the spectrum of} isT3) ←→ A . 1"

proof-
note topology0.T4_is_T3

then have "(A {is in the spectrum of} isT4) −→ (A {is in the spectrum

of} isT3)"

using P_imp_Q_spec_inv[of "isT4""isT3"] topology0_def by auto

moreover
note topology0.T3_is_T2

then have "(A {is in the spectrum of} isT3) −→ (A {is in the spectrum

of}isT2)"

using P_imp_Q_spec_inv[of "isT3""isT2"] topology0_def by auto

moreover
note T2_spectrum T4_spectrum

ultimately show ?thesis by blast

qed

theorem compact_spectrum:

shows "(A {is in the spectrum of} (λT. (
⋃
T) {is compact in}T)) ←→

Finite(A)"

proof
assume "A {is in the spectrum of} (λT. (

⋃
T) {is compact in}T)"

then have reg:"∀ T. T{is a topology} ∧
⋃
T≈A −→ ((

⋃
T) {is compact

in}T)" using Spec_def by auto

have "Pow(A){is a topology} ∧
⋃
Pow(A)=A" using Pow_is_top by auto

then have "Pow(A){is a topology} ∧
⋃
Pow(A)≈A" using eqpoll_refl by

auto

with reg have "A{is compact in}Pow(A)" by auto

moreover
have "{{x}. x∈A}∈Pow(Pow(A))" by auto

moreover
have "

⋃
{{x}. x∈A}=A" by auto

ultimately have "∃ N∈FinPow({{x}. x∈A}). A⊆
⋃
N" using IsCompact_def

by auto

then obtain N where "N∈FinPow({{x}. x∈A})" "A⊆
⋃
N" by auto

then have "N⊆{{x}. x∈A}" "Finite(N)" "A⊆
⋃
N" using FinPow_def by auto

{
fix t

assume "t∈{{x}. x∈A}"
then obtain x where "x∈A""t={x}" by auto
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with ‘A⊆
⋃
N‘ have "x∈

⋃
N" by auto

then obtain B where "B∈N""x∈B" by auto

with ‘N⊆{{x}. x∈A}‘ have "B={x}" by auto

with ‘t={x}‘‘B∈N‘ have "t∈N" by auto

}
with ‘N⊆{{x}. x∈A}‘ have "N={{x}. x∈A}" by auto

with ‘Finite(N)‘ have "Finite({{x}. x∈A})" by auto

let ?B="{〈x,{x}〉. x∈A}"
have "?B:A→{{x}. x∈A}" unfolding Pi_def function_def by auto

then have "?B:bij(A,{{x}. x∈A})" unfolding bij_def inj_def surj_def

using apply_equality by auto

then have "A≈{{x}. x∈A}" using eqpoll_def by auto

with ‘Finite({{x}. x∈A})‘ show "Finite(A)" using eqpoll_imp_Finite_iff

by auto

next
assume "Finite(A)"

{
fix T assume "T{is a topology}" "

⋃
T≈A"

with ‘Finite(A)‘ have "Finite(
⋃
T)" using eqpoll_imp_Finite_iff by

auto

then have "Finite(Pow(
⋃
T))" using Finite_Pow by auto

moreover
have "T⊆Pow(

⋃
T)" by auto

ultimately have "Finite(T)" using subset_Finite by auto

{
fix M

assume "M∈Pow(T)""
⋃
T⊆
⋃
M"

with ‘Finite(T)‘ have "Finite(M)" using subset_Finite by auto

with ‘
⋃
T⊆
⋃
M‘ have "∃ N∈FinPow(M).

⋃
T⊆
⋃
N" using FinPow_def by

auto

}
then have "(

⋃
T){is compact in}T" unfolding IsCompact_def by auto

}
then show "A {is in the spectrum of} (λT. (

⋃
T) {is compact in}T)"

using Spec_def by auto

qed

It is, at least for some people, surprising that the spectrum of some properties
cannot be completely determined in ZF.

theorem compactK_spectrum:

assumes "{the axiom of}K{choice holds for subsets}(Pow(K))" "Card(K)"

shows "(A {is in the spectrum of} (λT. ((
⋃
T){is compact of cardinal}

csucc(K){in}T))) ←→ (A.K)"
proof

assume "A {is in the spectrum of} (λT. ((
⋃
T){is compact of cardinal}

csucc(K){in}T))"

then have reg:"∀ T. T{is a topology}∧
⋃
T≈A −→ ((

⋃
T){is compact of

cardinal} csucc(K){in}T)" using Spec_def by auto

then have "A{is compact of cardinal} csucc(K) {in} Pow(A)" using Pow_is_top[of
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"A"] by auto

then have "∀ M∈Pow(Pow(A)). A⊆
⋃
M −→ (∃ N∈Pow(M). A⊆

⋃
N ∧ N≺csucc(K))"

unfolding IsCompactOfCard_def by auto

moreover
have "{{x}. x∈A}∈Pow(Pow(A))" by auto

moreover
have "A=

⋃
{{x}. x∈A}" by auto

ultimately have "∃ N∈Pow({{x}. x∈A}). A⊆
⋃
N ∧ N≺csucc(K)" by auto

then obtain N where "N∈Pow({{x}. x∈A})" "A⊆
⋃
N" "N≺csucc(K)" by auto

then have "N⊆{{x}. x∈A}" "N≺csucc(K)" "A⊆
⋃
N" using FinPow_def by

auto

{
fix t

assume "t∈{{x}. x∈A}"
then obtain x where "x∈A""t={x}" by auto

with ‘A⊆
⋃
N‘ have "x∈

⋃
N" by auto

then obtain B where "B∈N""x∈B" by auto

with ‘N⊆{{x}. x∈A}‘ have "B={x}" by auto

with ‘t={x}‘‘B∈N‘ have "t∈N" by auto

}
with ‘N⊆{{x}. x∈A}‘ have "N={{x}. x∈A}" by auto

let ?B="{〈x,{x}〉. x∈A}"
from ‘N={{x}. x∈A}‘ have "?B:A→ N" unfolding Pi_def function_def by

auto

with ‘N={{x}. x∈A}‘ have "?B:inj(A,N)" unfolding inj_def using apply_equality

by auto

then have "A.N" using lepoll_def by auto

with ‘N≺csucc(K)‘ have "A≺csucc(K)" using lesspoll_trans1 by auto

then show "A.K" using Card_less_csucc_eq_le assms(2) by auto

next
assume "A.K"
{

fix T

assume "T{is a topology}""
⋃
T≈A"

have "Pow(
⋃
T){is a topology}" using Pow_is_top by auto

{
fix B

assume AS:"B∈Pow(
⋃
T)"

then have "{{i}. i∈B}⊆{{i} .i∈
⋃
T}" by auto

moreover
have "B=

⋃
{{i}. i∈B}" by auto

ultimately have "∃ S∈Pow({{i}. i∈
⋃
T}). B=

⋃
S" by auto

then have "B∈{
⋃
U. U∈Pow({{i}. i∈

⋃
T})}" by auto

}
moreover
{

fix B

assume AS:"B∈{
⋃
U. U∈Pow({{i}. i∈

⋃
T})}"

then have "B∈Pow(
⋃
T)" by auto
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}
ultimately
have base:"{{x}. x∈

⋃
T} {is a base for}Pow(

⋃
T)" unfolding IsAbaseFor_def

by auto

let ?f="{〈i,{i}〉. i∈
⋃
T}"

have f:"?f:
⋃
T→ {{x}. x∈

⋃
T}" using Pi_def function_def by auto

moreover
{

fix w x

assume as:"w∈
⋃
T""x∈

⋃
T""?f‘w=?f‘x"

with f have "?f‘w={w}" "?f‘x={x}" using apply_equality by auto

with as(3) have "w=x" by auto

}
with f have "?f:inj(

⋃
T,{{x}. x∈

⋃
T})" unfolding inj_def by auto

moreover
{

fix xa

assume "xa∈{{x}. x∈
⋃
T}"

then obtain x where "x∈
⋃
T""xa={x}" by auto

with f have "?f‘x=xa" using apply_equality by auto

with ‘x∈
⋃
T‘ have "∃ x∈

⋃
T. ?f‘x=xa" by auto

}
then have "∀ xa∈{{x}. x∈

⋃
T}. ∃ x∈

⋃
T. ?f‘x=xa" by blast

ultimately have "?f:bij(
⋃
T,{{x}. x∈

⋃
T})" unfolding bij_def surj_def

by auto

then have "
⋃
T≈{{x}. x∈

⋃
T}" using eqpoll_def by auto

then have "{{x}. x∈
⋃
T}≈

⋃
T" using eqpoll_sym by auto

with ‘
⋃
T≈A‘ have "{{x}. x∈

⋃
T}≈A" using eqpoll_trans by blast

then have "{{x}. x∈
⋃
T}.A" using eqpoll_imp_lepoll by auto

with ‘A.K‘ have "{{x}. x∈
⋃
T}.K" using lepoll_trans by blast

then have "{{x}. x∈
⋃
T}≺csucc(K)" using assms(2) Card_less_csucc_eq_le

by auto

with base have "Pow(
⋃
T) {is of second type of cardinal}csucc(K)"

unfolding IsSecondOfCard_def by auto

moreover
have "

⋃
Pow(

⋃
T)=
⋃
T" by auto

with calculation assms(1) ‘Pow(
⋃
T){is a topology}‘ have "(

⋃
T) {is

compact of cardinal}csucc(K){in}Pow(
⋃
T)"

using compact_of_cardinal_Q[of "K""Pow(
⋃
T)"] by auto

moreover
have "T⊆Pow(

⋃
T)" by auto

ultimately have "(
⋃
T) {is compact of cardinal}csucc(K){in}T" us-

ing compact_coarser by auto

}
then show "A {is in the spectrum of} (λT. ((

⋃
T){is compact of cardinal}csucc(K)

{in}T))" using Spec_def by auto

qed

theorem compactK_spectrum_reverse:
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assumes "∀ A. (A {is in the spectrum of} (λT. ((
⋃
T){is compact of cardinal}

csucc(K){in}T))) ←→ (A.K)" "InfCard(K)"

shows "{the axiom of}K{choice holds for subsets}(Pow(K))"

proof-
have "K.K" using lepoll_refl by auto

then have "K {is in the spectrum of} (λT. ((
⋃
T){is compact of cardinal}

csucc(K){in}T))" using assms(1) by auto

moreover
have "Pow(K){is a topology}" using Pow_is_top by auto

moreover
have "

⋃
Pow(K)=K" by auto

then have "
⋃
Pow(K)≈K" using eqpoll_refl by auto

ultimately
have "K {is compact of cardinal} csucc(K){in}Pow(K)" using Spec_def

by auto

then show ?thesis using Q_disc_comp_csuccQ_eq_Q_choice_csuccQ assms(2)

by auto

qed

This last theorem states that if one of the forms of the axiom of choice re-
lated to this compactness property fails, then the spectrum will be different.
Notice that even for Lindelf spaces that will happend.

The spectrum gives us the posibility to define what an anti-property means.
A space is anti-P if the only subspaces which have the property are the ones
in the spectrum of P. This concept tries to put together spaces that are
completely opposite to spaces where P(T).

definition
antiProperty ("_{is anti-}_" 50)

where "T{is anti-}P ≡ ∀ A∈Pow(
⋃
T). P(T{restricted to}A) −→ (A {is

in the spectrum of} P)"

abbreviation
"ANTI(P) ≡ λT. (T{is anti-}P)"

A first, very simple, but very useful result is the following: when the prop-
erties are related and the spectra are equal, then the anti-properties are
related in the oposite direction.

theorem (in topology0) eq_spect_rev_imp_anti:

assumes "∀ T. T{is a topology} −→ P(T) −→ Q(T)" "∀ A. (A{is in the

spectrum of}Q) −→ (A{is in the spectrum of}P)"

and "T{is anti-}Q"

shows "T{is anti-}P"

proof-
{

fix A

assume "A∈Pow(
⋃
T)""P(T{restricted to}A)"

with assms(1) have "Q(T{restricted to}A)" using Top_1_L4 by auto
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with assms(3) ‘A∈Pow(
⋃
T)‘ have "A{is in the spectrum of}Q" using

antiProperty_def by auto

with assms(2) have "A{is in the spectrum of}P" by auto

}
then show ?thesis using antiProperty_def by auto

qed

If a space can be P(T)∧Q(T) only in case the underlying set is in the spectrum
of P; then Q(T)−→ANTI(P,T) when Q is hereditary.

theorem Q_P_imp_Spec:

assumes "∀ T. ((T{is a topology}∧P(T)∧Q(T))−→ ((
⋃
T){is in the spectrum

of}P))"

and "Q{is hereditary}"

shows "∀ T. T{is a topology} −→ (Q(T)−→(T{is anti-}P))"

proof
fix T

{
assume "T{is a topology}"

{
assume "Q(T)"

{
assume "¬(T{is anti-}P)"

then obtain A where "A∈Pow(
⋃
T)" "P(T{restricted to}A)""¬(A{is

in the spectrum of}P)"

unfolding antiProperty_def by auto

from ‘Q(T)‘‘T{is a topology}‘‘A∈Pow(
⋃
T)‘ assms(2) have "Q(T{restricted

to}A)"

unfolding IsHer_def by auto

moreover
note ‘P(T{restricted to}A)‘ assms(1)

moreover
from ‘T{is a topology}‘ have "(T{restricted to}A){is a topology}"

using topology0.Top_1_L4

topology0_def by auto

moreover
from ‘A∈Pow(

⋃
T)‘ have "

⋃
(T{restricted to}A)=A" unfolding RestrictedTo_def

by auto

ultimately have "A{is in the spectrum of}P" by auto

with ‘¬(A{is in the spectrum of}P)‘ have "False" by auto

}
then have "T{is anti-}P" by auto

}
then have "Q(T)−→(T{is anti-}P)" by auto

}
then show "(T {is a topology}) −→ (Q(T) −→ (T{is anti-}P))" by auto

qed

If a topologycal space has an hereditary property, then it has its double-anti
property.
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theorem (in topology0)her_P_imp_anti2P:

assumes "P{is hereditary}" "P(T)"

shows "T{is anti-}ANTI(P)"

proof-
{

assume "¬(T{is anti-}ANTI(P))"

then have "∃ A∈Pow(
⋃
T). ((T{restricted to}A){is anti-}P)∧¬(A{is

in the spectrum of}ANTI(P))"

unfolding antiProperty_def[of _ "ANTI(P)"] by auto

then obtain A where A_def:"A∈Pow(
⋃
T)""¬(A{is in the spectrum of}ANTI(P))""(T{restricted

to}A){is anti-}P"

by auto

from ‘A∈Pow(
⋃
T)‘ have tot:"

⋃
(T{restricted to}A)=A" unfolding RestrictedTo_def

by auto

from A_def have reg:"∀ B∈Pow(
⋃
(T{restricted to}A)). P((T{restricted

to}A){restricted to}B) −→ (B{is in the spectrum of}P)"

unfolding antiProperty_def by auto

have "∀ B∈Pow(A). (T{restricted to}A){restricted to}B=T{restricted

to}B" using subspace_of_subspace ‘A∈Pow(
⋃
T)‘ by auto

then have "∀ B∈Pow(A). P(T{restricted to}B) −→ (B{is in the spectrum

of}P)" using reg tot

by force

moreover
have "∀ B∈Pow(A). P(T{restricted to}B)" using assms ‘A∈Pow(

⋃
T)‘ un-

folding IsHer_def using topSpaceAssum by blast

ultimately have reg2:"∀ B∈Pow(A). (B{is in the spectrum of}P)" by
auto

from ‘¬(A{is in the spectrum of}ANTI(P))‘ have "∃ T. T{is a topology}

∧
⋃
T≈A ∧ ¬(T{is anti-}P)"

unfolding Spec_def by auto

then obtain S where "S{is a topology}" "
⋃
S≈A" "¬(S{is anti-}P)"

by auto

from ‘¬(S{is anti-}P)‘ have "∃ B∈Pow(
⋃
S). P(S{restricted to}B) ∧

¬(B{is in the spectrum of}P)" unfolding antiProperty_def by auto

then obtain B where B_def:"¬(B{is in the spectrum of}P)" "B∈Pow(
⋃
S)"

by auto

then have "B.
⋃
S" using subset_imp_lepoll by auto

with ‘
⋃
S≈A‘ have "B.A" using lepoll_eq_trans by auto

then obtain f where "f∈inj(B,A)" unfolding lepoll_def by auto

then have "f∈bij(B,range(f))" using inj_bij_range by auto

then have "B≈range(f)" unfolding eqpoll_def by auto

with B_def(1) have "¬(range(f){is in the spectrum of}P)" using eqpoll_iff_spec

by auto

moreover
with ‘f∈inj(B,A)‘ have "range(f)⊆A" unfolding inj_def Pi_def by

auto

with reg2 have "range(f){is in the spectrum of}P" by auto

ultimately have "False" by auto

}
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then show ?thesis by auto

qed

The anti-properties are always hereditary

theorem anti_here:

shows "ANTI(P){is hereditary}"

proof-
{

fix T

assume "T {is a topology}""ANTI(P,T)"

{
fix A

assume "A∈Pow(
⋃
T)"

then have "
⋃
(T{restricted to}A)=A" unfolding RestrictedTo_def by

auto

moreover
{

fix B

assume "B∈Pow(A)""P((T{restricted to}A){restricted to}B)"

with ‘A∈Pow(
⋃
T)‘ have "B∈Pow(

⋃
T)""P(T{restricted to}B)" us-

ing subspace_of_subspace by auto

with ‘ANTI(P,T)‘ have "B{is in the spectrum of}P" unfolding antiProperty_def

by auto

}
ultimately have "∀ B∈Pow(

⋃
(T{restricted to}A)). (P((T{restricted

to}A){restricted to}B)) −→ (B{is in the spectrum of}P)"

by auto

then have "ANTI(P,(T{restricted to}A))" unfolding antiProperty_def

by auto

}
then have "∀ A∈Pow(

⋃
T). ANTI(P,(T{restricted to}A))" by auto

}
then show ?thesis using IsHer_def by auto

qed

corollary (in topology0) anti_imp_anti3:

assumes "T{is anti-}P"

shows "T{is anti-}ANTI(ANTI(P))"

using anti_here her_P_imp_anti2P assms by auto

In the article [5], we can find some results on anti-properties.

theorem (in topology0) anti_T0:

shows "(T{is anti-}isT0) ←→ T={0,
⋃
T}"

proof
assume "T={0,

⋃
T}"

{
fix A

assume "A∈Pow(
⋃
T)""(T{restricted to}A) {is T0}"

{
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fix B

assume "B∈T{restricted to}A"

then obtain S where "S∈T" and "B=A∩S" unfolding RestrictedTo_def

by auto

with ‘T={0,
⋃
T}‘ have "S∈{0,

⋃
T}" by auto

then have "S=0∨S=
⋃
T" by auto

with ‘B=A∩S‘‘A∈Pow(
⋃
T)‘ have "B=0∨B=A" by auto

}
moreover
{

have "0∈{0,
⋃
T}" "

⋃
T∈{0,

⋃
T}" by auto

with ‘T={0,
⋃
T}‘ have "0∈T""(

⋃
T)∈T" by auto

then have "A∩0∈(T{restricted to}A)" "A∩(
⋃
T)∈(T{restricted to}A)"

using RestrictedTo_def by auto

moreover
from ‘A∈Pow(

⋃
T)‘ have "A∩(

⋃
T)=A" by auto

ultimately have "0∈(T{restricted to}A)" "A∈(T{restricted to}A)"

by auto

}
ultimately have "(T{restricted to}A)={0,A}" by auto

with ‘(T{restricted to}A) {is T0}‘ have "{0,A} {is T0}" by auto

{
assume "A 6=0"

then obtain x where "x∈A" by blast

{
fix y

assume "y∈A""x6=y"

with ‘{0,A} {is T0}‘ obtain U where "U∈{0,A}" and dis:"(x ∈
U ∧ y /∈ U) ∨ (y ∈ U ∧ x /∈ U)" using isT0_def by auto

then have "U=A" by auto

with dis ‘y∈A‘ ‘x∈A‘ have "False" by auto

}
then have "∀ y∈A. y=x" by auto

with ‘x∈A‘ have "A={x}" by blast

then have "A≈1" using singleton_eqpoll_1 by auto

then have "A.1" using eqpoll_imp_lepoll by auto

then have "A{is in the spectrum of}isT0" using T0_spectrum by auto

}
moreover
{

assume "A=0"

then have "A≈0" by auto

then have "A.1" using empty_lepollI eq_lepoll_trans by auto

then have "A{is in the spectrum of}isT0" using T0_spectrum by auto

}
ultimately have "A{is in the spectrum of}isT0" by auto

}
then show "T{is anti-}isT0" using antiProperty_def by auto
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next
assume "T{is anti-}isT0"

then have "∀ A∈Pow(
⋃
T). (T{restricted to}A){is T0} −→ (A{is in the

spectrum of}isT0)" using antiProperty_def by auto

then have reg:"∀ A∈Pow(
⋃
T). (T{restricted to}A){is T0} −→ (A.1)" us-

ing T0_spectrum by auto

{
assume "∃ A∈T. A6=0∧ A 6=

⋃
T"

then obtain A where "A∈T""A 6=0""A 6=
⋃
T" by auto

then obtain x y where "x∈A" "y∈
⋃
T-A" by blast

with ‘A∈T‘ have s:"{x,y}∈Pow(
⋃
T)" "x6=y" by auto

note s

moreover
{

fix b1 b2

assume "b1∈
⋃
(T{restricted to}{x,y})""b2∈

⋃
(T{restricted to}{x,y})""b16=b2"

moreover
from s have "

⋃
(T{restricted to}{x,y})={x,y}" unfolding RestrictedTo_def

by auto

ultimately have "(b1=x∧b2=y)∨(b1=y∧b2=x)" by auto

with ‘x 6=y‘ have "(b1∈{x}∧b2/∈{x}) ∨ (b2∈{x}∧b1/∈{x})" by auto

moreover
from ‘y∈

⋃
T-A‘‘x∈A‘ have "{x}={x,y}∩A" by auto

with ‘A∈T‘ have "{x}∈(T{restricted to}{x,y})" unfolding RestrictedTo_def

by auto

ultimately have "∃ U∈(T{restricted to}{x,y}). (b1∈U∧b2/∈U) ∨ (b2∈U∧b1/∈U)"
by auto

}
then have "(T{restricted to}{x,y}){is T0}" using isT0_def by auto

ultimately have "{x,y}.1" using reg by auto

moreover
have "x∈{x,y}" by auto

ultimately have "{x,y}={x}" using lepoll_1_is_sing[of "{x,y}""x"]

by auto

moreover
have "y∈{x,y}" by auto

ultimately have "y∈{x}" by auto

then have "y=x" by auto

with ‘x6=y‘ have "False" by auto

}
then have "T⊆{0,

⋃
T}" by auto

moreover
from topSpaceAssum have "0∈T""

⋃
T∈T" using IsATopology_def empty_open

by auto

ultimately show "T={0,
⋃
T}" by auto

qed

lemma indiscrete_spectrum:

shows "(A {is in the spectrum of}(λT. T={0,
⋃
T})) ←→ A.1"
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proof
assume "(A {is in the spectrum of}(λT. T={0,

⋃
T}))"

then have reg:"∀ T. ((T{is a topology} ∧
⋃
T≈A) −→ T ={0,

⋃
T})" us-

ing Spec_def by auto

moreover
have "

⋃
Pow(A)=A" by auto

then have "
⋃
Pow(A)≈A" by auto

moreover
have "Pow(A) {is a topology}" using Pow_is_top by auto

ultimately have P:"Pow(A)={0,A}" by auto

{
assume "A 6=0"

then obtain x where "x∈A" by blast

then have "{x}∈Pow(A)" by auto

with P have "{x}=A" by auto

then have "A≈1" using singleton_eqpoll_1 by auto

then have "A.1" using eqpoll_imp_lepoll by auto

}
moreover
{

assume "A=0"

then have "A≈0" by auto

then have "A.1" using empty_lepollI eq_lepoll_trans by auto

}
ultimately show "A.1" by auto

next
assume "A.1"
{

fix T

assume "T{is a topology}""
⋃
T≈A"

{
assume "A=0"

with ‘
⋃
T≈A‘ have "

⋃
T≈0" by auto

then have "
⋃
T=0" using eqpoll_0_is_0 by auto

then have "T⊆{0}" by auto

with ‘T{is a topology}‘ have "T={0}" using empty_open by auto

then have "T={0,
⋃
T}" by auto

}
moreover
{

assume "A 6=0"

then obtain E where "E∈A" by blast

with ‘A.1‘ have "A={E}" using lepoll_1_is_sing by auto

then have "A≈1" using singleton_eqpoll_1 by auto

with ‘
⋃
T≈A‘ have NONempty:"

⋃
T≈1" using eqpoll_trans by blast

then have "
⋃
T.1" using eqpoll_imp_lepoll by auto

moreover
{

assume "
⋃
T=0"
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then have "0≈
⋃
T" by auto

with NONempty have "0≈1" using eqpoll_trans by blast

then have "0=1" using eqpoll_0_is_0 eqpoll_sym by auto

then have "False" by auto

}
then have "

⋃
T6=0" by auto

then obtain R where "R∈
⋃
T" by blast

ultimately have "
⋃
T={R}" using lepoll_1_is_sing by auto

moreover
have "T⊆Pow(

⋃
T)" by auto

ultimately have "T⊆Pow({R})" by auto

then have "T⊆{0,{R}}" by blast

moreover
with ‘T{is a topology}‘ have "0∈T""

⋃
T∈T" using IsATopology_def

by auto

moreover
note ‘

⋃
T={R}‘

ultimately have "T={0,
⋃
T}" by auto

}
ultimately have "T={0,

⋃
T}" by auto

}
then show "A {is in the spectrum of}(λT. T={0,

⋃
T})" using Spec_def

by auto

qed

theorem (in topology0) anti_indiscrete:

shows "(T{is anti-}(λT. T={0,
⋃
T})) ←→ T{is T0}"

proof
assume "T{is T0}"

{
fix A

assume "A∈Pow(
⋃
T)""T{restricted to}A={0,

⋃
(T{restricted to}A)}"

then have un:"
⋃
(T{restricted to}A)=A" "T{restricted to}A={0,A}" us-

ing RestrictedTo_def by auto

from ‘T{is T0}‘‘A∈Pow(
⋃
T)‘ have "(T{restricted to}A){is T0}" us-

ing T0_here by auto

{
assume "A=0"

then have "A≈0" by auto

then have "A.1" using empty_lepollI eq_lepoll_trans by auto

}
moreover
{

assume "A 6=0"

then obtain E where "E∈A" by blast

{
fix y

assume "y∈A""y6=E"

with ‘E∈A‘ un have "y∈
⋃
(T{restricted to}A)""E∈

⋃
(T{restricted
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to}A)" by auto

with ‘(T{restricted to}A){is T0}‘‘y6=E‘ have "∃ U∈(T{restricted
to}A). (E∈U∧y/∈U)∨(E/∈U∧y∈U)"

unfolding isT0_def by blast

then obtain U where "U∈(T{restricted to}A)" "(E∈U∧y/∈U)∨(E/∈U∧y∈U)"
by auto

with ‘T{restricted to}A={0,A}‘ have "U=0∨U=A" by auto

with ‘(E∈U∧y/∈U)∨(E/∈U∧y∈U)‘‘y∈A‘‘E∈A‘ have "False" by auto

}
then have "∀ y∈A. y=E" by auto

with ‘E∈A‘ have "A={E}" by blast

then have "A≈1" using singleton_eqpoll_1 by auto

then have "A.1" using eqpoll_imp_lepoll by auto

}
ultimately have "A.1" by auto

then have "A{is in the spectrum of}(λT. T={0,
⋃
T})" using indiscrete_spectrum

by auto

}
then show "T{is anti-}(λT. T={0,

⋃
T})" unfolding antiProperty_def by

auto

next
assume "T{is anti-}(λT. T={0,

⋃
T})"

then have "∀ A∈Pow(
⋃
T). (T{restricted to}A)={0,

⋃
(T{restricted to}A)}

−→ (A {is in the spectrum of} (λT. T={0,
⋃
T}))" using antiProperty_def

by auto

then have "∀ A∈Pow(
⋃
T). (T{restricted to}A)={0,

⋃
(T{restricted to}A)}

−→ A.1" using indiscrete_spectrum by auto

moreover
have "∀ A∈Pow(

⋃
T).

⋃
(T{restricted to}A)=A" unfolding RestrictedTo_def

by auto

ultimately have reg:"∀ A∈Pow(
⋃
T). (T{restricted to}A)={0,A} −→ A.1"

by auto

{
fix x y

assume "x∈
⋃
T""y∈

⋃
T""x 6=y"

{
assume "∀ U∈T. (x∈U∧y∈U)∨(x/∈U∧y/∈U)"
then have "T{restricted to}{x,y}⊆{0,{x,y}}" unfolding RestrictedTo_def

by auto

moreover
from ‘x∈

⋃
T‘‘y∈

⋃
T‘ have emp:"0∈T""{x,y}∩0=0" and tot: "{x,y}={x,y}∩

⋃
T"

"
⋃
T∈T" using topSpaceAssum empty_open IsATopology_def by auto

from emp have "0∈T{restricted to}{x,y}" unfolding RestrictedTo_def

by auto

moreover
from tot have "{x,y}∈T{restricted to}{x,y}" unfolding RestrictedTo_def

by auto

ultimately have "T{restricted to}{x,y}={0,{x,y}}" by auto

with reg ‘x∈
⋃
T‘‘y∈

⋃
T‘ have "{x,y}.1" by auto
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moreover
have "x∈{x,y}" by auto

ultimately have "{x,y}={x}" using lepoll_1_is_sing[of "{x,y}""x"]

by auto

moreover
have "y∈{x,y}" by auto

ultimately have "y∈{x}" by auto

then have "y=x" by auto

then have "False" using ‘x 6=y‘ by auto

}
then have "∃ U∈T. (x/∈U∨y/∈U)∧(x∈U∨y∈U)" by auto

then have "∃ U∈T. (x∈U∧y/∈U)∨(x/∈U∧y∈U)" by auto

}
then have "∀ x y. x∈

⋃
T∧y∈

⋃
T∧ x6=y −→ (∃ U∈T. (x∈U∧y/∈U)∨(y∈U∧x/∈U))"

by auto

then show "T {is T0}" using isT0_def by auto

qed

The conclusion is that being T0 is just the opposite to being indiscrete.

Next, let’s compute the anti-Ti for i = 1, 2, 3 or 4. Surprisingly, they are
all the same. Meaning, that the total negation of T1 is enough to negate all
of these axioms.

theorem anti_T1:

shows "(T{is anti-}isT1) ←→ (IsLinOrder(T,{〈U,V〉∈Pow(
⋃
T)×Pow(

⋃
T).

U⊆V}))"
proof

assume "T{is anti-}isT1"

let ?r="{〈U,V〉∈Pow(
⋃
T)×Pow(

⋃
T). U⊆V}"

have "antisym(?r)" unfolding antisym_def by auto

moreover
have "trans(?r)" unfolding trans_def by auto

moreover
{

fix A B

assume "A∈T""B∈T"
{

assume "¬(A⊆B∨B⊆A)"
then have "A-B 6=0""B-A6=0" by auto

then obtain x y where "x∈A""x/∈B""y∈B""y/∈A" "x 6=y" by blast

then have "{x,y}∩A={x}""{x,y}∩B={y}" by auto

moreover
from ‘A∈T‘‘B∈T‘ have "{x,y}∩A∈T{restricted to}{x,y}""{x,y}∩B∈T{restricted

to}{x,y}" unfolding
RestrictedTo_def by auto

ultimately have open_set:"{x}∈T{restricted to}{x,y}""{y}∈T{restricted
to}{x,y}" by auto

have "x∈
⋃
T""y∈

⋃
T" using ‘A∈T‘‘B∈T‘‘x∈A‘‘y∈B‘ by auto

then have sub:"{x,y}∈Pow(
⋃
T)" by auto
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then have tot:"
⋃
(T{restricted to}{x,y})={x,y}" unfolding RestrictedTo_def

by auto

{
fix s t

assume "s∈
⋃
(T{restricted to}{x,y})""t∈

⋃
(T{restricted to}{x,y})""s6=t"

with tot have "s∈{x,y}""t∈{x,y}""s6=t" by auto

then have "(s=x∧t=y)∨(s=y∧t=x)" by auto

with open_set have "∃ U∈(T{restricted to}{x,y}). s∈U∧t/∈U" us-
ing ‘x6=y‘ by auto

}
then have "(T{restricted to}{x,y}){is T1}" unfolding isT1_def by

auto

with sub ‘T{is anti-}isT1‘ tot have "{x,y} {is in the spectrum

of}isT1" using antiProperty_def

by auto

then have "{x,y}.1" using T1_spectrum by auto

moreover
have "x∈{x,y}" by auto

ultimately have "{x}={x,y}" using lepoll_1_is_sing[of "{x,y}""x"]

by auto

moreover
have "y∈{x,y}" by auto

ultimately
have "y∈{x}" by auto

then have "x=y" by auto

then have "False" using ‘x∈A‘‘y/∈A‘ by auto

}
then have "A⊆B∨B⊆A" by auto

}
then have "?r {is total on}T" using IsTotal_def by auto

ultimately
show "IsLinOrder(T,?r)" using IsLinOrder_def by auto

next
assume "IsLinOrder(T,{〈U,V〉∈Pow(

⋃
T)×Pow(

⋃
T). U⊆V})"

then have ordTot:"∀ S∈T. ∀ B∈T. S⊆B∨B⊆S" unfolding IsLinOrder_def IsTotal_def

by auto

{
fix A

assume "A∈Pow(
⋃
T)" and T1:"(T{restricted to}A) {is T1}"

then have tot:"
⋃
(T{restricted to}A)=A" unfolding RestrictedTo_def

by auto

{
fix U V

assume "U∈T{restricted to}A""V∈T{restricted to}A"

then obtain AU AV where "AU∈T""AV∈T""U=A∩AU""V=A∩AV" unfolding
RestrictedTo_def by auto

with ordTot have "U⊆V∨V⊆U" by auto

}
then have ordTotSub:"∀ S∈T{restricted to}A. ∀ B∈T{restricted to}A.
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S⊆B∨B⊆S" by auto

{
assume "A=0"

then have "A≈0" by auto

moreover
have "0.1" using empty_lepollI by auto

ultimately have "A.1" using eq_lepoll_trans by auto

then have "A{is in the spectrum of}isT1" using T1_spectrum by auto

}
moreover
{

assume "A6=0"

then obtain t where "t∈A" by blast

{
fix y

assume "y∈A""y6=t"

with ‘t∈A‘ tot T1 obtain U where "U∈(T{restricted to}A)""y∈U""t/∈U"
unfolding isT1_def

by auto

from ‘y 6=t‘ have "t 6=y" by auto

with ‘y∈A‘‘t∈A‘ tot T1 obtain V where "V∈(T{restricted to}A)""t∈V""y/∈V"
unfolding isT1_def

by auto

with ‘y∈U‘‘t/∈U‘ have "¬(U⊆V∨V⊆U)" by auto

with ordTotSub ‘U∈(T{restricted to}A)‘‘V∈(T{restricted to}A)‘

have "False" by auto

}
then have "∀ y∈A. y=t" by auto

with ‘t∈A‘ have "A={t}" by blast

then have "A≈1" using singleton_eqpoll_1 by auto

then have "A.1" using eqpoll_imp_lepoll by auto

then have "A{is in the spectrum of}isT1" using T1_spectrum by auto

}
ultimately
have "A{is in the spectrum of}isT1" by auto

}
then show "T{is anti-}isT1" using antiProperty_def by auto

qed

corollary linordtop_here:

shows "(λT. IsLinOrder(T,{〈U,V〉∈Pow(
⋃
T)×Pow(

⋃
T). U⊆V})){is hereditary}"

using anti_T1 anti_here[of "isT1"] by auto

theorem (in topology0) anti_T4:

shows "(T{is anti-}isT4) ←→ (IsLinOrder(T,{〈U,V〉∈Pow(
⋃
T)×Pow(

⋃
T).

U⊆V}))"
proof

assume "T{is anti-}isT4"

let ?r="{〈U,V〉∈Pow(
⋃
T)×Pow(

⋃
T). U⊆V}"
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have "antisym(?r)" unfolding antisym_def by auto

moreover
have "trans(?r)" unfolding trans_def by auto

moreover
{

fix A B

assume "A∈T""B∈T"
{

assume "¬(A⊆B∨B⊆A)"
then have "A-B 6=0""B-A6=0" by auto

then obtain x y where "x∈A""x/∈B""y∈B""y/∈A" "x 6=y" by blast

then have "{x,y}∩A={x}""{x,y}∩B={y}" by auto

moreover
from ‘A∈T‘‘B∈T‘ have "{x,y}∩A∈T{restricted to}{x,y}""{x,y}∩B∈T{restricted

to}{x,y}" unfolding
RestrictedTo_def by auto

ultimately have open_set:"{x}∈T{restricted to}{x,y}""{y}∈T{restricted
to}{x,y}" by auto

have "x∈
⋃
T""y∈

⋃
T" using ‘A∈T‘‘B∈T‘‘x∈A‘‘y∈B‘ by auto

then have sub:"{x,y}∈Pow(
⋃
T)" by auto

then have tot:"
⋃
(T{restricted to}{x,y})={x,y}" unfolding RestrictedTo_def

by auto

{
fix s t

assume "s∈
⋃
(T{restricted to}{x,y})""t∈

⋃
(T{restricted to}{x,y})""s6=t"

with tot have "s∈{x,y}""t∈{x,y}""s6=t" by auto

then have "(s=x∧t=y)∨(s=y∧t=x)" by auto

with open_set have "∃ U∈(T{restricted to}{x,y}). s∈U∧t/∈U" us-
ing ‘x 6=y‘ by auto

}
then have "(T{restricted to}{x,y}){is T1}" unfolding isT1_def by

auto

moreover
{

fix s

assume AS:"s{is closed in}(T{restricted to}{x,y})"

{
fix t

assume AS2:"t{is closed in}(T{restricted to}{x,y})""s∩t=0"
have "(T{restricted to}{x,y}){is a topology}" using Top_1_L4

by auto

with tot have "0∈(T{restricted to}{x,y})""{x,y}∈(T{restricted
to}{x,y})" using empty_open

union_open[where A="T{restricted to}{x,y}"] by auto

moreover
note open_set

moreover
have "T{restricted to}{x,y}⊆Pow(

⋃
(T{restricted to}{x,y}))"

by blast
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with tot have "T{restricted to}{x,y}⊆Pow({x,y})" by auto

ultimately have "T{restricted to}{x,y}={0,{x},{y},{x,y}}" by
blast

moreover have "{0,{x},{y},{x,y}}=Pow({x,y})" by blast

ultimately have P:"T{restricted to}{x,y}=Pow({x,y})" by simp

with tot have "{A∈Pow({x,y}). A{is closed in}(T{restricted

to}{x,y})}={A ∈ Pow({x, y}) . A ⊆ {x, y} ∧ {x, y} - A ∈ Pow({x, y})}"

using IsClosed_def by simp

with P have S:"{A∈Pow({x,y}). A{is closed in}(T{restricted

to}{x,y})}=T{restricted to}{x,y}" by auto

from AS AS2(1) have "s∈Pow({x,y})" "t∈Pow({x,y})" using IsClosed_def

tot by auto

moreover
note AS2(1) AS

ultimately have "s∈{A∈Pow({x,y}). A{is closed in}(T{restricted

to}{x,y})}""t∈{A∈Pow({x,y}). A{is closed in}(T{restricted to}{x,y})}"

by auto

with S AS2(2) have "s∈T{restricted to}{x,y}" "t∈T{restricted
to}{x,y}""s∩t=0" by auto

then have "∃ U∈(T{restricted to}{x,y}). ∃ V∈(T{restricted to}{x,y}).

s⊆U∧t⊆V∧U∩V=0" by auto

}
then have "∀ t. t{is closed in}(T{restricted to}{x,y})∧s∩t=0 −→

(∃ U∈(T{restricted to}{x,y}). ∃ V∈(T{restricted to}{x,y}). s⊆U∧t⊆V∧U∩V=0)"
by auto

}
then have "∀ s. s{is closed in}(T{restricted to}{x,y}) −→ (∀ t.

t{is closed in}(T{restricted to}{x,y})∧s∩t=0 −→ (∃ U∈(T{restricted to}{x,y}).

∃ V∈(T{restricted to}{x,y}). s⊆U∧t⊆V∧U∩V=0))"
by auto

then have "(T{restricted to}{x,y}){is normal}" using IsNormal_def

by auto

ultimately have "(T{restricted to}{x,y}){is T4}" using isT4_def

by auto

with sub ‘T{is anti-}isT4‘ tot have "{x,y} {is in the spectrum

of}isT4" using antiProperty_def

by auto

then have "{x,y}.1" using T4_spectrum by auto

moreover
have "x∈{x,y}" by auto

ultimately have "{x}={x,y}" using lepoll_1_is_sing[of "{x,y}""x"]

by auto

moreover
have "y∈{x,y}" by auto

ultimately
have "y∈{x}" by auto

then have "x=y" by auto

then have "False" using ‘x∈A‘‘y/∈A‘ by auto

}
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then have "A⊆B∨B⊆A" by auto

}
then have "?r {is total on}T" using IsTotal_def by auto

ultimately
show "IsLinOrder(T,?r)" using IsLinOrder_def by auto

next
assume "IsLinOrder(T, {〈U,V〉 ∈ Pow(

⋃
T) × Pow(

⋃
T) . U ⊆ V})"

then have "T{is anti-}isT1" using anti_T1 by auto

moreover
have "∀ T. T{is a topology} −→ (T{is T4}) −→ (T{is T1})" using topology0.T4_is_T3

topology0.T3_is_T2 T2_is_T1 topology0_def by auto

moreover
have " ∀ A. (A {is in the spectrum of} isT1) −→ (A {is in the spectrum

of} isT4)" using T1_spectrum T4_spectrum

by auto

ultimately show "T{is anti-}isT4" using eq_spect_rev_imp_anti[of "isT4""isT1"]

by auto

qed

theorem (in topology0) anti_T3:

shows "(T{is anti-}isT3) ←→ (IsLinOrder(T,{〈U,V〉∈Pow(
⋃
T)×Pow(

⋃
T).

U⊆V}))"
proof

assume "T{is anti-}isT3"

moreover
have "∀ T. T{is a topology} −→ (T{is T4}) −→ (T{is T3})" using topology0.T4_is_T3

topology0_def by auto

moreover
have " ∀ A. (A {is in the spectrum of} isT3) −→ (A {is in the spectrum

of} isT4)" using T3_spectrum T4_spectrum

by auto

ultimately have "T{is anti-}isT4" using eq_spect_rev_imp_anti[of "isT4""isT3"]

by auto

then show "IsLinOrder(T,{〈U,V〉∈Pow(
⋃
T)×Pow(

⋃
T). U⊆V})" using anti_T4

by auto

next
assume "IsLinOrder(T,{〈U,V〉∈Pow(

⋃
T)×Pow(

⋃
T). U⊆V})"

then have "T{is anti-}isT1" using anti_T1 by auto

moreover
have "∀ T. T{is a topology} −→ (T{is T3}) −→ (T{is T1})" using
topology0.T3_is_T2 T2_is_T1 topology0_def by auto

moreover
have " ∀ A. (A {is in the spectrum of} isT1) −→ (A {is in the spectrum

of} isT3)" using T1_spectrum T3_spectrum

by auto

ultimately show "T{is anti-}isT3" using eq_spect_rev_imp_anti[of "isT3""isT1"]

by auto
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qed

theorem (in topology0) anti_T2:

shows "(T{is anti-}isT2) ←→ (IsLinOrder(T,{〈U,V〉∈Pow(
⋃
T)×Pow(

⋃
T).

U⊆V}))"
proof

assume "T{is anti-}isT2"

moreover
have "∀ T. T{is a topology} −→ (T{is T4}) −→ (T{is T2})" using topology0.T4_is_T3

topology0.T3_is_T2 topology0_def by auto

moreover
have " ∀ A. (A {is in the spectrum of} isT2) −→ (A {is in the spectrum

of} isT4)" using T2_spectrum T4_spectrum

by auto

ultimately have "T{is anti-}isT4" using eq_spect_rev_imp_anti[of "isT4""isT2"]

by auto

then show "IsLinOrder(T,{〈U,V〉∈Pow(
⋃
T)×Pow(

⋃
T). U⊆V})" using anti_T4

by auto

next
assume "IsLinOrder(T,{〈U,V〉∈Pow(

⋃
T)×Pow(

⋃
T). U⊆V})"

then have "T{is anti-}isT1" using anti_T1 by auto

moreover
have "∀ T. T{is a topology} −→ (T{is T2}) −→ (T{is T1})" using T2_is_T1

by auto

moreover
have " ∀ A. (A {is in the spectrum of} isT1) −→ (A {is in the spectrum

of} isT2)" using T1_spectrum T2_spectrum

by auto

ultimately show "T{is anti-}isT2" using eq_spect_rev_imp_anti[of "isT2""isT1"]

by auto

qed

lemma linord_spectrum:

shows "(A{is in the spectrum of}(λT. IsLinOrder(T,{〈U,V〉∈Pow(
⋃
T)×Pow(

⋃
T).

U⊆V}))) ←→ A.1"
proof

assume "A{is in the spectrum of}(λT. IsLinOrder(T,{〈U,V〉∈Pow(
⋃
T)×Pow(

⋃
T).

U⊆V}))"
then have reg:"∀ T. T{is a topology}∧

⋃
T≈A −→ IsLinOrder(T,{〈U,V〉∈Pow(

⋃
T)×Pow(

⋃
T).

U⊆V})"
using Spec_def by auto

{
assume "A=0"

moreover
have "0.1" using empty_lepollI by auto

ultimately have "A.1" using eq_lepoll_trans by auto

}
moreover
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{
assume "A 6=0"

then obtain x where "x∈A" by blast

moreover
{

fix y

assume "y∈A"
have "Pow(A) {is a topology}" using Pow_is_top by auto

moreover
have "

⋃
Pow(A)=A" by auto

then have "
⋃
Pow(A)≈A" by auto

note reg

ultimately have "IsLinOrder(Pow(A),{〈U,V〉∈Pow(
⋃
Pow(A))×Pow(

⋃
Pow(A)).

U⊆V})" by auto

then have "IsLinOrder(Pow(A),{〈U,V〉∈Pow(A)×Pow(A). U⊆V})" by auto

with ‘x∈A‘‘y∈A‘ have "{x}⊆{y}∨{y}⊆{x}" unfolding IsLinOrder_def

IsTotal_def by auto

then have "x=y" by auto

}
ultimately have "A={x}" by blast

then have "A≈1" using singleton_eqpoll_1 by auto

then have "A.1" using eqpoll_imp_lepoll by auto

}
ultimately show "A.1" by auto

next
assume "A.1"
then have ind:"A{is in the spectrum of}(λT. T={0,

⋃
T})" using indiscrete_spectrum

by auto

{
fix T

assume AS:"T{is a topology}" "T={0,
⋃
T}"

have "trans({〈U,V〉∈Pow(
⋃
T)×Pow(

⋃
T). U⊆V})" unfolding trans_def

by auto

moreover
have "antisym({〈U,V〉∈Pow(

⋃
T)×Pow(

⋃
T). U⊆V})" unfolding antisym_def

by auto

moreover
have "{〈U,V〉∈Pow(

⋃
T)×Pow(

⋃
T). U⊆V}{is total on}T"

proof-
{

fix aa b

assume "aa∈T""b∈T"
with AS(2) have "aa∈{0,

⋃
T}""b∈{0,

⋃
T}" by auto

then have "aa=0∨aa=
⋃
T""b=0∨b=

⋃
T" by auto

then have "aa⊆b∨b⊆aa" by auto

then have "〈aa, b〉 ∈ Collect(Pow(
⋃
T) × Pow(

⋃
T), split(op ⊆))

∨ 〈b, aa〉 ∈ Collect(Pow(
⋃
T) × Pow(

⋃
T), split(op ⊆))"

using ‘aa∈T‘‘b∈T‘ by auto

}
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then show ?thesis using IsTotal_def by auto

qed
ultimately have "IsLinOrder(T,{〈U,V〉∈Pow(

⋃
T)×Pow(

⋃
T). U⊆V})" un-

folding IsLinOrder_def by auto

}
then have " ∀ T. T {is a topology} −→ T = {0,

⋃
T} −→ IsLinOrder(T,

{〈U,V〉 ∈ Pow(
⋃
T) × Pow(

⋃
T) . U ⊆ V})" by auto

then show "A{is in the spectrum of}(λT. IsLinOrder(T,{〈U,V〉∈Pow(
⋃
T)×Pow(

⋃
T).

U⊆V}))"
using P_imp_Q_spec_inv[of "λT. T={0,

⋃
T}""λT. IsLinOrder(T,{〈U,V〉∈Pow(

⋃
T)×Pow(

⋃
T).

U⊆V})"]
ind by auto

qed

theorem (in topology0) anti_linord:

shows "(T{is anti-}(λT. IsLinOrder(T,{〈U,V〉∈Pow(
⋃
T)×Pow(

⋃
T). U⊆V})))

←→ T{is T1}"

proof
assume AS:"T{is anti-}(λT. IsLinOrder(T,{〈U,V〉∈Pow(

⋃
T)×Pow(

⋃
T). U⊆V}))"

{
assume "¬(T{is T1})"

then obtain x y where "x∈
⋃
T""y∈

⋃
T""x 6=y""∀ U∈T. x/∈U∨y∈U" unfold-

ing isT1_def by auto

{
assume "{x}∈T{restricted to}{x,y}"

then obtain U where "U∈T" "{x}={x,y}∩U" unfolding RestrictedTo_def

by auto

moreover
have "x∈{x}" by auto

ultimately have "U∈T""x∈U" by auto

moreover
{

assume "y∈U"
then have "y∈{x,y}∩U" by auto

with ‘{x}={x,y}∩U‘ have "y∈{x}" by auto

with ‘x 6=y‘ have "False" by auto

}
then have "y/∈U" by auto

moreover
note ‘∀ U∈T. x/∈U∨y∈U‘
ultimately have "False" by auto

}
then have "{x}/∈T{restricted to}{x,y}" by auto

moreover
have tot:"

⋃
(T{restricted to}{x,y})={x,y}" using ‘x∈

⋃
T‘‘y∈

⋃
T‘ un-

folding RestrictedTo_def by auto

moreover
have "T{restricted to}{x,y}⊆Pow(

⋃
(T{restricted to}{x,y}))" by auto

ultimately have "T{restricted to}{x,y}⊆Pow({x,y})-{{x}}" by auto
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moreover
have "Pow({x,y})={0,{x,y},{x},{y}}" by blast

ultimately have "T{restricted to}{x,y}⊆{0,{x,y},{y}}" by auto

moreover
have "IsLinOrder({0,{x,y},{y}},{〈U,V〉∈Pow({x,y})×Pow({x,y}). U⊆V})"
proof-

have "antisym(Collect(Pow({x, y}) × Pow({x, y}), split(op ⊆)))"
using antisym_def by auto

moreover
have "trans(Collect(Pow({x, y}) × Pow({x, y}), split(op ⊆)))" us-

ing trans_def by auto

moreover
have "Collect(Pow({x, y}) × Pow({x, y}), split(op ⊆)) {is total

on} {0, {x, y}, {y}}" using IsTotal_def by auto

ultimately show "IsLinOrder({0,{x,y},{y}},{〈U,V〉∈Pow({x,y})×Pow({x,y}).
U⊆V})" using IsLinOrder_def by auto

qed
ultimately have "IsLinOrder(T{restricted to}{x,y},{〈U,V〉∈Pow({x,y})×Pow({x,y}).

U⊆V})" using ord_linear_subset

by auto

with tot have "IsLinOrder(T{restricted to}{x,y},{〈U,V〉∈Pow(
⋃
(T{restricted

to}{x,y}))×Pow(
⋃
(T{restricted to}{x,y})). U⊆V})"

by auto

then have "IsLinOrder(T{restricted to}{x,y},Collect(Pow(
⋃
(T {restricted

to} {x,y})) × Pow(
⋃
(T {restricted to} {x,y})), split(op ⊆)))" by auto

moreover
from ‘x∈

⋃
T‘‘y∈

⋃
T‘ have "{x,y}∈Pow(

⋃
T)" by auto

moreover
note AS

ultimately have "{x,y}{is in the spectrum of}(λT. IsLinOrder(T,{〈U,V〉∈Pow(
⋃
T)×Pow(

⋃
T).

U⊆V}))" unfolding antiProperty_def

by simp

then have "{x,y}.1" using linord_spectrum by auto

moreover
have "x∈{x,y}" by auto

ultimately have "{x}={x,y}" using lepoll_1_is_sing[of "{x,y}""x"]

by auto

moreover
have "y∈{x,y}" by auto

ultimately
have "y∈{x}" by auto

then have "x=y" by auto

then have "False" using ‘x 6=y‘ by auto

}
then show "T {is T1}" by auto

next
assume T1:"T {is T1}"

{
fix A
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assume A_def:"A∈Pow(
⋃
T)""IsLinOrder((T{restricted to}A) ,{〈U,V〉∈Pow(

⋃
(T{restricted

to}A))×Pow(
⋃
(T{restricted to}A)). U⊆V})"

{
fix x

assume AS1:"x∈A"
{

fix y

assume AS:"y∈A""x6=y"

with AS1 have "{x,y}∈Pow(
⋃
T)" using ‘A∈Pow(

⋃
T)‘ by auto

from ‘x∈A‘‘y∈A‘ have "{x,y}∈Pow(A)" by auto

from ‘{x,y}∈Pow(
⋃
T)‘ have T11:"(T{restricted to}{x,y}){is T1}"

using T1_here T1 by auto

moreover
have tot:"

⋃
(T{restricted to}{x,y})={x,y}" unfolding RestrictedTo_def

using ‘{x,y}∈Pow(
⋃
T)‘ by auto

moreover
note AS(2)

ultimately obtain U where "x∈U""y/∈U""U∈(T{restricted to}{x,y})"

unfolding isT1_def by auto

moreover
from AS(2) tot T11 obtain V where "y∈V""x/∈V""V∈(T{restricted

to}{x,y})" unfolding isT1_def by auto

ultimately have "x∈U-V""y∈V-U""U∈(T{restricted to}{x,y})""V∈(T{restricted
to}{x,y})" by auto

then have "¬(U⊆V∨V⊆U)""U∈(T{restricted to}{x,y})""V∈(T{restricted
to}{x,y})" by auto

then have "¬({〈U,V〉∈Pow(
⋃
(T{restricted to}{x,y}))×Pow(

⋃
(T{restricted

to}{x,y})). U⊆V} {is total on} (T{restricted to}{x,y}))"

unfolding IsTotal_def by auto

then have "¬(IsLinOrder((T{restricted to}{x,y}),{〈U,V〉∈Pow(
⋃
(T{restricted

to}{x,y}))×Pow(
⋃
(T{restricted to}{x,y})). U⊆V}))"

unfolding IsLinOrder_def by auto

moreover
{

have "(T{restricted to}A) {is a topology}" using Top_1_L4 by
auto

moreover
note A_def(2) linordtop_here

ultimately have "∀ B∈Pow(
⋃
(T{restricted to}A)). IsLinOrder((T{restricted

to}A){restricted to}B ,{〈U,V〉∈Pow(
⋃
((T{restricted to}A){restricted to}B))×Pow(

⋃
((T{restricted

to}A){restricted to}B)). U⊆V})"
unfolding IsHer_def by auto

moreover
have tot:"

⋃
(T{restricted to}A)=A" unfolding RestrictedTo_def

using ‘A∈Pow(
⋃
T)‘ by auto

ultimately have "∀ B∈Pow(A). IsLinOrder((T{restricted to}A){restricted

to}B ,{〈U,V〉∈Pow(
⋃
((T{restricted to}A){restricted to}B))×Pow(

⋃
((T{restricted

to}A){restricted to}B)). U⊆V})" by auto

moreover
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have "∀ B∈Pow(A). (T{restricted to}A){restricted to}B=T{restricted

to}B" using subspace_of_subspace ‘A∈Pow(
⋃
T)‘ by auto

ultimately
have "∀ B∈Pow(A). IsLinOrder((T{restricted to}B) ,{〈U,V〉∈Pow(

⋃
((T{restricted

to}A){restricted to}B))×Pow(
⋃
((T{restricted to}A){restricted to}B)).

U⊆V})" by auto

moreover
have "∀ B∈Pow(A).

⋃
((T{restricted to}A){restricted to}B)=B"

using ‘A∈Pow(
⋃
T)‘ unfolding RestrictedTo_def by auto

ultimately have "∀ B∈Pow(A). IsLinOrder((T{restricted to}B)

,{〈U,V〉∈Pow(B)×Pow(B). U⊆V})" by auto

with ‘{x,y}∈Pow(A)‘ have "IsLinOrder((T{restricted to}{x,y})

,{〈U,V〉∈Pow({x,y})×Pow({x,y}). U⊆V})" by auto

}
ultimately have "False" using tot by auto

}
then have "A={x}" using AS1 by auto

then have "A≈1" using singleton_eqpoll_1 by auto

then have "A.1" using eqpoll_imp_lepoll by auto

then have "A{is in the spectrum of}(λT. IsLinOrder(T,{〈U,V〉∈Pow(
⋃
T)×Pow(

⋃
T).

U⊆V}))" using linord_spectrum

by auto

}
moreover
{

assume "A=0"

then have "A≈0" by auto

moreover
have "0.1" using empty_lepollI by auto

ultimately have "A.1" using eq_lepoll_trans by auto

then have "A{is in the spectrum of}(λT. IsLinOrder(T,{〈U,V〉∈Pow(
⋃
T)×Pow(

⋃
T).

U⊆V}))" using linord_spectrum

by auto

}
ultimately have "A{is in the spectrum of}(λT. IsLinOrder(T,{〈U,V〉∈Pow(

⋃
T)×Pow(

⋃
T).

U⊆V}))" by blast

}
then show "T{is anti-}(λT. IsLinOrder(T, {〈U,V〉 ∈ Pow(

⋃
T) × Pow(

⋃
T)

. U ⊆ V}))" unfolding antiProperty_def

by auto

qed

In conclusion, T1 is also an anti-property.

Let’s define some anti-properties that we’ll use in the future.

definition
IsAntiComp ("_{is anti-compact}")

where "T{is anti-compact} ≡ T{is anti-}(λT. (
⋃
T){is compact in}T)"

definition
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IsAntiLin ("_{is anti-lindeloef}")

where "T{is anti-lindeloef} ≡ T{is anti-}(λT. ((
⋃
T){is lindeloef in}T))"

Anti-compact spaces are also called pseudo-finite spaces in literature before
the concept of anti-property was defined.

end

59 Topology 6

theory Topology_ZF_6 imports Topology_ZF_4 Topology_ZF_2 Topology_ZF_1

begin

This theory deals with the relations between continuous functions and con-
vergence of filters. At the end of the file there some results about the building
of functions in cartesian products.

59.1 Image filter

First of all, we will define the appropriate tools to work with functions and
filters together.

We define the image filter as the collections of supersets of of images of sets
from a filter.

definition
ImageFilter ("_[_].._" 98)

where "F {is a filter on} X =⇒ f:X→Y =⇒ f[F]..Y ≡ {A∈Pow(Y). ∃ D∈{f‘‘(B)
.B∈F}. D⊆A}"

Note that in the previous definition, it is necessary to state Y as the final
set because f is also a function to every superset of its range. X can be
changed by domain(f) without any change in the definition.

lemma base_image_filter:

assumes "F {is a filter on} X" "f:X→Y"

shows "{f‘‘B .B∈F} {is a base filter}(f[F]..Y)" and "(f[F]..Y) {is

a filter on} Y"

proof-
{

assume "0 ∈ {f‘‘B .B∈F}"
then obtain B where "B∈F" and f_B:"f‘‘B=0" by auto

then have "B∈Pow(X)" using assms(1) IsFilter_def by auto

then have "f‘‘B={f‘b. b∈B}" using image_fun assms(2) by auto

with f_B have "{f‘b. b∈B}=0" by auto

then have "B=0" by auto

with ‘B∈F‘ have "False" using IsFilter_def assms(1) by auto

}
then have "0/∈{f‘‘B .B∈F}" by auto
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moreover
from assms(1) obtain S where "S∈F" using IsFilter_def by auto

then have "f‘‘S∈{f‘‘B .B∈F}" by auto

then have nA:"{f‘‘B .B∈F}6=0" by auto

moreover
{

fix A B

assume "A∈{f‘‘B .B∈F}" and "B∈{f‘‘B .B∈F}"
then obtain AB BB where "A=f‘‘AB" "B=f‘‘BB" "AB∈F" "BB∈F" by auto

then have "A∩B=(f‘‘AB)∩(f‘‘BB)" by auto

then have I: "f‘‘(AB∩BB)⊆A∩B" by auto

moreover
from assms(1) I ‘AB∈F‘‘BB∈F‘ have "AB∩BB∈F" using IsFilter_def by

auto

ultimately have "∃ D∈{f‘‘B .B∈F}. D⊆A∩B" by auto

}
then have "∀ A∈{f‘‘B .B∈F}. ∀ B∈{f‘‘B .B∈F}. ∃ D∈{f‘‘B .B∈F}. D⊆A∩B"

by auto

ultimately have sbc:"{f‘‘B .B∈F} {satisfies the filter base condition}"

using SatisfiesFilterBase_def by auto

moreover
{

fix t

assume "t∈{f‘‘B . B∈F}"
then obtain B where "B∈F" and im_def:"f‘‘B=t" by auto

with assms(1) have "B∈Pow(X)" unfolding IsFilter_def by auto

with im_def assms(2) have "t={f‘x. x∈B}" using image_fun by auto

with assms(2) ‘B∈Pow(X)‘ have "t⊆Y" using apply_funtype by auto

}
then have nB:"{f‘‘B . B∈F}⊆Pow(Y)" by auto

ultimately
have "(({f‘‘B .B∈F} {is a base filter}{A ∈ Pow(Y) . ∃ D∈{f‘‘B .B∈F}.

D ⊆ A}) ∧ (
⋃
{A ∈ Pow(Y) . ∃ D∈{f‘‘B .B∈F}. D ⊆ A}=Y))" using base_unique_filter_set2

by force

then have "{f‘‘B .B∈F} {is a base filter}{A ∈ Pow(Y) . ∃ D∈{f‘‘B .B∈F}.
D ⊆ A}" by auto

with assms show "{f‘‘B .B∈F} {is a base filter}(f[F]..Y)" using ImageFilter_def

by auto

moreover
note sbc

moreover
{

from nA obtain D where I: "D∈{f‘‘B .B∈F}" by blast

moreover from I nB have "D⊆Y" by auto

ultimately have "Y∈{A∈Pow(Y). ∃ D∈{f‘‘B .B∈F}. D⊆A}" by auto

}
then have "

⋃
{A∈Pow(Y). ∃ D∈{f‘‘B .B∈F}. D⊆A}=Y" by auto
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ultimately show "(f[F]..Y) {is a filter on} Y" using basic_filter

ImageFilter_def assms by auto

qed

59.2 Continuous at a point vs. globally continuous

In this section we show that continuity of a function implies local continuity
(at a point) and that local continuity at all points implies (global) continuity.

If a function is continuous, then it is continuous at every point.

lemma cont_global_imp_continuous_x:

assumes "x∈
⋃
τ1" "IsContinuous(τ1,τ2,f)" "f:(

⋃
τ1)→(

⋃
τ2)" "x∈

⋃
τ1"

shows "∀ U∈τ2. f‘(x)∈U −→ (∃ V∈τ1. x∈V ∧ f‘‘(V)⊆U)"
proof-
{

fix U

assume AS:"U∈τ2" "f‘(x)∈U"
then have "f-‘‘(U)∈τ1" using assms(2) IsContinuous_def by auto

moreover
from assms(3) have "f‘‘(f-‘‘(U))⊆U" using function_image_vimage fun_is_fun

by auto

moreover
from assms(3) assms(4) AS(2) have "x∈f-‘‘(U)" using func1_1_L15 by

auto

ultimately have "∃ V∈τ1. x∈V ∧ f‘‘V⊆U" by auto

}
then show "∀ U∈τ2. f‘(x)∈U −→ (∃ V∈τ1. x∈V ∧ f‘‘(V)⊆U)" by auto

qed

A function that is continuous at every point of its domain is continuous.

lemma ccontinuous_all_x_imp_cont_global:

assumes "∀ x∈
⋃
τ1. ∀ U∈τ2. f‘x∈U −→ (∃ V∈τ1. x∈V ∧ f‘‘V⊆U)" "f∈(

⋃
τ1)→(

⋃
τ2)"

and
"τ1 {is a topology}"

shows "IsContinuous(τ1,τ2,f)"
proof-
{

fix U

assume "U∈τ2"
{

fix x

assume AS: "x∈f-‘‘U"
note ‘U∈τ2‘
moreover
from assms(2) have "f -‘‘ U ⊆

⋃
τ1" using func1_1_L6A by auto

with AS have "x∈
⋃
τ1" by auto

with assms(1) have "∀ U∈τ2. f‘x∈U −→ (∃ V∈τ1. x∈V ∧ f‘‘V⊆U)" by
auto
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moreover
from AS assms(2) have "f‘x∈U" using func1_1_L15 by auto

ultimately have "∃ V∈τ1. x∈V ∧ f‘‘V⊆U" by auto

then obtain V where I: "V∈τ1" "x∈V" "f‘‘(V)⊆U" by auto

moreover
from I have "V⊆

⋃
τ1" by auto

moreover
from assms(2) ‘V⊆

⋃
τ1‘ have "V⊆f-‘‘(f‘‘V)" using func1_1_L9 by

auto

ultimately have "V ⊆ f-‘‘(U)" by blast

with ‘V∈τ1‘ ‘x∈V‘ have "∃ V∈τ1. x∈V ∧ V ⊆ f-‘‘(U)" by auto

} hence "∀ x∈f-‘‘(U). ∃ V∈τ1. x∈V ∧ V⊆f-‘‘(U)" by auto

with assms(3) have "f-‘‘(U) ∈ τ1" using topology0.open_neigh_open

topology0_def

by auto

}
hence "∀ U∈τ2. f-‘‘U∈τ1" by auto

then show ?thesis using IsContinuous_def by auto

qed

59.3 Continuous functions and filters

In this section we consider the relations between filters and continuity.

If the function is continuous then if the filter converges to a point the image
filter converges to the image point.

lemma (in two_top_spaces0) cont_imp_filter_conver_preserved:

assumes "F {is a filter on} X1" "f {is continuous}" "F →F x {in} τ1"
shows "(f[F]..X2) →F (f‘(x)) {in} τ2"

proof -

from assms(1) assms(3) have "x∈X1"
using topology0.FilterConverges_def topol_cntxs_valid(1) X1_def by

auto

have "topology0(τ2)" using topol_cntxs_valid(2) by simp

moreover from assms(1) have "(f[F]..X2) {is a filter on} (
⋃
τ2)" and

"{f‘‘B .B∈F} {is a base filter}(f[F]..X2)"
using base_image_filter fmapAssum X1_def X2_def by auto

moreover have "∀ U∈Pow(
⋃
τ2). (f‘x)∈Interior(U,τ2) −→ (∃ D∈{f‘‘B .B∈F}.

D⊆U)"
proof -

{ fix U

assume "U∈Pow(X2)" "(f‘x)∈Interior(U,τ2)"
with ‘x∈X1‘ have xim: "x∈f-‘‘(Interior(U,τ2))" and sub: "f-‘‘(Interior(U,τ2))∈Pow(X1)"

using func1_1_L6A fmapAssum func1_1_L15 fmapAssum by auto

note sub

moreover
have "Interior(U,τ2)∈τ2" using topology0.Top_2_L2 topol_cntxs_valid(2)

by auto
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with assms(2) have "f-‘‘(Interior(U,τ2))∈τ1" unfolding isContinuous_def

IsContinuous_def

by auto

with xim have "x∈Interior(f-‘‘(Interior(U,τ2)),τ1)"
using topology0.Top_2_L3 topol_cntxs_valid(1) by auto

moreover from assms(1) assms(3) have "{U∈Pow(X1). x∈Interior(U,τ1)}⊆F"

using topology0.FilterConverges_def topol_cntxs_valid(1) X1_def

by auto

ultimately have "f-‘‘(Interior(U,τ2))∈F" by auto

moreover have "f‘‘(f-‘‘(Interior(U,τ2)))⊆Interior(U,τ2)"
using function_image_vimage fun_is_fun fmapAssum by auto

then have "f‘‘(f-‘‘(Interior(U,τ2)))⊆U"
using topology0.Top_2_L1 topol_cntxs_valid(2) by auto

ultimately have "∃ D∈{f‘‘(B) .B∈F}. D⊆U" by auto

} thus ?thesis by auto

qed
moreover from fmapAssum ‘x∈X1‘ have "f‘(x) ∈ X2"

by (rule apply_funtype)

hence "f‘(x) ∈
⋃
τ2" by simp

ultimately show ?thesis by (rule topology0.convergence_filter_base2)

qed

Continuity in filter at every point of the domain implies global continuity.

lemma (in two_top_spaces0) filter_conver_preserved_imp_cont:

assumes "∀ x∈
⋃
τ1. ∀F. ((F {is a filter on} X1) ∧ (F →F x {in} τ1))

−→ ((f[F]..X2) →F (f‘x) {in} τ2)"
shows "f{is continuous}"

proof-
{

fix x

assume as2: "x∈
⋃
τ1"

with assms have reg:

"∀F. ((F {is a filter on} X1) ∧ (F →F x {in} τ1)) −→ ((f[F]..X2)
→F (f‘x) {in} τ2)"

by auto

let ?Neig = "{U ∈ Pow(
⋃
τ1) . x ∈ Interior(U, τ1)}"

from as2 have NFil: "?Neig{is a filter on}X1" and NCon: "?Neig →F

x {in} τ1"
using topol_cntxs_valid(1) topology0.neigh_filter by auto

{
fix U

assume "U∈τ2" "f‘x∈U"
then have "U∈Pow(

⋃
τ2)" "f‘x∈Interior(U,τ2)" using topol_cntxs_valid(2)

topology0.Top_2_L3 by auto

moreover
from NCon NFil reg have "(f[?Neig]..X2) →F (f‘x) {in} τ2" by auto
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moreover have "(f[?Neig]..X2) {is a filter on} X2"

using base_image_filter(2) NFil fmapAssum by auto

ultimately have "U∈(f[?Neig]..X2)"
using topology0.FilterConverges_def topol_cntxs_valid(2) unfold-

ing X1_def X2_def

by auto

moreover
from fmapAssum NFil have "{f‘‘B .B∈?Neig} {is a base filter}(f[?Neig]..X2)"

using base_image_filter(1) X1_def X2_def by auto

ultimately have "∃ V∈{f‘‘B .B∈?Neig}. V⊆U" using basic_element_filter

by blast

then obtain B where "B∈?Neig" "f‘‘B⊆U" by auto

moreover
have "Interior(B,τ1)⊆B" using topology0.Top_2_L1 topol_cntxs_valid(1)

by auto

hence "f‘‘Interior(B,τ1) ⊆ f‘‘(B)" by auto

moreover have "Interior(B,τ1)∈τ1"
using topology0.Top_2_L2 topol_cntxs_valid(1) by auto

ultimately have "∃ V∈τ1. x∈V ∧ f‘‘V⊆U" by force

}
hence "∀ U∈τ2. f‘x∈U −→ (∃ V∈τ1. x∈V ∧ f‘‘V⊆U)" by auto

}
hence "∀ x∈

⋃
τ1. ∀ U∈τ2. f‘x∈U −→ (∃ V∈τ1. x∈V ∧ f‘‘V⊆U)" by auto

then show ?thesis

using ccontinuous_all_x_imp_cont_global fmapAssum X1_def X2_def isContinuous_def

tau1_is_top

by auto

qed

end

60 Topology 7

theory Topology_ZF_7 imports Topology_ZF_5

begin

60.1 Connection Properties

Another type of topological properties are the connection properties. These
properties establish if the space is formed of several pieces or just one.

A space is connected iff there is no clopen set other that the empty set and
the total set.

definition IsConnected ("_{is connected}" 70)

where "T {is connected} ≡ ∀ U. (U∈T ∧ (U {is closed in}T)) −→ U=0∨U=
⋃
T"

lemma indiscrete_connected:
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shows "{0,X} {is connected}"

unfolding IsConnected_def IsClosed_def by auto

The anti-property of connectedness is called total-diconnectedness.

definition IsTotDis ("_ {is totally-disconnected}" 70)

where "IsTotDis ≡ ANTI(IsConnected)"

lemma conn_spectrum:

shows "(A{is in the spectrum of}IsConnected) ←→ A.1"
proof

assume "A{is in the spectrum of}IsConnected"

then have "∀ T. (T{is a topology}∧
⋃
T≈A) −→ (T{is connected})" us-

ing Spec_def by auto

moreover
have "Pow(A){is a topology}" using Pow_is_top by auto

moreover
have "

⋃
(Pow(A))=A" by auto

then have "
⋃
(Pow(A))≈A" by auto

ultimately have "Pow(A) {is connected}" by auto

{
assume "A 6=0"

then obtain E where "E∈A" by blast

then have "{E}∈Pow(A)" by auto

moreover
have "A-{E}∈Pow(A)" by auto

ultimately have "{E}∈Pow(A)∧{E}{is closed in}Pow(A)" unfolding IsClosed_def

by auto

with ‘Pow(A) {is connected}‘ have "{E}=A" unfolding IsConnected_def

by auto

then have "A≈1" using singleton_eqpoll_1 by auto

then have "A.1" using eqpoll_imp_lepoll by auto

}
moreover
{

assume "A=0"

then have "A.1" using empty_lepollI[of "1"] by auto

}
ultimately show "A.1" by auto

next
assume "A.1"
{

fix T

assume "T{is a topology}""
⋃
T≈A"

{
assume "

⋃
T=0"

with ‘T{is a topology}‘ have "T={0}" using empty_open by auto

then have "T{is connected}" unfolding IsConnected_def by auto

}
moreover
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{
assume "

⋃
T6=0"

moreover
from ‘A.1‘‘

⋃
T≈A‘ have "

⋃
T.1" using eq_lepoll_trans by auto

ultimately
obtain E where "

⋃
T={E}" using lepoll_1_is_sing by blast

moreover
have "T⊆Pow(

⋃
T)" by auto

ultimately have "T⊆Pow({E})" by auto

then have "T⊆{0,{E}}" by blast

with ‘T{is a topology}‘ have "{0}⊆T" "T⊆{0,{E}}" using empty_open

by auto

then have "T{is connected}" unfolding IsConnected_def by auto

}
ultimately have "T{is connected}" by auto

}
then show "A{is in the spectrum of}IsConnected" unfolding Spec_def

by auto

qed

The discrete space is a first example of totally-disconnected space.

lemma discrete_tot_dis:

shows "Pow(X) {is totally-disconnected}"

proof-
{

fix A assume "A∈Pow(X)" and con:"(Pow(X){restricted to}A){is connected}"

have res:"(Pow(X){restricted to}A)=Pow(A)" unfolding RestrictedTo_def

using ‘A∈Pow(X)‘
by blast

{
assume "A=0"

then have "A.1" using empty_lepollI[of "1"] by auto

then have "A{is in the spectrum of}IsConnected" using conn_spectrum

by auto

}
moreover
{

assume "A 6=0"

then obtain E where "E∈A" by blast

then have "{E}∈Pow(A)" by auto

moreover
have "A-{E}∈Pow(A)" by auto

ultimately have "{E}∈Pow(A)∧{E}{is closed in}Pow(A)" unfolding
IsClosed_def by auto

with con res have "{E}=A" unfolding IsConnected_def by auto

then have "A≈1" using singleton_eqpoll_1 by auto

then have "A.1" using eqpoll_imp_lepoll by auto

then have "A{is in the spectrum of}IsConnected" using conn_spectrum

by auto
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}
ultimately have "A{is in the spectrum of}IsConnected" by auto

}
then show ?thesis unfolding IsTotDis_def antiProperty_def by auto

qed

An space is hyperconnected iff every two non-empty open sets meet.

definition IsHConnected ("_{is hyperconnected}"90)

where "T{is hyperconnected} ≡∀ U V. U∈T ∧ V∈T ∧ U∩V=0 −→ U=0∨V=0"

Every hyperconnected space is connected.

lemma HConn_imp_Conn:

assumes "T{is hyperconnected}"

shows "T{is connected}"

proof-
{

fix U

assume "U∈T""U {is closed in}T"

then have "
⋃
T-U∈T""U∈T" using IsClosed_def by auto

moreover
have "(

⋃
T-U)∩U=0" by auto

moreover
note assms

ultimately
have "U=0∨(

⋃
T-U)=0" using IsHConnected_def by auto

with ‘U∈T‘ have "U=0∨U=
⋃
T" by auto

}
then show ?thesis using IsConnected_def by auto

qed

lemma Indiscrete_HConn:

shows "{0,X}{is hyperconnected}"

unfolding IsHConnected_def by auto

A first example of an hyperconnected space but not indiscrete, is the cofinite
topology on the natural numbers.

lemma Cofinite_nat_HConn:

assumes "¬(X≺nat)"
shows "(CoFinite X){is hyperconnected}"

proof-
{

fix U V

assume "U∈(CoFinite X)""V∈(CoFinite X)""U∩V=0"
then have eq:"(X-U)≺nat∨U=0""(X-V)≺nat∨V=0" unfolding Cofinite_def

Cocardinal_def by auto

from ‘U∩V=0‘ have un:"(X-U)∪(X-V)=X" by auto

{
assume AS:"(X-U)≺nat""(X-V)≺nat"
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from un have "X≺nat" using less_less_imp_un_less[OF AS InfCard_nat]

by auto

then have "False" using assms by auto

}
with eq(1,2) have "U=0∨V=0" by auto

}
then show "(CoFinite X){is hyperconnected}" using IsHConnected_def

by auto

qed

lemma HConn_spectrum:

shows "(A{is in the spectrum of}IsHConnected) ←→ A.1"
proof

assume "A{is in the spectrum of}IsHConnected"

then have "∀ T. (T{is a topology}∧
⋃
T≈A) −→ (T{is hyperconnected})"

using Spec_def by auto

moreover
have "Pow(A){is a topology}" using Pow_is_top by auto

moreover
have "

⋃
(Pow(A))=A" by auto

then have "
⋃
(Pow(A))≈A" by auto

ultimately
have HC_Pow:"Pow(A){is hyperconnected}" by auto

{
assume "A=0"

then have "A.1" using empty_lepollI by auto

}
moreover
{

assume "A 6=0"

then obtain e where "e∈A" by blast

then have "{e}∈Pow(A)" by auto

moreover
have "A-{e}∈Pow(A)" by auto

moreover
have "{e}∩(A-{e})=0" by auto

moreover
note HC_Pow

ultimately have "A-{e}=0" unfolding IsHConnected_def by blast

with ‘e∈A‘ have "A={e}" by auto

then have "A≈1" using singleton_eqpoll_1 by auto

then have "A.1" using eqpoll_imp_lepoll by auto

}
ultimately show "A.1" by auto

next
assume "A.1"
{

fix T

assume "T{is a topology}""
⋃
T≈A"
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{
assume "

⋃
T=0"

with ‘T{is a topology}‘ have "T={0}" using empty_open by auto

then have "T{is hyperconnected}" unfolding IsHConnected_def by
auto

}
moreover
{

assume "
⋃
T6=0"

moreover
from ‘A.1‘‘

⋃
T≈A‘ have "

⋃
T.1" using eq_lepoll_trans by auto

ultimately
obtain E where "

⋃
T={E}" using lepoll_1_is_sing by blast

moreover
have "T⊆Pow(

⋃
T)" by auto

ultimately have "T⊆Pow({E})" by auto

then have "T⊆{0,{E}}" by blast

with ‘T{is a topology}‘ have "{0}⊆T" "T⊆{0,{E}}" using empty_open

by auto

then have "T{is hyperconnected}" unfolding IsHConnected_def by
auto

}
ultimately have "T{is hyperconnected}" by auto

}
then show "A{is in the spectrum of}IsHConnected" unfolding Spec_def

by auto

qed

In the following results we will show that anti-hyperconnectedness is a sepa-
ration property between T1 and T2. We will show also that both implications
are proper.

First, the closure of a point in every topological space is always hypercon-
nected. This is the reason why every anti-hyperconnected space must be T1:
every singleton must be closed.

lemma (in topology0)cl_point_imp_HConn:

assumes "x∈
⋃
T"

shows "(T{restricted to}Closure({x},T)){is hyperconnected}"

proof-
from assms have sub:"Closure({x},T)⊆

⋃
T" using Top_3_L11 by auto

then have tot:"
⋃
(T{restricted to}Closure({x},T))=Closure({x},T)" un-

folding RestrictedTo_def by auto

{
fix A B

assume AS:"A∈(T{restricted to}Closure({x},T))""B∈(T{restricted to}Closure({x},T))""A∩B=0"
then have "B⊆

⋃
((T{restricted to}Closure({x},T)))""A⊆

⋃
((T{restricted

to}Closure({x},T)))"

by auto

with tot have "B⊆Closure({x},T)""A⊆Closure({x},T)" by auto
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from AS(1,2) obtain UA UB where UAUB:"UA∈T""UB∈T""A=UA∩Closure({x},T)""B=UB∩Closure({x},T)"
unfolding RestrictedTo_def by auto

then have "Closure({x},T)-A=Closure({x},T)-(UA∩Closure({x},T))" "Closure({x},T)-B=Closure({x},T)-(UB∩Closure({x},T))"
by auto

then have "Closure({x},T)-A=Closure({x},T)-(UA)" "Closure({x},T)-B=Closure({x},T)-(UB)"

by auto

with sub have "Closure({x},T)-A=Closure({x},T)∩(
⋃
T-UA)" "Closure({x},T)-B=Closure({x},T)∩(

⋃
T-UB)"

by auto

moreover
from UAUB have "(

⋃
T-UA){is closed in}T""(

⋃
T-UB){is closed in}T"

using Top_3_L9 by auto

moreover
have "Closure({x},T){is closed in}T" using cl_is_closed assms by

auto

ultimately have "(Closure({x},T)-A){is closed in}T""(Closure({x},T)-B){is

closed in}T"

using Top_3_L5(1) by auto

moreover
{

have "x∈Closure({x},T)" using cl_contains_set assms by auto

moreover
from AS(3) have "x/∈A∨x/∈B" by auto

ultimately have "x∈(Closure({x},T)-A)∨x∈(Closure({x},T)-B)" by
auto

}
ultimately have "Closure({x},T)⊆(Closure({x},T)-A) ∨ Closure({x},T)⊆(Closure({x},T)-B)"

using Top_3_L13 by auto

then have "A∩Closure({x},T)=0 ∨ B∩Closure({x},T)=0" by auto

with ‘B⊆Closure({x},T)‘‘A⊆Closure({x},T)‘ have "A=0∨B=0" using cl_contains_set

assms by blast

}
then show ?thesis unfolding IsHConnected_def by auto

qed

A consequence is that every totally-disconnected space is T1.

lemma (in topology0) tot_dis_imp_T1:

assumes "T{is totally-disconnected}"

shows "T{is T1}"

proof-
{

fix x y

assume "y∈
⋃
T""x∈

⋃
T""y6=x"

then have "(T{restricted to}Closure({x},T)){is hyperconnected}" us-
ing cl_point_imp_HConn by auto

then have "(T{restricted to}Closure({x},T)){is connected}" using
HConn_imp_Conn by auto

moreover
from ‘x∈

⋃
T‘ have "Closure({x},T)⊆

⋃
T" using Top_3_L11(1) by auto

moreover
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note assms

ultimately have "Closure({x},T){is in the spectrum of}IsConnected"

unfolding IsTotDis_def antiProperty_def

by auto

then have "Closure({x},T).1" using conn_spectrum by auto

moreover
from ‘x∈

⋃
T‘ have "x∈Closure({x},T)" using cl_contains_set by auto

ultimately have "Closure({x},T)={x}" using lepoll_1_is_sing[of "Closure({x},T)"

"x"] by auto

then have "{x}{is closed in}T" using Top_3_L8 ‘x∈
⋃
T‘ by auto

then have "
⋃
T-{x}∈T" unfolding IsClosed_def by auto

moreover
from ‘y∈

⋃
T‘‘y6=x‘ have "y∈

⋃
T-{x}∧x/∈

⋃
T-{x}" by auto

ultimately have "∃ U∈T. y∈U∧x/∈U" by force

}
then show ?thesis unfolding isT1_def by auto

qed

In the literature, there exists a class of spaces called sober spaces; where the
only non-empty closed hyperconnected subspaces are the closures of points
and closures of diferent singletons are different.

definition IsSober ("_{is sober}"90)

where "T{is sober} ≡ ∀ A∈Pow(
⋃
T)-{0}. (A{is closed in}T ∧ ((T{restricted

to}A){is hyperconnected})) −→ (∃ x∈
⋃
T. A=Closure({x},T) ∧ (∀ y∈

⋃
T. A=Closure({y},T)

−→ y=x) )"

Being sober is weaker than being anti-hyperconnected.

theorem (in topology0) anti_HConn_imp_sober:

assumes "T{is anti-}IsHConnected"

shows "T{is sober}"

proof-
{

fix A assume "A∈Pow(
⋃
T)-{0}""A{is closed in}T""(T{restricted to}A){is

hyperconnected}"

with assms have "A{is in the spectrum of}IsHConnected" unfolding antiProperty_def

by auto

then have "A.1" using HConn_spectrum by auto

moreover
with ‘A∈Pow(

⋃
T)-{0}‘ have "A 6=0" by auto

then obtain x where "x∈A" by auto

ultimately have "A={x}" using lepoll_1_is_sing by auto

with ‘A{is closed in}T‘ have "{x}{is closed in}T" by auto

moreover from ‘x∈A‘ ‘A∈Pow(
⋃
T)-{0}‘ have "{x}∈Pow(

⋃
T)" by auto

ultimately
have "Closure({x},T)={x}" unfolding Closure_def ClosedCovers_def by

auto

with ‘A={x}‘ have "A=Closure({x},T)" by auto

moreover
{
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fix y assume "y∈
⋃
T""A=Closure({y},T)"

then have "{y}⊆Closure({y},T)" using cl_contains_set by auto

with ‘A=Closure({y},T)‘ have "y∈A" by auto

with ‘A={x}‘ have "y=x" by auto

}
then have "∀ y∈

⋃
T. A=Closure({y},T) −→ y=x" by auto

moreover note ‘{x}∈Pow(
⋃
T)‘

ultimately have "∃ x∈
⋃
T. A=Closure({x},T)∧(∀ y∈

⋃
T. A=Closure({y},T)

−→ y=x)" by auto

}
then show ?thesis using IsSober_def by auto

qed

Every sober space is T0.

lemma (in topology0) sober_imp_T0:

assumes "T{is sober}"

shows "T{is T0}"

proof-
{

fix x y

assume AS:"x∈
⋃
T""y∈

⋃
T""x6=y""∀ U∈T. x∈U ←→ y∈U"

from ‘x∈
⋃
T‘ have clx:"Closure({x},T) {is closed in}T" using cl_is_closed

by auto

with ‘x∈
⋃
T‘ have "(

⋃
T-Closure({x},T))∈T" using Top_3_L11(1) un-

folding IsClosed_def by auto

moreover
from ‘x∈

⋃
T‘ have "x∈Closure({x},T)" using cl_contains_set by auto

moreover
note AS(1,4)

ultimately have "y/∈(
⋃
T-Closure({x},T))" by auto

with AS(2) have "y∈Closure({x},T)" by auto

with clx have ineq1:"Closure({y},T)⊆Closure({x},T)" using Top_3_L13

by auto

from ‘y∈
⋃
T‘ have cly:"Closure({y},T) {is closed in}T" using cl_is_closed

by auto

with ‘y∈
⋃
T‘ have "(

⋃
T-Closure({y},T))∈T" using Top_3_L11(1) un-

folding IsClosed_def by auto

moreover
from ‘y∈

⋃
T‘ have "y∈Closure({y},T)" using cl_contains_set by auto

moreover
note AS(2,4)

ultimately have "x/∈(
⋃
T-Closure({y},T))" by auto

with AS(1) have "x∈Closure({y},T)" by auto

with cly have "Closure({x},T)⊆Closure({y},T)" using Top_3_L13 by
auto

with ineq1 have eq:"Closure({x},T)=Closure({y},T)" by auto

have "Closure({x},T)∈Pow(
⋃
T)-{0}" using Top_3_L11(1) ‘x∈

⋃
T‘ ‘x∈Closure({x},T)‘

by auto

moreover note assms clx
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ultimately have "∃ t∈
⋃
T.( Closure({x},T) = Closure({t}, T) ∧ (∀ y∈

⋃
T.

Closure({x},T) = Closure({y}, T) −→ y = t))"

unfolding IsSober_def using cl_point_imp_HConn[OF ‘x∈
⋃
T‘] by auto

then obtain t where t_def:"t∈
⋃
T""Closure({x},T) = Closure({t}, T)""∀ y∈

⋃
T.

Closure({x},T) = Closure({y}, T) −→ y = t"

by blast

with eq have "y=t" using ‘y∈
⋃
T‘ by auto

moreover from t_def ‘x∈
⋃
T‘ have "x=t" by blast

ultimately have "y=x" by auto

with ‘x 6=y‘ have "False" by auto

}
then have "∀ x y. x∈

⋃
T∧y∈

⋃
T∧x6=y −→ (∃ U∈T. (x∈U∧y/∈U)∨(y∈U∧x/∈U))"

by auto

then show ?thesis using isT0_def by auto

qed

Every T2 space is anti-hyperconnected.

theorem (in topology0) T2_imp_anti_HConn:

assumes "T{is T2}"

shows "T{is anti-}IsHConnected"

proof-
{

fix TT

assume "TT{is a topology}" "TT{is hyperconnected}""TT{is T2}"

{
assume "

⋃
TT=0"

then have "
⋃
TT.1" using empty_lepollI by auto

then have "(
⋃
TT){is in the spectrum of}IsHConnected" using HConn_spectrum

by auto

}
moreover
{

assume "
⋃
TT6=0"

then obtain x where "x∈
⋃
TT" by blast

{
fix y

assume "y∈
⋃
TT""x 6=y"

with ‘TT{is T2}‘‘x∈
⋃
TT‘ obtain U V where "U∈TT""V∈TT""x∈U""y∈V""U∩V=0"

unfolding isT2_def by blast

with ‘TT{is hyperconnected}‘ have "False" using IsHConnected_def

by auto

}
with ‘x∈

⋃
TT‘ have "

⋃
TT={x}" by auto

then have "
⋃
TT≈1" using singleton_eqpoll_1 by auto

then have "
⋃
TT.1" using eqpoll_imp_lepoll by auto

then have "(
⋃
TT){is in the spectrum of}IsHConnected" using HConn_spectrum

by auto

}
ultimately have "(

⋃
TT){is in the spectrum of}IsHConnected" by blast
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}
then have "∀ T. ((T{is a topology}∧(T{is hyperconnected})∧(T{is T2}))−→

((
⋃
T){is in the spectrum of}IsHConnected))"

by auto

moreover
note here_T2

ultimately
have "∀ T. T{is a topology} −→ ((T{is T2})−→(T{is anti-}IsHConnected))"

using Q_P_imp_Spec[where P=IsHConnected and Q=isT2]

by auto

then show ?thesis using assms topSpaceAssum by auto

qed

Every anti-hyperconnected space is T1.

theorem anti_HConn_imp_T1:

assumes "T{is anti-}IsHConnected"

shows "T{is T1}"

proof-
{

fix x y

assume "x∈
⋃
T""y∈

⋃
T""x6=y"

{
assume AS:"∀ U∈T. x/∈U∨y∈U"
from ‘x∈

⋃
T‘‘y∈

⋃
T‘ have "{x,y}∈Pow(

⋃
T)" by auto

then have sub:"(T{restricted to}{x,y})⊆Pow({x,y})" using RestrictedTo_def

by auto

{
fix U V

assume H:"U∈T{restricted to}{x,y}" "V∈(T{restricted to}{x,y})""U∩V=0"
with AS have "x∈U−→y∈U""x∈V−→y∈V" unfolding RestrictedTo_def

by auto

with H(1,2) sub have "x∈U−→U={x,y}""x∈V−→V={x,y}" by auto

with H sub have "x∈U−→(U={x,y}∧V=0)""x∈V−→(V={x,y}∧U=0)" by
auto

then have "(x∈U∨x∈V)−→(U=0∨V=0)" by auto

moreover
from sub H have "(x/∈U∧x/∈V)−→ (U=0∨V=0)" by blast

ultimately have "U=0∨V=0" by auto

}
then have "(T{restricted to}{x,y}){is hyperconnected}" unfolding

IsHConnected_def by auto

with assms‘{x,y}∈Pow(
⋃
T)‘ have "{x,y}{is in the spectrum of}IsHConnected"

unfolding antiProperty_def

by auto

then have "{x,y}.1" using HConn_spectrum by auto

moreover
have "x∈{x,y}" by auto

ultimately have "{x,y}={x}" using lepoll_1_is_sing[of "{x,y}""x"]

by auto
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moreover
have "y∈{x,y}" by auto

ultimately have "y∈{x}" by auto

then have "y=x" by auto

with ‘x 6=y‘ have "False" by auto

}
then have "∃ U∈T. x∈U∧y/∈U" by auto

}
then show ?thesis using isT1_def by auto

qed

There is at least one topological space that is T1, but not anti-hyperconnected.
This space is the cofinite topology on the natural numbers.

lemma Cofinite_not_anti_HConn:

shows "¬((CoFinite nat){is anti-}IsHConnected)" and "(CoFinite nat){is

T1}"

proof-
{

assume "(CoFinite nat){is anti-}IsHConnected"

moreover
have "

⋃
(CoFinite nat)=nat" unfolding Cofinite_def using union_cocardinal

by auto

moreover
have "(CoFinite nat){restricted to}nat=(CoFinite nat)" using subspace_cocardinal

unfolding Cofinite_def

by auto

moreover
have "¬(nat≺nat)" by auto

then have "(CoFinite nat){is hyperconnected}" using Cofinite_nat_HConn[of

"nat"] by auto

ultimately have "nat{is in the spectrum of}IsHConnected" unfolding
antiProperty_def by auto

then have "nat.1" using HConn_spectrum by auto

moreover
have "1∈nat" by auto

then have "1≺nat" using n_lesspoll_nat by auto

ultimately have "nat≺nat" using lesspoll_trans1 by auto

then have "False" by auto

}
then show "¬((CoFinite nat){is anti-}IsHConnected)" by auto

next
show "(CoFinite nat){is T1}" using cocardinal_is_T1 InfCard_nat un-

folding Cofinite_def by auto

qed

The join-topology build from the cofinite topology on the natural numbers,
and the excluded set topology on the natural numbers excluding {0,1}; is
just the union of both.

lemma join_top_cofinite_excluded_set:
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shows "(joinT {CoFinite nat, ExcludedSet nat {0,1}})=(CoFinite nat)∪
(ExcludedSet nat {0,1})"

proof-
have coftop:"(CoFinite nat){is a topology}" unfolding Cofinite_def us-

ing CoCar_is_topology InfCard_nat by auto

moreover
have "(ExcludedSet nat {0,1}){is a topology}" using excludedset_is_topology

by auto

moreover
have exuni:"

⋃
(ExcludedSet nat {0,1})=nat" using union_excludedset by

auto

moreover
have cofuni:"

⋃
(CoFinite nat)=nat" using union_cocardinal unfolding

Cofinite_def by auto

ultimately have "(joinT {CoFinite nat, ExcludedSet nat {0,1}}) = (THE

T. (CoFinite nat)∪(ExcludedSet nat {0,1}) {is a subbase for} T)"

using joinT_def by auto

moreover
have "

⋃
(CoFinite nat)∈CoFinite nat" using CoCar_is_topology[OF InfCard_nat]

unfolding Cofinite_def IsATopology_def

by auto

with cofuni have n:"nat∈CoFinite nat" by auto

have Pa:"(CoFinite nat)∪(ExcludedSet nat {0,1}) {is a subbase for}{
⋃
A.

A∈Pow({
⋂
B. B∈FinPow((CoFinite nat)∪(ExcludedSet nat {0,1}))})}"

using Top_subbase(2) by auto

have "{
⋃
A. A∈Pow({

⋂
B. B∈FinPow((CoFinite nat)∪(ExcludedSet nat {0,1}))})}=(THE

T. (CoFinite nat)∪(ExcludedSet nat {0,1}) {is a subbase for} T)"

using same_subbase_same_top[where B="(CoFinite nat)∪(ExcludedSet
nat {0,1})", OF _ Pa] the_equality[where a="{

⋃
A. A∈Pow({

⋂
B. B∈FinPow((CoFinite

nat)∪(ExcludedSet nat {0,1}))})}" and P="λT. ((CoFinite nat)∪(ExcludedSet
nat {0,1})){is a subbase for}T",

OF Pa] by auto

ultimately have equal:"(joinT {CoFinite nat, ExcludedSet nat {0,1}})

={
⋃
A. A∈Pow({

⋂
B. B∈FinPow((CoFinite nat)∪(ExcludedSet nat {0,1}))})}"

by auto

{
fix U assume "U∈{

⋃
A. A∈Pow({

⋂
B. B∈FinPow((CoFinite nat)∪(ExcludedSet

nat {0,1}))})}"

then obtain AU where "U=
⋃
AU" and base:"AU∈Pow({

⋂
B. B∈FinPow((CoFinite

nat)∪(ExcludedSet nat {0,1}))})"

by auto

have "(CoFinite nat)⊆Pow(
⋃
(CoFinite nat))" by auto

moreover
have "(ExcludedSet nat {0,1})⊆Pow(

⋃
(ExcludedSet nat {0,1}))" by

auto

moreover
note cofuni exuni

ultimately have sub:"(CoFinite nat)∪(ExcludedSet nat {0,1})⊆Pow(nat)"
by auto
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from base have "∀ S∈AU. S∈{
⋂
B. B∈FinPow((CoFinite nat)∪(ExcludedSet

nat {0,1}))}" by blast

then have "∀ S∈AU. ∃ B∈FinPow((CoFinite nat)∪(ExcludedSet nat {0,1})).

S=
⋂
B" by blast

then have eq:"∀ S∈AU. ∃ B∈Pow((CoFinite nat)∪(ExcludedSet nat {0,1})).

S=
⋂
B" unfolding FinPow_def by blast

{
fix S assume "S∈AU"
with eq obtain B where "B∈Pow((CoFinite nat)∪(ExcludedSet nat {0,1}))""S=

⋂
B"

by auto

with sub have "B∈Pow(Pow(nat))" by auto

{
fix x assume "x∈

⋂
B"

then have "∀ N∈B. x∈N""B6=0" by auto

with ‘B∈Pow(Pow(nat))‘ have "x∈nat" by blast

}
with ‘S=

⋂
B‘ have "S∈Pow(nat)" by auto

}
then have "∀ S∈AU. S∈Pow(nat)" by blast

with ‘U=
⋃
AU‘ have "U∈Pow(nat)" by auto

{
assume "0∈U∨1∈U"
with ‘U=

⋃
AU‘ obtain S where "S∈AU""0∈S∨1∈S" by auto

with base obtain BS where "S=
⋂
BS" and bsbase:"BS∈FinPow((CoFinite

nat)∪(ExcludedSet nat {0,1}))" by auto

with ‘0∈S∨1∈S‘ have "∀ M∈BS. 0∈M∨1∈M" by auto

then have "∀ M∈BS. M/∈(ExcludedSet nat {0,1})-{nat}" unfolding ExcludedPoint_def

ExcludedSet_def by auto

moreover
note bsbase n

ultimately have "BS∈FinPow(CoFinite nat)" unfolding FinPow_def by
auto

moreover
from ‘0∈S∨1∈S‘ have "S6=0" by auto

with ‘S=
⋂
BS‘ have "BS6=0" by auto

moreover
note coftop

ultimately have "
⋂
BS∈CoFinite nat" using topology0.fin_inter_open_open[OF

topology0_CoCardinal[OF InfCard_nat]]

unfolding Cofinite_def by auto

with ‘S=
⋂
BS‘ have "S∈CoFinite nat" by auto

with ‘0∈S∨1∈S‘ have "nat-S≺nat" unfolding Cofinite_def Cocardinal_def

by auto

moreover
from ‘U=

⋃
AU‘‘S∈AU‘ have "S⊆U" by auto

then have "nat-U⊆nat-S" by auto

then have "nat-U.nat-S" using subset_imp_lepoll by auto

ultimately
have "nat-U≺nat" using lesspoll_trans1 by auto
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with ‘U∈Pow(nat)‘ have "U∈CoFinite nat" unfolding Cofinite_def

Cocardinal_def by auto

with ‘U∈Pow(nat)‘ have "U∈ (CoFinite nat)∪ (ExcludedSet nat {0,1})"

by auto

}
with ‘U∈Pow(nat)‘ have "U∈(CoFinite nat)∪ (ExcludedSet nat {0,1})"

unfolding ExcludedSet_def by blast

}
then have "({

⋃
A . A ∈ Pow({

⋂
B . B ∈ FinPow((CoFinite nat) ∪ (ExcludedSet

nat {0,1}))})}) ⊆ (CoFinite nat)∪ (ExcludedSet nat {0,1})"

by blast

moreover
{

fix U

assume "U∈(CoFinite nat)∪ (ExcludedSet nat {0,1})"

then have "{U}∈FinPow((CoFinite nat) ∪ (ExcludedSet nat {0,1}))"

unfolding FinPow_def by auto

then have "{U}∈Pow({
⋂
B . B ∈ FinPow((CoFinite nat) ∪ (ExcludedSet

nat {0,1}))})" by blast

moreover
have "U=

⋃
{U}" by auto

ultimately have "U∈{
⋃
A . A ∈ Pow({

⋂
B . B ∈ FinPow((CoFinite nat)

∪ (ExcludedSet nat {0,1}))})}" by blast

}
then have "(CoFinite nat)∪ (ExcludedSet nat {0,1})⊆{

⋃
A . A ∈ Pow({

⋂
B

. B ∈ FinPow((CoFinite nat) ∪ (ExcludedSet nat {0,1}))})}"

by auto

ultimately have "(CoFinite nat)∪ (ExcludedSet nat {0,1})={
⋃
A . A ∈

Pow({
⋂
B . B ∈ FinPow((CoFinite nat) ∪ (ExcludedSet nat {0,1}))})}"

by auto

with equal show ?thesis by auto

qed

The previous topology in not T2, but is anti-hyperconnected.

theorem join_Cofinite_ExclPoint_not_T2:

shows "¬((joinT {CoFinite nat, ExcludedSet nat {0,1}}){is T2})" and
"(joinT {CoFinite nat, ExcludedSet nat {0,1}}){is anti-}IsHConnected"

proof-
have "(CoFinite nat)⊆(CoFinite nat)∪ (ExcludedSet nat {0,1})" by auto

have "
⋃
((CoFinite nat)∪ (ExcludedSet nat {0,1}))=(

⋃
(CoFinite nat))∪

(
⋃
(ExcludedSet nat {0,1}))"

by auto

moreover
have ". . .=nat "unfolding Cofinite_def using union_cocardinal union_excludedset

by auto

ultimately have tot:"
⋃
((CoFinite nat)∪ (ExcludedSet nat {0,1}))=nat"

by auto

{
assume "(joinT {CoFinite nat, ExcludedSet nat {0, 1}}) {is T2}"
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then have t2:"((CoFinite nat)∪ (ExcludedSet nat {0,1})){is T2}" us-
ing join_top_cofinite_excluded_set

by auto

with tot have "∃ U∈((CoFinite nat)∪ (ExcludedSet nat {0,1})). ∃ V∈((CoFinite
nat)∪ (ExcludedSet nat {0,1})). 0∈U∧1∈V∧U∩V=0" using isT2_def by auto

then obtain U V where "U ∈ (CoFinite nat) ∨ (0 /∈ U∧1/∈U)""V ∈ (CoFinite

nat) ∨ (0 /∈ V∧1/∈V)""0∈U""1∈V""U∩V=0"
unfolding ExcludedSet_def by auto

then have "U∈(CoFinite nat)""V∈(CoFinite nat)" by auto

with ‘0∈U‘‘1∈V‘ have "U∩V 6=0" using Cofinite_nat_HConn IsHConnected_def

by auto

with ‘U∩V=0‘ have "False" by auto

}
then show "¬((joinT {CoFinite nat, ExcludedSet nat {0,1}}){is T2})"

by auto

{
fix A assume AS:"A∈Pow(

⋃
((CoFinite nat)∪ (ExcludedSet nat {0,1})))""(((CoFinite

nat)∪ (ExcludedSet nat {0,1})){restricted to}A){is hyperconnected}"

with tot have "A∈Pow(nat)" by auto

then have sub:"A∩nat=A" by auto

have "((CoFinite nat)∪ (ExcludedSet nat {0,1})){restricted to}A=((CoFinite

nat){restricted to}A)∪ ((ExcludedSet nat {0,1}){restricted to}A)"

unfolding RestrictedTo_def by auto

also from sub have ". . .=(CoFinite A)∪(ExcludedSet A {0,1})" using
subspace_excludedset[of"nat""{0,1}""A"] subspace_cocardinal[of "nat""nat""A"]

unfolding Cofinite_def

by auto

finally have "((CoFinite nat)∪ (ExcludedSet nat {0,1})){restricted

to}A=(CoFinite A)∪(ExcludedSet A {0,1})" by auto

with AS(2) have eq:"((CoFinite A)∪(ExcludedSet A {0,1})){is hyperconnected}"

by auto

{
assume "{0,1}∩A=0"
then have "(CoFinite A)∪(ExcludedSet A {0,1})=Pow(A)" using empty_excludedset[of

"{0,1}""A"] unfolding Cofinite_def Cocardinal_def

by auto

with eq have "Pow(A){is hyperconnected}" by auto

then have "Pow(A){is connected}" using HConn_imp_Conn by auto

moreover
have "Pow(A){is anti-}IsConnected" using discrete_tot_dis unfold-

ing IsTotDis_def by auto

moreover
have "

⋃
(Pow(A))∈Pow(

⋃
(Pow(A)))" by auto

moreover
have "Pow(A){restricted to}

⋃
(Pow(A))=Pow(A)" unfolding RestrictedTo_def

by blast

ultimately have "(
⋃
(Pow(A))){is in the spectrum of}IsConnected"

unfolding antiProperty_def

by auto
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then have "A{is in the spectrum of}IsConnected" by auto

then have "A.1" using conn_spectrum by auto

then have "A{is in the spectrum of}IsHConnected" using HConn_spectrum

by auto

}
moreover
{

assume AS:"{0,1}∩A 6=0"

{
assume "A={0}∨A={1}"
then have "A≈1" using singleton_eqpoll_1 by auto

then have "A.1" using eqpoll_imp_lepoll by auto

then have "A{is in the spectrum of}IsHConnected" using HConn_spectrum

by auto

}
moreover
{

assume AS2:"¬(A={0}∨A={1})"
{

assume AS3:"A⊆{0,1}"
with AS AS2 have A_def:"A={0,1}" by blast

then have "(ExcludedSet A {0,1})=(ExcludedSet A A)" by auto

moreover have "(ExcludedSet A A)={0,A}" unfolding ExcludedSet_def

by blast

ultimately have "(ExcludedSet A {0,1})={0,A}" by auto

moreover
have "0∈(CoFinite A)" using empty_open[of "CoFinite A"]

CoCar_is_topology[OF InfCard_nat,of "A"] unfolding Cofinite_def

by auto

moreover
have "

⋃
(CoFinite A)=A" using union_cocardinal unfolding Cofinite_def

by auto

then have "A∈(CoFinite A)" using CoCar_is_topology[OF InfCard_nat,of

"A"] unfolding Cofinite_def

IsATopology_def by auto

ultimately have "(CoFinite A)∪(ExcludedSet A {0,1})=(CoFinite

A)" by auto

with eq have"(CoFinite A){is hyperconnected}" by auto

with A_def have hyp:"(CoFinite {0,1}){is hyperconnected}"

by auto

have "{0}≈1""{1}≈1" using singleton_eqpoll_1 by auto

moreover
have "1≺nat" using n_lesspoll_nat by auto

ultimately have "{0}≺nat""{1}≺nat" using eq_lesspoll_trans

by auto

moreover
have "{0,1}-{1}={0}""{0,1}-{0}={1}" by auto

ultimately have "{1}∈(CoFinite {0,1})""{0}∈(CoFinite {0,1})"

"{1}∩{0}=0" unfolding Cofinite_def Cocardinal_def

851



by auto

with hyp have "False" unfolding IsHConnected_def by auto

}
then obtain t where "t∈A" "t6=0" "t 6=1" by auto

then have "{t}∈(ExcludedSet A {0,1})" unfolding ExcludedSet_def

by auto

moreover
{

have "{t}≈1" using singleton_eqpoll_1 by auto

moreover
have "1≺nat" using n_lesspoll_nat by auto

ultimately have "{t}≺nat" using eq_lesspoll_trans by auto

moreover
with ‘t∈A‘ have "A-(A-{t})={t}" by auto

ultimately have "A-{t}∈(CoFinite A)" unfolding Cofinite_def

Cocardinal_def

by auto

}
ultimately have "{t}∈((CoFinite A)∪(ExcludedSet A {0,1}))""A-{t}∈((CoFinite

A)∪(ExcludedSet A {0,1}))"

"{t}∩(A-{t})=0" by auto

with eq have "A-{t}=0" unfolding IsHConnected_def by auto

with ‘t∈A‘ have "A={t}" by auto

then have "A≈1" using singleton_eqpoll_1 by auto

then have "A.1" using eqpoll_imp_lepoll by auto

then have "A{is in the spectrum of}IsHConnected" using HConn_spectrum

by auto

}
ultimately have "A{is in the spectrum of}IsHConnected" by auto

}
ultimately have "A{is in the spectrum of}IsHConnected" by auto

}
then have "((CoFinite nat)∪(ExcludedSet nat {0,1})){is anti-}IsHConnected"

unfolding antiProperty_def

by auto

then show "(joinT {CoFinite nat, ExcludedSet nat {0,1}}){is anti-}IsHConnected"

using join_top_cofinite_excluded_set

by auto

qed

Let’s show that anti-hyperconnected is in fact T1 and sober. The trick of
the proof lies in the fact that if a subset is hyperconnected, its closure is so
too (the closure of a point is then always hyperconnected because singletons
are in the spectrum); since the closure is closed, we can apply the sober
property on it.

theorem (in topology0) T1_sober_imp_anti_HConn:

assumes "T{is T1}" and "T{is sober}"

shows "T{is anti-}IsHConnected"

proof-
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{
fix A assume AS:"A∈Pow(

⋃
T)""(T{restricted to}A){is hyperconnected}"

{
assume "A=0"

then have "A.1" using empty_lepollI by auto

then have "A{is in the spectrum of}IsHConnected" using HConn_spectrum

by auto

}
moreover
{

assume "A6=0"

then obtain x where "x∈A" by blast

{
assume "¬((T{restricted to}Closure(A,T)){is hyperconnected})"

then obtain U V where UV_def:"U∈(T{restricted to}Closure(A,T))""V∈(T{restricted
to}Closure(A,T))"

"U∩V=0""U6=0""V6=0" using IsHConnected_def by auto

then obtain UCA VCA where "UCA∈T""VCA∈T""U=UCA∩Closure(A,T)""V=VCA∩Closure(A,T)"
unfolding RestrictedTo_def by auto

from ‘A∈Pow(
⋃
T)‘ have "A⊆Closure(A,T)" using cl_contains_set

by auto

then have "UCA∩A⊆UCA∩Closure(A,T)""VCA∩A⊆VCA∩Closure(A,T)"
by auto

with ‘U=UCA∩Closure(A,T)‘‘V=VCA∩Closure(A,T)‘‘U∩V=0‘ have "(UCA∩A)∩(VCA∩A)=0"
by auto

moreover
from ‘UCA∈T‘‘VCA∈T‘ have "UCA∩A∈(T{restricted to}A)""VCA∩A∈(T{restricted

to}A)"

unfolding RestrictedTo_def by auto

moreover
note AS(2)

ultimately have "UCA∩A=0∨VCA∩A=0" using IsHConnected_def by auto

with ‘A⊆Closure(A,T)‘ have "A⊆Closure(A,T)-UCA∨A⊆Closure(A,T)-VCA"
by auto

moreover
{

have "Closure(A,T)-UCA=Closure(A,T)∩(
⋃
T-UCA)""Closure(A,T)-VCA=Closure(A,T)∩(

⋃
T-VCA)"

using Top_3_L11(1) AS(1) by auto

moreover
with ‘UCA∈T‘‘VCA∈T‘ have "(

⋃
T-UCA){is closed in}T""(

⋃
T-VCA){is

closed in}T""Closure(A,T){is closed in}T"

using Top_3_L9 cl_is_closed AS(1) by auto

ultimately have "(Closure(A,T)-UCA){is closed in}T""(Closure(A,T)-VCA){is

closed in}T"

using Top_3_L5(1) by auto

}
ultimately
have "Closure(A,T)⊆Closure(A,T)-UCA∨Closure(A,T)⊆Closure(A,T)-VCA"

using Top_3_L13
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by auto

then have "UCA∩Closure(A,T)=0∨VCA∩Closure(A,T)=0" by auto

with ‘U=UCA∩Closure(A,T)‘‘V=VCA∩Closure(A,T)‘ have "U=0∨V=0"
by auto

with ‘U6=0‘‘V 6=0‘ have "False" by auto

}
then have "(T{restricted to}Closure(A,T)){is hyperconnected}" by

auto

moreover
have "Closure(A,T){is closed in}T" using cl_is_closed AS(1) by

auto

moreover
from ‘x∈A‘ have "Closure(A,T) 6=0" using cl_contains_set AS(1) by

auto

moreover
from AS(1) have "Closure(A,T)⊆

⋃
T" using Top_3_L11(1) by auto

ultimately have "Closure(A,T)∈Pow(
⋃
T)-{0}""(T {restricted to} Closure(A,

T)){is hyperconnected}" "Closure(A, T) {is closed in} T"

by auto

moreover note assms(2)

ultimately have "∃ x∈
⋃
T. (Closure(A,T)=Closure({x},T)∧ (∀ y∈

⋃
T.

Closure(A,T) = Closure({y}, T) −→ y = x))" unfolding IsSober_def

by auto

then obtain y where "y∈
⋃
T""Closure(A,T)=Closure({y},T)" by auto

moreover
{

fix z assume "z∈(
⋃
T)-{y}"

with assms(1) ‘y∈
⋃
T‘ obtain U where "U∈T" "z∈U" "y/∈U" using

isT1_def by blast

then have "U∈T" "z∈U" "U⊆(
⋃
T)-{y}" by auto

then have "∃ U∈T. z∈U ∧ U⊆(
⋃
T)-{y}" by auto

}
then have "∀ z∈(

⋃
T)-{y}. ∃ U∈T. z∈U ∧ U⊆(

⋃
T)-{y}" by auto

then have "
⋃
T-{y}∈T" using open_neigh_open by auto

with ‘y∈
⋃
T‘ have "{y} {is closed in}T" using IsClosed_def by auto

with ‘y∈
⋃
T‘ have "Closure({y},T)={y}" using Top_3_L8 by auto

with ‘Closure(A,T)=Closure({y},T)‘ have "Closure(A,T)={y}" by auto

with AS(1) have "A⊆{y}" using cl_contains_set[of "A"] by auto

with ‘A 6=0‘ have "A={y}" by auto

then have "A≈1" using singleton_eqpoll_1 by auto

then have "A.1" using eqpoll_imp_lepoll by auto

then have "A{is in the spectrum of}IsHConnected" using HConn_spectrum

by auto

}
ultimately have "A{is in the spectrum of}IsHConnected" by blast

}
then show ?thesis using antiProperty_def by auto

qed
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theorem (in topology0) anti_HConn_iff_T1_sober:

shows "(T{is anti-}IsHConnected) ←→ (T{is sober}∧T{is T1})"

using T1_sober_imp_anti_HConn anti_HConn_imp_T1 anti_HConn_imp_sober

by auto

A space is ultraconnected iff every two non-empty closed sets meet.

definition IsUConnected ("_{is ultraconnected}"80)

where "T{is ultraconnected}≡ ∀ A B. A{is closed in}T∧B{is closed in}T∧A∩B=0
−→ A=0∨B=0"

Every ultraconnected space is trivially normal.

lemma (in topology0)UConn_imp_normal:

assumes "T{is ultraconnected}"

shows "T{is normal}"

proof-
{

fix A B

assume AS:"A{is closed in}T" "B{is closed in}T""A∩B=0"
with assms have "A=0∨B=0" using IsUConnected_def by auto

with AS(1,2) have "(A⊆0∧B⊆
⋃
T)∨(A⊆

⋃
T∧B⊆0)" unfolding IsClosed_def

by auto

moreover
have "0∈T" using empty_open topSpaceAssum by auto

moreover
have "

⋃
T∈T" using topSpaceAssum unfolding IsATopology_def by auto

ultimately have "∃ U∈T. ∃ V∈T. A⊆U∧B⊆V∧U∩V=0" by auto

}
then show ?thesis unfolding IsNormal_def by auto

qed

Every ultraconnected space is connected.

lemma UConn_imp_Conn:

assumes "T{is ultraconnected}"

shows "T{is connected}"

proof-
{

fix U V

assume "U∈T""U{is closed in}T"

then have "
⋃
T-(
⋃
T-U)=U" by auto

with ‘U∈T‘ have "(
⋃
T-U){is closed in}T" unfolding IsClosed_def by

auto

with ‘U{is closed in}T‘ assms have "U=0∨
⋃
T-U=0" unfolding IsUConnected_def

by auto

with ‘U∈T‘ have "U=0∨U=
⋃
T" by auto

}
then show ?thesis unfolding IsConnected_def by auto

qed

lemma UConn_spectrum:
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shows "(A{is in the spectrum of}IsUConnected) ←→ A.1"
proof

assume A_spec:"(A{is in the spectrum of}IsUConnected)"

{
assume "A=0"

then have "A.1" using empty_lepollI by auto

}
moreover
{

assume "A 6=0"

from A_spec have "∀ T. (T{is a topology}∧
⋃
T≈A) −→ (T{is ultraconnected})"

unfolding Spec_def by auto

moreover
have "Pow(A){is a topology}" using Pow_is_top by auto

moreover
have "

⋃
Pow(A)=A" by auto

then have "
⋃
Pow(A)≈A" by auto

ultimately have ult:"Pow(A){is ultraconnected}" by auto

moreover
from ‘A 6=0‘ obtain b where "b∈A" by auto

then have "{b}{is closed in}Pow(A)" unfolding IsClosed_def by auto

{
fix c

assume "c∈A""c6=b"

then have "{c}{is closed in}Pow(A)""{c}∩{b}=0" unfolding IsClosed_def

by auto

with ult ‘{b}{is closed in}Pow(A)‘ have "False" using IsUConnected_def

by auto

}
with ‘b∈A‘ have "A={b}" by auto

then have "A≈1" using singleton_eqpoll_1 by auto

then have "A.1" using eqpoll_imp_lepoll by auto

}
ultimately show "A.1" by auto

next
assume "A.1"
{

fix T

assume "T{is a topology}""
⋃
T≈A"

{
assume "

⋃
T=0"

with ‘T{is a topology}‘ have "T={0}" using empty_open by auto

then have "T{is ultraconnected}" unfolding IsUConnected_def IsClosed_def

by auto

}
moreover
{

assume "
⋃
T6=0"

moreover
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from ‘A.1‘‘
⋃
T≈A‘ have "

⋃
T.1" using eq_lepoll_trans by auto

ultimately
obtain E where eq:"

⋃
T={E}" using lepoll_1_is_sing by blast

moreover
have "T⊆Pow(

⋃
T)" by auto

ultimately have "T⊆Pow({E})" by auto

then have "T⊆{0,{E}}" by blast

with ‘T{is a topology}‘ have "{0}⊆T" "T⊆{0,{E}}" using empty_open

by auto

then have "T{is ultraconnected}" unfolding IsUConnected_def IsClosed_def

by (simp only: eq, safe, force)

}
ultimately have "T{is ultraconnected}" by auto

}
then show "A{is in the spectrum of}IsUConnected" unfolding Spec_def

by auto

qed

This time, anti-ultraconnected is an old property.

theorem (in topology0) anti_UConn:

shows "(T{is anti-}IsUConnected) ←→ T{is T1}"

proof
assume "T{is T1}"

{
fix TT

{
assume "TT{is a topology}""TT{is T1}""TT{is ultraconnected}"

{
assume "

⋃
TT=0"

then have "
⋃
TT.1" using empty_lepollI by auto

then have "((
⋃
TT){is in the spectrum of}IsUConnected)" using

UConn_spectrum by auto

}
moreover
{

assume "
⋃
TT6=0"

then obtain t where "t∈
⋃
TT" by blast

{
fix x

assume p:"x∈
⋃
TT"

{
fix y assume "y∈(

⋃
TT)-{x}"

with ‘TT{is T1}‘ p obtain U where "U∈TT" "y∈U" "x/∈U" us-
ing isT1_def by blast

then have "U∈TT" "y∈U" "U⊆(
⋃
TT)-{x}" by auto

then have "∃ U∈TT. y∈U ∧ U⊆(
⋃
TT)-{x}" by auto

}
then have "∀ y∈(

⋃
TT)-{x}. ∃ U∈TT. y∈U ∧ U⊆(

⋃
TT)-{x}" by auto

with ‘TT{is a topology}‘ have "
⋃
TT-{x}∈TT" using topology0.open_neigh_open
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unfolding topology0_def by auto

with p have "{x} {is closed in}TT" using IsClosed_def by auto

}
then have reg:"∀ x∈

⋃
TT. {x}{is closed in}TT" by auto

with ‘t∈
⋃
TT‘ have t_cl:"{t}{is closed in}TT" by auto

{
fix y

assume "y∈
⋃
TT"

with reg have "{y}{is closed in}TT" by auto

with ‘TT{is ultraconnected}‘ t_cl have "y=t" unfolding IsUConnected_def

by auto

}
with ‘t∈

⋃
TT‘ have "

⋃
TT={t}" by blast

then have "
⋃
TT≈1" using singleton_eqpoll_1 by auto

then have "
⋃
TT.1" using eqpoll_imp_lepoll by auto

then have "(
⋃
TT){is in the spectrum of}IsUConnected" using UConn_spectrum

by auto

}
ultimately have "(

⋃
TT){is in the spectrum of}IsUConnected" by blast

}
then have "(TT{is a topology}∧TT{is T1}∧(TT{is ultraconnected}))−→

((
⋃
TT){is in the spectrum of}IsUConnected)"

by auto

}
then have "∀ TT. (TT{is a topology}∧TT{is T1}∧(TT{is ultraconnected}))−→

((
⋃
TT){is in the spectrum of}IsUConnected)"

by auto

moreover
note here_T1

ultimately have "∀ T. T{is a topology} −→ ((T{is T1})−→(T{is anti-}IsUConnected))"

using Q_P_imp_Spec[where Q=isT1 and P=IsUConnected]

by auto

with topSpaceAssum have "(T{is T1})−→(T{is anti-}IsUConnected)" by
auto

with ‘T{is T1}‘ show "T{is anti-}IsUConnected" by auto

next
assume ASS:"T{is anti-}IsUConnected"

{
fix x y

assume "x∈
⋃
T""y∈

⋃
T""x 6=y"

then have tot:"
⋃
(T{restricted to}{x,y})={x,y}" unfolding RestrictedTo_def

by auto

{
assume AS:"∀ U∈T. x∈U−→y∈U"
{

assume "{y}{is closed in}(T{restricted to}{x,y})"

moreover
from ‘x6=y‘ have "{x,y}-{y}={x}" by auto

ultimately have "{x}∈(T{restricted to}{x,y})" unfolding IsClosed_def

858



by (simp only:tot)

then obtain U where "U∈T""{x}={x,y}∩U" unfolding RestrictedTo_def

by auto

moreover
with ‘x6=y‘ have "y/∈{x}" "y∈{x,y}" by (blast+)

with ‘{x}={x,y}∩U‘ have "y/∈U" by auto

moreover have "x∈{x}" by auto

with ‘{x}={x,y}∩U‘ have "x∈U" by auto

ultimately have "x∈U""y/∈U""U∈T" by auto

with AS have "False" by auto

}
then have y_no_cl:"¬({y}{is closed in}(T{restricted to}{x,y}))"

by auto

{
fix A B

assume cl:"A{is closed in}(T{restricted to}{x,y})""B{is closed

in}(T{restricted to}{x,y})""A∩B=0"
with tot have "A⊆{x,y}""B⊆{x,y}""A∩B=0" unfolding IsClosed_def

by auto

then have "x∈A−→x/∈B""y∈A−→y/∈B""A⊆{x,y}""B⊆{x,y}" by auto

{
assume "x∈A"
with ‘x∈A−→x/∈B‘‘B⊆{x,y}‘ have "B⊆{y}" by auto

then have "B=0∨B={y}" by auto

with y_no_cl cl(2) have "B=0" by auto

}
moreover
{

assume "x/∈A"
with ‘A⊆{x,y}‘ have "A⊆{y}" by auto

then have "A=0∨A={y}" by auto

with y_no_cl cl(1) have "A=0" by auto

}
ultimately have "A=0∨B=0" by auto

}
then have "(T{restricted to}{x,y}){is ultraconnected}" unfolding

IsUConnected_def by auto

with ASS ‘x∈
⋃
T‘‘y∈

⋃
T‘ have "{x,y}{is in the spectrum of}IsUConnected"

unfolding antiProperty_def

by auto

then have "{x,y}.1" using UConn_spectrum by auto

moreover have "x∈{x,y}" by auto

ultimately have "{x}={x,y}" using lepoll_1_is_sing[of "{x,y}""x"]

by auto

moreover
have "y∈{x,y}" by auto

ultimately have "y∈{x}" by auto

then have "y=x" by auto

then have "False" using ‘x 6=y‘ by auto
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}
then have "∃ U∈T. x∈U∧y/∈U" by auto

}
then show "T{is T1}" unfolding isT1_def by auto

qed

Is is natural that separation axioms and connection axioms are anti-properties
of each other; as the concepts of connectedness and separation are opposite.

To end this section, let’s try to charaterize anti-sober spaces.

lemma sober_spectrum:

shows "(A{is in the spectrum of}IsSober) ←→ A.1"
proof

assume AS:"A{is in the spectrum of}IsSober"

{
assume "A=0"

then have "A.1" using empty_lepollI by auto

}
moreover
{

assume "A 6=0"

note AS

moreover
have top:"{0,A}{is a topology}" unfolding IsATopology_def by auto

moreover
have "

⋃
{0,A}=A" by auto

then have "
⋃
{0,A}≈A" by auto

ultimately have "{0,A}{is sober}" using Spec_def by auto

moreover
have "{0,A}{is hyperconnected}" using Indiscrete_HConn by auto

moreover
have "{0,A}{restricted to}A={0,A}" unfolding RestrictedTo_def by

auto

moreover
have "A{is closed in}{0,A}" unfolding IsClosed_def by auto

moreover
note ‘A 6=0‘

ultimately have "∃ x∈A. A=Closure({x},{0,A})∧ (∀ y∈
⋃
{0, A}. A = Closure({y},

{0, A}) −→ y = x)" unfolding IsSober_def by auto

then obtain x where "x∈A" "A=Closure({x},{0,A})" and reg:"∀ y∈A.
A = Closure({y}, {0, A}) −→ y = x" by auto

{
fix y assume "y∈A"
with top have "Closure({y},{0,A}){is closed in}{0,A}" using topology0.cl_is_closed

topology0_def by auto

moreover
from ‘y∈A‘ top have "y∈Closure({y},{0,A})" using topology0.cl_contains_set

topology0_def by auto

ultimately have "A-Closure({y},{0,A})∈{0,A}""Closure({y},{0,A})∩A6=0"

860



unfolding IsClosed_def

by auto

then have "A-Closure({y},{0,A})=A∨A-Closure({y},{0,A})=0"
by auto

moreover
from ‘y∈A‘‘y∈Closure({y},{0,A})‘ have "y∈A""y/∈A-Closure({y},{0,A})"

by auto

ultimately have "A-Closure({y},{0,A})=0" by (cases "A-Closure({y},{0,A})=A",

simp, auto)

moreover
from ‘y∈A‘ top have "Closure({y},{0,A})⊆A" using topology0_def

topology0.Top_3_L11(1) by blast

then have "A-(A-Closure({y},{0,A}))=Closure({y},{0,A})" by auto

ultimately have "A=Closure({y},{0,A})" by auto

}
with reg have "∀ y∈A. x=y" by auto

with ‘x∈A‘ have "A={x}" by blast

then have "A≈1" using singleton_eqpoll_1 by auto

then have "A.1" using eqpoll_imp_lepoll by auto

}
ultimately show "A.1" by auto

next
assume "A.1"
{

fix T assume "T{is a topology}""
⋃
T≈A"

{
assume "

⋃
T=0"

then have "T{is sober}" unfolding IsSober_def by auto

}
moreover
{

assume "
⋃
T6=0"

then obtain x where "x∈
⋃
T" by blast

moreover
from ‘

⋃
T≈A‘ ‘A.1‘ have "

⋃
T.1" using eq_lepoll_trans by auto

ultimately have "
⋃
T={x}" using lepoll_1_is_sing by auto

moreover
have "T⊆Pow(

⋃
T)" by auto

ultimately have "T⊆Pow({x})" by auto

then have "T⊆{0,{x}}" by blast

moreover
from ‘T{is a topology}‘ have "0∈T" using empty_open by auto

moreover
from ‘T{is a topology}‘ have "

⋃
T∈T" unfolding IsATopology_def

by auto

with ‘
⋃
T={x}‘ have "{x}∈T" by auto

ultimately have T_def:"T={0,{x}}" by auto

then have dd:"Pow(
⋃
T)-{0}={{x}}" by auto

{
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fix B assume "B∈Pow(
⋃
T)-{0}"

with dd have B_def:"B={x}" by auto

from ‘T{is a topology}‘ have "(
⋃
T){is closed in}T" using topology0_def

topology0.Top_3_L1

by auto

with ‘
⋃
T={x}‘ ‘T{is a topology}‘ have "Closure({x},T)={x}" us-

ing topology0.Top_3_L8

unfolding topology0_def by auto

with B_def have "B=Closure({x},T)" by auto

moreover
{

fix y assume "y∈
⋃
T"

with ‘
⋃
T={x}‘ have "y=x" by auto

}
then have "(∀ y∈

⋃
T. B = Closure({y}, T) −→ y = x)" by auto

moreover note ‘x∈
⋃
T‘

ultimately have "(∃ x∈
⋃
T. B = Closure({x}, T) ∧ (∀ y∈

⋃
T. B =

Closure({y}, T) −→ y = x))"

by auto

}
then have "T{is sober}" unfolding IsSober_def by auto

}
ultimately have "T{is sober}" by blast

}
then show "A {is in the spectrum of} IsSober" unfolding Spec_def by

auto

qed

theorem (in topology0)anti_sober:

shows "(T{is anti-}IsSober) ←→ T={0,
⋃
T}"

proof
assume "T={0,

⋃
T}"

{
fix A assume "A∈Pow(

⋃
T)""(T{restricted to}A){is sober}"

{
assume "A=0"

then have "A.1" using empty_lepollI by auto

then have "A{is in the spectrum of}IsSober" using sober_spectrum

by auto

}
moreover
{

assume "A 6=0"

have "
⋃
T∈{0,

⋃
T}""0∈{0,

⋃
T}" by auto

with ‘T={0,
⋃
T}‘ have "(

⋃
T)∈T" "0∈T" by auto

with ‘A∈Pow(
⋃
T)‘ have "{0,A}⊆(T{restricted to}A)" unfolding RestrictedTo_def

by auto

moreover
have "∀ B∈{0,

⋃
T}. B=0∨B=

⋃
T" by auto
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with ‘T={0,
⋃
T}‘ have "∀ B∈T. B=0∨B=

⋃
T" by auto

with ‘A∈Pow(
⋃
T)‘ have "T{restricted to}A⊆{0,A}" unfolding RestrictedTo_def

by auto

ultimately have top_def:"T{restricted to}A={0,A}" by auto

moreover
have "A{is closed in}{0,A}" unfolding IsClosed_def by auto

moreover
have "{0,A}{is hyperconnected}" using Indiscrete_HConn by auto

moreover
from ‘A∈Pow(

⋃
T)‘ have "(T{restricted to}A){restricted to}A=T{restricted

to}A" using subspace_of_subspace[of "A""A""T"]

by auto

moreover
note ‘A6=0‘ ‘A∈Pow(

⋃
T)‘

ultimately have "A∈Pow(
⋃
(T{restricted to}A))-{0}""A{is closed in}(T{restricted

to}A)""((T{restricted to}A){restricted to}A){is hyperconnected}"

by auto

with ‘(T{restricted to}A){is sober}‘ have "∃ x∈
⋃
(T{restricted to}A).

A=Closure({x},T{restricted to}A)∧(∀ y∈
⋃
(T{restricted to}A). A=Closure({y},T{restricted

to}A) −→ y=x)"

unfolding IsSober_def by auto

with top_def have "∃ x∈A. A=Closure({x},{0,A})∧(∀ y∈A. A=Closure({y},{0,A})

−→ y=x)" by auto

then obtain x where "x∈A""A=Closure({x},{0,A})"and reg:"∀ y∈A.
A=Closure({y},{0,A}) −→ y=x" by auto

{
fix y assume "y∈A"
from ‘A 6=0‘ have top:"{0,A}{is a topology}" using indiscrete_ptopology[of

"A"] indiscrete_partition[of "A"] Ptopology_is_a_topology(1)[of "{A}""A"]

by auto

with ‘y∈A‘ have "Closure({y},{0,A}){is closed in}{0,A}" using
topology0.cl_is_closed

topology0_def by auto

moreover
from ‘y∈A‘ top have "y∈Closure({y},{0,A})" using topology0.cl_contains_set

topology0_def by auto

ultimately have "A-Closure({y},{0,A})∈{0,A}""Closure({y},{0,A})∩A6=0"

unfolding IsClosed_def

by auto

then have "A-Closure({y},{0,A})=A∨A-Closure({y},{0,A})=0"
by auto

moreover
from ‘y∈A‘‘y∈Closure({y},{0,A})‘ have "y∈A""y/∈A-Closure({y},{0,A})"

by auto

ultimately have "A-Closure({y},{0,A})=0" by (cases "A-Closure({y},{0,A})=A",

simp, auto)

moreover
from ‘y∈A‘ top have "Closure({y},{0,A})⊆A" using topology0_def

topology0.Top_3_L11(1) by blast
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then have "A-(A-Closure({y},{0,A}))=Closure({y},{0,A})" by auto

ultimately have "A=Closure({y},{0,A})" by auto

}
with reg ‘x∈A‘ have "A={x}" by blast

then have "A≈1" using singleton_eqpoll_1 by auto

then have "A.1" using eqpoll_imp_lepoll by auto

then have "A{is in the spectrum of}IsSober" using sober_spectrum

by auto

}
ultimately have "A{is in the spectrum of}IsSober" by auto

}
then show "T{is anti-}IsSober" using antiProperty_def by auto

next
assume "T{is anti-}IsSober"

{
fix A

assume "A∈T""A6=0""A6=
⋃
T"

then obtain x y where "x∈A""y∈
⋃
T-A" "x6=y"by blast

then have "{x}={x,y}∩A" by auto

with ‘A∈T‘ have "{x}∈T{restricted to}{x,y}" unfolding RestrictedTo_def

by auto

{
assume "{y}∈T{restricted to}{x,y}"

from ‘y∈
⋃
T-A‘ ‘x∈A‘‘A∈T‘ have "

⋃
(T{restricted to}{x,y})={x,y}"

unfolding RestrictedTo_def

by auto

with ‘x 6=y‘‘{y}∈T{restricted to}{x,y}‘‘{x}∈T{restricted to}{x,y}‘

have "(T{restricted to}{x,y}){is T2}"

unfolding isT2_def by auto

then have "(T{restricted to}{x,y}){is sober}" using topology0.T2_imp_anti_HConn[of

"T{restricted to}{x,y}"]

Top_1_L4 topology0_def topology0.anti_HConn_iff_T1_sober[of "T{restricted

to}{x,y}"] by auto

}
moreover
{

assume "{y}/∈T{restricted to}{x,y}"

moreover
from ‘y∈

⋃
T-A‘ ‘x∈A‘‘A∈T‘ have "T{restricted to}{x,y}⊆Pow({x,y})"

unfolding RestrictedTo_def by auto

then have "T{restricted to}{x,y}⊆{0,{x},{y},{x,y}}" by blast

moreover
note ‘{x}∈T{restricted to}{x,y}‘ empty_open[OF Top_1_L4[of "{x,y}"]]

moreover
from ‘y∈

⋃
T-A‘ ‘x∈A‘‘A∈T‘ have tot:"

⋃
(T{restricted to}{x,y})={x,y}"

unfolding RestrictedTo_def

by auto

from Top_1_L4[of "{x,y}"] have "
⋃
(T{restricted to}{x,y})∈T{restricted

to}{x,y}" unfolding IsATopology_def
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by auto

with tot have "{x,y}∈T{restricted to}{x,y}" by auto

ultimately have top_d_def:"T{restricted to}{x,y}={0,{x},{x,y}}"

by auto

{
fix B assume "B∈Pow({x,y})-{0}""B{is closed in}(T{restricted to}{x,y})"

with top_d_def have "(
⋃
(T{restricted to}{x,y}))-B∈{0,{x},{x,y}}"

unfolding IsClosed_def by simp

moreover have "B∈{{x},{y},{x,y}}" using ‘B∈Pow({x,y})-{0}‘ by
blast

moreover note tot

ultimately have "{x,y}-B∈{0,{x},{x,y}}" by auto

have xin:"x∈Closure({x},T{restricted to}{x,y})" using topology0.cl_contains_set[of

"T{restricted to}{x,y}""{x}"]

Top_1_L4[of "{x,y}"] unfolding topology0_def[of "(T {restricted

to} {x, y})"] using tot by auto

{
assume "{x}{is closed in}(T{restricted to}{x,y})"

then have "{x,y}-{x}∈(T{restricted to}{x,y})" unfolding IsClosed_def

using tot

by auto

moreover
from ‘x 6=y‘ have "{x,y}-{x}={y}" by auto

ultimately have "{y}∈(T{restricted to}{x,y})" by auto

then have "False" using ‘{y}/∈(T{restricted to}{x,y})‘ by auto

}
then have "¬({x}{is closed in}(T{restricted to}{x,y}))" by auto

moreover
from tot have "(Closure({x},T{restricted to}{x,y})){is closed

in}(T{restricted to}{x,y})"

using topology0.cl_is_closed unfolding topology0_def using Top_1_L4[of

"{x,y}"]

tot by auto

ultimately have "¬(Closure({x},T{restricted to}{x,y})={x})" by
auto

moreover note xin topology0.Top_3_L11(1)[of "T{restricted to}{x,y}""{x}"]

tot

ultimately have cl_x:"Closure({x},T{restricted to}{x,y})={x,y}"

unfolding topology0_def

using Top_1_L4[of "{x,y}"] by auto

have "{y}{is closed in}(T{restricted to}{x,y})" unfolding IsClosed_def

using tot

top_d_def ‘x6=y‘ by auto

then have cl_y:"Closure({y},T{restricted to}{x,y})={y}" using
topology0.Top_3_L8[of "T{restricted to}{x,y}"]

unfolding topology0_def using Top_1_L4[of "{x,y}"] tot by auto

{
assume "{x,y}-B=0"

with ‘B∈Pow({x,y})-{0}‘ have B:"{x,y}=B" by auto
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{
fix m

assume dis:"m∈{x,y}" and B_def:"B=Closure({m},T{restricted

to}{x,y})"

{
assume "m=y"

with B_def have "B=Closure({y},T{restricted to}{x,y})"

by auto

with cl_y have "B={y}" by auto

with B have "{x,y}={y}" by auto

moreover have "x∈{x,y}" by auto

ultimately
have "x∈{y}" by auto

with ‘x6=y‘ have "False" by auto

}
with dis have "m=x" by auto

}
then have "(∀ m∈{x,y}. B=Closure({m},T{restricted to}{x,y})−→m=x

)" by auto

moreover
have "B=Closure({x},T{restricted to}{x,y})" using cl_x B by

auto

ultimately have "∃ t∈{x,y}. B=Closure({t},T{restricted to}{x,y})

∧ (∀ m∈{x,y}. B=Closure({m},T{restricted to}{x,y})−→m=t )"

by auto

}
moreover
{

assume "{x,y}-B 6=0"

with ‘{x,y}-B∈{0,{x},{x,y}}‘ have or:"{x,y}-B={x}∨{x,y}-B={x,y}"
by auto

{
assume "{x,y}-B={x}"

then have "x∈{x,y}-B" by auto

with ‘B∈{{x},{y},{x,y}}‘ ‘x6=y‘ have B:"B={y}" by blast

{
fix m

assume dis:"m∈{x,y}" and B_def:"B=Closure({m},T{restricted

to}{x,y})"

{
assume "m=x"

with B_def have "B=Closure({x},T{restricted to}{x,y})"

by auto

with cl_x have "B={x,y}" by auto

with B have "{x,y}={y}" by auto

moreover have "x∈{x,y}" by auto

ultimately
have "x∈{y}" by auto

with ‘x 6=y‘ have "False" by auto
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}
with dis have "m=y" by auto

}
moreover
have "B=Closure({y},T{restricted to}{x,y})" using cl_y B by

auto

ultimately have "∃ t∈{x,y}. B=Closure({t},T{restricted to}{x,y})

∧ (∀ m∈{x,y}. B=Closure({m},T{restricted to}{x,y})−→m=t )"

by auto

}
moreover
{

assume "{x,y}-B6={x}"

with or have "{x,y}-B={x,y}" by auto

then have "x∈{x,y}-B""y∈{x,y}-B" by auto

with ‘B∈{{x},{y},{x,y}}‘ ‘x6=y‘ have "False" by auto

}
ultimately have "∃ t∈{x,y}. B=Closure({t},T{restricted to}{x,y})

∧ (∀ m∈{x,y}. B=Closure({m},T{restricted to}{x,y})−→m=t )"

by auto

}
ultimately have "∃ t∈{x,y}. B=Closure({t},T{restricted to}{x,y})

∧ (∀ m∈{x,y}. B=Closure({m},T{restricted to}{x,y})−→m=t )"

by auto

}
then have "(T{restricted to}{x,y}){is sober}" unfolding IsSober_def

using tot by auto

}
ultimately have "(T{restricted to}{x,y}){is sober}" by auto

with ‘T{is anti-}IsSober‘ have "{x,y}{is in the spectrum of}IsSober"

unfolding antiProperty_def

using ‘x∈A‘‘A∈T‘‘y∈
⋃
T-A‘ by auto

then have "{x,y}.1" using sober_spectrum by auto

moreover
have "x∈{x,y}" by auto

ultimately have "{x,y}={x}" using lepoll_1_is_sing[of "{x,y}""x"]

by auto

moreover have "y∈{x,y}" by auto

ultimately have "y∈{x}" by auto

then have "False" using ‘x6=y‘ by auto

}
then have "T⊆{0,

⋃
T}" by auto

with empty_open[OF topSpaceAssum] topSpaceAssum show "T={0,
⋃
T}" un-

folding IsATopology_def

by auto

qed

end
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61 Topology 8

theory Topology_ZF_8 imports Topology_ZF_6 EquivClass1

begin

This theory deals with quotient topologies.

61.1 Definition of quotient topology

Given a surjective function f : X → Y and a topology τ in X, it is posible
to consider a special topology in Y . f is called quotient function.

definition(in topology0)

QuotientTop ("{quotient topology in}_{by}_" 80)

where "f∈surj(
⋃
T,Y) =⇒{quotient topology in}Y{by}f≡

{U∈Pow(Y). f-‘‘U∈T}"

abbreviation QuotientTopTop ("{quotient topology in}_{by}_{from}_")

where "QuotientTopTop(Y,f,T) ≡ topology0.QuotientTop(T,Y,f)"

The quotient topology is indeed a topology.

theorem(in topology0) quotientTop_is_top:

assumes "f∈surj(
⋃
T,Y)"

shows "({quotient topology in} Y {by} f) {is a topology}"

proof-
have "({quotient topology in} Y {by} f)={U ∈ Pow(Y) . f -‘‘ U ∈ T}"

using QuotientTop_def assms

by auto moreover
{

fix M x B assume M:"M ⊆ {U ∈ Pow(Y) . f -‘‘ U ∈ T}"

then have "
⋃
M⊆Y" by blast moreover

have A1:"f -‘‘ (
⋃
M)=(

⋃
y∈(

⋃
M). f-‘‘{y})" using vimage_eq_UN by

blast

{
fix A assume "A∈M"
with M have "A∈Pow(Y)" "f -‘‘ A∈T" by auto

have "f -‘‘ A=(
⋃
y∈A. f-‘‘{y})" using vimage_eq_UN by blast

}
then have "(

⋃
A∈M. f-‘‘ A)=(

⋃
A∈M. (

⋃
y∈A. f-‘‘{y}))" by auto

then have "(
⋃
A∈M. f-‘‘ A)=(

⋃
y∈
⋃
M. f-‘‘{y})" by auto

with A1 have A2:"f -‘‘ (
⋃
M)=
⋃
{f-‘‘ A. A∈M}" by auto

{
fix A assume "A∈M"
with M have "f -‘‘ A∈T" by auto

}
then have "∀ A∈M. f -‘‘ A∈T" by auto

then have "{f-‘‘ A. A∈M}⊆T" by auto

then have "(
⋃
{f-‘‘ A. A∈M})∈T" using topSpaceAssum unfolding IsATopology_def

by auto

868



with A2 have "(f -‘‘ (
⋃
M))∈T" by auto

ultimately have "
⋃
M∈{U∈Pow(Y). f-‘‘U∈T}" by auto

}
moreover
{

fix U V assume "U∈{U∈Pow(Y). f-‘‘U∈T}""V∈{U∈Pow(Y). f-‘‘U∈T}"
then have "U∈Pow(Y)""V∈Pow(Y)""f-‘‘U∈T""f-‘‘V∈T" by auto

then have "(f-‘‘U)∩(f-‘‘V)∈T" using topSpaceAssum unfolding IsATopology_def

by auto

then have "f-‘‘ (U∩V)∈T" using invim_inter_inter_invim assms un-
folding surj_def

by auto

with ‘U∈Pow(Y)‘‘V∈Pow(Y)‘ have "U∩V∈{U∈Pow(Y). f-‘‘U∈T}" by auto

}
ultimately show ?thesis using IsATopology_def by auto

qed

The quotient function is continuous.

lemma (in topology0) quotient_func_cont:

assumes "f∈surj(
⋃
T,Y)"

shows "IsContinuous(T,({quotient topology in} Y {by} f),f)"

unfolding IsContinuous_def using QuotientTop_def assms by auto

One of the important properties of this topology, is that a function from the
quotient space is continuous iff the composition with the quotient function
is continuous.

theorem(in two_top_spaces0) cont_quotient_top:

assumes "h∈surj(
⋃
τ1,Y)" "g:Y→

⋃
τ2" "IsContinuous(τ1,τ2,g O h)"

shows "IsContinuous(({quotient topology in} Y {by} h {from} τ1),τ2,g)"
proof-
{

fix U assume "U∈τ2"
with assms(3) have "(g O h)-‘‘(U)∈τ1" unfolding IsContinuous_def

by auto

then have "h-‘‘(g-‘‘(U))∈τ1" using vimage_comp by auto

then have "g-‘‘(U)∈({quotient topology in} Y {by} h {from} τ1)" us-
ing topology0.QuotientTop_def

tau1_is_top assms(1) using func1_1_L3 assms(2) unfolding topology0_def

by auto

}
then show ?thesis unfolding IsContinuous_def by auto

qed

The underlying set of the quotient topology is Y .

lemma(in topology0) total_quo_func:

assumes "f∈surj(
⋃
T,Y)"

shows "(
⋃
({quotient topology in}Y{by}f))=Y"

proof-
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from assms have "f-‘‘Y=
⋃
T" using func1_1_L4 unfolding surj_def by

auto moreover
have "

⋃
T∈T" using topSpaceAssum unfolding IsATopology_def by auto

ultimately
have "Y∈({quotient topology in}Y{by}f{from}T)" using QuotientTop_def

assms by auto

then show ?thesis using QuotientTop_def assms by auto

qed

61.2 Quotient topologies from equivalence relations

In this section we will show that the quotient topologies come from an
equivalence relation.

First, some lemmas for relations.

lemma quotient_proj_fun:

shows "{〈b,r‘‘{b}〉. b∈A}:A→A//r" unfolding Pi_def function_def domain_def

unfolding quotient_def by auto

lemma quotient_proj_surj:

shows "{〈b,r‘‘{b}〉. b∈A}∈surj(A,A//r)"
proof-
{

fix y assume "y∈A//r"
then obtain yy where A:"yy∈A" "y=r‘‘{yy}" unfolding quotient_def

by auto

then have "〈yy,y〉∈{〈b,r‘‘{b}〉. b∈A}" by auto

then have "{〈b,r‘‘{b}〉. b∈A}‘yy=y" using apply_equality[OF _ quotient_proj_fun]

by auto

with A(1) have "∃ yy∈A. {〈b,r‘‘{b}〉. b∈A}‘yy=y" by auto

}
with quotient_proj_fun show ?thesis unfolding surj_def by auto

qed

lemma preim_equi_proj:

assumes "U⊆A//r" "equiv(A,r)"

shows "{〈b,r‘‘{b}〉. b∈A}-‘‘U=
⋃
U"

proof
{

fix y assume "y∈
⋃
U"

then obtain V where V:"y∈V""V∈U" by auto

with ‘U⊆(A//r)‘ have "y∈A" using EquivClass_1_L1 assms(2) by auto

moreover
from ‘U⊆(A//r)‘ V have "r‘‘{y}=V" using EquivClass_1_L2 assms(2)

by auto

moreover note V(2) ultimately have "y∈{x∈A. r‘‘{x}∈U}" by auto

then have "y∈{〈b,r‘‘{b}〉. b∈A}-‘‘U" by auto

}
then show "

⋃
U⊆{〈b,r‘‘{b}〉. b∈A}-‘‘U" by blast moreover
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{
fix y assume "y∈{〈b,r‘‘{b}〉. b∈A}-‘‘U"
then have yy:"y∈{x∈A. r‘‘{x}∈U}" by auto

then have "r‘‘{y}∈U" by auto moreover
from yy have "y∈r‘‘{y}" using assms equiv_class_self by auto ul-

timately
have "y∈

⋃
U" by auto

}
then show "{〈b,r‘‘{b}〉. b∈A}-‘‘U⊆

⋃
U" by blast

qed

Now we define what a quotient topology from an equivalence relation is:

definition(in topology0)

EquivQuo ("{quotient by}_" 70)

where "equiv(
⋃
T,r)=⇒({quotient by}r)≡{quotient topology in}(

⋃
T)//r{by}{〈b,r‘‘{b}〉.

b∈
⋃
T}"

abbreviation
EquivQuoTop ("_{quotient by}_" 60)

where "EquivQuoTop(T,r)≡topology0.EquivQuo(T,r)"

First, another description of the topology (more intuitive):

theorem (in topology0) quotient_equiv_rel:

assumes "equiv(
⋃
T,r)"

shows "({quotient by}r)={U∈Pow((
⋃
T)//r).

⋃
U∈T}"

proof-
have "({quotient topology in}(

⋃
T)//r{by}{〈b,r‘‘{b}〉. b∈

⋃
T})={U∈Pow((

⋃
T)//r).

{〈b,r‘‘{b}〉. b∈
⋃
T}-‘‘U∈T}"

using QuotientTop_def quotient_proj_surj by auto moreover
have "{U∈Pow((

⋃
T)//r). {〈b,r‘‘{b}〉. b∈

⋃
T}-‘‘U∈T}={U∈Pow((

⋃
T)//r).⋃

U∈T}"
proof
{

fix U assume "U∈{U∈Pow((
⋃
T)//r). {〈b,r‘‘{b}〉. b∈

⋃
T}-‘‘U∈T}"

then have "U∈{U∈Pow((
⋃
T)//r).

⋃
U∈T}" using preim_equi_proj assms

by auto

}
then show "{U∈Pow((

⋃
T)//r). {〈b,r‘‘{b}〉. b∈

⋃
T}-‘‘U∈T}⊆{U∈Pow((

⋃
T)//r).⋃

U∈T}" by auto

{
fix U assume "U∈{U∈Pow((

⋃
T)//r).

⋃
U∈T}"

then have "U∈{U∈Pow((
⋃
T)//r). {〈b,r‘‘{b}〉. b∈

⋃
T}-‘‘U∈T}" us-

ing preim_equi_proj assms by auto

}
then show "{U∈Pow((

⋃
T)//r).

⋃
U∈T}⊆{U∈Pow((

⋃
T)//r). {〈b,r‘‘{b}〉.

b∈
⋃
T}-‘‘U∈T}" by auto

qed
ultimately show ?thesis using EquivQuo_def assms by auto

qed
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We apply previous results to this topology.

theorem(in topology0) total_quo_equi:

assumes "equiv(
⋃
T,r)"

shows "
⋃
({quotient by}r)=(

⋃
T)//r"

using total_quo_func quotient_proj_surj EquivQuo_def assms by auto

theorem(in topology0) equiv_quo_is_top:

assumes "equiv(
⋃
T,r)"

shows "({quotient by}r){is a topology}"

using quotientTop_is_top quotient_proj_surj EquivQuo_def assms by auto

MAIN RESULT: All quotient topologies arise from an equivalence relation
given by the quotient function f : X → Y . This means that any quotient
topology is homeomorphic to a topology given by an equivalence relation
quotient.

theorem(in topology0) equiv_quotient_top:

assumes "f∈surj(
⋃
T,Y)"

defines "r≡{〈x,y〉∈
⋃
T×
⋃
T. f‘(x)=f‘(y)}"

defines "g≡{〈y,f-‘‘{y}〉. y∈Y}"
shows "equiv(

⋃
T,r)" and "IsAhomeomorphism(({quotient topology in}Y{by}f),({quotient

by}r),g)"

proof-
have ff:"f:

⋃
T→Y" using assms(1) unfolding surj_def by auto

show B:"equiv(
⋃
T,r)" unfolding equiv_def refl_def sym_def trans_def

unfolding r_def by auto

have gg:"g:Y→((
⋃
T)//r)"

proof-
{

fix B assume "B∈g"
then obtain y where Y:"y∈Y" "B=〈y,f-‘‘{y}〉" unfolding g_def by

auto

then have "f-‘‘{y}⊆
⋃
T" using func1_1_L3 ff by blast

then have eq:"f-‘‘{y}={x∈
⋃
T. 〈x,y〉∈f}" using vimage_iff by auto

from Y obtain A where A1:"A∈
⋃
T""f‘A=y" using assms(1) unfold-

ing surj_def by blast

with eq have A:"A∈f-‘‘{y}" using apply_Pair[OF ff] by auto

{
fix t assume "t∈f-‘‘{y}"
with A have "t∈

⋃
T""A∈

⋃
T""〈t,y〉∈f""〈A,y〉∈f" using eq by auto

then have "f‘t=f‘A" using apply_equality assms(1) unfolding
surj_def by auto

with ‘t∈
⋃
T‘‘A∈

⋃
T‘ have "〈A,t〉∈r" using r_def by auto

then have "t∈r‘‘{A}" using image_iff by auto

}
then have "f-‘‘{y}⊆r‘‘{A}" by auto moreover
{

fix t assume "t∈r‘‘{A}"
then have "〈A,t〉∈r" using image_iff by auto
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then have un:"t∈
⋃
T""A∈

⋃
T" and eq2:"f‘t=f‘A" unfolding r_def

by auto moreover
from un have "〈t,f‘t〉∈f" using apply_Pair[OF ff] by auto

with eq2 A1 have "〈t,y〉∈f" by auto

with un have "t∈f-‘‘{y}" using eq by auto

}
then have "r‘‘{A}⊆f-‘‘{y}" by auto ultimately
have "f-‘‘{y}=r‘‘{A}" by auto

then have "f-‘‘{y}∈ (
⋃
T)//r" using A1(1) unfolding quotient_def

by auto

with Y have "B∈Y×(
⋃
T)//r" by auto

}
then have "∀ A∈g. A∈ Y×(

⋃
T)//r" by auto

then have "g⊆(Y×(
⋃
T)//r)" by auto moreover

then show ?thesis unfolding Pi_def function_def domain_def g_def

by auto

qed
then have gg2:"g:Y→(

⋃
({quotient by}r))" using total_quo_equi B by

auto

{
fix s assume S:"s∈({quotient topology in}Y{by}f)"

then have "s∈Pow(Y)"and op:"f-‘‘s∈T" using QuotientTop_def topSpaceAssum

assms(1)

by auto

have "f-‘‘s=(
⋃
y∈s. f-‘‘{y})" using vimage_eq_UN by blast moreover

from ‘s∈Pow(Y)‘ have "∀ y∈s. 〈y,f-‘‘{y}〉∈g" unfolding g_def by auto

then have "∀ y∈s. g‘y=f-‘‘{y}" using apply_equality gg by auto ul-
timately

have "f-‘‘s=(
⋃
y∈s. g‘y)" by auto

with op have "(
⋃
y∈s. g‘y)∈T" by auto moreover

from ‘s∈Pow(Y)‘ have "∀ y∈s. g‘y∈(
⋃
T)//r" using apply_type gg by

auto

ultimately have "{g‘y. y∈s}∈({quotient by}r)" using quotient_equiv_rel

B by auto

with ‘s∈Pow(Y)‘ have "g‘‘s∈({quotient by}r)" using func_imagedef

gg by auto

}
then have gopen:"∀ s∈({quotient topology in}Y{by}f). g‘‘s∈(T{quotient

by}r)" by auto

have pr_fun:"{〈b,r‘‘{b}〉. b∈
⋃
T}:
⋃
T→(

⋃
T)//r" using quotient_proj_fun

by auto

{
fix b assume b:"b∈

⋃
T"

have bY:"f‘b∈Y" using apply_funtype ff b by auto

with b have com:"(g O f)‘b=g‘(f‘b)" using comp_fun_apply ff by auto

from bY have pg:"〈f‘b,f-‘‘({f‘b})〉∈g" unfolding g_def by auto

then have "g‘(f‘b)=f-‘‘({f‘b})" using apply_equality gg by auto

with com have comeq:"(g O f)‘b=f-‘‘({f‘b})" by auto

from b have A:"f‘‘{b}={f‘b}" "{b}⊆
⋃
T" using func_imagedef ff by
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auto

from A(2) have "b∈f -‘‘ (f ‘‘ {b})" using func1_1_L9 ff by blast

then have "b∈f-‘‘({f‘b})" using A(1) by auto moreover
from pg have "f-‘‘({f‘b})∈(

⋃
T)//r" using gg unfolding Pi_def by

auto

ultimately have "r‘‘{b}=f-‘‘({f‘b})" using EquivClass_1_L2 B by auto

then have "(g O f)‘b=r‘‘{b}" using comeq by auto moreover
from b have "〈b,r‘‘{b}〉∈{〈b,r‘‘{b}〉. b∈

⋃
T}" by auto

with pr_fun have "{〈b,r‘‘{b}〉. b∈
⋃
T}‘b=r‘‘{b}" using apply_equality

by auto ultimately
have "(g O f)‘b={〈b,r‘‘{b}〉. b∈

⋃
T}‘b" by auto

}
then have reg:"∀ b∈

⋃
T. (g O f)‘b={〈b,r‘‘{b}〉. b∈

⋃
T}‘b" by auto more-

over
have compp:"g O f∈

⋃
T→(

⋃
T)//r" using comp_fun ff gg by auto

have feq:"(g O f)={〈b,r‘‘{b}〉. b∈
⋃
T}" using fun_extension[OF compp

pr_fun] reg by auto

then have "IsContinuous(T,{quotient by}r,(g O f))" using quotient_func_cont

quotient_proj_surj

EquivQuo_def topSpaceAssum B by auto moreover
have "(g O f):

⋃
T→
⋃
({quotient by}r)" using comp_fun ff gg2 by auto

ultimately have gcont:"IsContinuous({quotient topology in}Y{by}f,{quotient

by}r,g)"

using two_top_spaces0.cont_quotient_top assms(1) gg2 unfolding two_top_spaces0_def

using topSpaceAssum equiv_quo_is_top B by auto

{
fix x y assume T:"x∈Y""y∈Y""g‘x=g‘y"

then have "f-‘‘{x}=f-‘‘{y}" using apply_equality gg unfolding g_def

by auto

then have "f‘‘(f-‘‘{x})=f‘‘(f-‘‘{y})" by auto

with T(1,2) have "{x}={y}" using surj_image_vimage assms(1) by
auto

then have "x=y" by auto

}
with gg2 have "g∈inj(Y,

⋃
({quotient by}r))" unfolding inj_def by auto

moreover
have "g O f∈surj(

⋃
T, (

⋃
T)//r)" using feq quotient_proj_surj by auto

then have "g∈surj(Y,(
⋃
T)//r)" using comp_mem_surjD1 ff gg by auto

then have "g∈surj(Y,
⋃
(T{quotient by}r))" using total_quo_equi B by

auto

ultimately have "g∈bij(
⋃
({quotient topology in}Y{by}f),

⋃
({quotient

by}r))" unfolding bij_def using total_quo_func assms(1) by auto

with gcont gopen show "IsAhomeomorphism(({quotient topology in}Y{by}f),({quotient

by}r),g)"

using bij_cont_open_homeo by auto

qed

lemma product_equiv_rel_fun:

shows "{〈〈b,c〉,〈r‘‘{b},r‘‘{c}〉〉. 〈b,c〉∈
⋃
T×
⋃
T}:(

⋃
T×
⋃
T)→((

⋃
T)//r×(

⋃
T)//r)"
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proof-
have " {〈b,r‘‘{b}〉. b∈

⋃
T}∈

⋃
T→(

⋃
T)//r" using quotient_proj_fun by

auto moreover
have "∀ A∈

⋃
T. 〈A,r‘‘{A}〉∈{〈b,r‘‘{b}〉. b∈

⋃
T}" by auto

ultimately have "∀ A∈
⋃
T. {〈b,r‘‘{b}〉. b∈

⋃
T}‘A=r‘‘{A}" using apply_equality

by auto

then have IN:" {〈〈b, c〉, r ‘‘ {b}, r ‘‘ {c}〉 . 〈b,c〉 ∈
⋃
T ×

⋃
T}= {〈〈x,

y〉, {〈b, r ‘‘ {b}〉 . b ∈
⋃
T} ‘ x, {〈b, r ‘‘ {b}〉 . b ∈

⋃
T} ‘ y〉 . 〈x,y〉

∈
⋃
T ×

⋃
T}"

by force

then show ?thesis using prod_fun quotient_proj_fun by auto

qed

lemma(in topology0) prod_equiv_rel_surj:

shows "{〈〈b,c〉,〈r‘‘{b},r‘‘{c}〉〉. 〈b,c〉∈
⋃
T×
⋃
T}:surj(

⋃
(ProductTopology(T,T)),((

⋃
T)//r×(

⋃
T)//r))"

proof-
have fun:"{〈〈b,c〉,〈r‘‘{b},r‘‘{c}〉〉. 〈b,c〉∈

⋃
T×
⋃
T}:(

⋃
T×
⋃
T)→((

⋃
T)//r×(

⋃
T)//r)"

using
product_equiv_rel_fun by auto moreover
{

fix M assume "M∈((
⋃
T)//r×(

⋃
T)//r)"

then obtain M1 M2 where M:"M=〈M1,M2〉" "M1∈(
⋃
T)//r""M2∈(

⋃
T)//r"

by auto

then obtain m1 m2 where m:"m1∈
⋃
T""m2∈

⋃
T""M1=r‘‘{m1}""M2=r‘‘{m2}"

unfolding quotient_def

by auto

then have mm:"〈m1,m2〉∈(
⋃
T×
⋃
T)" by auto

then have "〈〈m1,m2〉,〈r‘‘{m1},r‘‘{m2}〉〉∈{〈〈b,c〉,〈r‘‘{b},r‘‘{c}〉〉. 〈b,c〉∈
⋃
T×
⋃
T}"

by auto

then have "{〈〈b,c〉,〈r‘‘{b},r‘‘{c}〉〉. 〈b,c〉∈
⋃
T×
⋃
T}‘〈m1,m2〉=〈r‘‘{m1},r‘‘{m2}〉"

using apply_equality fun by auto

then have "{〈〈b,c〉,〈r‘‘{b},r‘‘{c}〉〉. 〈b,c〉∈
⋃
T×
⋃
T}‘〈m1,m2〉=M" using

M(1) m(3,4) by auto

then have "∃ R∈(
⋃
T×
⋃
T). {〈〈b,c〉,〈r‘‘{b},r‘‘{c}〉〉. 〈b,c〉∈

⋃
T×
⋃
T}‘R=M"

using mm by auto

}
ultimately show ?thesis unfolding surj_def using Top_1_4_T1(3) topSpaceAssum

by auto

qed

lemma(in topology0) product_quo_fun:

assumes "equiv(
⋃
T,r)"

shows "IsContinuous(ProductTopology(T,T),ProductTopology({quotient by}r,({quotient

by}r)),{〈〈b,c〉,〈r‘‘{b},r‘‘{c}〉〉. 〈b,c〉∈
⋃
T×
⋃
T})"

proof-
have "{〈b,r‘‘{b}〉. b∈

⋃
T}:
⋃
T→(

⋃
T)//r" using quotient_proj_fun by

auto moreover
have "∀ A∈

⋃
T. 〈A,r‘‘{A}〉∈{〈b,r‘‘{b}〉. b∈

⋃
T}" by auto ultimately

have "∀ A∈
⋃
T. {〈b,r‘‘{b}〉. b∈

⋃
T}‘A=r‘‘{A}" using apply_equality by
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auto

then have IN:" {〈〈b, c〉, r ‘‘ {b}, r ‘‘ {c}〉 . 〈b,c〉 ∈
⋃
T ×

⋃
T}= {〈〈x,

y〉, {〈b, r ‘‘ {b}〉 . b ∈
⋃
T} ‘ x, {〈b, r ‘‘ {b}〉 . b ∈

⋃
T} ‘ y〉 . 〈x,y〉

∈
⋃
T ×

⋃
T}"

by force

have cont:"IsContinuous(T,{quotient by}r,{〈b,r‘‘{b}〉. b∈
⋃
T})" using

quotient_func_cont quotient_proj_surj

EquivQuo_def assms by auto

have tot:"
⋃
(T{quotient by}r) = (

⋃
T) // r" and top:"({quotient by}r)

{is a topology}" using total_quo_equi equiv_quo_is_top assms by auto

then have fun:"{〈b,r‘‘{b}〉. b∈
⋃
T}:
⋃
T→
⋃
({quotient by}r)" using quotient_proj_fun

by auto

then have two:"two_top_spaces0(T,{quotient by}r,{〈b,r‘‘{b}〉. b∈
⋃
T})"

unfolding two_top_spaces0_def using topSpaceAssum top by auto

show ?thesis using two_top_spaces0.product_cont_functions two fun fun

cont cont top topSpaceAssum IN by auto

qed

The product of quotient topologies is a quotient topology given that the
quotient map is open. This isn’t true in general.

theorem(in topology0) prod_quotient:

assumes "equiv(
⋃
T,r)" "∀ A∈T. {〈b,r‘‘{b}〉. b∈

⋃
T}‘‘A∈({quotient by}r)"

shows "(ProductTopology({quotient by}r,{quotient by}r)) = ({quotient

topology in}(((
⋃
T)//r)×((

⋃
T)//r)){by}({〈〈b,c〉,〈r‘‘{b},r‘‘{c}〉〉. 〈b,c〉∈

⋃
T×
⋃
T}){from}(ProductTopology(T,T)))"

proof
{

fix A assume A:"A∈ProductTopology({quotient by}r,{quotient by}r)"

from assms have "IsContinuous(ProductTopology(T,T),ProductTopology({quotient

by}r,({quotient by}r)),{〈〈b,c〉,〈r‘‘{b},r‘‘{c}〉〉. 〈b,c〉∈
⋃
T×
⋃
T})" using

product_quo_fun

by auto

with A have "{〈〈b,c〉,〈r‘‘{b},r‘‘{c}〉〉. 〈b,c〉∈
⋃
T×
⋃
T}-‘‘A∈ProductTopology(T,T)"

unfolding IsContinuous_def by auto moreover
from A have "A⊆

⋃
ProductTopology(T{quotient by}r,T{quotient by}r)"

by auto

then have "A⊆
⋃
(T{quotient by}r)×

⋃
(T{quotient by}r)" using Top_1_4_T1(3)

equiv_quo_is_top equiv_quo_is_top

using assms by auto

then have "A∈Pow(((
⋃
T)//r)×((

⋃
T)//r))" using total_quo_equi assms

by auto

ultimately have "A∈({quotient topology in}(((
⋃
T)//r)×((

⋃
T)//r)){by}{〈〈b,c〉,〈r‘‘{b},r‘‘{c}〉〉.

〈b,c〉∈
⋃
T×
⋃
T}{from}(ProductTopology(T,T)))"

using topology0.QuotientTop_def Top_1_4_T1(1) topSpaceAssum prod_equiv_rel_surj

assms(1) unfolding topology0_def by auto

}
then show "ProductTopology(T{quotient by}r,T{quotient by}r)⊆({quotient

topology in}(((
⋃
T)//r)×((

⋃
T)//r)){by}{〈〈b,c〉,〈r‘‘{b},r‘‘{c}〉〉. 〈b,c〉∈

⋃
T×
⋃
T}{from}(ProductTopology(T,T)))"

by auto

{
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fix A assume "A∈({quotient topology in}(((
⋃
T)//r)×((

⋃
T)//r)){by}{〈〈b,c〉,〈r‘‘{b},r‘‘{c}〉〉.

〈b,c〉∈
⋃
T×
⋃
T}{from}(ProductTopology(T,T)))"

then have A:"A⊆((
⋃
T)//r)×((

⋃
T)//r)" "{〈〈b,c〉,〈r‘‘{b},r‘‘{c}〉〉. 〈b,c〉∈

⋃
T×
⋃
T}-‘‘A∈ProductTopology(T,T)"

using topology0.QuotientTop_def Top_1_4_T1(1) topSpaceAssum prod_equiv_rel_surj

assms(1) unfolding topology0_def by auto

{
fix CC assume "CC∈A"
with A(1) obtain C1 C2 where CC:"CC=〈C1,C2〉" "C1∈((

⋃
T)//r)""C2∈((

⋃
T)//r)"

by auto

then obtain c1 c2 where CC1:"c1∈
⋃
T""c2∈

⋃
T" and CC2:"C1=r‘‘{c1}""C2=r‘‘{c2}"

unfolding quotient_def

by auto

then have "〈c1,c2〉∈
⋃
T×
⋃
T" by auto

then have "〈〈c1,c2〉,〈r‘‘{c1},r‘‘{c2}〉〉∈{〈〈b,c〉,〈r‘‘{b},r‘‘{c}〉〉. 〈b,c〉∈
⋃
T×
⋃
T}"

by auto

with CC2 CC have "〈〈c1,c2〉,CC〉∈{〈〈b,c〉,〈r‘‘{b},r‘‘{c}〉〉. 〈b,c〉∈
⋃
T×
⋃
T}"

by auto

with ‘CC∈A‘ have "〈c1,c2〉∈{〈〈b,c〉,〈r‘‘{b},r‘‘{c}〉〉. 〈b,c〉∈
⋃
T×
⋃
T}-‘‘A"

using vimage_iff by auto

with A(2) have " ∃ V W. V ∈ T ∧ W ∈ T ∧ V × W ⊆ {〈〈b,c〉,〈r‘‘{b},r‘‘{c}〉〉.
〈b,c〉∈

⋃
T×
⋃
T}-‘‘A ∧ 〈c1,c2〉 ∈ V × W"

using prod_top_point_neighb topSpaceAssum by blast

then obtain V W where VW:"V∈T""W∈T""V × W ⊆ {〈〈b,c〉,〈r‘‘{b},r‘‘{c}〉〉.
〈b,c〉∈

⋃
T×
⋃
T}-‘‘A""c1∈V""c2∈W" by auto

with assms(2) have "{〈b,r‘‘{b}〉. b∈
⋃
T}‘‘V∈(T{quotient by}r)""{〈b,r‘‘{b}〉.

b∈
⋃
T}‘‘W∈(T{quotient by}r)" by auto

then have op:"{〈b,r‘‘{b}〉. b∈
⋃
T}‘‘V×{〈b,r‘‘{b}〉. b∈

⋃
T}‘‘W∈ProductTopology(T{quotient

by}r,T{quotient by}r)" using prod_open_open_prod equiv_quo_is_top

assms(1) by auto

{
fix S assume "S∈{〈b,r‘‘{b}〉. b∈

⋃
T}‘‘V×{〈b,r‘‘{b}〉. b∈

⋃
T}‘‘W"

then obtain s1 s2 where S:"S=〈s1,s2〉""s1∈{〈b,r‘‘{b}〉. b∈
⋃
T}‘‘V""s2∈{〈b,r‘‘{b}〉.

b∈
⋃
T}‘‘W" by blast

then obtain t1 t2 where T:"〈t1,s1〉∈{〈b,r‘‘{b}〉. b∈
⋃
T}""〈t2,s2〉∈{〈b,r‘‘{b}〉.

b∈
⋃
T}""t1∈V""t2∈W" using image_iff by auto

then have "〈t1,t2〉∈V×W" by auto

with VW(3) have "〈t1,t2〉∈{〈〈b,c〉,〈r‘‘{b},r‘‘{c}〉〉. 〈b,c〉∈
⋃
T×
⋃
T}-‘‘A"

by auto

then have "∃ SS∈A. 〈〈t1,t2〉,SS〉∈{〈〈b,c〉,〈r‘‘{b},r‘‘{c}〉〉. 〈b,c〉∈
⋃
T×
⋃
T}"

using vimage_iff by auto

then obtain SS where "SS∈A""〈〈t1,t2〉,SS〉∈{〈〈b,c〉,〈r‘‘{b},r‘‘{c}〉〉.
〈b,c〉∈

⋃
T×
⋃
T}" by auto moreover

from T VW(1,2) have "〈t1,t2〉∈
⋃
T×
⋃
T""〈s1,s2〉=〈r‘‘{t1},r‘‘{t2}〉"

by auto

with S(1) have "〈〈t1,t2〉,S〉∈{〈〈b,c〉,〈r‘‘{b},r‘‘{c}〉〉. 〈b,c〉∈
⋃
T×
⋃
T}"

by auto

ultimately have "S∈A" using product_equiv_rel_fun unfolding Pi_def

function_def

by auto
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}
then have sub:"{〈b,r‘‘{b}〉. b∈

⋃
T}‘‘V×{〈b,r‘‘{b}〉. b∈

⋃
T}‘‘W⊆A"

by blast

have "〈c1,C1〉∈{〈b,r‘‘{b}〉. b∈
⋃
T}""〈c2,C2〉∈{〈b,r‘‘{b}〉. b∈

⋃
T}" us-

ing CC2 CC1

by auto

with ‘c1∈V‘‘c2∈W‘ have "C1∈{〈b,r‘‘{b}〉. b∈
⋃
T}‘‘V""C2∈{〈b,r‘‘{b}〉.

b∈
⋃
T}‘‘W"

using image_iff by auto

then have "CC∈{〈b,r‘‘{b}〉. b∈
⋃
T}‘‘V×{〈b,r‘‘{b}〉. b∈

⋃
T}‘‘W" us-

ing CC by auto

with sub op have "∃ OO∈ProductTopology(T{quotient by}r,T{quotient

by}r). CC∈OO∧ OO⊆A"
using exI[where x="{〈b,r‘‘{b}〉. b∈

⋃
T}‘‘V×{〈b,r‘‘{b}〉. b∈

⋃
T}‘‘W"

and P="λOO. OO∈ProductTopology(T{quotient by}r,T{quotient by}r)∧ CC∈OO∧
OO⊆A"]

by auto

}
then have "∀ C∈A. ∃ OO∈ProductTopology(T{quotient by}r,T{quotient

by}r). C∈OO∧ OO⊆A" by auto

then have "A∈ProductTopology(T{quotient by}r,T{quotient by}r)" us-
ing topology0.open_neigh_open

unfolding topology0_def using Top_1_4_T1 equiv_quo_is_top assms

by auto

}
then show "({quotient topology in}(((

⋃
T)//r)×((

⋃
T)//r)){by}{〈〈b,c〉,〈r‘‘{b},r‘‘{c}〉〉.

〈b,c〉∈
⋃
T×
⋃
T}{from}(ProductTopology(T,T)))⊆ProductTopology(T{quotient

by}r,T{quotient by}r)"

by auto

qed

end

62 Topology 9

theory Topology_ZF_9

imports Topology_ZF_2 Group_ZF_2 Topology_ZF_7 Topology_ZF_8

begin

62.1 Group of homeomorphisms

This theory file deals with the fact the set homeomorphisms of a topological
space into itself forms a group.

First, we define the set of homeomorphisms.

definition
"HomeoG(T) ≡ {f:

⋃
T→
⋃
T. IsAhomeomorphism(T,T,f)}"

The homeomorphisms are closed by composition.
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lemma (in topology0) homeo_composition:

assumes "f∈HomeoG(T)""g∈HomeoG(T)"
shows "Composition(

⋃
T)‘〈f, g〉∈HomeoG(T)"

proof-
from assms have fun:"f∈

⋃
T→
⋃
T""g∈

⋃
T→
⋃
T" and homeo:"IsAhomeomorphism(T,T,f)""IsAhomeomorphism(T,T,g)"

unfolding HomeoG_def

by auto

from fun have "f O g∈
⋃
T→
⋃
T" using comp_fun by auto moreover

from homeo have bij:"f∈bij(
⋃
T,
⋃
T)""g∈bij(

⋃
T,
⋃
T)" and cont:"IsContinuous(T,T,f)""IsContinuous(T,T,g)"

and contconv:

"IsContinuous(T,T,converse(f))""IsContinuous(T,T,converse(g))" un-
folding IsAhomeomorphism_def by auto

from bij have "f O g∈bij(
⋃
T,
⋃
T)" using comp_bij by auto moreover

from cont have "IsContinuous(T,T,f O g)" using comp_cont by auto more-
over

have "converse(f O g)=converse(g) O converse(f)" using converse_comp

by auto

with contconv have "IsContinuous(T,T,converse(f O g))" using comp_cont

by auto ultimately
have "f O g∈HomeoG(T)" unfolding HomeoG_def IsAhomeomorphism_def by

auto

then show ?thesis using func_ZF_5_L2 fun by auto

qed

The identity function is a homeomorphism.

lemma (in topology0) homeo_id:

shows "id(
⋃
T)∈HomeoG(T)"

proof-
have "converse(id(

⋃
T)) O id(

⋃
T)=id(

⋃
T)" using left_comp_inverse id_bij

by auto

then have "converse(id(
⋃
T))=id(

⋃
T)" using right_comp_id by auto

then show ?thesis unfolding HomeoG_def IsAhomeomorphism_def using id_cont

id_type id_bij

by auto

qed

The homeomorphisms form a monoid and its neutral element is the identity.

theorem (in topology0) homeo_submonoid:

shows "IsAmonoid(HomeoG(T),restrict(Composition(
⋃
T),HomeoG(T)×HomeoG(T)))"

"TheNeutralElement(HomeoG(T),restrict(Composition(
⋃
T),HomeoG(T)×HomeoG(T)))=id(

⋃
T)"

proof-
have cl:"HomeoG(T) {is closed under} Composition(

⋃
T)" unfolding IsOpClosed_def

using homeo_composition by auto

moreover have sub:"HomeoG(T)⊆
⋃
T→
⋃
T" unfolding HomeoG_def by auto

moreover
have ne:"TheNeutralElement(

⋃
T→
⋃
T, Composition(

⋃
T))∈HomeoG(T)" us-

ing homeo_id Group_ZF_2_5_L2(2) by auto

ultimately show "IsAmonoid(HomeoG(T),restrict(Composition(
⋃
T),HomeoG(T)×HomeoG(T)))"
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using Group_ZF_2_5_L2(1)

monoid0.group0_1_T1 unfolding monoid0_def by force

from cl sub ne have "TheNeutralElement(HomeoG(T),restrict(Composition(
⋃
T),HomeoG(T)×HomeoG(T)))=TheNeutralElement(

⋃
T→
⋃
T,

Composition(
⋃
T))"

using Group_ZF_2_5_L2(1) group0_1_L6 by blast moreover
have "id(

⋃
T)=TheNeutralElement(

⋃
T→
⋃
T, Composition(

⋃
T))" using Group_ZF_2_5_L2(2)

by auto

ultimately show "TheNeutralElement(HomeoG(T),restrict(Composition(
⋃
T),HomeoG(T)×HomeoG(T)))=id(

⋃
T)"

by auto

qed

The homeomorphisms form a group, with the composition.

theorem(in topology0) homeo_group:

shows "IsAgroup(HomeoG(T),restrict(Composition(
⋃
T),HomeoG(T)×HomeoG(T)))"

proof-
{

fix x assume AS:"x∈HomeoG(T)"
then have surj:"x∈surj(

⋃
T,
⋃
T)" and bij:"x∈bij(

⋃
T,
⋃
T)" unfold-

ing HomeoG_def IsAhomeomorphism_def bij_def by auto

from bij have "converse(x)∈bij(
⋃
T,
⋃
T)" using bij_converse_bij by

auto

with bij have conx_fun:"converse(x)∈
⋃
T→
⋃
T""x∈

⋃
T→
⋃
T" unfold-

ing bij_def inj_def by auto

from surj have id:"x O converse(x)=id(
⋃
T)" using right_comp_inverse

by auto

from conx_fun have "Composition(
⋃
T)‘〈x,converse(x)〉=x O converse(x)"

using func_ZF_5_L2 by auto

with id have "Composition(
⋃
T)‘〈x,converse(x)〉=id(

⋃
T)" by auto

moreover have "converse(x)∈HomeoG(T)" unfolding HomeoG_def using
conx_fun(1) homeo_inv AS unfolding HomeoG_def

by auto

ultimately have "∃ M∈HomeoG(T). Composition(
⋃
T)‘〈x,M〉=id(

⋃
T)" by

auto

}
then have "∀ x∈HomeoG(T). ∃ M∈HomeoG(T). Composition(

⋃
T)‘〈x,M〉=id(

⋃
T)"

by auto

then show ?thesis using homeo_submonoid definition_of_group by auto

qed

62.2 Examples computed

As a first example, we show that the group of homeomorphisms of the co-
cardinal topology is the group of bijective functions.

theorem homeo_cocardinal:

assumes "InfCard(Q)"

shows "HomeoG(CoCardinal X Q)=bij(X,X)"

proof
from assms have n:"Q 6=0" unfolding InfCard_def by auto
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then show "HomeoG(CoCardinal X Q) ⊆ bij(X, X)" unfolding HomeoG_def

IsAhomeomorphism_def

using union_cocardinal by auto

{
fix f assume a:"f∈bij(X,X)"
then have "converse(f)∈bij(X,X)" using bij_converse_bij by auto

then have cinj:"converse(f)∈inj(X,X)" unfolding bij_def by auto

from a have fun:"f∈X→X" unfolding bij_def inj_def by auto

then have two:"two_top_spaces0((CoCardinal X Q),(CoCardinal X Q),f)"

unfolding two_top_spaces0_def

using union_cocardinal assms n CoCar_is_topology by auto

{
fix N assume "N{is closed in}(CoCardinal X Q)"

then have N_def:"N=X ∨ (N∈Pow(X) ∧ N≺Q)" using closed_sets_cocardinal

n by auto

then have "restrict(converse(f),N)∈bij(N,converse(f)‘‘N)" using
cinj restrict_bij by auto

then have "N≈f-‘‘N" unfolding vimage_def eqpoll_def by auto

then have "f-‘‘N≈N" using eqpoll_sym by auto

with N_def have "N=X ∨ (f-‘‘N≺Q ∧ N∈Pow(X))" using eq_lesspoll_trans

by auto

with fun have "f-‘‘N=X ∨ (f-‘‘N≺Q ∧ (f-‘‘N)∈Pow(X))" using func1_1_L3

func1_1_L4 by auto

then have "f-‘‘N {is closed in}(CoCardinal X Q)" using closed_sets_cocardinal

n by auto

}
then have "∀ N. N{is closed in}(CoCardinal X Q) −→ f-‘‘N {is closed

in}(CoCardinal X Q)" by auto

then have "IsContinuous((CoCardinal X Q),(CoCardinal X Q),f)" us-
ing two_top_spaces0.Top_ZF_2_1_L4

two_top_spaces0.Top_ZF_2_1_L3 two_top_spaces0.Top_ZF_2_1_L2 two

by auto

}
then have "∀ f∈bij(X,X). IsContinuous((CoCardinal X Q),(CoCardinal X

Q),f)" by auto

then have "∀ f∈bij(X,X). IsContinuous((CoCardinal X Q),(CoCardinal X

Q),f) ∧ IsContinuous((CoCardinal X Q),(CoCardinal X Q),converse(f))"

using bij_converse_bij by auto

then have "∀ f∈bij(X,X). IsAhomeomorphism((CoCardinal X Q),(CoCardinal

X Q),f)" unfolding IsAhomeomorphism_def

using n union_cocardinal by auto

then show "bij(X,X)⊆HomeoG((CoCardinal X Q))" unfolding HomeoG_def

bij_def inj_def using n union_cocardinal

by auto

qed

The group of homeomorphism of the excluded set is a direct product of the
bijections on X \ T and the bijections on X ∩ T .

theorem homeo_excluded:
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shows "HomeoG(ExcludedSet X T)={f∈bij(X,X). f‘‘(X-T)=(X-T)}"

proof
have sub1:"X-T⊆X" by auto

{
fix g assume "g∈HomeoG(ExcludedSet X T)"

then have fun:"g:X→X" and bij:"g∈bij(X,X)" and hom:"IsAhomeomorphism((ExcludedSet

X T),(ExcludedSet X T),g)" unfolding HomeoG_def

using union_excludedset unfolding IsAhomeomorphism_def by auto

{
assume A:"g‘‘(X-T)=X" and B:"X∩T6=0"

have rfun:"restrict(g,X-T):X-T→X" using fun restrict_fun sub1 by
auto moreover

from A fun have "{g‘aa. aa∈X-T}=X" using func_imagedef sub1 by
auto

then have "∀ x∈X. x∈{g‘aa. aa∈X-T}" by auto

then have "∀ x∈X. ∃ aa∈X-T. x=g‘aa" by auto

then have "∀ x∈X. ∃ aa∈X-T. x=restrict(g,X-T)‘aa" by auto

with A have surj:"restrict(g,X-T)∈surj(X-T,X)" using rfun unfold-
ing surj_def by auto

from B obtain d where "d∈X""d∈T" by auto

with bij have "g‘d∈X" using apply_funtype unfolding bij_def inj_def

by auto

then obtain s where "restrict(g,X-T)‘s=g‘d""s∈X-T" using surj un-
folding surj_def by blast

then have "g‘s=g‘d" by auto

with ‘d∈X‘‘s∈X-T‘ have "s=d" using bij unfolding bij_def inj_def

by auto

then have "False" using ‘s∈X-T‘ ‘d∈T‘ by auto

}
then have "g‘‘(X-T)=X −→ X∩T=0" by auto

then have reg:"g‘‘(X-T)=X −→ X-T=X" by auto

then have "g‘‘(X-T)=X −→ g‘‘(X-T)=X-T" by auto

then have "g‘‘(X-T)=X −→ g∈{f∈bij(X,X). f‘‘(X-T)=(X-T)}" using bij

by auto moreover
{

fix gg

assume A:"gg‘‘(X-T)6=X" and hom2:"IsAhomeomorphism((ExcludedSet

X T),(ExcludedSet X T),gg)"

from hom2 have fun:"gg∈X→X" and bij:"gg∈bij(X,X)" unfolding IsAhomeomorphism_def

bij_def inj_def using union_excludedset by auto

have sub:"X-T⊆
⋃
(ExcludedSet X T)" using union_excludedset by auto

with hom2 have "gg‘‘(Interior(X-T,(ExcludedSet X T)))=Interior(gg‘‘(X-T),(ExcludedSet

X T))"

using int_top_invariant by auto moreover
from sub1 have "Interior(X-T,(ExcludedSet X T))=X-T" using interior_set_excludedset

by auto

ultimately have "gg‘‘(X-T)=Interior(gg‘‘(X-T),(ExcludedSet X T))"

by auto moreover
have ss:"gg‘‘(X-T)⊆X" using fun func1_1_L6(2) by auto
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then have "Interior(gg‘‘(X-T),(ExcludedSet X T)) = (gg‘‘(X-T))-T"

using interior_set_excludedset A

by auto

ultimately have eq:"gg‘‘(X-T)=(gg‘‘(X-T))-T" by auto

{
assume "(gg‘‘(X-T))∩T 6=0"

then obtain t where "t∈T" and im:"t∈gg‘‘(X-T)" by blast

then have "t/∈(gg‘‘(X-T))-T" by auto

then have "False" using eq im by auto

}
then have "(gg‘‘(X-T))∩T=0" by auto

then have "gg‘‘(X-T)⊆X-T" using ss by blast

}
then have "∀ gg. gg‘‘(X-T)6=X ∧ IsAhomeomorphism(ExcludedSet X T,ExcludedSet

X T,gg)−→ gg‘‘(X-T)⊆X-T" by auto moreover
from bij have conbij:"converse(g)∈bij(X,X)" using bij_converse_bij

by auto

then have confun:"converse(g)∈X→X" unfolding bij_def inj_def by
auto

{
assume A:"converse(g)‘‘(X-T)=X" and B:"X∩T6=0"

have rfun:"restrict(converse(g),X-T):X-T→X" using confun restrict_fun

sub1 by auto moreover
from A confun have "{converse(g)‘aa. aa∈X-T}=X" using func_imagedef

sub1 by auto

then have "∀ x∈X. x∈{converse(g)‘aa. aa∈X-T}" by auto

then have "∀ x∈X. ∃ aa∈X-T. x=converse(g)‘aa" by auto

then have "∀ x∈X. ∃ aa∈X-T. x=restrict(converse(g),X-T)‘aa" by auto

with A have surj:"restrict(converse(g),X-T)∈surj(X-T,X)" using
rfun unfolding surj_def by auto

from B obtain d where "d∈X""d∈T" by auto

with conbij have "converse(g)‘d∈X" using apply_funtype unfold-
ing bij_def inj_def by auto

then obtain s where "restrict(converse(g),X-T)‘s=converse(g)‘d""s∈X-T"
using surj unfolding surj_def by blast

then have "converse(g)‘s=converse(g)‘d" by auto

with ‘d∈X‘‘s∈X-T‘ have "s=d" using conbij unfolding bij_def inj_def

by auto

then have "False" using ‘s∈X-T‘ ‘d∈T‘ by auto

}
then have "converse(g)‘‘(X-T)=X −→ X∩T=0" by auto

then have "converse(g)‘‘(X-T)=X −→ X-T=X" by auto

then have "converse(g)‘‘(X-T)=X −→ g-‘‘(X-T)=(X-T)" unfolding vimage_def

by auto

then have G:"converse(g)‘‘(X-T)=X −→ g‘‘(g-‘‘(X-T))=g‘‘(X-T)" by
auto

have GG:"g‘‘(g-‘‘(X-T))=(X-T)" using sub1 surj_image_vimage bij un-
folding bij_def by auto

with G have "converse(g)‘‘(X-T)=X −→ g‘‘(X-T)=X-T" by auto
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then have "converse(g)‘‘(X-T)=X −→ g∈{f∈bij(X,X). f‘‘(X-T)=(X-T)}"

using bij by auto moreover
from hom have "IsAhomeomorphism(ExcludedSet X T, ExcludedSet X T,

converse(g))" using homeo_inv by auto

moreover note hom ultimately have "g∈{f∈bij(X,X). f‘‘(X-T)=(X-T)}

∨ (g‘‘(X-T)⊆X-T ∧ converse(g)‘‘(X-T)⊆X-T)"
by force

then have "g∈{f∈bij(X,X). f‘‘(X-T)=(X-T)} ∨ (g‘‘(X-T)⊆X-T ∧ g-‘‘(X-T)⊆X-T)"
unfolding vimage_def by auto moreover

have "g-‘‘(X-T)⊆X-T −→ g‘‘(g-‘‘(X-T))⊆g‘‘(X-T)" using func1_1_L8

by auto

with GG have "g-‘‘(X-T)⊆X-T −→ (X-T)⊆g‘‘(X-T)" by force

ultimately have "g∈{f∈bij(X,X). f‘‘(X-T)=(X-T)} ∨ (g‘‘(X-T)⊆X-T ∧
(X-T)⊆g‘‘(X-T))" by auto

then have "g∈{f∈bij(X,X). f‘‘(X-T)=(X-T)}" using bij by auto

}
then show "HomeoG(ExcludedSet X T)⊆{f∈bij(X,X). f‘‘(X-T)=(X-T)}" by

auto

{
fix g assume as:"g∈bij(X,X)""g‘‘(X-T)=X-T"
then have inj:"g∈inj(X,X)" and im:"g-‘‘(g‘‘(X-T))=g-‘‘(X-T)" un-

folding bij_def by auto

from inj have "g-‘‘(g‘‘(X-T))=X-T" using inj_vimage_image sub1 by
force

with im have as_3:"g-‘‘(X-T)=X-T" by auto

{
fix A

assume "A∈(ExcludedSet X T)"

then have "A=X∨A∩T=0" "A⊆X" unfolding ExcludedSet_def by auto

then have "A⊆X-T∨A=X" by auto moreover
{

assume "A=X"

with as(1) have "g‘‘A=X" using surj_range_image_domain unfold-
ing bij_def by auto

}
moreover
{

assume "A⊆X-T"
then have "g‘‘A⊆g‘‘(X-T)" using func1_1_L8 by auto

then have "g‘‘A⊆(X-T)" using as(2) by auto

}
ultimately have "g‘‘A⊆(X-T) ∨ g‘‘A=X" by auto

then have "g‘‘A∈(ExcludedSet X T)" unfolding ExcludedSet_def by
auto

}
then have "∀ A∈(ExcludedSet X T). g‘‘A∈(ExcludedSet X T)" by auto

moreover
{

fix A assume "A∈(ExcludedSet X T)"
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then have "A=X∨A∩T=0" "A⊆X" unfolding ExcludedSet_def by auto

then have "A⊆X-T∨A=X" by auto moreover
{

assume "A=X"

with as(1) have "g-‘‘A=X" using func1_1_L4 unfolding bij_def

inj_def by auto

}
moreover
{

assume "A⊆X-T"
then have "g-‘‘A⊆g-‘‘(X-T)" using func1_1_L8 by auto

then have "g-‘‘A⊆(X-T)" using as_3 by auto

}
ultimately have "g-‘‘A⊆(X-T) ∨ g-‘‘A=X" by auto

then have "g-‘‘A∈(ExcludedSet X T)" unfolding ExcludedSet_def by
auto

}
then have "IsContinuous(ExcludedSet X T,ExcludedSet X T,g)" unfold-

ing IsContinuous_def by auto moreover
note as(1) ultimately have "IsAhomeomorphism(ExcludedSet X T,ExcludedSet

X T,g)"

using union_excludedset bij_cont_open_homeo by auto

with as(1) have "g∈HomeoG(ExcludedSet X T)" unfolding bij_def inj_def

HomeoG_def using union_excludedset by auto

}
then show "{f ∈ bij(X, X) . f ‘‘ (X - T) = X - T} ⊆ HomeoG(ExcludedSet

X T)" by auto

qed

We now give some lemmas that will help us compute HomeoG(IncludedSet X

T).

lemma cont_in_cont_ex:

assumes "IsContinuous(IncludedSet X T,IncludedSet X T,f)" "f:X→X"

"T⊆X"
shows "IsContinuous(ExcludedSet X T,ExcludedSet X T,f)"

proof-
from assms(2,3) have two:"two_top_spaces0(IncludedSet X T,IncludedSet

X T,f)" using union_includedset includedset_is_topology

unfolding two_top_spaces0_def by auto

{
fix A assume "A∈(ExcludedSet X T)"

then have "A∩T=0 ∨ A=X""A⊆X" unfolding ExcludedSet_def by auto

then have "A{is closed in}(IncludedSet X T)" using closed_sets_includedset

assms by auto

then have "f-‘‘A{is closed in}(IncludedSet X T)" using two_top_spaces0.TopZF_2_1_L1

assms(1)

two assms includedset_is_topology by auto

then have "(f-‘‘A)∩T=0 ∨ f-‘‘A=X""f-‘‘A⊆X" using closed_sets_includedset

assms(1,3) by auto
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then have "f-‘‘A∈(ExcludedSet X T)" unfolding ExcludedSet_def by
auto

}
then show "IsContinuous(ExcludedSet X T,ExcludedSet X T,f)" unfold-

ing IsContinuous_def by auto

qed

lemma cont_ex_cont_in:

assumes "IsContinuous(ExcludedSet X T,ExcludedSet X T,f)" "f:X→X"

"T⊆X"
shows "IsContinuous(IncludedSet X T,IncludedSet X T,f)"

proof-
from assms(2) have two:"two_top_spaces0(ExcludedSet X T,ExcludedSet

X T,f)" using union_excludedset excludedset_is_topology

unfolding two_top_spaces0_def by auto

{
fix A assume "A∈(IncludedSet X T)"

then have "T⊆A ∨ A=0""A⊆X" unfolding IncludedSet_def by auto

then have "A{is closed in}(ExcludedSet X T)" using closed_sets_excludedset

assms by auto

then have "f-‘‘A{is closed in}(ExcludedSet X T)" using two_top_spaces0.TopZF_2_1_L1

assms(1)

two assms excludedset_is_topology by auto

then have "T⊆(f-‘‘A) ∨ f-‘‘A=0""f-‘‘A⊆X" using closed_sets_excludedset

assms(1,3) by auto

then have "f-‘‘A∈(IncludedSet X T)" unfolding IncludedSet_def by
auto

}
then show "IsContinuous(IncludedSet X T,IncludedSet X T,f)" unfold-

ing IsContinuous_def by auto

qed

The previous lemmas imply that the group of homeomorphisms of the in-
cluded set topology is the same as the one of the excluded set topology.

lemma homeo_included:

assumes "T⊆X"
shows "HomeoG(IncludedSet X T)={f ∈ bij(X, X) . f ‘‘ (X - T) = X -

T}"

proof-
{

fix f assume "f∈HomeoG(IncludedSet X T)"

then have hom:"IsAhomeomorphism(IncludedSet X T,IncludedSet X T,f)"

and fun:"f∈X→X" and
bij:"f∈bij(X,X)" unfolding HomeoG_def IsAhomeomorphism_def using

union_includedset assms by auto

then have cont:"IsContinuous(IncludedSet X T,IncludedSet X T,f)"

unfolding IsAhomeomorphism_def by auto

then have "IsContinuous(ExcludedSet X T,ExcludedSet X T,f)" using
cont_in_cont_ex fun assms by auto moreover
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{
from hom have cont1:"IsContinuous(IncludedSet X T,IncludedSet X

T,converse(f))" unfolding IsAhomeomorphism_def by auto moreover
have "converse(f):X→X" using bij_converse_bij bij unfolding bij_def

inj_def by auto moreover
note assms ultimately
have "IsContinuous(ExcludedSet X T,ExcludedSet X T,converse(f))"

using cont_in_cont_ex assms by auto

}
then have "IsContinuous(ExcludedSet X T,ExcludedSet X T,converse(f))"

by auto

moreover note bij ultimately
have "IsAhomeomorphism(ExcludedSet X T,ExcludedSet X T,f)" unfold-

ing IsAhomeomorphism_def

using union_excludedset by auto

with fun have "f∈HomeoG(ExcludedSet X T)" unfolding HomeoG_def us-
ing union_excludedset by auto

}
then have "HomeoG(IncludedSet X T)⊆HomeoG(ExcludedSet X T)" by auto

moreover
{

fix f assume "f∈HomeoG(ExcludedSet X T)"

then have hom:"IsAhomeomorphism(ExcludedSet X T,ExcludedSet X T,f)"

and fun:"f∈X→X" and
bij:"f∈bij(X,X)" unfolding HomeoG_def IsAhomeomorphism_def using

union_excludedset assms by auto

then have cont:"IsContinuous(ExcludedSet X T,ExcludedSet X T,f)"

unfolding IsAhomeomorphism_def by auto

then have "IsContinuous(IncludedSet X T,IncludedSet X T,f)" using
cont_ex_cont_in fun assms by auto moreover
{

from hom have cont1:"IsContinuous(ExcludedSet X T,ExcludedSet X

T,converse(f))" unfolding IsAhomeomorphism_def by auto moreover
have "converse(f):X→X" using bij_converse_bij bij unfolding bij_def

inj_def by auto moreover
note assms ultimately
have "IsContinuous(IncludedSet X T,IncludedSet X T,converse(f))"

using cont_ex_cont_in assms by auto

}
then have "IsContinuous(IncludedSet X T,IncludedSet X T,converse(f))"

by auto

moreover note bij ultimately
have "IsAhomeomorphism(IncludedSet X T,IncludedSet X T,f)" unfold-

ing IsAhomeomorphism_def

using union_includedset assms by auto

with fun have "f∈HomeoG(IncludedSet X T)" unfolding HomeoG_def us-
ing union_includedset assms by auto

}
then have "HomeoG(ExcludedSet X T)⊆HomeoG(IncludedSet X T)" by auto
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ultimately
show ?thesis using homeo_excluded by auto

qed

Finally, let’s compute part of the group of homeomorphisms of an order
topology.

lemma homeo_order:

assumes "IsLinOrder(X,r)""∃ x y. x6=y∧x∈X∧y∈X"
shows "ord_iso(X,r,X,r)⊆HomeoG(OrdTopology X r)"

proof
fix f assume "f∈ord_iso(X,r,X,r)"
then have bij:"f∈bij(X,X)" and ord:"∀ x∈X. ∀ y∈X. 〈x, y〉 ∈ r ←→ 〈f

‘ x, f ‘ y〉 ∈ r"

unfolding ord_iso_def by auto

have twoSpac:"two_top_spaces0(OrdTopology X r,OrdTopology X r,f)" un-
folding two_top_spaces0_def

using bij unfolding bij_def inj_def using union_ordtopology[OF assms]

Ordtopology_is_a_topology(1)[OF assms(1)]

by auto

{
fix c d assume A:"c∈X""d∈X"
{

fix x assume AA:"x∈X""x 6=c""x 6=d""〈c,x〉∈r""〈x,d〉∈r"
then have "〈f‘c,f‘x〉∈r""〈f‘x,f‘d〉∈r" using A(2,1) ord by auto more-

over
{

assume "f‘x=f‘c ∨ f‘x=f‘d"

then have "x=c∨x=d" using bij unfolding bij_def inj_def using
A(2,1) AA(1) by auto

then have "False" using AA(2,3) by auto

}
then have "f‘x 6=f‘c""f‘x 6=f‘d" by auto moreover
have "f‘x∈X" using bij unfolding bij_def inj_def using apply_type

AA(1) by auto

ultimately have "f‘x∈IntervalX(X,r,f‘c,f‘d)" unfolding IntervalX_def

Interval_def by auto

}
then have "{f‘x. x∈IntervalX(X,r,c,d)}⊆IntervalX(X,r,f‘c,f‘d)" un-

folding IntervalX_def Interval_def by auto

moreover
{

fix y assume "y∈IntervalX(X,r,f‘c,f‘d)"
then have y:"y∈X""y6=f‘c""y6=f‘d""〈f‘c,y〉∈r""〈y,f‘d〉∈r" unfolding

IntervalX_def Interval_def by auto

then obtain s where s:"s∈X""y=f‘s" using bij unfolding bij_def

surj_def by auto

{
assume "s=c∨s=d"
then have "f‘s=f‘c∨f‘s=f‘d" by auto
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then have "False" using s(2) y(2,3) by auto

}
then have "s 6=c""s6=d" by auto moreover
have "〈c,s〉∈r""〈s,d〉∈r" using y(4,5) s ord A(2,1) by auto more-

over
note s(1) ultimately have "s∈IntervalX(X,r,c,d)" unfolding IntervalX_def

Interval_def by auto

then have "y∈{f‘x. x∈IntervalX(X,r,c,d)}" using s(2) by auto

}
ultimately have "{f‘x. x∈IntervalX(X,r,c,d)}=IntervalX(X,r,f‘c,f‘d)"

by auto moreover
have "IntervalX(X,r,c,d)⊆X" unfolding IntervalX_def by auto more-

over
have "f:X→X" using bij unfolding bij_def surj_def by auto ultimately
have "f‘‘IntervalX(X,r,c,d)=IntervalX(X,r,f‘c,f‘d)" using func_imagedef

by auto

}
then have inter:"∀ c∈X. ∀ d∈X. f‘‘IntervalX(X,r,c,d)=IntervalX(X,r,f‘c,f‘d)

∧ f‘c∈X ∧ f‘d∈X" using bij

unfolding bij_def inj_def by auto

{
fix c assume A:"c∈X"
{

fix x assume AA:"x∈X""x6=c""〈c,x〉∈r"
then have "〈f‘c,f‘x〉∈r" using A ord by auto moreover
{

assume "f‘x=f‘c"

then have "x=c" using bij unfolding bij_def inj_def using A AA(1)

by auto

then have "False" using AA(2) by auto

}
then have "f‘x 6=f‘c" by auto moreover
have "f‘x∈X" using bij unfolding bij_def inj_def using apply_type

AA(1) by auto

ultimately have "f‘x∈RightRayX(X,r,f‘c)" unfolding RightRayX_def

by auto

}
then have "{f‘x. x∈RightRayX(X,r,c)}⊆RightRayX(X,r,f‘c)" unfold-

ing RightRayX_def by auto

moreover
{

fix y assume "y∈RightRayX(X,r,f‘c)"
then have y:"y∈X""y 6=f‘c""〈f‘c,y〉∈r" unfolding RightRayX_def by

auto

then obtain s where s:"s∈X""y=f‘s" using bij unfolding bij_def

surj_def by auto

{
assume "s=c"

then have "f‘s=f‘c" by auto

889



then have "False" using s(2) y(2) by auto

}
then have "s 6=c" by auto moreover
have "〈c,s〉∈r" using y(3) s ord A by auto moreover
note s(1) ultimately have "s∈RightRayX(X,r,c)" unfolding RightRayX_def

by auto

then have "y∈{f‘x. x∈RightRayX(X,r,c)}" using s(2) by auto

}
ultimately have "{f‘x. x∈RightRayX(X,r,c)}=RightRayX(X,r,f‘c)" by

auto moreover
have "RightRayX(X,r,c)⊆X" unfolding RightRayX_def by auto more-

over
have "f:X→X" using bij unfolding bij_def surj_def by auto ultimately
have "f‘‘RightRayX(X,r,c)=RightRayX(X,r,f‘c)" using func_imagedef

by auto

}
then have rray:"∀ c∈X. f‘‘RightRayX(X,r,c)=RightRayX(X,r,f‘c) ∧ f‘c∈X"

using bij

unfolding bij_def inj_def by auto

{
fix c assume A:"c∈X"
{

fix x assume AA:"x∈X""x6=c""〈x,c〉∈r"
then have "〈f‘x,f‘c〉∈r" using A ord by auto moreover
{

assume "f‘x=f‘c"

then have "x=c" using bij unfolding bij_def inj_def using A AA(1)

by auto

then have "False" using AA(2) by auto

}
then have "f‘x 6=f‘c" by auto moreover
have "f‘x∈X" using bij unfolding bij_def inj_def using apply_type

AA(1) by auto

ultimately have "f‘x∈LeftRayX(X,r,f‘c)" unfolding LeftRayX_def by
auto

}
then have "{f‘x. x∈LeftRayX(X,r,c)}⊆LeftRayX(X,r,f‘c)" unfolding

LeftRayX_def by auto

moreover
{

fix y assume "y∈LeftRayX(X,r,f‘c)"
then have y:"y∈X""y 6=f‘c""〈y,f‘c〉∈r" unfolding LeftRayX_def by auto

then obtain s where s:"s∈X""y=f‘s" using bij unfolding bij_def

surj_def by auto

{
assume "s=c"

then have "f‘s=f‘c" by auto

then have "False" using s(2) y(2) by auto

}

890



then have "s 6=c" by auto moreover
have "〈s,c〉∈r" using y(3) s ord A by auto moreover
note s(1) ultimately have "s∈LeftRayX(X,r,c)" unfolding LeftRayX_def

by auto

then have "y∈{f‘x. x∈LeftRayX(X,r,c)}" using s(2) by auto

}
ultimately have "{f‘x. x∈LeftRayX(X,r,c)}=LeftRayX(X,r,f‘c)" by auto

moreover
have "LeftRayX(X,r,c)⊆X" unfolding LeftRayX_def by auto moreover
have "f:X→X" using bij unfolding bij_def surj_def by auto ultimately
have "f‘‘LeftRayX(X,r,c)=LeftRayX(X,r,f‘c)" using func_imagedef by

auto

}
then have lray:"∀ c∈X. f‘‘LeftRayX(X,r,c)=LeftRayX(X,r,f‘c)∧f‘c∈X"

using bij

unfolding bij_def inj_def by auto

have r1:"∀ U∈{IntervalX(X, r, b, c) . 〈b,c〉 ∈ X × X} ∪ {LeftRayX(X,

r, b) . b ∈ X} ∪
{RightRayX(X, r, b) . b ∈ X}. f‘‘U∈({IntervalX(X, r, b, c) . 〈b,c〉

∈ X × X} ∪ {LeftRayX(X, r, b) . b ∈ X} ∪
{RightRayX(X, r, b) . b ∈ X})" apply safe prefer 3 using rray ap-

ply blast prefer 2 using lray apply blast

using inter apply auto

proof-
fix xa y assume "xa∈X""y∈X"
then have "f‘xa∈X""f‘y∈X" using bij unfolding bij_def inj_def by

auto

then show "∃ x∈X. ∃ ya∈X. IntervalX(X, r, f ‘ xa, f ‘ y) = IntervalX(X,

r, x, ya)" by auto

qed
have r2:"{IntervalX(X, r, b, c) . 〈b,c〉 ∈ X × X} ∪ {LeftRayX(X, r,

b) . b ∈ X} ∪ {RightRayX(X, r, b) . b ∈ X}⊆(OrdTopology X r)"

using base_sets_open[OF Ordtopology_is_a_topology(2)[OF assms(1)]]

by blast

{
fix U assume "U∈{IntervalX(X, r, b, c) . 〈b,c〉 ∈ X × X} ∪ {LeftRayX(X,

r, b) . b ∈ X} ∪ {RightRayX(X, r, b) . b ∈ X}"

with r1 have "f‘‘U∈{IntervalX(X, r, b, c) . 〈b,c〉 ∈ X × X} ∪ {LeftRayX(X,

r, b) . b ∈ X} ∪ {RightRayX(X, r, b) . b ∈ X}"

by auto

with r2 have "f‘‘U∈(OrdTopology X r)" by blast

}
then have "∀ U∈{IntervalX(X, r, b, c) . 〈b,c〉 ∈ X × X} ∪ {LeftRayX(X,

r, b) . b ∈ X} ∪
{RightRayX(X, r, b) . b ∈ X}. f‘‘U∈(OrdTopology X r)" by blast

then have f_open:"∀ U∈(OrdTopology X r). f‘‘U∈(OrdTopology X r)" us-
ing two_top_spaces0.base_image_open[OF twoSpac Ordtopology_is_a_topology(2)[OF

assms(1)]]

by auto
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{
fix c d assume A:"c∈X""d∈X"
then obtain cc dd where pre:"f‘cc=c""f‘dd=d""cc∈X""dd∈X" using bij

unfolding bij_def surj_def by blast

with inter have "f ‘‘ IntervalX(X, r, cc, dd) = IntervalX(X, r, c,

d)" by auto

then have "f-‘‘(f‘‘IntervalX(X, r, cc, dd)) = f-‘‘(IntervalX(X, r,

c, d))" by auto

moreover
have "IntervalX(X, r, cc, dd)⊆X" unfolding IntervalX_def by auto

moreover
have "f∈inj(X,X)" using bij unfolding bij_def by auto ultimately
have "IntervalX(X, r, cc, dd)=f-‘‘IntervalX(X, r, c, d)" using inj_vimage_image

by auto

moreover
from pre(3,4) have "IntervalX(X, r, cc, dd)∈{IntervalX(X,r,e1,e2).

〈e1,e2〉∈X×X}" by auto

ultimately have "f-‘‘IntervalX(X, r, c, d)∈(OrdTopology X r)" us-
ing

base_sets_open[OF Ordtopology_is_a_topology(2)[OF assms(1)]] by
auto

}
then have inter:"∀ c∈X. ∀ d∈X. f-‘‘IntervalX(X, r, c, d)∈(OrdTopology

X r)" by auto

{
fix c assume A:"c∈X"
then obtain cc where pre:"f‘cc=c""cc∈X" using bij unfolding bij_def

surj_def by blast

with rray have "f ‘‘ RightRayX(X, r, cc) = RightRayX(X, r, c)" by
auto

then have "f-‘‘(f‘‘RightRayX(X, r, cc)) = f-‘‘(RightRayX(X, r, c))"

by auto

moreover
have "RightRayX(X, r, cc)⊆X" unfolding RightRayX_def by auto more-

over
have "f∈inj(X,X)" using bij unfolding bij_def by auto ultimately
have "RightRayX(X, r, cc)=f-‘‘RightRayX(X, r, c)" using inj_vimage_image

by auto

moreover
from pre(2) have "RightRayX(X, r, cc)∈{RightRayX(X,r,e2). e2∈X}"

by auto

ultimately have "f-‘‘RightRayX(X, r, c)∈(OrdTopology X r)" using
base_sets_open[OF Ordtopology_is_a_topology(2)[OF assms(1)]] by

auto

}
then have rray:"∀ c∈X. f-‘‘RightRayX(X, r, c)∈(OrdTopology X r)" by

auto

{
fix c assume A:"c∈X"
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then obtain cc where pre:"f‘cc=c""cc∈X" using bij unfolding bij_def

surj_def by blast

with lray have "f ‘‘ LeftRayX(X, r, cc) = LeftRayX(X, r, c)" by
auto

then have "f-‘‘(f‘‘LeftRayX(X, r, cc)) = f-‘‘(LeftRayX(X, r, c))"

by auto

moreover
have "LeftRayX(X, r, cc)⊆X" unfolding LeftRayX_def by auto more-

over
have "f∈inj(X,X)" using bij unfolding bij_def by auto ultimately
have "LeftRayX(X, r, cc)=f-‘‘LeftRayX(X, r, c)" using inj_vimage_image

by auto

moreover
from pre(2) have "LeftRayX(X, r, cc)∈{LeftRayX(X,r,e2). e2∈X}" by

auto

ultimately have "f-‘‘LeftRayX(X, r, c)∈(OrdTopology X r)" using
base_sets_open[OF Ordtopology_is_a_topology(2)[OF assms(1)]] by

auto

}
then have lray:"∀ c∈X. f-‘‘LeftRayX(X, r, c)∈(OrdTopology X r)" by

auto

{
fix U assume "U∈{IntervalX(X, r, b, c) . 〈b,c〉 ∈ X × X} ∪ {LeftRayX(X,

r, b) . b ∈ X} ∪ {RightRayX(X, r, b) . b ∈ X}"

with lray inter rray have "f-‘‘U∈(OrdTopology X r)" by auto

}
then have "∀ U∈{IntervalX(X, r, b, c) . 〈b,c〉 ∈ X × X} ∪ {LeftRayX(X,

r, b) . b ∈ X} ∪ {RightRayX(X, r, b) . b ∈ X}.

f-‘‘U∈(OrdTopology X r)" by blast

then have fcont:"IsContinuous(OrdTopology X r,OrdTopology X r,f)" us-
ing two_top_spaces0.Top_ZF_2_1_L5[OF twoSpac

Ordtopology_is_a_topology(2)[OF assms(1)]] by auto

from fcont f_open bij have "IsAhomeomorphism(OrdTopology X r,OrdTopology

X r,f)" using bij_cont_open_homeo

union_ordtopology[OF assms] by auto

then show "f∈HomeoG(OrdTopology X r)" unfolding HomeoG_def using bij

union_ordtopology[OF assms]

unfolding bij_def inj_def by auto

qed

This last example shows that order isomorphic sets give homeomorphic topo-
logical spaces.

62.3 Properties preserved by functions

The continuous image of a connected space is connected.

theorem (in two_top_spaces0) cont_image_conn:

assumes "IsContinuous(τ1,τ2,f)" "f∈surj(X1,X2)" "τ1{is connected}"
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shows "τ2{is connected}"

proof-
{

fix U

assume Uop:"U∈τ2" and Ucl:"U{is closed in}τ2"
from Uop assms(1) have "f-‘‘U∈τ1" unfolding IsContinuous_def by auto

moreover
from Ucl assms(1) have "f-‘‘U{is closed in}τ1" using TopZF_2_1_L1

by auto ultimately
have disj:"f-‘‘U=0 ∨ f-‘‘U=

⋃
τ1" using assms(3) unfolding IsConnected_def

by auto moreover
{

assume as:"f-‘‘U6=0"

then have "U 6=0" using func1_1_L13 by auto

from as disj have "f-‘‘U=
⋃
τ1" by auto

then have "f‘‘(f-‘‘U)=f‘‘(
⋃
τ1)" by auto moreover

have "U⊆
⋃
τ2" using Uop by blast ultimately

have "U=f‘‘(
⋃
τ1)" using surj_image_vimage assms(2) Uop by force

then have "
⋃
τ2=U" using surj_range_image_domain assms(2) by auto

}
moreover
{

assume as:"U6=0"

from Uop have s:"U⊆
⋃
τ2" by auto

with as obtain u where uU:"u∈U" by auto

with s have "u∈
⋃
τ2" by auto

with assms(2) obtain w where "f‘w=u""w∈
⋃
τ1" unfolding surj_def

X1_def X2_def by blast

with uU have "w∈f-‘‘U" using func1_1_L15 assms(2) unfolding surj_def

by auto

then have "f-‘‘U6=0" by auto

}
ultimately have "U=0∨U=

⋃
τ2" by auto

}
then show ?thesis unfolding IsConnected_def by auto

qed

Every continuous function from a space which has some property P and a
space which has the property anti(P), given that this property is preserved
by continuous functions, if follows that the range of the function is in the
spectrum. Applied to connectedness, it follows that continuous functions
from a connected space to a totally-disconnected one are constant.

corollary(in two_top_spaces0) cont_conn_tot_disc:

assumes "IsContinuous(τ1,τ2,f)" "τ1{is connected}" "τ2{is totally-disconnected}"

"f:X1→X2" "X1 6=0"

shows "∃ q∈X2. ∀ w∈X1. f‘(w)=q"

proof-
from assms(4) have surj:"f∈surj(X1,range(f))" using fun_is_surj by

auto
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have sub:"range(f)⊆X2" using func1_1_L5B assms(4) by auto

from assms(1) have cont:"IsContinuous(τ1,τ2{restricted to}range(f),f)"

using restr_image_cont range_image_domain

assms(4) by auto

have union:"
⋃
(τ2{restricted to}range(f))=range(f)" unfolding RestrictedTo_def

using sub by auto

then have "two_top_spaces0(τ1,τ2{restricted to}range(f),f)" unfold-
ing two_top_spaces0_def

using surj unfolding surj_def using tau1_is_top topology0.Top_1_L4

unfolding topology0_def using tau2_is_top

by auto

then have conn:"(τ2{restricted to}range(f)){is connected}" using two_top_spaces0.cont_image_conn

surj assms(2) cont

union by auto

then have "range(f){is in the spectrum of}IsConnected" using assms(3)

sub unfolding IsTotDis_def antiProperty_def

using union by auto

then have "range(f).1" using conn_spectrum by auto moreover
from assms(5) have "f‘‘X1 6=0" using func1_1_L15A assms(4) by auto

then have "range(f)6=0" using range_image_domain assms(4) by auto

ultimately obtain q where uniq:"range(f)={q}" using lepoll_1_is_sing

by blast

{
fix w assume "w∈X1"
then have "f‘w∈range(f)" using func1_1_L5A(2) assms(4) by auto

with uniq have "f‘w=q" by auto

}
then have "∀ w∈X1. f‘w=q" by auto

then show ?thesis using uniq sub by auto

qed

The continuous image of a compact space is compact.

theorem (in two_top_spaces0) cont_image_com:

assumes "IsContinuous(τ1,τ2,f)" "f∈surj(X1,X2)" "X1{is compact of cardinal}K{in}τ1"
shows "X2{is compact of cardinal}K{in}τ2"

proof-
have "X2⊆

⋃
τ2" by auto moreover

{
fix U assume as:"X2⊆

⋃
U" "U⊆τ2"

then have op:"{f-‘‘V. V∈U}⊆τ1" using assms(1) unfolding IsContinuous_def

by auto

from as(1) have "f-‘‘X2 ⊆ f-‘‘(
⋃
U)" by blast

then have "f-‘‘X2 ⊆ converse(f)‘‘(
⋃
U)" unfolding vimage_def by auto

moreover
have "converse(f)‘‘(

⋃
U)=(

⋃
V∈U. converse(f)‘‘V)" using image_UN by

force ultimately
have "f-‘‘X2 ⊆ (

⋃
V∈U. converse(f)‘‘V)" by auto

then have "f-‘‘X2 ⊆ (
⋃
V∈U. f-‘‘V)" unfolding vimage_def by auto

then have "X1 ⊆ (
⋃
V∈U. f-‘‘V)" using func1_1_L4 assms(2) unfold-
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ing surj_def by force

then have "X1 ⊆
⋃
{f-‘‘V. V∈U}" by auto

with op assms(3) have "∃ N∈Pow({f-‘‘V. V∈U}). X1 ⊆
⋃
N ∧ N≺K" un-

folding IsCompactOfCard_def by auto

then obtain N where "N∈Pow({f-‘‘V. V∈U})" "X1 ⊆
⋃
N" "N≺K" by auto

then have fin:"N≺K" and sub:"N⊆{f-‘‘V. V∈U}" and cov:"X1 ⊆
⋃
N"

unfolding FinPow_def by auto

from sub have "{f‘‘R. R∈N}⊆{f‘‘(f-‘‘V). V∈U}" by auto moreover
have "∀ V∈U. V⊆

⋃
τ2" using as(2) by auto ultimately

have "{f‘‘R. R∈N}⊆U" using surj_image_vimage assms(2) by auto more-
over

let ?FN="{〈R,f‘‘R〉. R∈N}"
have FN:"?FN:N→{f‘‘R. R∈N}" unfolding Pi_def function_def domain_def

by auto

{
fix S assume "S∈{f‘‘R. R∈N}"
then obtain R where R_def:"R∈N""f‘‘R=S" by auto

then have "〈R,f‘‘R〉∈?FN" by auto

then have "?FN‘R=f‘‘R" using FN apply_equality by auto

then have "∃ R∈N. ?FN‘R=S" using R_def by auto

}
then have surj:"?FN∈surj(N,{f‘‘R. R∈N})" unfolding surj_def using

FN by force

from fin have N:"N.K" "Ord(K)" using assms(3) lesspoll_imp_lepoll

unfolding IsCompactOfCard_def

using Card_is_Ord by auto

then have "{f‘‘R. R∈N}.N" using surj_fun_inv_2 surj by auto

then have "{f‘‘R. R∈N}≺K" using fin lesspoll_trans1 by blast

moreover
have "

⋃
{f‘‘R. R∈N}=f‘‘(

⋃
N)" using image_UN by auto

then have "f‘‘X1 ⊆
⋃
{f‘‘R. R∈N}" using cov by blast

then have "X2 ⊆
⋃
{f‘‘R. R∈N}" using assms(2) surj_range_image_domain

by auto

ultimately have "∃ NN∈Pow(U). X2 ⊆
⋃
NN ∧ NN≺K" by auto

}
then have "∀ U∈Pow(τ2). X2 ⊆

⋃
U −→ (∃ NN∈Pow(U). X2 ⊆

⋃
NN ∧ NN≺K)"

by auto

ultimately show ?thesis using assms(3) unfolding IsCompactOfCard_def

by auto

qed

As it happends to connected spaces, a continuous function from a compact
space to an anti-compact space has finite range.

corollary (in two_top_spaces0) cont_comp_anti_comp:

assumes "IsContinuous(τ1,τ2,f)" "X1{is compact in}τ1" "τ2{is anti-compact}"

"f:X1→X2" "X1 6=0"

shows "Finite(range(f))" and "range(f)6=0"

proof-
from assms(4) have surj:"f∈surj(X1,range(f))" using fun_is_surj by
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auto

have sub:"range(f)⊆X2" using func1_1_L5B assms(4) by auto

from assms(1) have cont:"IsContinuous(τ1,τ2{restricted to}range(f),f)"

using restr_image_cont range_image_domain

assms(4) by auto

have union:"
⋃
(τ2{restricted to}range(f))=range(f)" unfolding RestrictedTo_def

using sub by auto

then have "two_top_spaces0(τ1,τ2{restricted to}range(f),f)" unfold-
ing two_top_spaces0_def

using surj unfolding surj_def using tau1_is_top topology0.Top_1_L4

unfolding topology0_def using tau2_is_top

by auto

then have "range(f){is compact in}(τ2{restricted to}range(f))" using
surj two_top_spaces0.cont_image_com cont union

assms(2) Compact_is_card_nat by force

then have "range(f){is in the spectrum of}(λT. (
⋃
T) {is compact in}T)"

using assms(3) sub unfolding IsAntiComp_def antiProperty_def

using union by auto

then show "Finite(range(f))" using compact_spectrum by auto more-
over

from assms(5) have "f‘‘X1 6=0" using func1_1_L15A assms(4) by auto

then show "range(f)6=0" using range_image_domain assms(4) by auto

qed

As a consequence, it follows that quotient topological spaces of compact
(connected) spaces are compact (connected).

corollary(in topology0) compQuot:

assumes "(
⋃
T){is compact in}T" "equiv(

⋃
T,r)"

shows "(
⋃
T)//r{is compact in}({quotient by}r)"

proof-
have surj:"{〈b,r‘‘{b}〉. b∈

⋃
T}∈surj(

⋃
T,(
⋃
T)//r)" using quotient_proj_surj

by auto

moreover have tot:"
⋃
({quotient by}r)=(

⋃
T)//r" using total_quo_equi

assms(2) by auto

ultimately have cont:"IsContinuous(T,{quotient by}r,{〈b,r‘‘{b}〉. b∈
⋃
T})"

using quotient_func_cont

EquivQuo_def assms(2) by auto

from surj tot have "two_top_spaces0(T,{quotient by}r,{〈b,r‘‘{b}〉. b∈
⋃
T})"

unfolding two_top_spaces0_def

using topSpaceAssum equiv_quo_is_top assms(2) unfolding surj_def by
auto

with surj cont tot assms(1) show ?thesis using two_top_spaces0.cont_image_com

Compact_is_card_nat by force

qed

corollary(in topology0) ConnQuot:

assumes "T{is connected}" "equiv(
⋃
T,r)"

shows "({quotient by}r){is connected}"

proof-

897



have surj:"{〈b,r‘‘{b}〉. b∈
⋃
T}∈surj(

⋃
T,(
⋃
T)//r)" using quotient_proj_surj

by auto

moreover have tot:"
⋃
({quotient by}r)=(

⋃
T)//r" using total_quo_equi

assms(2) by auto

ultimately have cont:"IsContinuous(T,{quotient by}r,{〈b,r‘‘{b}〉. b∈
⋃
T})"

using quotient_func_cont

EquivQuo_def assms(2) by auto

from surj tot have "two_top_spaces0(T,{quotient by}r,{〈b,r‘‘{b}〉. b∈
⋃
T})"

unfolding two_top_spaces0_def

using topSpaceAssum equiv_quo_is_top assms(2) unfolding surj_def by
auto

with surj cont tot assms(1) show ?thesis using two_top_spaces0.cont_image_conn

by force

qed

end

63 Topology 10

theory Topology_ZF_10

imports Topology_ZF_7

begin

This file deals with properties of product spaces. We only consider product
of two spaces, and most of this proofs, can be used to prove the results in
product of a finite number of spaces.

63.1 Closure and closed sets in product space

The closure of a product, is the product of the closures.

lemma cl_product:

assumes "T{is a topology}" "S{is a topology}" "A⊆
⋃
T" "B⊆

⋃
S"

shows "Closure(A×B,ProductTopology(T,S))=Closure(A,T)×Closure(B,S)"
proof

have "A×B⊆
⋃
T×
⋃
S" using assms(3,4) by auto

then have sub:"A×B⊆
⋃
ProductTopology(T,S)" using Top_1_4_T1(3) assms(1,2)

by auto

have top:"ProductTopology(T,S){is a topology}" using Top_1_4_T1(1) assms(1,2)

by auto

{
fix x assume asx:"x∈Closure(A×B,ProductTopology(T,S))"
then have reg:"∀ U∈ProductTopology(T,S). x∈U −→ U∩(A×B) 6=0" us-

ing topology0.cl_inter_neigh

sub top unfolding topology0_def by blast

from asx have "x∈
⋃
ProductTopology(T,S)" using topology0.Top_3_L11(1)

top unfolding topology0_def

using sub by blast

then have xSigma:"x∈
⋃
T×
⋃
S" using Top_1_4_T1(3) assms(1,2) by auto

898



then have "〈fst(x),snd(x)〉∈
⋃
T×
⋃
S" using Pair_fst_snd_eq by auto

then have xT:"fst(x)∈
⋃
T" and xS:"snd(x)∈

⋃
S" by auto

{
fix U V assume as:"U∈T" "fst(x)∈U"
have "

⋃
S∈S" using assms(2) unfolding IsATopology_def by auto

with as have "U×(
⋃
S)∈ProductCollection(T,S)" unfolding ProductCollection_def

by auto

then have op:"U×(
⋃
S)∈ProductTopology(T,S)" using Top_1_4_T1(2)

assms(1,2) base_sets_open by blast

with xS as(2) have "〈fst(x),snd(x)〉∈U×(
⋃
S)" by auto

then have "x∈U×(
⋃
S)" using Pair_fst_snd_eq xSigma by auto

with op reg have "U×(
⋃
S)∩A×B 6=0" by auto

then have noEm:"U∩A 6=0" by auto

}
then have "∀ U∈T. fst(x)∈U −→ U∩A6=0" by auto moreover
{

fix U V assume as:"U∈S" "snd(x)∈U"
have "

⋃
T∈T" using assms(1) unfolding IsATopology_def by auto

with as have "(
⋃
T)×U∈ProductCollection(T,S)" unfolding ProductCollection_def

by auto

then have op:"(
⋃
T)×U∈ProductTopology(T,S)" using Top_1_4_T1(2)

assms(1,2) base_sets_open by blast

with xT as(2) have "〈fst(x),snd(x)〉∈(
⋃
T)×U" by auto

then have "x∈(
⋃
T)×U" using Pair_fst_snd_eq xSigma by auto

with op reg have "(
⋃
T)×U∩A×B 6=0" by auto

then have noEm:"U∩B 6=0" by auto

}
then have "∀ U∈S. snd(x)∈U −→ U∩B6=0" by auto

ultimately have "fst(x)∈Closure(A,T)" "snd(x)∈Closure(B,S)" using

topology0.inter_neigh_cl assms(3,4) unfolding topology0_def

using assms(1,2) xT xS by auto

then have "〈fst(x),snd(x)〉∈Closure(A,T)×Closure(B,S)" by auto

with xSigma have "x∈Closure(A,T)×Closure(B,S)" by auto

}
then show "Closure(A×B,ProductTopology(T,S))⊆Closure(A,T)×Closure(B,S)"

by auto

{
fix x assume x:"x∈Closure(A,T)×Closure(B,S)"
then have xcl:"fst(x)∈Closure(A,T)" "snd(x)∈Closure(B,S)" by auto

from xcl(1) have regT:"∀ U∈T. fst(x)∈U −→ U∩A6=0" using topology0.cl_inter_neigh

unfolding topology0_def using assms(1,3) by blast

from xcl(2) have regS:"∀ U∈S. snd(x)∈U −→ U∩B6=0" using topology0.cl_inter_neigh

unfolding topology0_def using assms(2,4) by blast

from x assms(3,4) have "x∈
⋃
T×
⋃
S" using topology0.Top_3_L11(1) un-

folding topology0_def

using assms(1,2) by blast

then have xtot:"x∈
⋃
ProductTopology(T,S)" using Top_1_4_T1(3) assms(1,2)

by auto
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{
fix PO assume as:"PO∈ProductTopology(T,S)" "x∈PO"
then obtain POB where base:"POB∈ProductCollection(T,S)" "x∈POB""POB⊆PO"

using point_open_base_neigh

Top_1_4_T1(2) assms(1,2) base_sets_open by blast

then obtain VT VS where V:"VT∈T" "VS∈S" "x∈VT×VS" "POB=VT×VS"
unfolding ProductCollection_def

by auto

from V(3) have x:"fst(x)∈VT" "snd(x)∈VS" by auto

from V(1) regT x(1) have "VT∩A6=0" by auto moreover
from V(2) regS x(2) have "VS∩B6=0" by auto ultimately
have "VT×VS∩A×B6=0" by auto

with V(4) base(3) have "PO∩A×B6=0" by blast

}
then have "∀ P∈ProductTopology(T,S). x∈P −→ P∩A×B 6=0" by auto

then have "x∈Closure(A×B,ProductTopology(T,S))" using topology0.inter_neigh_cl

unfolding topology0_def using top sub xtot by auto

}
then show "Closure(A,T)×Closure(B,S)⊆Closure(A×B,ProductTopology(T,S))"

by auto

qed

The product of closed sets, is closed in the product topology.

corollary closed_product:

assumes "T{is a topology}" "S{is a topology}" "A{is closed in}T""B{is

closed in}S"

shows "(A×B) {is closed in}ProductTopology(T,S)"

proof-
from assms(3,4) have sub:"A⊆

⋃
T""B⊆

⋃
S" unfolding IsClosed_def by

auto

then have "A×B⊆
⋃
T×
⋃
S" by auto

then have sub1:"A×B⊆
⋃
ProductTopology(T,S)" using Top_1_4_T1(3) assms(1,2)

by auto

from sub assms have "Closure(A,T)=A""Closure(B,S)=B" using topology0.Top_3_L8

unfolding topology0_def by auto

then have "Closure(A×B,ProductTopology(T,S))=A×B" using cl_product

assms(1,2) sub by auto

then show ?thesis using topology0.Top_3_L8 unfolding topology0_def

using sub1 Top_1_4_T1(1) assms(1,2) by auto

qed

63.2 Separation properties in product space

The product of T0 spaces is T0.

theorem T0_product:

assumes "T{is a topology}""S{is a topology}""T{is T0}""S{is T0}"

shows "ProductTopology(T,S){is T0}"

proof-
{
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fix x y assume "x∈
⋃
ProductTopology(T,S)""y∈

⋃
ProductTopology(T,S)""x6=y"

then have tot:"x∈
⋃
T×
⋃
S""y∈

⋃
T×
⋃
S""x6=y" using Top_1_4_T1(3) assms(1,2)

by auto

then have "〈fst(x),snd(x)〉∈
⋃
T×
⋃
S""〈fst(y),snd(y)〉∈

⋃
T×
⋃
S" and

disj:"fst(x)6=fst(y)∨snd(x)6=snd(y)"

using Pair_fst_snd_eq by auto

then have T:"fst(x)∈
⋃
T""fst(y)∈

⋃
T" and S:"snd(y)∈

⋃
S""snd(x)∈

⋃
S"

and p:"fst(x)6=fst(y)∨snd(x)6=snd(y)"

by auto

{
assume "fst(x)6=fst(y)"

with T assms(3) have "(∃ U∈T. (fst(x)∈U∧fst(y)/∈U)∨(fst(y)∈U∧fst(x)/∈U))"
unfolding

isT0_def by auto

then obtain U where "U∈T" "(fst(x)∈U∧fst(y)/∈U)∨(fst(y)∈U∧fst(x)/∈U)"
by auto

with S have "(〈fst(x),snd(x)〉∈U×(
⋃
S) ∧ 〈fst(y),snd(y)〉/∈U×(

⋃
S))∨(〈fst(y),snd(y)〉∈U×(

⋃
S)

∧ 〈fst(x),snd(x)〉/∈U×(
⋃
S))"

by auto

then have "(x∈U×(
⋃
S) ∧ y/∈U×(

⋃
S))∨(y∈U×(

⋃
S) ∧ x/∈U×(

⋃
S))"

using Pair_fst_snd_eq tot(1,2) by auto

moreover have "(
⋃
S)∈S" using assms(2) unfolding IsATopology_def

by auto

with ‘U∈T‘ have "U×(
⋃
S)∈ProductTopology(T,S)" using prod_open_open_prod

assms(1,2) by auto

ultimately
have "∃ V∈ProductTopology(T,S). (x∈V ∧ y/∈V)∨(y∈V ∧ x/∈V)" proof

qed
} moreover
{

assume "snd(x)6=snd(y)"

with S assms(4) have "(∃ U∈S. (snd(x)∈U∧snd(y)/∈U)∨(snd(y)∈U∧snd(x)/∈U))"
unfolding

isT0_def by auto

then obtain U where "U∈S" "(snd(x)∈U∧snd(y)/∈U)∨(snd(y)∈U∧snd(x)/∈U)"
by auto

with T have "(〈fst(x),snd(x)〉∈(
⋃
T)×U ∧ 〈fst(y),snd(y)〉/∈(

⋃
T)×U)∨(〈fst(y),snd(y)〉∈(

⋃
T)×U

∧ 〈fst(x),snd(x)〉/∈(
⋃
T)×U)"

by auto

then have "(x∈(
⋃
T)×U ∧ y/∈(

⋃
T)×U)∨(y∈(

⋃
T)×U ∧ x/∈(

⋃
T)×U)"

using Pair_fst_snd_eq tot(1,2) by auto

moreover have "(
⋃
T)∈T" using assms(1) unfolding IsATopology_def

by auto

with ‘U∈S‘ have "(
⋃
T)×U∈ProductTopology(T,S)" using prod_open_open_prod

assms(1,2) by auto

ultimately
have "∃ V∈ProductTopology(T,S). (x∈V ∧ y/∈V)∨(y∈V ∧ x/∈V)" proof

qed
}moreover
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note disj

ultimately have "∃ V∈ProductTopology(T,S). (x∈V ∧ y/∈V)∨(y∈V ∧ x/∈V)"
by auto

}
then show ?thesis unfolding isT0_def by auto

qed

The product of T1 spaces is T1.

theorem T1_product:

assumes "T{is a topology}""S{is a topology}""T{is T1}""S{is T1}"

shows "ProductTopology(T,S){is T1}"

proof-
{

fix x y assume "x∈
⋃
ProductTopology(T,S)""y∈

⋃
ProductTopology(T,S)""x6=y"

then have tot:"x∈
⋃
T×
⋃
S""y∈

⋃
T×
⋃
S""x 6=y" using Top_1_4_T1(3) assms(1,2)

by auto

then have "〈fst(x),snd(x)〉∈
⋃
T×
⋃
S""〈fst(y),snd(y)〉∈

⋃
T×
⋃
S" and

disj:"fst(x)6=fst(y)∨snd(x)6=snd(y)"

using Pair_fst_snd_eq by auto

then have T:"fst(x)∈
⋃
T""fst(y)∈

⋃
T" and S:"snd(y)∈

⋃
S""snd(x)∈

⋃
S"

and p:"fst(x)6=fst(y)∨snd(x)6=snd(y)"

by auto

{
assume "fst(x)6=fst(y)"

with T assms(3) have "(∃ U∈T. (fst(x)∈U∧fst(y)/∈U))" unfolding
isT1_def by auto

then obtain U where "U∈T" "(fst(x)∈U∧fst(y)/∈U)" by auto

with S have "(〈fst(x),snd(x)〉∈U×(
⋃
S) ∧ 〈fst(y),snd(y)〉/∈U×(

⋃
S))"

by auto

then have "(x∈U×(
⋃
S) ∧ y/∈U×(

⋃
S))" using Pair_fst_snd_eq tot(1,2)

by auto

moreover have "(
⋃
S)∈S" using assms(2) unfolding IsATopology_def

by auto

with ‘U∈T‘ have "U×(
⋃
S)∈ProductTopology(T,S)" using prod_open_open_prod

assms(1,2) by auto

ultimately
have "∃ V∈ProductTopology(T,S). (x∈V ∧ y/∈V)" proof qed
} moreover
{

assume "snd(x)6=snd(y)"

with S assms(4) have "(∃ U∈S. (snd(x)∈U∧snd(y)/∈U))" unfolding
isT1_def by auto

then obtain U where "U∈S" "(snd(x)∈U∧snd(y)/∈U)" by auto

with T have "(〈fst(x),snd(x)〉∈(
⋃
T)×U ∧ 〈fst(y),snd(y)〉/∈(

⋃
T)×U)"

by auto

then have "(x∈(
⋃
T)×U ∧ y/∈(

⋃
T)×U)" using Pair_fst_snd_eq tot(1,2)

by auto

moreover have "(
⋃
T)∈T" using assms(1) unfolding IsATopology_def

by auto
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with ‘U∈S‘ have "(
⋃
T)×U∈ProductTopology(T,S)" using prod_open_open_prod

assms(1,2) by auto

ultimately
have "∃ V∈ProductTopology(T,S). (x∈V ∧ y/∈V)" proof qed
}moreover
note disj

ultimately have "∃ V∈ProductTopology(T,S). (x∈V ∧ y/∈V)" by auto

}
then show ?thesis unfolding isT1_def by auto

qed

The product of T2 spaces is T2.

theorem T2_product:

assumes "T{is a topology}""S{is a topology}""T{is T2}""S{is T2}"

shows "ProductTopology(T,S){is T2}"

proof-
{

fix x y assume "x∈
⋃
ProductTopology(T,S)""y∈

⋃
ProductTopology(T,S)""x6=y"

then have tot:"x∈
⋃
T×
⋃
S""y∈

⋃
T×
⋃
S""x 6=y" using Top_1_4_T1(3) assms(1,2)

by auto

then have "〈fst(x),snd(x)〉∈
⋃
T×
⋃
S""〈fst(y),snd(y)〉∈

⋃
T×
⋃
S" and

disj:"fst(x)6=fst(y)∨snd(x)6=snd(y)"

using Pair_fst_snd_eq by auto

then have T:"fst(x)∈
⋃
T""fst(y)∈

⋃
T" and S:"snd(y)∈

⋃
S""snd(x)∈

⋃
S"

and p:"fst(x)6=fst(y)∨snd(x)6=snd(y)"

by auto

{
assume "fst(x)6=fst(y)"

with T assms(3) have "(∃ U∈T. ∃ V∈T. (fst(x)∈U∧fst(y)∈V) ∧ U∩V=0)"
unfolding

isT2_def by auto

then obtain U V where "U∈T" "V∈T" "fst(x)∈U" "fst(y)∈V" "U∩V=0"
by auto

with S have "〈fst(x),snd(x)〉∈U×(
⋃
S)" "〈fst(y),snd(y)〉∈V×(

⋃
S)"

and disjoint:"(U×
⋃
S)∩(V×

⋃
S)=0" by auto

then have "x∈U×(
⋃
S)""y∈V×(

⋃
S)" using Pair_fst_snd_eq tot(1,2)

by auto

moreover have "(
⋃
S)∈S" using assms(2) unfolding IsATopology_def

by auto

with ‘U∈T‘‘V∈T‘ have op:"U×(
⋃
S)∈ProductTopology(T,S)""V×(

⋃
S)∈ProductTopology(T,S)"

using prod_open_open_prod assms(1,2) by auto

note disjoint ultimately
have "x∈U×(

⋃
S) ∧ y∈V×(

⋃
S) ∧ (U×(

⋃
S))∩(V×(

⋃
S))=0" by auto

with op(2) have "∃ UU∈ProductTopology(T,S). (x∈U×(
⋃
S) ∧ y∈UU ∧

(U×(
⋃
S))∩UU=0)"

using exI[where x="V×(
⋃
S)" and P="λt. t∈ProductTopology(T,S)

∧ (x∈U×(
⋃
S) ∧ y∈t ∧ (U×(

⋃
S))∩t=0)"] by auto

with op(1) have "∃ VV∈ProductTopology(T,S). ∃ UU∈ProductTopology(T,S).
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(x∈VV ∧ y∈UU ∧ VV∩UU=0)"
using exI[where x="U×(

⋃
S)" and P="λt. t∈ProductTopology(T,S)

∧ (∃ UU∈ProductTopology(T,S). (x∈t ∧ y∈UU ∧ (t)∩UU=0))"] by auto

} moreover
{

assume "snd(x)6=snd(y)"

with S assms(4) have "(∃ U∈S. ∃ V∈S. (snd(x)∈U∧snd(y)∈V) ∧ U∩V=0)"
unfolding

isT2_def by auto

then obtain U V where "U∈S" "V∈S" "snd(x)∈U" "snd(y)∈V" "U∩V=0"
by auto

with T have "〈fst(x),snd(x)〉∈(
⋃
T)×U" "〈fst(y),snd(y)〉∈(

⋃
T)×V"

and disjoint:"((
⋃
T)×U)∩((

⋃
T)×V)=0" by auto

then have "x∈(
⋃
T)×U""y∈(

⋃
T)×V" using Pair_fst_snd_eq tot(1,2)

by auto

moreover have "(
⋃
T)∈T" using assms(1) unfolding IsATopology_def

by auto

with ‘U∈S‘‘V∈S‘ have op:"(
⋃
T)×U∈ProductTopology(T,S)""(

⋃
T)×V∈ProductTopology(T,S)"

using prod_open_open_prod assms(1,2) by auto

note disjoint ultimately
have "x∈(

⋃
T)×U ∧ y∈(

⋃
T)×V ∧ ((

⋃
T)×U)∩((

⋃
T)×V)=0" by auto

with op(2) have "∃ UU∈ProductTopology(T,S). (x∈(
⋃
T)×U ∧ y∈UU ∧

((
⋃
T)×U)∩UU=0)"

using exI[where x="(
⋃
T)×V" and P="λt. t∈ProductTopology(T,S)

∧ (x∈(
⋃
T)×U ∧ y∈t ∧ ((

⋃
T)×U)∩t=0)"] by auto

with op(1) have "∃ VV∈ProductTopology(T,S). ∃ UU∈ProductTopology(T,S).
(x∈VV ∧ y∈UU ∧ VV∩UU=0)"

using exI[where x="(
⋃
T)×U" and P="λt. t∈ProductTopology(T,S)

∧ (∃ UU∈ProductTopology(T,S). (x∈t ∧ y∈UU ∧ (t)∩UU=0))"] by auto

} moreover
note disj

ultimately have "∃ VV∈ProductTopology(T, S). ∃ UU∈ProductTopology(T,
S). x ∈ VV ∧ y ∈ UU ∧ VV ∩ UU = 0" by auto

}
then show ?thesis unfolding isT2_def by auto

qed

The product of regular spaces is regular.

theorem regular_product:

assumes "T{is a topology}" "S{is a topology}" "T{is regular}" "S{is

regular}"

shows "ProductTopology(T,S){is regular}"

proof-
{

fix x U assume "x∈
⋃
ProductTopology(T,S)" "U∈ProductTopology(T,S)"

"x∈U"
then obtain V W where VW:"V∈T""W∈S" "V×W⊆U" and x:"x∈V×W" us-

ing prod_top_point_neighb
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assms(1,2) by blast

then have p:"fst(x)∈V""snd(x)∈W" by auto

from p(1) ‘V∈T‘ obtain VV where VV:"fst(x)∈VV" "Closure(VV,T)⊆V"
"VV∈T" using

assms(1,3) topology0.regular_imp_exist_clos_neig unfolding topology0_def

by force moreover
from p(2) ‘W∈S‘ obtain WW where WW:"snd(x)∈WW" "Closure(WW,S)⊆W"

"WW∈S" using
assms(2,4) topology0.regular_imp_exist_clos_neig unfolding topology0_def

by force ultimately
have "x∈VV×WW" using x by auto

moreover from ‘Closure(VV,T)⊆V‘ ‘Closure(WW,S)⊆W‘ have "Closure(VV,T)×Closure(WW,S)
⊆ V×W"

by auto

moreover from VV(3) WW(3) have "VV⊆
⋃
T""WW⊆

⋃
S" by auto

ultimately have "x∈VV×WW" "Closure(VV×WW,ProductTopology(T,S)) ⊆
V×W" using cl_product assms(1,2)

by auto

moreover have "VV×WW∈ProductTopology(T,S)" using prod_open_open_prod

assms(1,2)

VV(3) WW(3) by auto

ultimately have "∃ Z∈ProductTopology(T,S). x∈Z ∧ Closure(Z,ProductTopology(T,S))⊆V×W"
by auto

with VW(3) have "∃ Z∈ProductTopology(T,S). x∈Z ∧ Closure(Z,ProductTopology(T,S))⊆U"
by auto

}
then have "∀ x∈

⋃
ProductTopology(T,S). ∀ U∈ProductTopology(T,S).x∈U

−→ (∃ Z∈ProductTopology(T,S). x∈Z ∧ Closure(Z,ProductTopology(T,S))⊆U)"
by auto

then show ?thesis using topology0.exist_clos_neig_imp_regular unfold-
ing topology0_def

using assms(1,2) Top_1_4_T1(1) by auto

qed

63.3 Connection properties in product space

First, we prove that the projection functions are open.

lemma projection_open:

assumes "T{is a topology}""S{is a topology}""B∈ProductTopology(T,S)"
shows "{y∈

⋃
T. ∃ x∈

⋃
S. 〈y,x〉∈B}∈T"

proof-
{

fix z assume "z∈{y∈
⋃
T. ∃ x∈

⋃
S. 〈y,x〉∈B}"

then obtain x where x:"x∈
⋃
S" and z:"z∈

⋃
T" and p:"〈z,x〉∈B" by auto

then have "z∈{y∈
⋃
T. 〈y,x〉∈B}" "{y∈

⋃
T. 〈y,x〉∈B}⊆{y∈

⋃
T. ∃ x∈

⋃
S.

〈y,x〉∈B}" by auto moreover
from x have "{y∈

⋃
T. 〈y,x〉∈B}∈T" using prod_sec_open2 assms by auto

ultimately have "∃ V∈T. z∈V ∧ V⊆{y∈
⋃
T. ∃ x∈

⋃
S. 〈y,x〉∈B}" unfold-

ing Bex_def by auto
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}
then show "{y∈

⋃
T. ∃ x∈

⋃
S. 〈y,x〉∈B}∈T" using topology0.open_neigh_open

unfolding topology0_def

using assms(1) by blast

qed

lemma projection_open2:

assumes "T{is a topology}""S{is a topology}""B∈ProductTopology(T,S)"
shows "{y∈

⋃
S. ∃ x∈

⋃
T. 〈x,y〉∈B}∈S"

proof-
{

fix z assume "z∈{y∈
⋃
S. ∃ x∈

⋃
T. 〈x,y〉∈B}"

then obtain x where x:"x∈
⋃
T" and z:"z∈

⋃
S" and p:"〈x,z〉∈B" by auto

then have "z∈{y∈
⋃
S. 〈x,y〉∈B}" "{y∈

⋃
S. 〈x,y〉∈B}⊆{y∈

⋃
S. ∃ x∈

⋃
T.

〈x,y〉∈B}" by auto moreover
from x have "{y∈

⋃
S. 〈x,y〉∈B}∈S" using prod_sec_open1 assms by auto

ultimately have "∃ V∈S. z∈V ∧ V⊆{y∈
⋃
S. ∃ x∈

⋃
T. 〈x,y〉∈B}" unfold-

ing Bex_def by auto

}
then show "{y∈

⋃
S. ∃ x∈

⋃
T. 〈x,y〉∈B}∈S" using topology0.open_neigh_open

unfolding topology0_def

using assms(2) by blast

qed

The product of connected spaces is connected.

theorem compact_product:

assumes "T{is a topology}""S{is a topology}""T{is connected}""S{is

connected}"

shows "ProductTopology(T,S){is connected}"

proof-
{

fix U assume U:"U∈ProductTopology(T,S)" "U{is closed in}ProductTopology(T,S)"

then have op:"U∈ProductTopology(T,S)" "
⋃
ProductTopology(T,S)-U∈ProductTopology(T,S)"

unfolding IsClosed_def by auto

{
fix s assume s:"s∈

⋃
S"

with op(1) have p:"{x∈
⋃
T. 〈x,s〉∈U}∈T" using prod_sec_open2 assms(1,2)

by auto

from s op(2) have oop:"{y∈
⋃
T. 〈y,s〉∈(

⋃
ProductTopology(T,S)-U)}∈T"

using prod_sec_open2

assms(1,2) by blast

then have "
⋃
T-(
⋃
T-{y∈

⋃
T. 〈y,s〉∈(

⋃
ProductTopology(T,S)-U)})={y∈

⋃
T.

〈y,s〉∈(
⋃
ProductTopology(T,S)-U)}" by auto

with oop have cl:"(
⋃
T-{y∈

⋃
T. 〈y,s〉∈(

⋃
ProductTopology(T,S)-U)})

{is closed in}T" unfolding IsClosed_def by auto

{
fix t assume "t∈

⋃
T-{y∈

⋃
T. 〈y,s〉∈(

⋃
ProductTopology(T,S)-U)}"

then have tt:"t∈
⋃
T" "t/∈{y∈

⋃
T. 〈y,s〉∈(

⋃
ProductTopology(T,S)-U)}"

by auto
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then have "〈t,s〉/∈(
⋃
ProductTopology(T,S)-U)" by auto

then have "〈t,s〉∈U ∨ 〈t,s〉/∈
⋃
ProductTopology(T,S)" by auto

then have "〈t,s〉∈U ∨ 〈t,s〉/∈
⋃
T×
⋃
S" using Top_1_4_T1(3) assms(1,2)

by auto

with tt(1) s have "〈t,s〉∈U" by auto

with tt(1) have "t∈{x∈
⋃
T. 〈x,s〉∈U}" by auto

} moreover
{

fix t assume "t∈{x∈
⋃
T. 〈x,s〉∈U}"

then have tt:"t∈
⋃
T" "〈t,s〉∈U" by auto

then have "〈t,s〉/∈
⋃
ProductTopology(T,S)-U" by auto

then have "t/∈{y∈
⋃
T. 〈y,s〉∈(

⋃
ProductTopology(T,S)-U)}" by auto

with tt(1) have "t∈
⋃
T-{y∈

⋃
T. 〈y,s〉∈(

⋃
ProductTopology(T,S)-U)}"

by auto

}
ultimately have "{x∈

⋃
T. 〈x,s〉∈U}=

⋃
T-{y∈

⋃
T. 〈y,s〉∈(

⋃
ProductTopology(T,S)-U)}"

by blast

with cl have "{x∈
⋃
T. 〈x,s〉∈U}{is closed in}T" by auto

with p assms(3) have "{x∈
⋃
T. 〈x,s〉∈U}=0 ∨ {x∈

⋃
T. 〈x,s〉∈U}=

⋃
T"

unfolding IsConnected_def

by auto moreover
{

assume "{x∈
⋃
T. 〈x,s〉∈U}=0"

then have "∀ x∈
⋃
T. 〈x,s〉/∈U" by auto

}
moreover
{

assume AA:"{x∈
⋃
T. 〈x,s〉∈U}=

⋃
T"

{
fix x assume "x∈

⋃
T"

with AA have "x∈{x∈
⋃
T. 〈x,s〉∈U}" by auto

then have "〈x,s〉∈U" by auto

}
then have "∀ x∈

⋃
T. 〈x,s〉∈U" by auto

}
ultimately have "(∀ x∈

⋃
T. 〈x,s〉/∈U) ∨ (∀ x∈

⋃
T. 〈x,s〉∈U)" by blast

}
then have reg:"∀ s∈

⋃
S. (∀ x∈

⋃
T. 〈x,s〉/∈U) ∨ (∀ x∈

⋃
T. 〈x,s〉∈U)" by

auto

{
fix q assume qU:"q∈

⋃
T×{snd(qq). qq∈U}"

then obtain t u where t:"t∈
⋃
T" "u∈U" "q=〈t,snd(u)〉" by auto

with U(1) have "u∈
⋃
ProductTopology(T,S)" by auto

then have "u∈
⋃
T×
⋃
S" using Top_1_4_T1(3) assms(1,2) by auto more-

over
then have uu:"u=〈fst(u),snd(u)〉" using Pair_fst_snd_eq by auto ul-

timately
have fu:"fst(u)∈

⋃
T""snd(u)∈

⋃
S" by (safe,auto)

with reg have "(∀ tt∈
⋃
T. 〈tt,snd(u)〉/∈U)∨(∀ tt∈

⋃
T. 〈tt,snd(u)〉∈U)"
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by auto

with ‘u∈U‘ uu fu(1) have "∀ tt∈
⋃
T. 〈tt,snd(u)〉∈U" by force

with t(1,3) have "q∈U" by auto

}
then have U1:"

⋃
T×{snd(qq). qq∈U}⊆U" by auto

{
fix t assume t:"t∈

⋃
T"

with op(1) have p:"{x∈
⋃
S. 〈t,x〉∈U}∈S" using prod_sec_open1 assms(1,2)

by auto

from t op(2) have oop:"{x∈
⋃
S. 〈t,x〉∈(

⋃
ProductTopology(T,S)-U)}∈S"

using prod_sec_open1

assms(1,2) by blast

then have "
⋃
S-(
⋃
S-{x∈

⋃
S. 〈t,x〉∈(

⋃
ProductTopology(T,S)-U)})={y∈

⋃
S.

〈t,y〉∈(
⋃
ProductTopology(T,S)-U)}" by auto

with oop have cl:"(
⋃
S-{y∈

⋃
S. 〈t,y〉∈(

⋃
ProductTopology(T,S)-U)})

{is closed in}S" unfolding IsClosed_def by auto

{
fix s assume "s∈

⋃
S-{y∈

⋃
S. 〈t,y〉∈(

⋃
ProductTopology(T,S)-U)}"

then have tt:"s∈
⋃
S" "s/∈{y∈

⋃
S. 〈t,y〉∈(

⋃
ProductTopology(T,S)-U)}"

by auto

then have "〈t,s〉/∈(
⋃
ProductTopology(T,S)-U)" by auto

then have "〈t,s〉∈U ∨ 〈t,s〉/∈
⋃
ProductTopology(T,S)" by auto

then have "〈t,s〉∈U ∨ 〈t,s〉/∈
⋃
T×
⋃
S" using Top_1_4_T1(3) assms(1,2)

by auto

with tt(1) t have "〈t,s〉∈U" by auto

with tt(1) have "s∈{x∈
⋃
S. 〈t,x〉∈U}" by auto

} moreover
{

fix s assume "s∈{x∈
⋃
S. 〈t,x〉∈U}"

then have tt:"s∈
⋃
S" "〈t,s〉∈U" by auto

then have "〈t,s〉/∈
⋃
ProductTopology(T,S)-U" by auto

then have "s/∈{y∈
⋃
S. 〈t,y〉∈(

⋃
ProductTopology(T,S)-U)}" by auto

with tt(1) have "s∈
⋃
S-{y∈

⋃
S. 〈t,y〉∈(

⋃
ProductTopology(T,S)-U)}"

by auto

}
ultimately have "{x∈

⋃
S. 〈t,x〉∈U}=

⋃
S-{y∈

⋃
S. 〈t,y〉∈(

⋃
ProductTopology(T,S)-U)}"

by blast

with cl have "{x∈
⋃
S. 〈t,x〉∈U}{is closed in}S" by auto

with p assms(4) have "{x∈
⋃
S. 〈t,x〉∈U}=0 ∨ {x∈

⋃
S. 〈t,x〉∈U}=

⋃
S"

unfolding IsConnected_def

by auto moreover
{

assume "{x∈
⋃
S. 〈t,x〉∈U}=0"

then have "∀ x∈
⋃
S. 〈t,x〉/∈U" by auto

}
moreover
{

assume AA:"{x∈
⋃
S. 〈t,x〉∈U}=

⋃
S"

{
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fix x assume "x∈
⋃
S"

with AA have "x∈{x∈
⋃
S. 〈t,x〉∈U}" by auto

then have "〈t,x〉∈U" by auto

}
then have "∀ x∈

⋃
S. 〈t,x〉∈U" by auto

}
ultimately have "(∀ x∈

⋃
S. 〈t,x〉/∈U) ∨ (∀ x∈

⋃
S. 〈t,x〉∈U)" by blast

}
then have reg:"∀ s∈

⋃
T. (∀ x∈

⋃
S. 〈s,x〉/∈U) ∨ (∀ x∈

⋃
S. 〈s,x〉∈U)" by

auto

{
fix q assume qU:"q∈{fst(qq). qq∈U}×

⋃
S"

then obtain qq s where t:"q=〈fst(qq),s〉" "qq∈U" "s∈
⋃
S" by auto

with U(1) have "qq∈
⋃
ProductTopology(T,S)" by auto

then have "qq∈
⋃
T×
⋃
S" using Top_1_4_T1(3) assms(1,2) by auto more-

over
then have qq:"qq=〈fst(qq),snd(qq)〉" using Pair_fst_snd_eq by auto

ultimately
have fq:"fst(qq)∈

⋃
T""snd(qq)∈

⋃
S" by (safe,auto)

from fq(1) reg have "(∀ tt∈
⋃
S. 〈fst(qq),tt〉/∈U)∨(∀ tt∈

⋃
S. 〈fst(qq),tt〉∈U)"

by auto moreover
with ‘qq∈U‘ qq fq(2) have "∀ tt∈

⋃
S. 〈fst(qq),tt〉∈U" by force

with t(1,3) have "q∈U" by auto

}
then have U2:"{fst(qq). qq∈U}×

⋃
S⊆U" by blast

{
assume "U 6=0"

then obtain u where u:"u∈U" by auto

{
fix aa assume "aa∈

⋃
T×
⋃
S"

then obtain t s where "t∈
⋃
T""s∈

⋃
S""aa=〈t,s〉" by auto

with u have "〈t,snd(u)〉∈
⋃
T×{snd(qq). qq∈U}" by auto

with U1 have "〈t,snd(u)〉∈U" by auto

moreover have "t=fst(〈t,snd(u)〉)" by auto moreover note ‘s∈
⋃
S‘

ultimately
have "〈t,s〉∈{fst(qq). qq∈U}×

⋃
S" by blast

with U2 have "〈t,s〉∈U" by auto

with ‘aa=〈t,s〉‘ have "aa∈U" by auto

}
then have "

⋃
T×
⋃
S⊆U" by auto moreover

with U(1) have "U⊆
⋃
ProductTopology(T,S)" by auto ultimately

have "
⋃
T×
⋃
S=U" using Top_1_4_T1(3) assms(1,2) by auto

}
then have "(U=0)∨(U=

⋃
T×
⋃
S)" by auto

}
then show ?thesis unfolding IsConnected_def using Top_1_4_T1(3) assms(1,2)

by auto

qed
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end

64 Topology 11

theory Topology_ZF_11 imports Topology_ZF_7 Finite_ZF_1

begin

This file deals with order topologies. The order topology is already defined
in Topology_ZF_examples_1.thy.

64.1 Order topologies

We will assume most of the time that the ordered set has more than one
point. It is natural to think that the topological properties can be translated
to properties of the order; since every order rises one and only one topology
in a set.

64.2 Separation properties

Order topologies have a lot of separation properties.

Every order topology is Hausdorff.

theorem order_top_T2:

assumes "IsLinOrder(X,r)" "∃ x y. x6=y∧x∈X∧y∈X"
shows "(OrdTopology X r){is T2}"

proof-
{

fix x y assume A1:"x∈
⋃
(OrdTopology X r)""y∈

⋃
(OrdTopology X r)""x6=y"

then have AS:"x∈X""y∈X""x6=y" using union_ordtopology[OF assms(1)

assms(2)] by auto

{
assume A2:"∃ z∈X-{x,y}. (〈x,y〉∈r−→〈x,z〉∈r∧〈z,y〉∈r)∧(〈y,x〉∈r−→〈y,z〉∈r∧〈z,x〉∈r)"
from AS(1,2) assms(1) have "〈x,y〉∈r∨〈y,x〉∈r" unfolding IsLinOrder_def

IsTotal_def by auto moreover
{

assume "〈x,y〉∈r"
with AS A2 obtain z where z:"〈x,z〉∈r""〈z,y〉∈r""z∈X""z 6=x""z 6=y"

by auto

with AS(1,2) have "x∈LeftRayX(X,r,z)""y∈RightRayX(X,r,z)" un-
folding LeftRayX_def RightRayX_def

by auto moreover
have "LeftRayX(X,r,z)∩RightRayX(X,r,z)=0" using inter_lray_rray[OF

z(3) z(3) assms(1)]

unfolding IntervalX_def using Order_ZF_2_L4[OF total_is_refl

_ z(3)] assms(1) unfolding IsLinOrder_def

by auto moreover
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have "LeftRayX(X,r,z)∈(OrdTopology X r)""RightRayX(X,r,z)∈(OrdTopology
X r)"

using z(3) base_sets_open[OF Ordtopology_is_a_topology(2)[OF

assms(1)]] by auto

ultimately have "∃ U∈(OrdTopology X r). ∃ V∈(OrdTopology X r).

x∈U ∧ y∈V ∧ U∩V=0" by auto

}
moreover
{

assume "〈y,x〉∈r"
with AS A2 obtain z where z:"〈y,z〉∈r""〈z,x〉∈r""z∈X""z 6=x""z 6=y"

by auto

with AS(1,2) have "y∈LeftRayX(X,r,z)""x∈RightRayX(X,r,z)" un-
folding LeftRayX_def RightRayX_def

by auto moreover
have "LeftRayX(X,r,z)∩RightRayX(X,r,z)=0" using inter_lray_rray[OF

z(3) z(3) assms(1)]

unfolding IntervalX_def using Order_ZF_2_L4[OF total_is_refl

_ z(3)] assms(1) unfolding IsLinOrder_def

by auto moreover
have "LeftRayX(X,r,z)∈(OrdTopology X r)""RightRayX(X,r,z)∈(OrdTopology

X r)"

using z(3) base_sets_open[OF Ordtopology_is_a_topology(2)[OF

assms(1)]] by auto

ultimately have "∃ U∈(OrdTopology X r). ∃ V∈(OrdTopology X r).

x∈U ∧ y∈V ∧ U∩V=0" by auto

}
ultimately have "∃ U∈(OrdTopology X r). ∃ V∈(OrdTopology X r). x∈U

∧ y∈V ∧ U∩V=0" by auto

}
moreover
{

assume A2:"∀ z∈X - {x, y}. (〈x, y〉 ∈ r ∧ (〈x, z〉 /∈ r ∨ 〈z, y〉 /∈
r)) ∨ (〈y, x〉 ∈ r ∧ (〈y, z〉 /∈ r ∨ 〈z, x〉 /∈ r))"

from AS(1,2) assms(1) have disj:"〈x,y〉∈r∨〈y,x〉∈r" unfolding IsLinOrder_def

IsTotal_def by auto moreover
{

assume TT:"〈x,y〉∈r"
with AS assms(1) have T:"〈y,x〉/∈r" unfolding IsLinOrder_def antisym_def

by auto

from TT AS(1-3) have "x∈LeftRayX(X,r,y)""y∈RightRayX(X,r,x)"
unfolding LeftRayX_def RightRayX_def

by auto moreover
{

fix z assume "z∈LeftRayX(X,r,y)∩RightRayX(X,r,x)"
then have "〈z,y〉∈r""〈x,z〉∈r""z∈X-{x,y}" unfolding RightRayX_def

LeftRayX_def by auto

with A2 T have "False" by auto

}
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then have "LeftRayX(X,r,y)∩RightRayX(X,r,x)=0" by auto more-
over

have "LeftRayX(X,r,y)∈(OrdTopology X r)""RightRayX(X,r,x)∈(OrdTopology
X r)"

using base_sets_open[OF Ordtopology_is_a_topology(2)[OF assms(1)]]

AS by auto

ultimately have "∃ U∈(OrdTopology X r). ∃ V∈(OrdTopology X r).

x∈U ∧ y∈V ∧ U∩V=0" by auto

}
moreover
{

assume TT:"〈y,x〉∈r"
with AS assms(1) have T:"〈x,y〉/∈r" unfolding IsLinOrder_def antisym_def

by auto

from TT AS(1-3) have "y∈LeftRayX(X,r,x)""x∈RightRayX(X,r,y)"
unfolding LeftRayX_def RightRayX_def

by auto moreover
{

fix z assume "z∈LeftRayX(X,r,x)∩RightRayX(X,r,y)"
then have "〈z,x〉∈r""〈y,z〉∈r""z∈X-{x,y}" unfolding RightRayX_def

LeftRayX_def by auto

with A2 T have "False" by auto

}
then have "LeftRayX(X,r,x)∩RightRayX(X,r,y)=0" by auto more-

over
have "LeftRayX(X,r,x)∈(OrdTopology X r)""RightRayX(X,r,y)∈(OrdTopology

X r)"

using base_sets_open[OF Ordtopology_is_a_topology(2)[OF assms(1)]]

AS by auto

ultimately have "∃ U∈(OrdTopology X r). ∃ V∈(OrdTopology X r).

x∈U ∧ y∈V ∧ U∩V=0" by auto

}
ultimately have "∃ U∈(OrdTopology X r). ∃ V∈(OrdTopology X r). x∈U

∧ y∈V ∧ U∩V=0" by auto

}
ultimately have "∃ U∈(OrdTopology X r). ∃ V∈(OrdTopology X r). x∈U

∧ y∈V ∧ U∩V=0" by auto

}
then show ?thesis unfolding isT2_def by auto

qed

Every order topology is T4, but the proof needs lots of machinery. At the
end of the file, we will prove that every order topology is normal; sooner or
later.

64.3 Connectedness properties

Connectedness is related to two properties of orders: completeness and den-
sity
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Some order-dense properties:

definition
IsDenseSub ("_ {is dense in}_{with respect to}_") where
"A {is dense in}X{with respect to}r ≡
∀ x∈X. ∀ y∈X. 〈x,y〉∈r ∧ x6=y −→ (∃ z∈A-{x,y}. 〈x,z〉∈r∧〈z,y〉∈r)"

definition
IsDenseUnp ("_ {is not-properly dense in}_{with respect to}_") where
"A {is not-properly dense in}X{with respect to}r ≡
∀ x∈X. ∀ y∈X. 〈x,y〉∈r ∧ x6=y −→ (∃ z∈A. 〈x,z〉∈r∧〈z,y〉∈r)"

definition
IsWeaklyDenseSub ("_ {is weakly dense in}_{with respect to}_") where
"A {is weakly dense in}X{with respect to}r ≡
∀ x∈X. ∀ y∈X. 〈x,y〉∈r ∧ x6=y −→ ((∃ z∈A-{x,y}. 〈x,z〉∈r∧〈z,y〉∈r)∨ IntervalX(X,r,x,y)=0)"

definition
IsDense ("_ {is dense with respect to}_") where
"X {is dense with respect to}r ≡
∀ x∈X. ∀ y∈X. 〈x,y〉∈r ∧ x6=y −→ (∃ z∈X-{x,y}. 〈x,z〉∈r∧〈z,y〉∈r)"

lemma dense_sub:

shows "(X {is dense with respect to}r) ←→ (X {is dense in}X{with respect

to}r)"

unfolding IsDenseSub_def IsDense_def by auto

lemma not_prop_dense_sub:

shows "(A {is dense in}X{with respect to}r) −→ (A {is not-properly

dense in}X{with respect to}r)"

unfolding IsDenseSub_def IsDenseUnp_def by auto

In densely ordered sets, intervals are infinite.

theorem dense_order_inf_intervals:

assumes "IsLinOrder(X,r)" "IntervalX(X, r, b, c)6=0""b∈X""c∈X" "X{is

dense with respect to}r"

shows "¬Finite(IntervalX(X, r, b, c))"

proof
assume fin:"Finite(IntervalX(X, r, b, c))"

have sub:"IntervalX(X, r, b, c)⊆X" unfolding IntervalX_def by auto

have p:"Minimum(r,IntervalX(X, r, b, c))∈IntervalX(X, r, b, c)" us-
ing Finite_ZF_1_T2(2)[OF assms(1) Finite_Fin[OF fin sub] assms(2)]

by auto

then have "〈b,Minimum(r,IntervalX(X, r, b, c))〉∈r""b 6=Minimum(r,IntervalX(X,

r, b, c))"

unfolding IntervalX_def using Order_ZF_2_L1 by auto

with assms(3,5) sub p obtain z1 where z1:"z1∈X""z1 6=b""z1 6=Minimum(r,IntervalX(X,

r, b, c))""〈b,z1〉∈r""〈z1,Minimum(r,IntervalX(X, r, b, c))〉∈r"
unfolding IsDense_def by blast

from p have B:"〈Minimum(r,IntervalX(X, r, b, c)),c〉∈r" unfolding IntervalX_def
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using Order_ZF_2_L1 by auto moreover
have "trans(r)" using assms(1) unfolding IsLinOrder_def by auto more-

over
note z1(5) ultimately have z1a:"〈z1,c〉∈r" unfolding trans_def by fast

{
assume "z1=c"

with B have "〈Minimum(r,IntervalX(X, r, b, c)),z1〉∈r" by auto

with z1(5) have "z1=Minimum(r,IntervalX(X, r, b, c))" using assms(1)

unfolding IsLinOrder_def antisym_def by auto

then have "False" using z1(3) by auto

}
then have "z16=c" by auto

with z1(1,2,4) z1a have "z1∈IntervalX(X, r, b, c)" unfolding IntervalX_def

using Order_ZF_2_L1 by auto

then have "〈Minimum(r,IntervalX(X, r, b, c)),z1〉∈r" using Finite_ZF_1_T2(4)[OF

assms(1) Finite_Fin[OF fin sub] assms(2)] by auto

with z1(5) have "z1=Minimum(r,IntervalX(X, r, b, c))" using assms(1)

unfolding IsLinOrder_def antisym_def by auto

with z1(3) show "False" by auto

qed

Left rays are infinite.

theorem dense_order_inf_lrays:

assumes "IsLinOrder(X,r)" "LeftRayX(X,r,c)6=0""c∈X" "X{is dense with

respect to}r"

shows "¬Finite(LeftRayX(X,r,c))"
proof-

from assms(2) obtain b where "b∈X""〈b,c〉∈r""b6=c" unfolding LeftRayX_def

by auto

with assms(3) obtain z where "z∈X-{b,c}""〈b,z〉∈r""〈z,c〉∈r" using assms(4)

unfolding IsDense_def by auto

then have "IntervalX(X, r, b, c)6=0" unfolding IntervalX_def using Order_ZF_2_L1

by auto

then have nFIN:"¬Finite(IntervalX(X, r, b, c))" using dense_order_inf_intervals[OF

assms(1) _ _ assms(3,4)]

‘b∈X‘ by auto

{
fix d assume "d∈IntervalX(X, r, b, c)"

then have "〈b,d〉∈r""〈d,c〉∈r""d∈X""d 6=b""d 6=c" unfolding IntervalX_def

using Order_ZF_2_L1 by auto

then have "d∈LeftRayX(X,r,c)" unfolding LeftRayX_def by auto

}
then have "IntervalX(X, r, b, c)⊆LeftRayX(X,r,c)" by auto

with nFIN show ?thesis using subset_Finite by auto

qed

Right rays are infinite.

theorem dense_order_inf_rrays:

assumes "IsLinOrder(X,r)" "RightRayX(X,r,b)6=0""b∈X" "X{is dense with
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respect to}r"

shows "¬Finite(RightRayX(X,r,b))"
proof-

from assms(2) obtain c where "c∈X""〈b,c〉∈r""b6=c" unfolding RightRayX_def

by auto

with assms(3) obtain z where "z∈X-{b,c}""〈b,z〉∈r""〈z,c〉∈r" using assms(4)

unfolding IsDense_def by auto

then have "IntervalX(X, r, b, c)6=0" unfolding IntervalX_def using Order_ZF_2_L1

by auto

then have nFIN:"¬Finite(IntervalX(X, r, b, c))" using dense_order_inf_intervals[OF

assms(1) _ assms(3) _ assms(4)]

‘c∈X‘ by auto

{
fix d assume "d∈IntervalX(X, r, b, c)"

then have "〈b,d〉∈r""〈d,c〉∈r""d∈X""d6=b""d 6=c" unfolding IntervalX_def

using Order_ZF_2_L1 by auto

then have "d∈RightRayX(X,r,b)" unfolding RightRayX_def by auto

}
then have "IntervalX(X, r, b, c)⊆RightRayX(X,r,b)" by auto

with nFIN show ?thesis using subset_Finite by auto

qed

The whole space in a densely ordered set is infinite.

corollary dense_order_infinite:

assumes "IsLinOrder(X,r)" "X{is dense with respect to}r"

"∃ x y. x6=y∧x∈X∧y∈X"
shows "¬(X≺nat)"

proof-
from assms(3) obtain b c where B:"b∈X""c∈X""b6=c" by auto

{
assume "〈b,c〉/∈r"
with assms(1) have "〈c,b〉∈r" unfolding IsLinOrder_def IsTotal_def

using ‘b∈X‘‘c∈X‘ by auto

with assms(2) B obtain z where "z∈X-{b,c}""〈c,z〉∈r""〈z,b〉∈r" un-
folding IsDense_def by auto

then have "IntervalX(X,r,c,b) 6=0" unfolding IntervalX_def using Order_ZF_2_L1

by auto

then have "¬(Finite(IntervalX(X,r,c,b)))" using dense_order_inf_intervals[OF

assms(1) _ ‘c∈X‘‘b∈X‘ assms(2)]

by auto moreover
have "IntervalX(X,r,c,b)⊆X" unfolding IntervalX_def by auto

ultimately have "¬(Finite(X))" using subset_Finite by auto

then have "¬(X≺nat)" using lesspoll_nat_is_Finite by auto

}
moreover
{

assume "〈b,c〉∈r"
with assms(2) B obtain z where "z∈X-{b,c}""〈b,z〉∈r""〈z,c〉∈r" un-

folding IsDense_def by auto
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then have "IntervalX(X,r,b,c)6=0" unfolding IntervalX_def using Order_ZF_2_L1

by auto

then have "¬(Finite(IntervalX(X,r,b,c)))" using dense_order_inf_intervals[OF

assms(1) _ ‘b∈X‘‘c∈X‘ assms(2)]

by auto moreover
have "IntervalX(X,r,b,c)⊆X" unfolding IntervalX_def by auto

ultimately have "¬(Finite(X))" using subset_Finite by auto

then have "¬(X≺nat)" using lesspoll_nat_is_Finite by auto

}
ultimately show ?thesis by auto

qed

If an order topology is connected, then the order is complete. It is equivalent
to assume that r ⊆ X ×X or prove that r ∩X ×X is complete.

theorem conn_imp_complete:

assumes "IsLinOrder(X,r)" "∃ x y. x6=y∧x∈X∧y∈X" "r⊆X×X"
"(OrdTopology X r){is connected}"

shows "r{is complete}"

proof-
{

assume "¬(r{is complete})"

then obtain A where A:"A6=0""IsBoundedAbove(A,r)""¬(HasAminimum(r,⋂
b∈A. r ‘‘ {b}))" unfolding

IsComplete_def by auto

from A(3) have r1:"∀ m∈
⋂
b∈A. r ‘‘ {b}. ∃ x∈

⋂
b∈A. r ‘‘ {b}. 〈m,x〉/∈r"

unfolding HasAminimum_def

by force

from A(1,2) obtain b where r2:"∀ x∈A. 〈x, b〉 ∈ r" unfolding IsBoundedAbove_def

by auto

with assms(3) A(1) have "A⊆X""b∈X" by auto

with assms(3) have r3:"∀ c∈A. r ‘‘ {c}⊆X" using image_iff by auto

from r2 have "∀ x∈A. b∈r‘‘{x}" using image_iff by auto

then have noE:"b∈(
⋂
b∈A. r ‘‘ {b})" using A(1) by auto

{
fix x assume "x∈(

⋂
b∈A. r ‘‘ {b})"

then have "∀ c∈A. x∈r‘‘{c}" by auto

with A(1) obtain c where "c∈A" "x∈r‘‘{c}" by auto

with r3 have "x∈X" by auto

}
then have sub:"(

⋂
b∈A. r ‘‘ {b})⊆X" by auto

{
fix x assume x:"x∈(

⋂
b∈A. r ‘‘ {b})"

with r1 have "∃ z∈
⋂
b∈A. r ‘‘ {b}. 〈x,z〉/∈r" by auto

then obtain z where z:"z∈(
⋂
b∈A. r ‘‘ {b})""〈x,z〉/∈r" by auto

from x z(1) sub have "x∈X""z∈X" by auto

with z(2) have "〈z,x〉∈r" using assms(1) unfolding IsLinOrder_def

IsTotal_def by auto

then have xx:"x∈RightRayX(X,r,z)" unfolding RightRayX_def using
‘x∈X‘‘〈x,z〉/∈r‘
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assms(1) unfolding IsLinOrder_def using total_is_refl unfold-
ing refl_def by auto

{
fix m assume "m∈RightRayX(X,r,z)"
then have m:"m∈X-{z}""〈z,m〉∈r" unfolding RightRayX_def by auto

{
fix c assume "c∈A"
with z(1) have "〈c,z〉∈r" using image_iff by auto

with m(2) have "〈c,m〉∈r" using assms(1) unfolding IsLinOrder_def

trans_def by fast

then have "m∈r‘‘{c}" using image_iff by auto

}
with A(1) have "m∈(

⋂
b∈A. r ‘‘ {b})" by auto

}
then have sub1:"RightRayX(X,r,z)⊆(

⋂
b∈A. r ‘‘ {b})" by auto

have "RightRayX(X,r,z)∈(OrdTopology X r)" using
base_sets_open[OF Ordtopology_is_a_topology(2)[OF assms(1)]] ‘z∈X‘

by auto

with sub1 xx have "∃ U∈(OrdTopology X r). x∈U ∧ U⊆(
⋂
b∈A. r ‘‘

{b})" by auto

}
then have "(

⋂
b∈A. r ‘‘ {b})∈(OrdTopology X r)" using topology0.open_neigh_open[OF

topology0_ordtopology[OF assms(1)]]

by auto moreover
{

fix x assume "x∈X-(
⋂
b∈A. r ‘‘ {b})"

then have "x∈X""x/∈(
⋂
b∈A. r ‘‘ {b})" by auto

with A(1) obtain b where "x/∈r‘‘{b}""b∈A" by auto

then have "〈b,x〉/∈r" using image_iff by auto

with ‘A⊆X‘ ‘b∈A‘‘x∈X‘ have "〈x,b〉∈r" using assms(1) unfolding IsLinOrder_def

IsTotal_def by auto

then have xx:"x∈LeftRayX(X,r,b)" unfolding LeftRayX_def using ‘x∈X‘
‘〈b,x〉/∈r‘

assms(1) unfolding IsLinOrder_def using total_is_refl unfold-
ing refl_def by auto

{
fix y assume "y∈LeftRayX(X,r,b)∩(

⋂
b∈A. r ‘‘ {b})"

then have "y∈X-{b}""〈y,b〉∈r""∀ c∈A. y∈r‘‘{c}" unfolding LeftRayX_def

by auto

then have "y∈X""〈y,b〉∈r""∀ c∈A. 〈c,y〉∈r" using image_iff by auto

with ‘b∈A‘ have "y=b" using assms(1) unfolding IsLinOrder_def

antisym_def by auto

then have "False" using ‘y∈X-{b}‘ by auto

}
then have sub1:"LeftRayX(X,r,b)⊆X-(

⋂
b∈A. r ‘‘ {b})" unfolding

LeftRayX_def by auto

have "LeftRayX(X,r,b)∈(OrdTopology X r)" using
base_sets_open[OF Ordtopology_is_a_topology(2)[OF assms(1)]] ‘b∈A‘‘A⊆X‘

by blast
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with sub1 xx have "∃ U∈(OrdTopology X r). x∈U∧U⊆X-(
⋂
b∈A. r ‘‘

{b})" by auto

}
then have "X - (

⋂
b∈A. r ‘‘ {b})∈(OrdTopology X r)" using topology0.open_neigh_open[OF

topology0_ordtopology[OF assms(1)]]

by auto

then have "
⋃
(OrdTopology X r)-(

⋂
b∈A. r ‘‘ {b})∈(OrdTopology X r)"

using union_ordtopology[OF assms(1,2)] by auto

then have "(
⋂
b∈A. r ‘‘ {b}){is closed in}(OrdTopology X r)" un-

folding IsClosed_def using union_ordtopology[OF assms(1,2)]

sub by auto

moreover note assms(4) ultimately
have "(

⋂
b∈A. r ‘‘ {b})=0∨(

⋂
b∈A. r ‘‘ {b})=X" using union_ordtopology[OF

assms(1,2)] unfolding IsConnected_def

by auto

then have e1:"(
⋂
b∈A. r ‘‘ {b})=X" using noE by auto

then have "∀ x∈X. ∀ b∈A. x∈r‘‘{b}" by auto

then have r4:"∀ x∈X. ∀ b∈A. 〈b,x〉∈r" using image_iff by auto

{
fix a1 a2 assume aA:"a1∈A""a2∈A""a1 6=a2"

with ‘A⊆X‘ have aX:"a1∈X""a2∈X" by auto

with r4 aA(1,2) have "〈a1,a2〉∈r""〈a2,a1〉∈r" by auto

then have "a1=a2" using assms(1) unfolding IsLinOrder_def antisym_def

by auto

with aA(3) have "False" by auto

}
moreover
from A(1) obtain t where "t∈A" by auto

ultimately have "A={t}" by auto

with r4 have "∀ x∈X. 〈t,x〉∈r""t∈X" using ‘A⊆X‘ by auto

then have "HasAminimum(r,X)" unfolding HasAminimum_def by auto

with e1 have "HasAminimum(r,
⋂
b∈A. r ‘‘ {b})" by auto

with A(3) have "False" by auto

}
then show ?thesis by auto

qed

If an order topology is connected, then the order is dense.

theorem conn_imp_dense:

assumes "IsLinOrder(X,r)" "∃ x y. x6=y∧x∈X∧y∈X"
"(OrdTopology X r){is connected}"

shows "X {is dense with respect to}r"

proof-
{

assume "¬(X {is dense with respect to}r)"

then have "∃ x1∈X. ∃ x2∈X. 〈x1,x2〉∈r∧x1 6=x2∧(∀ z∈X-{x1,x2}. 〈x1,z〉/∈r∨〈z,x2〉/∈r)"
unfolding IsDense_def by auto

then obtain x1 x2 where x:"x1∈X""x2∈X""〈x1,x2〉∈r""x1 6=x2""(∀ z∈X-{x1,x2}.
〈x1,z〉/∈r∨〈z,x2〉/∈r)" by auto
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from x(1,2) have op:"LeftRayX(X,r,x2)∈(OrdTopology X r)""RightRayX(X,r,x1)∈(OrdTopology
X r)"

using base_sets_open[OF Ordtopology_is_a_topology(2)[OF assms(1)]]

by auto

{
fix x assume "x∈X-LeftRayX(X,r,x2)"
then have "x∈X" "x/∈LeftRayX(X,r,x2)" by auto

then have "〈x,x2〉/∈r∨x=x2" unfolding LeftRayX_def by auto

then have "〈x2,x〉∈r∨x=x2" using assms(1) ‘x∈X‘ ‘x2∈X‘ unfolding
IsLinOrder_def

IsTotal_def by auto

then have s:"〈x2,x〉∈r" using assms(1) unfolding IsLinOrder_def us-
ing total_is_refl ‘x2∈X‘

unfolding refl_def by auto

with x(3) have "〈x1,x〉∈r" using assms(1) unfolding IsLinOrder_def

trans_def by fast

then have "x=x1∨x∈RightRayX(X,r,x1)" unfolding RightRayX_def us-
ing ‘x∈X‘ by auto

with s have "〈x2,x1〉∈r∨x∈RightRayX(X,r,x1)" by auto

with x(3) have "x1=x2 ∨ x∈RightRayX(X,r,x1)" using assms(1) un-
folding IsLinOrder_def

antisym_def by auto

with x(4) have "x∈RightRayX(X,r,x1)" by auto

}
then have "X-LeftRayX(X,r,x2)⊆RightRayX(X,r,x1)" by auto moreover
{

fix x assume "x∈RightRayX(X,r,x1)"
then have xr:"x∈X-{x1}""〈x1,x〉∈r" unfolding RightRayX_def by auto

{
assume "x∈LeftRayX(X,r,x2)"
then have xl:"x∈X-{x2}""〈x,x2〉∈r" unfolding LeftRayX_def by auto

from xl xr x(5) have "False" by auto

}
with xr(1) have "x∈X-LeftRayX(X,r,x2)" by auto

}
ultimately have "RightRayX(X,r,x1)=X-LeftRayX(X,r,x2)" by auto

then have "LeftRayX(X,r,x2){is closed in}(OrdTopology X r)" using
op(2) union_ordtopology[

OF assms(1,2)] unfolding IsClosed_def LeftRayX_def by auto

with op(1) have "LeftRayX(X,r,x2)=0∨LeftRayX(X,r,x2)=X" using union_ordtopology[

OF assms(1,2)] assms(3) unfolding IsConnected_def by auto

with x(1,3,4) have "LeftRayX(X,r,x2)=X" unfolding LeftRayX_def by
auto

then have "x2∈LeftRayX(X,r,x2)" using x(2) by auto

then have "False" unfolding LeftRayX_def by auto

}
then show ?thesis by auto

qed

Actually a connected order topology is one that comes from a dense and
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complete order.

First a lemma. In a complete ordered set, every non-empty set bounded
from below has a maximum lower bound.

lemma complete_order_bounded_below:

assumes "r{is complete}" "IsBoundedBelow(A,r)" "A6=0" "r⊆X×X"
shows "HasAmaximum(r,

⋂
c∈A. r-‘‘{c})"

proof-
let ?M="

⋂
c∈A. r-‘‘{c}"

from assms(3) obtain t where A:"t∈A" by auto

{
fix m assume "m∈?M"
with A have "m∈r-‘‘{t}" by auto

then have "〈m,t〉∈r" by auto

}
then have "(∀ x∈

⋂
c∈A. r -‘‘ {c}. 〈x, t〉 ∈ r)" by auto

then have "IsBoundedAbove(?M,r)" unfolding IsBoundedAbove_def by auto

moreover
from assms(2,3) obtain l where " ∀ x∈A. 〈l, x〉 ∈ r" unfolding IsBoundedBelow_def

by auto

then have "∀ x∈A. l ∈ r-‘‘{x}" using vimage_iff by auto

with assms(3) have "l∈?M" by auto

then have "?M6=0" by auto moreover note assms(1)

ultimately have "HasAminimum(r,
⋂
c∈?M. r ‘‘ {c})" unfolding IsComplete_def

by auto

then obtain rr where rr:"rr∈(
⋂
c∈?M. r ‘‘ {c})" "∀ s∈(

⋂
c∈?M. r ‘‘

{c}). 〈rr,s〉∈r" unfolding HasAminimum_def

by auto

{
fix aa assume A:"aa∈A"
{

fix c assume M:"c∈?M"
with A have "〈c,aa〉∈r" by auto

then have "aa∈r‘‘{c}" by auto

}
then have "aa∈(

⋂
c∈?M. r ‘‘ {c})" using rr(1) by auto

}
then have "A⊆(

⋂
c∈?M. r ‘‘ {c})" by auto

with rr(2) have "∀ s∈A. 〈rr,s〉∈r" by auto

then have "rr∈?M" using assms(3) by auto

moreover
{

fix m assume "m∈?M"
then have "rr∈r‘‘{m}" using rr(1) by auto

then have "〈m,rr〉∈r" by auto

}
then have "∀ m∈?M. 〈m,rr〉∈r" by auto

ultimately show ?thesis unfolding HasAmaximum_def by auto

qed
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theorem comp_dense_imp_conn:

assumes "IsLinOrder(X,r)" "∃ x y. x6=y∧x∈X∧y∈X" "r⊆X×X"
"X {is dense with respect to}r" "r{is complete}"

shows "(OrdTopology X r){is connected}"

proof-
{

assume "¬((OrdTopology X r){is connected})"

then obtain U where U:"U6=0""U6=X""U∈(OrdTopology X r)""U{is closed

in}(OrdTopology X r)"

unfolding IsConnected_def using union_ordtopology[OF assms(1,2)]

by auto

from U(4) have A:"X-U∈(OrdTopology X r)""U⊆X" unfolding IsClosed_def

using union_ordtopology[OF assms(1,2)] by auto

from U(1) obtain u where "u∈U" by auto

from A(2) U(1,2) have "X-U6=0" by auto

then obtain v where "v∈X-U" by auto

with ‘u∈U‘ ‘U⊆X‘ have "〈u,v〉∈r∨〈v,u〉∈r" using assms(1) unfolding
IsLinOrder_def IsTotal_def

by auto

{
assume "〈u,v〉∈r"
have "LeftRayX(X,r,v)∈(OrdTopology X r)" using base_sets_open[OF

Ordtopology_is_a_topology(2)[OF assms(1)]]

‘v∈X-U‘ by auto

then have "U∩LeftRayX(X,r,v)∈(OrdTopology X r)" using U(3) us-
ing Ordtopology_is_a_topology(1)

[OF assms(1)] unfolding IsATopology_def by auto

{
fix b assume "b∈(U)∩LeftRayX(X,r,v)"
then have "〈b,v〉∈r" unfolding LeftRayX_def by auto

}
then have bound:"IsBoundedAbove(U∩LeftRayX(X,r,v),r)" unfolding

IsBoundedAbove_def by auto moreover
with ‘〈u,v〉∈r‘‘u∈U‘‘U⊆X‘‘v∈X-U‘ have nE:"U∩LeftRayX(X,r,v)6=0"

unfolding LeftRayX_def by auto

ultimately have Hmin:"HasAminimum(r,
⋂
c∈U∩LeftRayX(X,r,v). r‘‘{c})"

using assms(5) unfolding IsComplete_def

by auto

let ?min="Supremum(r,U∩LeftRayX(X,r,v))"
{

fix c assume "c∈U∩LeftRayX(X,r,v)"
then have "〈c,v〉∈r" unfolding LeftRayX_def by auto

}
then have a1:"〈?min,v〉∈r" using Order_ZF_5_L3[OF _ nE Hmin] assms(1)

unfolding IsLinOrder_def

by auto

{
assume ass:"?min∈U"
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then obtain V where V:"?min∈V""V⊆U"
"V∈{IntervalX(X,r,b,c). 〈b,c〉∈X×X}∪{LeftRayX(X,r,b). b∈X}∪{RightRayX(X,r,b).

b∈X}" using point_open_base_neigh

[OF Ordtopology_is_a_topology(2)[OF assms(1)] ‘U∈(OrdTopology
X r)‘ ass] by blast

{
assume "V∈{RightRayX(X,r,b). b∈X}"
then obtain b where b:"b∈X" "V=RightRayX(X,r,b)" by auto

note a1 moreover
from V(1) b(2) have a2:"〈b,?min〉∈r""?min 6=b" unfolding RightRayX_def

by auto

ultimately have "〈b,v〉∈r" using assms(1) unfolding IsLinOrder_def

trans_def by blast moreover
{

assume "b=v"

with a1 a2(1) have "b=?min" using assms(1) unfolding IsLinOrder_def

antisym_def by auto

with a2(2) have "False" by auto

}
ultimately have "False" using V(2) b(2) unfolding RightRayX_def

using ‘v∈X-U‘ by auto

}
moreover
{

assume "V∈{LeftRayX(X,r,b). b∈X}"
then obtain b where b:"V=LeftRayX(X,r,b)" "b∈X" by auto

{
assume "〈v,b〉∈r"
then have "b=v∨v∈LeftRayX(X,r,b)" unfolding LeftRayX_def

using ‘v∈X-U‘ by auto

then have "b=v" using b(1) V(2) ‘v∈X-U‘ by auto

}
then have bv:"〈b,v〉∈r" using assms(1) unfolding IsLinOrder_def

IsTotal_def using b(2)

‘v∈X-U‘ by auto

from b(1) V(1) have "〈?min,b〉∈r""?min6=b" unfolding LeftRayX_def

by auto

with assms(4) obtain z where z:"〈?min,z〉∈r""〈z,b〉∈r""z∈X-{b,?min}"
unfolding IsDense_def

using b(2) V(1,2) ‘U⊆X‘ by blast

then have rayb:"z∈LeftRayX(X,r,b)" unfolding LeftRayX_def by
auto

from z(2) bv have "〈z,v〉∈r" using assms(1) unfolding IsLinOrder_def

trans_def by fast

moreover
{

assume "z=v"

with bv have "〈b,z〉∈r" by auto

with z(2) have "b=z" using assms(1) unfolding IsLinOrder_def
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antisym_def by auto

then have "False" using z(3) by auto

}
ultimately have "z∈LeftRayX(X,r,v)" unfolding LeftRayX_def us-

ing z(3) by auto

with rayb have "z∈U∩LeftRayX(X,r,v)" using V(2) b(1) by auto

then have "?min∈r‘‘{z}" using Order_ZF_4_L4(1)[OF _ Hmin] assms(1)

unfolding Supremum_def IsLinOrder_def

by auto

then have "〈z,?min〉∈r" by auto

with z(1,3) have "False" using assms(1) unfolding IsLinOrder_def

antisym_def by auto

}
moreover
{

assume "V∈{IntervalX(X,r,b,c). 〈b,c〉∈X×X}"
then obtain b c where b:"V=IntervalX(X,r,b,c)" "b∈X""c∈X"

by auto

from b V(1) have m:"〈?min,c〉∈r""〈b,?min〉∈r""?min 6=b" "?min6=c"

unfolding IntervalX_def Interval_def by auto

{
assume A:"〈c,v〉∈r"
from m obtain z where z:"〈z,c〉∈r" "〈?min,z〉∈r""z∈X-{c,?min}"

using assms(4) unfolding IsDense_def

using b(3) V(1,2) ‘U⊆X‘ by blast

from z(2) have "〈b,z〉∈r" using m(2) assms(1) unfolding IsLinOrder_def

trans_def

by fast

with z(1) have "z∈IntervalX(X,r,b,c)∨z=b" using z(3) un-
folding IntervalX_def

Interval_def by auto

then have "z∈IntervalX(X,r,b,c)" using m(2) z(2,3) using
assms(1) unfolding IsLinOrder_def

antisym_def by auto

with b(1) V(2) have "z∈U" by auto moreover
from A z(1) have "〈z,v〉∈r" using assms(1) unfolding IsLinOrder_def

trans_def by fast

moreover have "z 6=v" using A z(1,3) assms(1) unfolding IsLinOrder_def

antisym_def by auto

ultimately have "z∈U∩LeftRayX(X,r,v)" unfolding LeftRayX_def

using z(3) by auto

then have "?min∈r‘‘{z}" using Order_ZF_4_L4(1)[OF _ Hmin]

assms(1) unfolding Supremum_def IsLinOrder_def

by auto

then have "〈z,?min〉∈r" by auto

with z(2,3) have "False" using assms(1) unfolding IsLinOrder_def

antisym_def by auto

}
then have vc:"〈v,c〉∈r""v 6=c" using assms(1) unfolding IsLinOrder_def
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IsTotal_def using ‘v∈X-U‘
b(3) by auto

{
assume "?min=v"

with V(2,1) ‘v∈X-U‘ have "False" by auto

}
then have "?min 6=v" by auto

with a1 obtain z where z:"〈?min,z〉∈r""〈z,v〉∈r""z∈X-{?min,v}"
using assms(4) unfolding IsDense_def

using V(1,2) ‘U⊆X‘‘v∈X-U‘ by blast

from z(2) vc(1) have zc:"〈z,c〉∈r" using assms(1) unfolding IsLinOrder_def

trans_def

by fast moreover
from m(2) z(1) have "〈b,z〉∈r" using assms(1) unfolding IsLinOrder_def

trans_def

by fast ultimately
have "z∈Interval(r,b,c)" using Order_ZF_2_L1B by auto more-

over
{

assume "z=c"

then have "False" using z(2) vc using assms(1) unfolding
IsLinOrder_def antisym_def

by fast

}
then have "z6=c" by auto moreover
{

assume "z=b"

then have "z=?min" using m(2) z(1) using assms(1) unfold-
ing IsLinOrder_def

antisym_def by auto

with z(3) have "False" by auto

}
then have "z6=b" by auto moreover
have "z∈X" using z(3) by auto ultimately
have "z∈IntervalX(X,r,b,c)" unfolding IntervalX_def by auto

then have "z∈V" using b(1) by auto

then have "z∈U" using V(2) by auto moreover
from z(2,3) have "z∈LeftRayX(X,r,v)" unfolding LeftRayX_def

by auto ultimately
have "z∈U∩LeftRayX(X,r,v)" by auto

then have "?min∈r‘‘{z}" using Order_ZF_4_L4(1)[OF _ Hmin] assms(1)

unfolding Supremum_def IsLinOrder_def

by auto

then have "〈z,?min〉∈r" by auto

with z(1,3) have "False" using assms(1) unfolding IsLinOrder_def

antisym_def by auto

}
ultimately have "False" using V(3) by auto

}
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then have ass:"?min∈X-U" using a1 assms(3) by auto

then obtain V where V:"?min∈V""V⊆X-U"
"V∈{IntervalX(X,r,b,c). 〈b,c〉∈X×X}∪{LeftRayX(X,r,b). b∈X}∪{RightRayX(X,r,b).

b∈X}" using point_open_base_neigh

[OF Ordtopology_is_a_topology(2)[OF assms(1)] ‘X-U∈(OrdTopology
X r)‘ ass] by blast

{
assume "V∈{IntervalX(X,r,b,c). 〈b,c〉∈X×X}"
then obtain b c where b:"V=IntervalX(X,r,b,c)""b∈X""c∈X" by

auto

from b V(1) have m:"〈?min,c〉∈r""〈b,?min〉∈r""?min6=b" "?min6=c"

unfolding IntervalX_def Interval_def by auto

{
fix x assume A:"x∈U∩LeftRayX(X,r,v)"
then have "〈x,v〉∈r""x∈U" unfolding LeftRayX_def by auto

then have "x/∈V" using V(2) by auto

then have "x/∈Interval(r, b, c) ∩ X∨x=b∨x=c" using b(1) un-
folding IntervalX_def by auto

then have "(〈b,x〉/∈r∨〈x,c〉/∈r)∨x=b∨x=c""x∈X" using Order_ZF_2_L1B

‘x∈U‘‘U⊆X‘ by auto

then have "(〈x,b〉∈r∨〈c,x〉∈r)∨x=b∨x=c" using assms(1) unfold-
ing IsLinOrder_def IsTotal_def

using b(2,3) by auto

then have "(〈x,b〉∈r∨〈c,x〉∈r)" using assms(1) unfolding IsLinOrder_def

using total_is_refl

unfolding refl_def using b(2,3) by auto moreover
from A have "〈x,?min〉∈r" using Order_ZF_4_L4(1)[OF _ Hmin]

assms(1) unfolding Supremum_def IsLinOrder_def

by auto

ultimately have "(〈x,b〉∈r∨〈c,?min〉∈r)" using assms(1) unfold-
ing IsLinOrder_def trans_def

by fast

with m(1) have "(〈x,b〉∈r∨c=?min)" using assms(1) unfolding
IsLinOrder_def antisym_def by auto

with m(4) have "〈x,b〉∈r" by auto

}
then have "〈?min,b〉∈r" using Order_ZF_5_L3[OF _ nE Hmin] assms(1)

unfolding IsLinOrder_def by auto

with m(2,3) have "False" using assms(1) unfolding IsLinOrder_def

antisym_def by auto

}
moreover
{

assume "V∈{RightRayX(X,r,b). b∈X}"
then obtain b where b:"V=RightRayX(X,r,b)" "b∈X" by auto

from b V(1) have m:"〈b,?min〉∈r""?min6=b" unfolding RightRayX_def

by auto

{
fix x assume A:"x∈U∩LeftRayX(X,r,v)"
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then have "〈x,v〉∈r""x∈U" unfolding LeftRayX_def by auto

then have "x/∈V" using V(2) by auto

then have "x/∈RightRayX(X,r, b)" using b(1) by auto

then have "(〈b,x〉/∈r∨x=b)""x∈X" unfolding RightRayX_def us-
ing ‘x∈U‘‘U⊆X‘ by auto

then have "〈x,b〉∈r" using assms(1) unfolding IsLinOrder_def

using total_is_refl unfolding
refl_def unfolding IsTotal_def using b(2) by auto

}
then have "〈?min,b〉∈r" using Order_ZF_5_L3[OF _ nE Hmin] assms(1)

unfolding IsLinOrder_def by auto

with m(2,1) have "False" using assms(1) unfolding IsLinOrder_def

antisym_def by auto

} moreover
{

assume "V∈{LeftRayX(X,r,b). b∈X}"
then obtain b where b:"V=LeftRayX(X,r,b)" "b∈X" by auto

from b V(1) have m:"〈?min,b〉∈r""?min 6=b" unfolding LeftRayX_def

by auto

{
fix x assume A:"x∈U∩LeftRayX(X,r,v)"
then have "〈x,v〉∈r""x∈U" unfolding LeftRayX_def by auto

then have "x/∈V" using V(2) by auto

then have "x/∈LeftRayX(X,r, b)" using b(1) by auto

then have "(〈x,b〉/∈r∨x=b)""x∈X" unfolding LeftRayX_def using
‘x∈U‘‘U⊆X‘ by auto

then have "〈b,x〉∈r" using assms(1) unfolding IsLinOrder_def

using total_is_refl unfolding
refl_def unfolding IsTotal_def using b(2) by auto

with m(1) have "〈?min,x〉∈r" using assms(1) unfolding IsLinOrder_def

trans_def by fast

moreover
from bound A have "∃ g. ∀ y∈U∩LeftRayX(X,r,v). 〈y,g〉∈r" us-

ing nE

unfolding IsBoundedAbove_def by auto

then obtain g where g:"∀ y∈U∩LeftRayX(X,r,v). 〈y,g〉∈r" by auto

with nE obtain t where "t∈U∩LeftRayX(X,r,v)" by auto

with g have "〈t,g〉∈r" by auto

with assms(3) have "g∈X" by auto

with g have boundX:"∃ g∈X. ∀ y∈U∩LeftRayX(X,r,v). 〈y,g〉∈r" by
auto

have "〈x,?min〉∈r" using Order_ZF_5_L7(2)[OF assms(3) _ assms(5)

_ nE boundX]

assms(1) ‘U⊆X‘ A unfolding LeftRayX_def IsLinOrder_def by
auto

ultimately have "x=?min" using assms(1) unfolding IsLinOrder_def

antisym_def by auto

}
then have "U∩LeftRayX(X,r,v)⊆{?min}" by auto moreover
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{
assume "?min∈U∩LeftRayX(X,r,v)"
then have "?min∈U" by auto

then have "False" using V(1,2) by auto

}
ultimately have "False" using nE by auto

}
moreover note V(3)

ultimately have "False" by auto

}
with assms(1) have "〈v,u〉∈r" unfolding IsLinOrder_def IsTotal_def

using ‘u∈U‘‘U⊆X‘
‘v∈X-U‘ by auto

have "RightRayX(X,r,v)∈(OrdTopology X r)" using base_sets_open[OF

Ordtopology_is_a_topology(2)[OF assms(1)]]

‘v∈X-U‘ by auto

then have "U∩RightRayX(X,r,v)∈(OrdTopology X r)" using U(3) using
Ordtopology_is_a_topology(1)

[OF assms(1)] unfolding IsATopology_def by auto

{
fix b assume "b∈(U)∩RightRayX(X,r,v)"
then have "〈v,b〉∈r" unfolding RightRayX_def by auto

}
then have bound:"IsBoundedBelow(U∩RightRayX(X,r,v),r)" unfolding

IsBoundedBelow_def by auto

with ‘〈v,u〉∈r‘‘u∈U‘‘U⊆X‘‘v∈X-U‘ have nE:"U∩RightRayX(X,r,v)6=0" un-
folding RightRayX_def by auto

have Hmax:"HasAmaximum(r,
⋂
c∈U∩RightRayX(X,r,v). r-‘‘{c})" using

complete_order_bounded_below[OF assms(5) bound nE assms(3)].
let ?max="Infimum(r,U∩RightRayX(X,r,v))"
{

fix c assume "c∈U∩RightRayX(X,r,v)"
then have "〈v,c〉∈r" unfolding RightRayX_def by auto

}
then have a1:"〈v,?max〉∈r" using Order_ZF_5_L4[OF _ nE Hmax] assms(1)

unfolding IsLinOrder_def

by auto

{
assume ass:"?max∈U"
then obtain V where V:"?max∈V""V⊆U"
"V∈{IntervalX(X,r,b,c). 〈b,c〉∈X×X}∪{LeftRayX(X,r,b). b∈X}∪{RightRayX(X,r,b).

b∈X}" using point_open_base_neigh

[OF Ordtopology_is_a_topology(2)[OF assms(1)] ‘U∈(OrdTopology
X r)‘ ass] by blast

{
assume "V∈{RightRayX(X,r,b). b∈X}"
then obtain b where b:"b∈X" "V=RightRayX(X,r,b)" by auto

from V(1) b(2) have a2:"〈b,?max〉∈r""?max6=b" unfolding RightRayX_def

by auto
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{
assume "〈b,v〉∈r"
then have "b=v∨v∈RightRayX(X,r,b)" unfolding RightRayX_def

using ‘v∈X-U‘ by auto

then have "b=v" using b(2) V(2) ‘v∈X-U‘ by auto

}
then have bv:"〈v,b〉∈r" using assms(1) unfolding IsLinOrder_def

IsTotal_def using b(1)

‘v∈X-U‘ by auto

from a2 assms(4) obtain z where z:"〈b,z〉∈r""〈z,?max〉∈r""z∈X-{b,?max}"
unfolding IsDense_def

using b(1) V(1,2) ‘U⊆X‘ by blast

then have rayb:"z∈RightRayX(X,r,b)" unfolding RightRayX_def by
auto

from z(1) bv have "〈v,z〉∈r" using assms(1) unfolding IsLinOrder_def

trans_def by fast moreover
{

assume "z=v"

with bv have "〈z,b〉∈r" by auto

with z(1) have "b=z" using assms(1) unfolding IsLinOrder_def

antisym_def by auto

then have "False" using z(3) by auto

}
ultimately have "z∈RightRayX(X,r,v)" unfolding RightRayX_def us-

ing z(3) by auto

with rayb have "z∈U∩RightRayX(X,r,v)" using V(2) b(2) by auto

then have "?max∈r-‘‘{z}" using Order_ZF_4_L3(1)[OF _ Hmax] assms(1)

unfolding Infimum_def IsLinOrder_def

by auto

then have "〈?max,z〉∈r" by auto

with z(2,3) have "False" using assms(1) unfolding IsLinOrder_def

antisym_def by auto

}
moreover
{

assume "V∈{LeftRayX(X,r,b). b∈X}"
then obtain b where b:"V=LeftRayX(X,r,b)" "b∈X" by auto

note a1 moreover
from V(1) b(1) have a2:"〈?max,b〉∈r""?max6=b" unfolding LeftRayX_def

by auto

ultimately have "〈v,b〉∈r" using assms(1) unfolding IsLinOrder_def

trans_def by blast moreover
{

assume "b=v"

with a1 a2(1) have "b=?max" using assms(1) unfolding IsLinOrder_def

antisym_def by auto

with a2(2) have "False" by auto

}
ultimately have "False" using V(2) b(1) unfolding LeftRayX_def
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using ‘v∈X-U‘ by auto

}
moreover
{

assume "V∈{IntervalX(X,r,b,c). 〈b,c〉∈X×X}"
then obtain b c where b:"V=IntervalX(X,r,b,c)" "b∈X""c∈X" by

auto

from b V(1) have m:"〈?max,c〉∈r""〈b,?max〉∈r""?max6=b" "?max6=c"

unfolding IntervalX_def Interval_def by auto

{
assume A:"〈v,b〉∈r"
from m obtain z where z:"〈z,?max〉∈r" "〈b,z〉∈r""z∈X-{b,?max}"

using assms(4) unfolding IsDense_def

using b(2) V(1,2) ‘U⊆X‘ by blast

from z(1) have "〈z,c〉∈r" using m(1) assms(1) unfolding IsLinOrder_def

trans_def

by fast

with z(2) have "z∈IntervalX(X,r,b,c)∨z=c" using z(3) unfold-
ing IntervalX_def

Interval_def by auto

then have "z∈IntervalX(X,r,b,c)" using m(1) z(1,3) using assms(1)

unfolding IsLinOrder_def

antisym_def by auto

with b(1) V(2) have "z∈U" by auto moreover
from A z(2) have "〈v,z〉∈r" using assms(1) unfolding IsLinOrder_def

trans_def by fast

moreover have "z6=v" using A z(2,3) assms(1) unfolding IsLinOrder_def

antisym_def by auto

ultimately have "z∈U∩RightRayX(X,r,v)" unfolding RightRayX_def

using z(3) by auto

then have "?max∈r-‘‘{z}" using Order_ZF_4_L3(1)[OF _ Hmax]

assms(1) unfolding Infimum_def IsLinOrder_def

by auto

then have "〈?max,z〉∈r" by auto

with z(1,3) have "False" using assms(1) unfolding IsLinOrder_def

antisym_def by auto

}
then have vc:"〈b,v〉∈r""v6=b" using assms(1) unfolding IsLinOrder_def

IsTotal_def using ‘v∈X-U‘
b(2) by auto

{
assume "?max=v"

with V(2,1) ‘v∈X-U‘ have "False" by auto

}
then have "v 6=?max" by auto moreover
note a1 moreover
have "?max∈X" using V(1,2) ‘U⊆X‘ by auto

moreover have "v∈X" using ‘v∈X-U‘ by auto

ultimately obtain z where z:"〈v,z〉∈r""〈z,?max〉∈r""z∈X-{v,?max}"
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using assms(4) unfolding IsDense_def

by auto

from z(1) vc(1) have zc:"〈b,z〉∈r" using assms(1) unfolding IsLinOrder_def

trans_def

by fast moreover
from m(1) z(2) have "〈z,c〉∈r" using assms(1) unfolding IsLinOrder_def

trans_def

by fast ultimately
have "z∈Interval(r,b,c)" using Order_ZF_2_L1B by auto moreover
{

assume "z=b"

then have "False" using z(1) vc using assms(1) unfolding IsLinOrder_def

antisym_def

by fast

}
then have "z 6=b" by auto moreover
{

assume "z=c"

then have "z=?max" using m(1) z(2) using assms(1) unfolding
IsLinOrder_def

antisym_def by auto

with z(3) have "False" by auto

}
then have "z 6=c" by auto moreover
have "z∈X" using z(3) by auto ultimately
have "z∈IntervalX(X,r,b,c)" unfolding IntervalX_def by auto

then have "z∈V" using b(1) by auto

then have "z∈U" using V(2) by auto moreover
from z(1,3) have "z∈RightRayX(X,r,v)" unfolding RightRayX_def

by auto ultimately
have "z∈U∩RightRayX(X,r,v)" by auto

then have "?max∈r-‘‘{z}" using Order_ZF_4_L3(1)[OF _ Hmax] assms(1)

unfolding Infimum_def IsLinOrder_def

by auto

then have "〈?max,z〉∈r" by auto

with z(2,3) have "False" using assms(1) unfolding IsLinOrder_def

antisym_def by auto

}
ultimately have "False" using V(3) by auto

}
then have ass:"?max∈X-U" using a1 assms(3) by auto

then obtain V where V:"?max∈V""V⊆X-U"
"V∈{IntervalX(X,r,b,c). 〈b,c〉∈X×X}∪{LeftRayX(X,r,b). b∈X}∪{RightRayX(X,r,b).

b∈X}" using point_open_base_neigh

[OF Ordtopology_is_a_topology(2)[OF assms(1)] ‘X-U∈(OrdTopology
X r)‘ ass] by blast

{
assume "V∈{IntervalX(X,r,b,c). 〈b,c〉∈X×X}"
then obtain b c where b:"V=IntervalX(X,r,b,c)""b∈X""c∈X" by auto
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from b V(1) have m:"〈?max,c〉∈r""〈b,?max〉∈r""?max 6=b" "?max6=c" un-
folding IntervalX_def Interval_def by auto

{
fix x assume A:"x∈U∩RightRayX(X,r,v)"
then have "〈v,x〉∈r""x∈U" unfolding RightRayX_def by auto

then have "x/∈V" using V(2) by auto

then have "x/∈Interval(r, b, c) ∩ X∨x=b∨x=c" using b(1) unfold-
ing IntervalX_def by auto

then have "(〈b,x〉/∈r∨〈x,c〉/∈r)∨x=b∨x=c""x∈X" using Order_ZF_2_L1B

‘x∈U‘‘U⊆X‘ by auto

then have "(〈x,b〉∈r∨〈c,x〉∈r)∨x=b∨x=c" using assms(1) unfold-
ing IsLinOrder_def IsTotal_def

using b(2,3) by auto

then have "(〈x,b〉∈r∨〈c,x〉∈r)" using assms(1) unfolding IsLinOrder_def

using total_is_refl

unfolding refl_def using b(2,3) by auto moreover
from A have "〈?max,x〉∈r" using Order_ZF_4_L3(1)[OF _ Hmax] assms(1)

unfolding Infimum_def IsLinOrder_def

by auto

ultimately have "(〈?max,b〉∈r∨〈c,x〉∈r)" using assms(1) unfold-
ing IsLinOrder_def trans_def

by fast

with m(2) have "(?max=b∨〈c,x〉∈r)" using assms(1) unfolding IsLinOrder_def

antisym_def by auto

with m(3) have "〈c,x〉∈r" by auto

}
then have "〈c,?max〉∈r" using Order_ZF_5_L4[OF _ nE Hmax] assms(1)

unfolding IsLinOrder_def by auto

with m(1,4) have "False" using assms(1) unfolding IsLinOrder_def

antisym_def by auto

}
moreover
{

assume "V∈{RightRayX(X,r,b). b∈X}"
then obtain b where b:"V=RightRayX(X,r,b)" "b∈X" by auto

from b V(1) have m:"〈b,?max〉∈r""?max 6=b" unfolding RightRayX_def

by auto

{
fix x assume A:"x∈U∩RightRayX(X,r,v)"
then have "〈v,x〉∈r""x∈U" unfolding RightRayX_def by auto

then have "x/∈V" using V(2) by auto

then have "x/∈RightRayX(X,r, b)" using b(1) by auto

then have "(〈b,x〉/∈r∨x=b)""x∈X" unfolding RightRayX_def using
‘x∈U‘‘U⊆X‘ by auto

then have "〈x,b〉∈r" using assms(1) unfolding IsLinOrder_def us-
ing total_is_refl unfolding

refl_def unfolding IsTotal_def using b(2) by auto moreover
from A have "〈?max,x〉∈r" using Order_ZF_4_L3(1)[OF _ Hmax] assms(1)

unfolding Infimum_def IsLinOrder_def
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by auto ultimately
have "〈?max,b〉∈r" using assms(1) unfolding IsLinOrder_def trans_def

by fast

with m have "False" using assms(1) unfolding IsLinOrder_def antisym_def

by auto

}
then have "False" using nE by auto

} moreover
{

assume "V∈{LeftRayX(X,r,b). b∈X}"
then obtain b where b:"V=LeftRayX(X,r,b)" "b∈X" by auto

from b V(1) have m:"〈?max,b〉∈r""?max6=b" unfolding LeftRayX_def

by auto

{
fix x assume A:"x∈U∩RightRayX(X,r,v)"
then have "〈v,x〉∈r""x∈U" unfolding RightRayX_def by auto

then have "x/∈V" using V(2) by auto

then have "x/∈LeftRayX(X,r, b)" using b(1) by auto

then have "(〈x,b〉/∈r∨x=b)""x∈X" unfolding LeftRayX_def using ‘x∈U‘‘U⊆X‘
by auto

then have "〈b,x〉∈r" using assms(1) unfolding IsLinOrder_def us-
ing total_is_refl unfolding

refl_def unfolding IsTotal_def using b(2) by auto

then have "b∈r-‘‘{x}" by auto

}
with nE have "b∈(

⋂
c∈U∩RightRayX(X,r,v). r-‘‘{c})" by auto

then have "〈b,?max〉∈r" unfolding Infimum_def using Order_ZF_4_L3(2)[OF

_ Hmax] assms(1)

unfolding IsLinOrder_def by auto

with m have "False" using assms(1) unfolding IsLinOrder_def antisym_def

by auto

}
moreover note V(3)

ultimately have "False" by auto

}
then show ?thesis by auto

qed

64.4 Numerability axioms

A κ-separable order topology is in relation with order density.

If an order topology has a subset A which is topologically dense, then that
subset is weakly order-dense in X.

lemma dense_top_imp_Wdense_ord:

assumes "IsLinOrder(X,r)" "Closure(A,OrdTopology X r)=X" "A⊆X" "∃ x
y. x 6= y ∧ x ∈ X ∧ y ∈ X"

shows "A{is weakly dense in}X{with respect to}r"

proof-
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{
fix r1 r2 assume "r1∈X""r2∈X""r1 6=r2" "〈r1,r2〉∈r"
then have "IntervalX(X,r,r1,r2)∈{IntervalX(X, r, b, c) . 〈b,c〉 ∈

X × X} ∪ {LeftRayX(X, r, b) . b ∈ X} ∪
{RightRayX(X, r, b) . b ∈ X}" by auto

then have op:"IntervalX(X,r,r1,r2)∈(OrdTopology X r)" using base_sets_open[OF

Ordtopology_is_a_topology(2)[OF assms(1)]]

by auto

have "IntervalX(X,r,r1,r2)⊆X" unfolding IntervalX_def by auto

then have int:"Closure(A,OrdTopology X r)∩IntervalX(X,r,r1,r2)=IntervalX(X,r,r1,r2)"
using assms(2) by auto

{
assume "IntervalX(X,r,r1,r2)6=0"

then have "A∩(IntervalX(X,r,r1,r2))6=0" using topology0.cl_inter_neigh[OF

topology0_ordtopology[OF assms(1)] _ op, of "A"]

using assms(3) union_ordtopology[OF assms(1,4)] int by auto

}
then have "(∃ z∈A-{r1,r2}. 〈r1,z〉∈r∧〈z,r2〉∈r)∨IntervalX(X,r,r1,r2)=0"

unfolding IntervalX_def

Interval_def by auto

}
then show ?thesis unfolding IsWeaklyDenseSub_def by auto

qed

Conversely, a weakly order-dense set is topologically dense if it is also con-
sidered that: if there is a maximum or a minimum elements whose singletons
are open, this points have to be in A. In conclusion, weakly order-density is
a property closed to topological density.

Another way to see this: Consider a weakly order-dense set A:

� If X has a maximum and a minimum and {min,max} is open: A is
topologically dense in X \ {min,max}, where min is the minimum in
X and max is the maximum in X.

� If X has a maximum, {max} is open and X has no minimum or {min}
isn’t open: A is topologically dense in X \ {max}, where max is the
maximum in X.

� If X has a minimum, {min} is open and X has no maximum or {max}
isn’t open A is topologically dense in X \ {min}, where min is the
minimum in X.

� If X has no minimum or maximum, or {min,max} has no proper open
sets: A is topologically dense in X.

lemma Wdense_ord_imp_dense_top:

assumes "IsLinOrder(X,r)" "A{is weakly dense in}X{with respect to}r"

"A⊆X" "∃ x y. x 6= y ∧ x ∈ X ∧ y ∈ X"
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"HasAminimum(r,X)−→{Minimum(r,X)}∈(OrdTopology X r)−→Minimum(r,X)∈A"
"HasAmaximum(r,X)−→{Maximum(r,X)}∈(OrdTopology X r)−→Maximum(r,X)∈A"

shows "Closure(A,OrdTopology X r)=X"

proof-
{

fix x assume "x∈X"
{

fix U assume ass:"x∈U""U∈(OrdTopology X r)"

then have "∃ V∈{IntervalX(X, r, b, c) . 〈b,c〉 ∈ X × X} ∪ {LeftRayX(X,

r, b) . b ∈ X} ∪ {RightRayX(X, r, b) . b ∈ X} . V⊆U∧x∈V"
using point_open_base_neigh[OF Ordtopology_is_a_topology(2)[OF assms(1)]]

by auto

then obtain V where V:"V∈{IntervalX(X, r, b, c) . 〈b,c〉 ∈ X × X}

∪ {LeftRayX(X, r, b) . b ∈ X} ∪ {RightRayX(X, r, b) . b ∈ X}" "V⊆U" "x∈V"
by blast

note V(1) moreover
{

assume "V∈{IntervalX(X, r, b, c) . 〈b,c〉 ∈ X × X}"

then obtain b c where b:"b∈X""c∈X""V=IntervalX(X, r, b, c)" by
auto

with V(3) have x:"〈b,x〉∈r" "〈x,c〉∈r" "x 6=b" "x6=c" unfolding IntervalX_def

Interval_def by auto

then have "〈b,c〉∈r" using assms(1) unfolding IsLinOrder_def trans_def

by fast

moreover from x(1-3) have "b 6=c" using assms(1) unfolding IsLinOrder_def

antisym_def by fast

moreover note assms(2) b V(3)

ultimately have "∃ z∈A-{b,c}. 〈b,z〉∈r∧〈z,c〉∈r" unfolding IsWeaklyDenseSub_def

by auto

then obtain z where "z∈A""z6=b""z6=c""〈b,z〉∈r""〈z,c〉∈r" by auto

with assms(3) have "z∈A""z∈IntervalX(X, r, b, c)" unfolding IntervalX_def

Interval_def by auto

then have "A∩U6=0" using V(2) b(3) by auto

}
moreover
{

assume "V∈{RightRayX(X, r, b) . b ∈ X}"

then obtain b where b:"b∈X""V=RightRayX(X, r, b)" by auto

with V(3) have x:"〈b,x〉∈r" "b 6=x" unfolding RightRayX_def by auto

moreover
note b(1) moreover
have "U⊆

⋃
(OrdTopology X r)" using ass(2) by auto

then have "U⊆X" using union_ordtopology[OF assms(1,4)] by auto

then have "x∈X" using ass(1) by auto moreover
note assms(2) ultimately
have disj:"(∃ z∈A-{b,x}. 〈b,z〉∈r∧〈z,x〉∈r)∨ IntervalX(X, r, b, x)

= 0" unfolding IsWeaklyDenseSub_def by auto

{
assume B:"IntervalX(X, r, b, x) = 0"
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{
assume "∃ y∈X. 〈x,y〉∈r ∧ x6=y"

then obtain y where y:"y∈X""〈x,y〉∈r" "x 6=y" by auto

with x have "x∈IntervalX(X,r,b,y)" unfolding IntervalX_def

Interval_def

using ‘x∈X‘ by auto moreover
have "〈b,y〉∈r" using y(2) x(1) assms(1) unfolding IsLinOrder_def

trans_def by fast

moreover have "b6=y" using y(2,3) x(1) assms(1) unfolding IsLinOrder_def

antisym_def by fast

ultimately
have "(∃ z∈A-{b,y}. 〈b,z〉∈r∧〈z,y〉∈r)" using assms(2) unfold-

ing IsWeaklyDenseSub_def

using y(1) b(1) by auto

then obtain z where "z∈A""〈b,z〉∈r""b6=z" by auto

then have "z∈A∩V" using b(2) unfolding RightRayX_def using
assms(3) by auto

then have "z∈A∩U" using V(2) by auto

then have "A∩U6=0" by auto

}
moreover
{

assume R:"∀ y∈X. 〈x,y〉∈r−→x=y"

{
fix y assume "y∈RightRayX(X,r,b)"
then have y:"〈b,y〉∈r" "y∈X-{b}" unfolding RightRayX_def by

auto

{
assume A:"y6=x"

then have "〈x,y〉/∈r" using R y(2) by auto

then have "〈y,x〉∈r" using assms(1) unfolding IsLinOrder_def

IsTotal_def

using ‘x∈X‘ y(2) by auto

with A y have "y∈IntervalX(X,r,b,x)" unfolding IntervalX_def

Interval_def

by auto

then have "False" using B by auto

}
then have "y=x" by auto

}
then have "RightRayX(X,r,b)={x}" using V(3) b(2) by blast

moreover
{

fix t assume T:"t∈X"
{

assume "t=x"

then have "〈t,x〉∈r" using assms(1) unfolding IsLinOrder_def

using Order_ZF_1_L1 T by auto

}
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moreover
{

assume "t 6=x"

then have "〈x,t〉/∈r" using R T by auto

then have "〈t,x〉∈r" using assms(1) unfolding IsLinOrder_def

IsTotal_def

using T ‘x∈X‘ by auto

}
ultimately have "〈t,x〉∈r" by auto

}
with ‘x∈X‘ have HM:"HasAmaximum(r,X)" unfolding HasAmaximum_def

by auto

then have "Maximum(r,X)∈X""∀ t∈X. 〈t,Maximum(r,X)〉∈r" using
Order_ZF_4_L3 assms(1) unfolding IsLinOrder_def

by auto

with R ‘x∈X‘ have xm:"x=Maximum(r,X)" by auto

moreover note b(2)

ultimately have "V={Maximum(r,X)}" by auto

then have "{Maximum(r,X)}∈(OrdTopology X r)" using base_sets_open[OF

Ordtopology_is_a_topology(2)[OF assms(1)]]

V(1) by auto

with HM have "Maximum(r,X)∈A" using assms(6) by auto

with xm have "x∈A" by auto

with V(2,3) have "A∩U 6=0" by auto

}
ultimately have "A∩U 6=0" by auto

}
moreover
{

assume "IntervalX(X, r, b, x) 6= 0"

with disj have "∃ z∈A-{b,x}. 〈b,z〉∈r∧〈z,x〉∈r" by auto

then obtain z where "z∈A""z6=b""〈b,z〉∈r" by auto

then have "z∈A""z∈RightRayX(X,r,b)" unfolding RightRayX_def us-
ing assms(3) by auto

then have "z∈A∩U" using V(2) b(2) by auto

then have "A∩U6=0" by auto

}
ultimately have "A∩U6=0" by auto

}
moreover
{

assume "V∈{LeftRayX(X, r, b) . b ∈ X}"

then obtain b where b:"b∈X""V=LeftRayX(X, r, b)" by auto

with V(3) have x:"〈x,b〉∈r" "b6=x" unfolding LeftRayX_def by auto

moreover
note b(1) moreover
have "U⊆

⋃
(OrdTopology X r)" using ass(2) by auto

then have "U⊆X" using union_ordtopology[OF assms(1,4)] by auto

then have "x∈X" using ass(1) by auto moreover
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note assms(2) ultimately
have disj:"(∃ z∈A-{b,x}. 〈x,z〉∈r∧〈z,b〉∈r)∨ IntervalX(X, r, x, b)

= 0" unfolding IsWeaklyDenseSub_def by auto

{
assume B:"IntervalX(X, r, x, b) = 0"

{
assume "∃ y∈X. 〈y,x〉∈r ∧ x6=y"

then obtain y where y:"y∈X""〈y,x〉∈r" "x 6=y" by auto

with x have "x∈IntervalX(X,r,y,b)" unfolding IntervalX_def

Interval_def

using ‘x∈X‘ by auto moreover
have "〈y,b〉∈r" using y(2) x(1) assms(1) unfolding IsLinOrder_def

trans_def by fast

moreover have "b6=y" using y(2,3) x(1) assms(1) unfolding IsLinOrder_def

antisym_def by fast

ultimately
have "(∃ z∈A-{b,y}. 〈y,z〉∈r∧〈z,b〉∈r)" using assms(2) unfold-

ing IsWeaklyDenseSub_def

using y(1) b(1) by auto

then obtain z where "z∈A""〈z,b〉∈r""b6=z" by auto

then have "z∈A∩V" using b(2) unfolding LeftRayX_def using assms(3)

by auto

then have "z∈A∩U" using V(2) by auto

then have "A∩U6=0" by auto

}
moreover
{

assume R:"∀ y∈X. 〈y,x〉∈r−→x=y"

{
fix y assume "y∈LeftRayX(X,r,b)"
then have y:"〈y,b〉∈r" "y∈X-{b}" unfolding LeftRayX_def by

auto

{
assume A:"y6=x"

then have "〈y,x〉/∈r" using R y(2) by auto

then have "〈x,y〉∈r" using assms(1) unfolding IsLinOrder_def

IsTotal_def

using ‘x∈X‘ y(2) by auto

with A y have "y∈IntervalX(X,r,x,b)" unfolding IntervalX_def

Interval_def

by auto

then have "False" using B by auto

}
then have "y=x" by auto

}
then have "LeftRayX(X,r,b)={x}" using V(3) b(2) by blast

moreover
{

fix t assume T:"t∈X"
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{
assume "t=x"

then have "〈x,t〉∈r" using assms(1) unfolding IsLinOrder_def

using Order_ZF_1_L1 T by auto

}
moreover
{

assume "t 6=x"

then have "〈t,x〉/∈r" using R T by auto

then have "〈x,t〉∈r" using assms(1) unfolding IsLinOrder_def

IsTotal_def

using T ‘x∈X‘ by auto

}
ultimately have "〈x,t〉∈r" by auto

}
with ‘x∈X‘ have HM:"HasAminimum(r,X)" unfolding HasAminimum_def

by auto

then have "Minimum(r,X)∈X""∀ t∈X. 〈Minimum(r,X),t〉∈r" using
Order_ZF_4_L4 assms(1) unfolding IsLinOrder_def

by auto

with R ‘x∈X‘ have xm:"x=Minimum(r,X)" by auto

moreover note b(2)

ultimately have "V={Minimum(r,X)}" by auto

then have "{Minimum(r,X)}∈(OrdTopology X r)" using base_sets_open[OF

Ordtopology_is_a_topology(2)[OF assms(1)]]

V(1) by auto

with HM have "Minimum(r,X)∈A" using assms(5) by auto

with xm have "x∈A" by auto

with V(2,3) have "A∩U6=0" by auto

}
ultimately have "A∩U 6=0" by auto

}
moreover
{

assume "IntervalX(X, r, x, b) 6= 0"

with disj have "∃ z∈A-{b,x}. 〈x,z〉∈r∧〈z,b〉∈r" by auto

then obtain z where "z∈A""z6=b""〈z,b〉∈r" by auto

then have "z∈A""z∈LeftRayX(X,r,b)" unfolding LeftRayX_def us-
ing assms(3) by auto

then have "z∈A∩U" using V(2) b(2) by auto

then have "A∩U6=0" by auto

}
ultimately have "A∩U6=0" by auto

}
ultimately have "A∩U6=0" by auto

}
then have "∀ U∈(OrdTopology X r). x∈U −→ U∩A6=0" by auto

moreover note ‘x∈X‘ moreover
note assms(3) topology0.inter_neigh_cl[OF topology0_ordtopology[OF assms(1)]]
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union_ordtopology[OF assms(1,4)] ultimately have "x∈Closure(A,OrdTopology
X r)"

by auto

}
then have "X⊆Closure(A,OrdTopology X r)" by auto

with topology0.Top_3_L11(1)[OF topology0_ordtopology[OF assms(1)]]

assms(3) union_ordtopology[OF assms(1,4)] show ?thesis by auto

qed

The conclusion is that an order topology is κ-separable iff there is a set A
with cardinality strictly less than κ which is weakly-dense in X.

theorem separable_imp_wdense:

assumes "(OrdTopology X r){is separable of cardinal}Q" "∃ x y. x 6= y

∧ x ∈ X ∧ y ∈ X"

"IsLinOrder(X,r)"

shows "∃ A∈Pow(X). A≺Q ∧ (A{is weakly dense in}X{with respect to}r)"

proof-
from assms obtain U where "U∈Pow(

⋃
(OrdTopology X r))" "Closure(U,OrdTopology

X r)=
⋃
(OrdTopology X r)" "U≺Q"

unfolding IsSeparableOfCard_def by auto

then have "U∈Pow(X)" "Closure(U,OrdTopology X r)=X" "U≺Q" using union_ordtopology[OF

assms(3,2)]

by auto

with dense_top_imp_Wdense_ord[OF assms(3) _ _ assms(2)] show ?thesis

by auto

qed

theorem wdense_imp_separable:

assumes "∃ x y. x 6= y ∧ x ∈ X ∧ y ∈ X" "(A{is weakly dense in}X{with

respect to}r)"

"IsLinOrder(X,r)" "A≺Q" "InfCard(Q)" "A⊆X"
shows "(OrdTopology X r){is separable of cardinal}Q"

proof-
{

assume Hmin:"HasAmaximum(r,X)"

then have MaxX:"Maximum(r,X)∈X" using Order_ZF_4_L3(1) assms(3) un-
folding IsLinOrder_def

by auto

{
assume HMax:"HasAminimum(r,X)"

then have MinX:"Minimum(r,X)∈X" using Order_ZF_4_L4(1) assms(3)

unfolding IsLinOrder_def

by auto

let ?A="A ∪{Maximum(r,X),Minimum(r,X)}"
have "Finite({Maximum(r,X),Minimum(r,X)})" by auto

then have "{Maximum(r,X),Minimum(r,X)}≺nat" using n_lesspoll_nat

unfolding Finite_def using eq_lesspoll_trans by auto

moreover
from assms(5) have "nat≺Q∨nat=Q" unfolding InfCard_def
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using lt_Card_imp_lesspoll[of "Q""nat"] unfolding lt_def succ_def

using Card_is_Ord[of "Q"] by auto

ultimately have "{Maximum(r,X),Minimum(r,X)}≺Q" using lesspoll_trans

by auto

with assms(4,5) have C:"?A≺Q" using less_less_imp_un_less

by auto

have WeakDense:"?A{is weakly dense in}X{with respect to}r" using
assms(2) unfolding

IsWeaklyDenseSub_def by auto

from MaxX MinX assms(6) have S:"?A⊆X" by auto

then have "Closure(?A,OrdTopology X r)=X" using Wdense_ord_imp_dense_top

[OF assms(3) WeakDense _ assms(1)] by auto

then have ?thesis unfolding IsSeparableOfCard_def using union_ordtopology[OF

assms(3,1)]

S C by auto

}
moreover
{

assume nmin:"¬HasAminimum(r,X)"
let ?A="A ∪{Maximum(r,X)}"

have "Finite({Maximum(r,X)})" by auto

then have "{Maximum(r,X)}≺nat" using n_lesspoll_nat

unfolding Finite_def using eq_lesspoll_trans by auto

moreover
from assms(5) have "nat≺Q∨nat=Q" unfolding InfCard_def

using lt_Card_imp_lesspoll[of "Q""nat"] unfolding lt_def succ_def

using Card_is_Ord[of "Q"] by auto

ultimately have "{Maximum(r,X)}≺Q" using lesspoll_trans by auto

with assms(4,5) have C:"?A≺Q" using less_less_imp_un_less

by auto

have WeakDense:"?A{is weakly dense in}X{with respect to}r" using
assms(2) unfolding

IsWeaklyDenseSub_def by auto

from MaxX assms(6) have S:"?A⊆X" by auto

then have "Closure(?A,OrdTopology X r)=X" using Wdense_ord_imp_dense_top

[OF assms(3) WeakDense _ assms(1)] nmin by auto

then have ?thesis unfolding IsSeparableOfCard_def using union_ordtopology[OF

assms(3,1)]

S C by auto

}
ultimately have ?thesis by auto

}
moreover
{

assume nmax:"¬HasAmaximum(r,X)"
{

assume HMin:"HasAminimum(r,X)"

then have MinX:"Minimum(r,X)∈X" using Order_ZF_4_L4(1) assms(3)

unfolding IsLinOrder_def
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by auto

let ?A="A ∪{Minimum(r,X)}"
have "Finite({Minimum(r,X)})" by auto

then have "{Minimum(r,X)}≺nat" using n_lesspoll_nat

unfolding Finite_def using eq_lesspoll_trans by auto

moreover
from assms(5) have "nat≺Q∨nat=Q" unfolding InfCard_def

using lt_Card_imp_lesspoll[of "Q""nat"] unfolding lt_def succ_def

using Card_is_Ord[of "Q"] by auto

ultimately have "{Minimum(r,X)}≺Q" using lesspoll_trans by auto

with assms(4,5) have C:"?A≺Q" using less_less_imp_un_less

by auto

have WeakDense:"?A{is weakly dense in}X{with respect to}r" using
assms(2) unfolding

IsWeaklyDenseSub_def by auto

from MinX assms(6) have S:"?A⊆X" by auto

then have "Closure(?A,OrdTopology X r)=X" using Wdense_ord_imp_dense_top

[OF assms(3) WeakDense _ assms(1)] nmax by auto

then have ?thesis unfolding IsSeparableOfCard_def using union_ordtopology[OF

assms(3,1)]

S C by auto

}
moreover
{

assume nmin:"¬HasAminimum(r,X)"
let ?A="A"

from assms(4,5) have C:"?A≺Q" by auto

have WeakDense:"?A{is weakly dense in}X{with respect to}r" using
assms(2) unfolding

IsWeaklyDenseSub_def by auto

from assms(6) have S:"?A⊆X" by auto

then have "Closure(?A,OrdTopology X r)=X" using Wdense_ord_imp_dense_top

[OF assms(3) WeakDense _ assms(1)] nmin nmax by auto

then have ?thesis unfolding IsSeparableOfCard_def using union_ordtopology[OF

assms(3,1)]

S C by auto

}
ultimately have ?thesis by auto

}
ultimately show ?thesis by auto

qed

end

65 Topological groups - introduction

theory TopologicalGroup_ZF imports Topology_ZF_3 Group_ZF_1 Semigroup_ZF
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begin

This theory is about the first subject of algebraic topology: topological
groups.

65.1 Topological group: definition and notation

Topological group is a group that is a topological space at the same time.
This means that a topological group is a triple of sets, say (G, f, T ) such
that T is a topology on G, f is a group operation on G and both f and the
operation of taking inverse in G are continuous. Since IsarMathLib defines
topology without using the carrier, (see Topology_ZF), in our setup we just
use

⋃
T instead of G and say that the pair of sets (

⋃
T, f) is a group. This

way our definition of being a topological group is a statement about two
sets: the topology T and the group operation f on G =

⋃
T . Since the

domain of the group operation is G×G, the pair of topologies in which f is
supposed to be continuous is T and the product topology on G×G (which
we will call τ below).

This way we arrive at the following definition of a predicate that states that
pair of sets is a topological group.

definition
"IsAtopologicalGroup(T,f) ≡ (T {is a topology}) ∧ IsAgroup(

⋃
T,f) ∧

IsContinuous(ProductTopology(T,T),T,f) ∧
IsContinuous(T,T,GroupInv(

⋃
T,f))"

We will inherit notation from the topology0 locale. That locale assumes
that T is a topology. For convenience we will denote G =

⋃
T and τ to be

the product topology on G × G. To that we add some notation specific to
groups. We will use additive notation for the group operation, even though
we don’t assume that the group is abelian. The notation g+A will mean the
left translation of the set A by element g, i.e. g + A = {g + a|a ∈ A}. The
group operation G induces a natural operation on the subsets of G defined
as 〈A,B〉 7→ {x + y|x ∈ A, y ∈ B}. Such operation has been considered in
func_ZF and called f ”lifted to subsets of” G. We will denote the value of
such operation on sets A,B as A + B. The set of neigboorhoods of zero
(denoted N 0) is the collection of (not necessarily open) sets whose interior
contains the neutral element of the group.

locale topgroup = topology0 +

fixes G

defines G_def [simp]: "G ≡
⋃
T"

fixes prodtop ("τ")
defines prodtop_def [simp]: "τ ≡ ProductTopology(T,T)"
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fixes f

assumes Ggroup: "IsAgroup(G,f)"

assumes fcon: "IsContinuous(τ,T,f)"

assumes inv_cont: "IsContinuous(T,T,GroupInv(G,f))"

fixes grop (infixl "+" 90)

defines grop_def [simp]: "x+y ≡ f‘〈x,y〉"

fixes grinv ("- _" 89)

defines grinv_def [simp]: "(-x) ≡ GroupInv(G,f)‘(x)"

fixes grsub (infixl "-" 90)

defines grsub_def [simp]: "x-y ≡ x+(-y)"

fixes setinv ("- _" 72)

defines setninv_def [simp]: "-A ≡ GroupInv(G,f)‘‘(A)"

fixes ltrans (infix "+" 73)

defines ltrans_def [simp]: "x + A ≡ LeftTranslation(G,f,x)‘‘(A)"

fixes rtrans (infix "+" 73)

defines rtrans_def [simp]: "A + x ≡ RightTranslation(G,f,x)‘‘(A)"

fixes setadd (infixl "+" 71)

defines setadd_def [simp]: "A+B ≡ (f {lifted to subsets of} G)‘〈A,B〉"

fixes gzero ("0")
defines gzero_def [simp]: "0 ≡ TheNeutralElement(G,f)"

fixes zerohoods ("N 0")

defines zerohoods_def [simp]: "N 0 ≡ {A ∈ Pow(G). 0 ∈ int(A)}"

fixes listsum ("
∑

_" 70)

defines listsum_def[simp]: "
∑

k ≡ Fold1(f,k)"

The first lemma states that we indeeed talk about topological group in the
context of topgroup locale.

lemma (in topgroup) topGroup: shows "IsAtopologicalGroup(T,f)"

using topSpaceAssum Ggroup fcon inv_cont IsAtopologicalGroup_def

by simp

If a pair of sets (T, f) forms a topological group, then all theorems proven
in the topgroup context are valid as applied to (T, f).

lemma topGroupLocale: assumes "IsAtopologicalGroup(T,f)"

shows "topgroup(T,f)"
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using assms IsAtopologicalGroup_def topgroup_def

topgroup_axioms.intro topology0_def by simp

We can use the group0 locale in the context of topgroup.

lemma (in topgroup) group0_valid_in_tgroup: shows "group0(G,f)"

using Ggroup group0_def by simp

We can use semigr0 locale in the context of topgroup.

lemma (in topgroup) semigr0_valid_in_tgroup: shows "semigr0(G,f)"

using Ggroup IsAgroup_def IsAmonoid_def semigr0_def by simp

We can use the prod_top_spaces0 locale in the context of topgroup.

lemma (in topgroup) prod_top_spaces0_valid: shows "prod_top_spaces0(T,T,T)"

using topSpaceAssum prod_top_spaces0_def by simp

Negative of a group element is in group.

lemma (in topgroup) neg_in_tgroup: assumes "g∈G" shows "(-g) ∈ G"

proof -

from assms have "GroupInv(G,f)‘(g) ∈ G"

using group0_valid_in_tgroup group0.inverse_in_group by blast

thus ?thesis by simp

qed

Zero is in the group.

lemma (in topgroup) zero_in_tgroup: shows "0∈G"
proof -

have "TheNeutralElement(G,f) ∈ G"

using group0_valid_in_tgroup group0.group0_2_L2 by blast

then show "0∈G" by simp

qed

Of course the product topology is a topology (on G×G).

lemma (in topgroup) prod_top_on_G:

shows "τ {is a topology}" and "
⋃
τ = G×G"

using topSpaceAssum Top_1_4_T1 by auto

Let’s recall that f is a binary operation on G in this context.

lemma (in topgroup) topgroup_f_binop: shows "f : G×G → G"

using Ggroup group0_def group0.group_oper_assocA by simp

A subgroup of a topological group is a topological group with relative topol-
ogy and restricted operation. Relative topology is the same as T {restricted

to} H which is defined to be {V ∩H : V ∈ T} in ZF1 theory.

lemma (in topgroup) top_subgroup: assumes A1: "IsAsubgroup(H,f)"

shows "IsAtopologicalGroup(T {restricted to} H,restrict(f,H×H))"
proof -

let ?τ0 = "T {restricted to} H"
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let ?fH = "restrict(f,H×H)"
have "

⋃
?τ0 = G ∩ H" using union_restrict by simp

also from A1 have ". . . = H"

using group0_valid_in_tgroup group0.group0_3_L2 by blast

finally have "
⋃
?τ0 = H" by simp

have "?τ0 {is a topology}" using Top_1_L4 by simp

moreover from A1 ‘
⋃
?τ0 = H‘ have "IsAgroup(

⋃
?τ0,?fH)"

using IsAsubgroup_def by simp

moreover have "IsContinuous(ProductTopology(?τ0,?τ0),?τ0,?fH)"

proof -

have "two_top_spaces0(τ, T,f)"

using topSpaceAssum prod_top_on_G topgroup_f_binop prod_top_on_G

two_top_spaces0_def by simp

moreover
from A1 have "H ⊆ G" using group0_valid_in_tgroup group0.group0_3_L2

by simp

then have "H×H ⊆
⋃
τ" using prod_top_on_G by auto

moreover have "IsContinuous(τ,T,f)" using fcon by simp

ultimately have
"IsContinuous(τ {restricted to} H×H, T {restricted to} ?fH‘‘(H×H),?fH)"

using two_top_spaces0.restr_restr_image_cont by simp

moreover have
"ProductTopology(?τ0,?τ0) = τ {restricted to} H×H"
using topSpaceAssum prod_top_restr_comm by simp

moreover from A1 have "?fH‘‘(H×H) = H" using image_subgr_op

by simp

ultimately show ?thesis by simp

qed
moreover have "IsContinuous(?τ0,?τ0,GroupInv(

⋃
?τ0,?fH))"

proof -

let ?g = "restrict(GroupInv(G,f),H)"

have "GroupInv(G,f) : G → G"

using Ggroup group0_2_T2 by simp

then have "two_top_spaces0(T,T,GroupInv(G,f))"

using topSpaceAssum two_top_spaces0_def by simp

moreover from A1 have "H ⊆
⋃
T"

using group0_valid_in_tgroup group0.group0_3_L2

by simp

ultimately have
"IsContinuous(?τ0,T {restricted to} ?g‘‘(H),?g)"

using inv_cont two_top_spaces0.restr_restr_image_cont

by simp

moreover from A1 have "?g‘‘(H) = H"

using group0_valid_in_tgroup group0.restr_inv_onto

by simp

moreover
from A1 have "GroupInv(H,?fH) = ?g"

using group0_valid_in_tgroup group0.group0_3_T1

by simp
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with ‘
⋃
?τ0 = H‘ have "?g = GroupInv(

⋃
?τ0,?fH)" by simp

ultimately show ?thesis by simp

qed
ultimately show ?thesis unfolding IsAtopologicalGroup_def by simp

qed

65.2 Interval arithmetic, translations and inverse of set

In this section we list some properties of operations of translating a set and
reflecting it around the neutral element of the group. Many of the results are
proven in other theories, here we just collect them and rewrite in notation
specific to the topgroup context.

Different ways of looking at adding sets.

lemma (in topgroup) interval_add: assumes "A⊆G" "B⊆G" shows
"A+B ⊆ G" and "A+B = f‘‘(A×B)" "A+B = (

⋃
x∈A. x+B)"

proof -

from assms show "A+B ⊆ G" and "A+B = f‘‘(A×B)"
using topgroup_f_binop lift_subsets_explained by auto

from assms show "A+B = (
⋃
x∈A. x+B)"

using group0_valid_in_tgroup group0.image_ltrans_union by simp

qed

Right and left translations are continuous.

lemma (in topgroup) trans_cont: assumes "g∈G" shows
"IsContinuous(T,T,RightTranslation(G,f,g))" and
"IsContinuous(T,T,LeftTranslation(G,f,g))"

using assms group0_valid_in_tgroup group0.trans_eq_section

topgroup_f_binop fcon prod_top_spaces0_valid

prod_top_spaces0.fix_1st_var_cont prod_top_spaces0.fix_2nd_var_cont

by auto

Left and right translations of an open set are open.

lemma (in topgroup) open_tr_open: assumes "g∈G" and "V∈T"
shows "g+V ∈ T" and "V+g ∈ T"

using assms neg_in_tgroup trans_cont IsContinuous_def

group0_valid_in_tgroup group0.trans_image_vimage by auto

Right and left translations are homeomorphisms.

lemma (in topgroup) tr_homeo: assumes "g∈G" shows
"IsAhomeomorphism(T,T,RightTranslation(G,f,g))" and
"IsAhomeomorphism(T,T,LeftTranslation(G,f,g))"

using assms group0_valid_in_tgroup group0.trans_bij trans_cont open_tr_open

bij_cont_open_homeo by auto

Translations preserve interior.

lemma (in topgroup) trans_interior: assumes A1: "g∈G" and A2: "A⊆G"

946



shows "g + int(A) = int(g+A)"

proof -

from assms have "A ⊆
⋃
T" and "IsAhomeomorphism(T,T,LeftTranslation(G,f,g))"

using tr_homeo by auto

then show ?thesis using int_top_invariant by simp

qed

Inverse of an open set is open.

lemma (in topgroup) open_inv_open: assumes "V∈T" shows "(-V) ∈ T"

using assms group0_valid_in_tgroup group0.inv_image_vimage

inv_cont IsContinuous_def by simp

Inverse is a homeomorphism.

lemma (in topgroup) inv_homeo: shows "IsAhomeomorphism(T,T,GroupInv(G,f))"

using group0_valid_in_tgroup group0.group_inv_bij inv_cont open_inv_open

bij_cont_open_homeo by simp

Taking negative preserves interior.

lemma (in topgroup) int_inv_inv_int: assumes "A ⊆ G"

shows "int(-A) = -(int(A))"

using assms inv_homeo int_top_invariant by simp

65.3 Neighborhoods of zero

Zero neighborhoods are (not necessarily open) sets whose interior contains
the neutral element of the group. In the topgroup locale the collection of
neighboorhoods of zero is denoted N 0.

The whole space is a neighborhood of zero.

lemma (in topgroup) zneigh_not_empty: shows "G ∈ N 0"

using topSpaceAssum IsATopology_def Top_2_L3 zero_in_tgroup

by simp

Any element belongs to the interior of any neighboorhood of zero translated
by that element.

lemma (in topgroup) elem_in_int_trans:

assumes A1: "g∈G" and A2: "H ∈ N 0"

shows "g ∈ int(g+H)"

proof -

from A2 have "0 ∈ int(H)" and "int(H) ⊆ G" using Top_2_L2 by auto

with A1 have "g ∈ g + int(H)"

using group0_valid_in_tgroup group0.neut_trans_elem by simp

with assms show ?thesis using trans_interior by simp

qed

Negative of a neighborhood of zero is a neighborhood of zero.

lemma (in topgroup) neg_neigh_neigh: assumes "H ∈ N 0"
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shows "(-H) ∈ N 0"

proof -

from assms have "int(H) ⊆ G" and "0 ∈ int(H)" using Top_2_L1 by auto

with assms have "0 ∈ int(-H)" using group0_valid_in_tgroup group0.neut_inv_neut

int_inv_inv_int by simp

moreover
have "GroupInv(G,f):G→G" using Ggroup group0_2_T2 by simp

then have "(-H) ⊆ G" using func1_1_L6 by simp

ultimately show ?thesis by simp

qed

Translating an open set by a negative of a point that belongs to it makes it
a neighboorhood of zero.

lemma (in topgroup) open_trans_neigh: assumes A1: "U∈T" and "g∈U"
shows "(-g)+U ∈ N 0"

proof -

let ?H = "(-g)+U"

from assms have "g∈G" by auto

then have "(-g) ∈ G" using neg_in_tgroup by simp

with A1 have "?H∈T" using open_tr_open by simp

hence "?H ⊆ G" by auto

moreover have "0 ∈ int(?H)"

proof -

from assms have "U⊆G" and "g∈U" by auto

with ‘?H∈T‘ show "0 ∈ int(?H)"

using group0_valid_in_tgroup group0.elem_trans_neut Top_2_L3

by auto

qed
ultimately show ?thesis by simp

qed

65.4 Closure in topological groups

This section is devoted to a characterization of closure in topological groups.

Closure of a set is contained in the sum of the set and any neighboorhood
of zero.

lemma (in topgroup) cl_contains_zneigh:

assumes A1: "A⊆G" and A2: "H ∈ N 0"

shows "cl(A) ⊆ A+H"

proof
fix x assume "x ∈ cl(A)"

from A1 have "cl(A) ⊆ G" using Top_3_L11 by simp

with ‘x ∈ cl(A)‘ have "x∈G" by auto

have "int(H) ⊆ G" using Top_2_L2 by auto

let ?V = "int(x + (-H))"

have "?V = x + (-int(H))"

proof -

from A2 ‘x∈G‘ have "?V = x + int(-H)"
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using neg_neigh_neigh trans_interior by simp

with A2 show ?thesis using int_inv_inv_int by simp

qed
have "A∩?V 6= 0"

proof -

from A2 ‘x∈G‘ ‘x ∈ cl(A)‘ have "?V∈T" and "x ∈ cl(A) ∩ ?V"

using neg_neigh_neigh elem_in_int_trans Top_2_L2 by auto

with A1 show "A∩?V 6= 0" using cl_inter_neigh by simp

qed
then obtain y where "y∈A" and "y∈?V" by auto

with ‘?V = x + (-int(H))‘ ‘int(H) ⊆ G‘ ‘x∈G‘ have "x ∈ y+int(H)"

using group0_valid_in_tgroup group0.ltrans_inv_in by simp

with ‘y∈A‘ have "x ∈ (
⋃
y∈A. y+H)" using Top_2_L1 func1_1_L8 by auto

with assms show "x ∈ A+H" using interval_add by simp

qed

The next theorem provides a characterization of closure in topological groups
in terms of neighborhoods of zero.

theorem (in topgroup) cl_topgroup:

assumes "A⊆G" shows "cl(A) = (
⋂
H∈N 0. A+H)"

proof
from assms show "cl(A) ⊆ (

⋂
H∈N 0. A+H)"

using zneigh_not_empty cl_contains_zneigh by auto

next
{ fix x assume "x ∈ (

⋂
H∈N 0. A+H)"

then have "x ∈ A+G" using zneigh_not_empty by auto

with assms have "x∈G" using interval_add by blast

have "∀ U∈T. x∈U −→ U∩A 6= 0"

proof -

{ fix U assume "U∈T" and "x∈U"
let ?H = "-((-x)+U)"

from ‘U∈T‘ and ‘x∈U‘ have "(-x)+U ⊆ G" and "?H ∈ N 0"

using open_trans_neigh neg_neigh_neigh by auto

with ‘x ∈ (
⋂
H∈N 0. A+H)‘ have "x ∈ A+?H" by auto

with assms ‘?H ∈ N 0‘ obtain y where "y∈A" and "x ∈ y+?H"

using interval_add by auto

have "y∈U"
proof -

from assms ‘y∈A‘ have "y∈G" by auto

with ‘(-x)+U ⊆ G‘ and ‘x ∈ y+?H‘ have "y ∈ x+((-x)+U)"

using group0_valid_in_tgroup group0.ltrans_inv_in by simp

with ‘U∈T‘ ‘x∈G‘ show "y∈U"
using neg_in_tgroup group0_valid_in_tgroup group0.trans_comp_image

group0.group0_2_L6 group0.trans_neutral image_id_same

by auto

qed
with ‘y∈A‘ have "U∩A 6= 0" by auto

} thus ?thesis by simp

qed
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with assms ‘x∈G‘ have "x ∈ cl(A)" using inter_neigh_cl by simp

} thus "(
⋂
H∈N 0. A+H) ⊆ cl(A)" by auto

qed

65.5 Sums of sequences of elements and subsets

In this section we consider properties of the functionGn → G, x = (x0, x1, ..., xn−1) 7→∑n−1
i=0 xi. We will model the cartesian product Gn by the space of sequences

n → G, where n = {0, 1, ..., n − 1]} is a natural number. This space is
equipped with a natural product topology defined in Topology_ZF_3.

Let’s recall first that the sum of elements of a group is an element of the
group.

lemma (in topgroup) sum_list_in_group:

assumes "n ∈ nat" and "x: succ(n)→G"

shows "(
∑

x) ∈ G"

proof -

from assms have "semigr0(G,f)" and "n ∈ nat" "x: succ(n)→G"

using semigr0_valid_in_tgroup by auto

then have "Fold1(f,x) ∈ G" by (rule semigr0.prod_type)

thus "(
∑

x) ∈ G" by simp

qed

In this context x+y is the same as the value of the group operation on the
elements x and y. Normally we shouldn’t need to state this a s separate
lemma.

lemma (in topgroup) grop_def1: shows "f‘〈x,y〉 = x+y" by simp

Another theorem from Semigroup_ZF theory that is useful to have in the
additive notation.

lemma (in topgroup) shorter_set_add:

assumes "n ∈ nat" and "x: succ(succ(n))→G"

shows "(
∑

x) = (
∑

Init(x)) + (x‘(succ(n)))"

proof -

from assms have "semigr0(G,f)" and "n ∈ nat" "x: succ(succ(n))→G"

using semigr0_valid_in_tgroup by auto

then have "Fold1(f,x) = f‘〈Fold1(f,Init(x)),x‘(succ(n))〉"
by (rule semigr0.shorter_seq)

thus ?thesis by simp

qed

Sum is a continuous function in the product topology.

theorem (in topgroup) sum_continuous: assumes "n ∈ nat"

shows "IsContinuous(SeqProductTopology(succ(n),T),T,{〈x,
∑

x〉.x∈succ(n)→G})"

proof -

note ‘n ∈ nat‘

moreover have "IsContinuous(SeqProductTopology(succ(0),T),T,{〈x,
∑

x〉.x∈succ(0)→G})"
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proof -

have "{〈x,
∑

x〉.x∈succ(0)→G} = {〈x,x‘(0)〉. x∈1→G}"

using semigr0_valid_in_tgroup semigr0.prod_of_1elem by simp

moreover have
"IsAhomeomorphism(SeqProductTopology(1,T),T,{〈x,x‘(0)〉. x∈1→

⋃
T})"

using topSpaceAssum singleton_prod_top1 by simp

ultimately show ?thesis using IsAhomeomorphism_def by simp

qed
moreover have "∀ k∈nat.
IsContinuous(SeqProductTopology(succ(k),T),T,{〈x,

∑
x〉.x∈succ(k)→G})

−→
IsContinuous(SeqProductTopology(succ(succ(k)),T),T,{〈x,

∑
x〉.x∈succ(succ(k))→G})"

proof -

{ fix k assume "k ∈ nat"

let ?s = "{〈x,
∑

x〉.x∈succ(k)→G}"

let ?g = "{〈p,〈?s‘(fst(p)),snd(p)〉〉. p ∈ (succ(k)→G)×G}"
let ?h = "{〈x,〈Init(x),x‘(succ(k))〉〉. x ∈ succ(succ(k))→G}"

let ?ϕ = "SeqProductTopology(succ(k),T)"

let ?ψ = "SeqProductTopology(succ(succ(k)),T)"

assume "IsContinuous(?ϕ,T,?s)"
from ‘k ∈ nat‘ have "?s: (succ(k)→G) → G"

using sum_list_in_group ZF_fun_from_total by simp

have "?h: (succ(succ(k))→G)→(succ(k)→G)×G"
proof -

{ fix x assume "x ∈ succ(succ(k))→G"

with ‘k ∈ nat‘ have "Init(x) ∈ (succ(k)→G)"

using init_props by simp

with ‘k ∈ nat‘ ‘x : succ(succ(k))→G‘

have "〈Init(x),x‘(succ(k))〉 ∈ (succ(k)→G)×G"
using apply_funtype by blast

} then show ?thesis using ZF_fun_from_total by simp

qed
moreover have "?g:((succ(k)→G)×G)→(G×G)"
proof -

{ fix p assume "p ∈ (succ(k)→G)×G"
hence "fst(p): succ(k)→G" and "snd(p) ∈ G" by auto

with ‘?s: (succ(k)→G) → G‘ have "〈?s‘(fst(p)),snd(p)〉
∈ G×G"

using apply_funtype by blast

} then show "?g:((succ(k)→G)×G)→(G×G)" using ZF_fun_from_total

by simp

qed
moreover have "f : G×G → G" using topgroup_f_binop by simp

ultimately have "f O ?g O ?h :(succ(succ(k))→G)→G" using comp_fun

by blast

from ‘k ∈ nat‘ have "IsContinuous(?ψ,ProductTopology(?ϕ,T),?h)"
using topSpaceAssum finite_top_prod_homeo IsAhomeomorphism_def

by simp

moreover have "IsContinuous(ProductTopology(?ϕ,T),τ,?g)"
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proof -

from topSpaceAssum have
"T {is a topology}" "?ϕ {is a topology}" "

⋃
?ϕ = succ(k)→G"

using seq_prod_top_is_top by auto

moreover from ‘
⋃
?ϕ = succ(k)→G‘ ‘?s: (succ(k)→G) → G‘

have "?s:
⋃
?ϕ→

⋃
T" by simp

moreover note ‘IsContinuous(?ϕ,T,?s)‘
moreover from ‘

⋃
?ϕ = succ(k)→G‘

have "?g = {〈p,〈?s‘(fst(p)),snd(p)〉〉. p ∈
⋃
?ϕ×

⋃
T}"

by simp

ultimately have "IsContinuous(ProductTopology(?ϕ,T),ProductTopology(T,T),?g)"
using cart_prod_cont1 by blast

thus ?thesis by simp

qed
moreover have "IsContinuous(τ,T,f)" using fcon by simp

moreover have "{〈x,
∑

x〉.x∈succ(succ(k))→G} = f O ?g O ?h"

proof -

let ?d = "{〈x,
∑

x〉.x∈succ(succ(k))→G}"

from ‘k∈nat‘ have "∀ x∈succ(succ(k))→G. (
∑

x) ∈ G"

using sum_list_in_group by blast

then have "?d:(succ(succ(k))→G)→G"

using sum_list_in_group ZF_fun_from_total by simp

moreover note ‘f O ?g O ?h :(succ(succ(k))→G)→G‘

moreover have "∀ x∈succ(succ(k))→G. ?d‘(x) = (f O ?g O ?h)‘(x)"

proof
fix x assume "x∈succ(succ(k))→G"

then have I: "?h‘(x) = 〈Init(x),x‘(succ(k))〉"
using ZF_fun_from_tot_val1 by simp

moreover from ‘k∈nat‘ ‘x∈succ(succ(k))→G‘

have "Init(x): succ(k)→G"

using init_props by simp

moreover from ‘k∈nat‘ ‘x:succ(succ(k))→G‘

have II: "x‘(succ(k)) ∈ G"

using apply_funtype by blast

ultimately have "?h‘(x) ∈ (succ(k)→G)×G" by simp

then have "?g‘(?h‘(x)) = 〈?s‘(fst(?h‘(x))),snd(?h‘(x))〉"
using ZF_fun_from_tot_val1 by simp

with I have "?g‘(?h‘(x)) = 〈?s‘(Init(x)),x‘(succ(k))〉"
by simp

with ‘Init(x): succ(k)→G‘ have "?g‘(?h‘(x)) = 〈
∑

Init(x),x‘(succ(k))〉"
using ZF_fun_from_tot_val1 by simp

with ‘k ∈ nat‘ ‘x: succ(succ(k))→G‘

have "f‘(?g‘(?h‘(x))) = (
∑

x)"

using shorter_set_add by simp

with ‘x ∈ succ(succ(k))→G‘ have "f‘(?g‘(?h‘(x))) = ?d‘(x)"

using ZF_fun_from_tot_val1 by simp

moreover from
‘?h: (succ(succ(k))→G)→(succ(k)→G)×G‘
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‘?g:((succ(k)→G)×G)→(G×G)‘
‘f:(G×G)→G‘ ‘x∈succ(succ(k))→G‘

have "(f O ?g O ?h)‘(x) = f‘(?g‘(?h‘(x)))" by (rule func1_1_L18)

ultimately show "?d‘(x) = (f O ?g O ?h)‘(x)" by simp

qed
ultimately show "{〈x,

∑
x〉.x∈succ(succ(k))→G} = f O ?g O ?h"

using func_eq by simp

qed
moreover note ‘IsContinuous(τ,T,f)‘
ultimately have "IsContinuous(?ψ,T,{〈x,

∑
x〉.x∈succ(succ(k))→G})"

using comp_cont3 by simp

} thus ?thesis by simp

qed
ultimately show ?thesis by (rule ind_on_nat)

qed
end

66 Properties in topology 2

theory Topology_ZF_properties_2 imports Topology_ZF_7 Topology_ZF_1b

Finite_ZF_1 Topology_ZF_11

begin

66.1 Local properties.

This theory file deals with local topological properties; and applies local
compactness to the one point compactification.

We will say that a topological space is locally @term”P” iff every point
has a neighbourhood basis of subsets that have the property @term”P” as
subspaces.

definition
IsLocally ("_{is locally}_" 90)

where "T{is a topology} =⇒ T{is locally}P ≡ (∀ x∈
⋃
T. ∀ b∈T. x∈b −→

(∃ c∈Pow(b). x∈Interior(c,T) ∧ P(c,T)))"

66.2 First examples

Our first examples deal with the locally finite property. Finiteness is a
property of sets, and hence it is preserved by homeomorphisms; which are
in particular bijective.

The discrete topology is locally finite.

lemma discrete_locally_finite:

shows "Pow(A){is locally}(λA.(λB. Finite(A)))"
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proof-
have "∀ b∈Pow(A).

⋃
(Pow(A){restricted to}b)=b" unfolding RestrictedTo_def

by blast

then have "∀ b∈{{x}. x∈A}. Finite(b)" by auto moreover
have reg:"∀ S∈Pow(A). Interior(S,Pow(A))=S" unfolding Interior_def by

auto

{
fix x b assume "x∈

⋃
Pow(A)" "b∈Pow(A)" "x∈b"

then have "{x}⊆b" "x∈Interior({x},Pow(A))" "Finite({x})" using reg

by auto

then have "∃ c∈Pow(b). x∈Interior(c,Pow(A))∧Finite(c)" by blast

}
then have "∀ x∈

⋃
Pow(A). ∀ b∈Pow(A). x∈b −→ (∃ c∈Pow(b). x∈Interior(c,Pow(A))

∧ Finite(c))" by auto

then show ?thesis using IsLocally_def[OF Pow_is_top] by auto

qed

The included set topology is locally finite when the set is finite.

lemma included_finite_locally_finite:

assumes "Finite(A)" and "A⊆X"
shows "(IncludedSet X A){is locally}(λA.(λB. Finite(A)))"

proof-
have "∀ b∈Pow(X). b∩A⊆b" by auto moreover
note assms(1)

ultimately have rr:"∀ b∈{A∪{x}. x∈X}. Finite(b)" by force

{
fix x b assume "x∈

⋃
(IncludedSet X A)" "b∈(IncludedSet X A)" "x∈b"

then have "A∪{x}⊆b" "A∪{x}∈{A∪{x}. x∈X}" and sub: "b⊆X" unfold-
ing IncludedSet_def by auto

moreover have "A ∪ {x} ⊆ X" using assms(2) sub ‘x∈b‘ by auto

then have "x∈Interior(A∪{x},IncludedSet X A)" using interior_set_includedset[of

"A∪{x}""X""A"] by auto

ultimately have "∃ c∈Pow(b). x∈Interior(c,IncludedSet X A)∧ Finite(c)"

using rr by blast

}
then have "∀ x∈

⋃
(IncludedSet X A). ∀ b∈(IncludedSet X A). x∈b −→ (∃ c∈Pow(b).

x∈Interior(c,IncludedSet X A)∧ Finite(c))" by auto

then show ?thesis using IsLocally_def includedset_is_topology by auto

qed

66.3 Local compactness

definition
IsLocallyComp ("_{is locally-compact}" 70)

where "T{is locally-compact}≡T{is locally}(λB. λT. B{is compact in}T)"

We center ourselves in local compactness, because it is a very important tool
in topological groups and compactifications.

If a subset is compact of some cardinal for a topological space, it is compact
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of the same cardinal in the subspace topology.

lemma compact_imp_compact_subspace:

assumes "A{is compact of cardinal}K{in}T" "A⊆B"
shows "A{is compact of cardinal}K{in}(T{restricted to}B)" unfolding

IsCompactOfCard_def

proof
from assms show C:"Card(K)" unfolding IsCompactOfCard_def by auto

from assms have "A⊆
⋃
T" unfolding IsCompactOfCard_def by auto

then have AA:"A⊆
⋃
(T{restricted to}B)" using assms(2) unfolding RestrictedTo_def

by auto moreover
{

fix M assume "M∈Pow(T{restricted to}B)" "A⊆
⋃
M"

let ?M="{S∈T. B∩S∈M}"
from ‘M∈Pow(T{restricted to}B)‘ have "

⋃
M⊆
⋃
?M" unfolding RestrictedTo_def

by auto

with ‘A⊆
⋃
M‘ have "A⊆

⋃
?M""?M∈Pow(T)" by auto

with assms have "∃ N∈Pow(?M). A⊆
⋃
N∧N≺K" unfolding IsCompactOfCard_def

by auto

then obtain N where "N∈Pow(?M)" "A⊆
⋃
N" "N≺K" by auto

then have "N{restricted to}B⊆M" unfolding RestrictedTo_def FinPow_def

by auto

moreover
let ?f="{〈B,B∩B〉. B∈N}"
have "?f:N→(N{restricted to}B)" unfolding Pi_def function_def domain_def

RestrictedTo_def by auto

then have "?f∈surj(N,N{restricted to}B)" unfolding surj_def RestrictedTo_def

using apply_equality

by auto

from ‘N≺K‘ have "N.K" unfolding lesspoll_def by auto

with ‘?f∈surj(N,N{restricted to}B)‘ have "N{restricted to}B.N" us-
ing surj_fun_inv_2 Card_is_Ord C by auto

with ‘N≺K‘ have "N{restricted to}B≺K" using lesspoll_trans1 by auto

moreover from ‘A⊆
⋃
N‘ have "A⊆

⋃
(N{restricted to}B)" using assms(2)

unfolding RestrictedTo_def by auto

ultimately have "∃ N∈Pow(M). A⊆
⋃
N ∧ N≺K" by auto

}
with AA show "A ⊆

⋃
(T {restricted to} B) ∧ (∀ M∈Pow(T {restricted

to} B). A ⊆
⋃
M −→ (∃ N∈Pow(M). A ⊆

⋃
N ∧ N≺K))" by auto

qed

The converse of the previous result is not always true. For compactness, it
holds because the axiom of finite choice always holds.

lemma compact_subspace_imp_compact:

assumes "A{is compact in}(T{restricted to}B)" "A⊆B"
shows "A{is compact in}T" unfolding IsCompact_def

proof
from assms show "A⊆

⋃
T" unfolding IsCompact_def RestrictedTo_def by

auto

next
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{
fix M assume "M∈Pow(T)" "A⊆

⋃
M"

let ?M="M{restricted to}B"

from ‘M∈Pow(T)‘ have "?M∈Pow(T{restricted to}B)" unfolding RestrictedTo_def

by auto

from ‘A⊆
⋃
M‘ have "A⊆

⋃
?M" unfolding RestrictedTo_def using assms(2)

by auto

with assms ‘?M∈Pow(T{restricted to}B)‘ obtain N where "N∈FinPow(?M)"
"A⊆

⋃
N" unfolding IsCompact_def by blast

from ‘N∈FinPow(?M)‘ have "N≺nat" unfolding FinPow_def Finite_def

using n_lesspoll_nat eq_lesspoll_trans

by auto

then have "Finite(N)" using lesspoll_nat_is_Finite by auto

then obtain n where "n∈nat" "N≈n" unfolding Finite_def by auto

then have "N.n" using eqpoll_imp_lepoll by auto

moreover
{

fix BB assume "BB∈N"
with ‘N∈FinPow(?M)‘ have "BB∈?M" unfolding FinPow_def by auto

then obtain S where "S∈M" and "BB=B∩S" unfolding RestrictedTo_def

by auto

then have "S∈{S∈M. B∩S=BB}" by auto

then obtain "{S∈M. B∩S=BB} 6=0" by auto

}
then have "∀ BB∈N. ((λW∈N. {S∈M. B∩S=W})‘BB)6=0" by auto moreover
from ‘n∈nat‘ have " (N . n ∧ (∀ t∈N. (λW∈N. {S∈M. B∩S=W}) ‘ t 6=

0) −→ (∃ f. f ∈ Pi(N,λt. (λW∈N. {S∈M. B∩S=W}) ‘ t) ∧ (∀ t∈N. f ‘ t ∈
(λW∈N. {S∈M. B∩S=W}) ‘ t)))" using finite_choice unfolding AxiomCardinalChoiceGen_def

by blast

ultimately
obtain f where AA:"f∈Pi(N,λt. (λW∈N. {S∈M. B∩S=W}) ‘ t)" "∀ t∈N.

f‘t∈(λW∈N. {S∈M. B∩S=W}) ‘ t" by blast

from AA(2) have ss:"∀ t∈N. f‘t∈{S∈M. B∩S=t}" using beta_if by auto

then have "{f‘t. t∈N}⊆M" by auto

{
fix t assume "t∈N"
with ss have "f‘t∈{S∈M. B∩S∈N}" by auto

}
with AA(1) have FF:"f:N→{S∈M. B∩S∈N}" unfolding Pi_def Sigma_def

using beta_if by auto moreover
{

fix aa bb assume AAA:"aa∈N" "bb∈N" "f‘aa=f‘bb"

from AAA(1) ss have "B∩ (f‘aa) =aa" by auto

with AAA(3) have "B∩(f‘bb)=aa" by auto

with ss AAA(2) have "aa=bb" by auto

}
ultimately have "f∈inj(N,{S∈M. B∩S∈N})" unfolding inj_def by auto

then have "f∈bij(N,range(f))" using inj_bij_range by auto

then have "f∈bij(N,f‘‘N)" using range_image_domain FF by auto
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then have "f∈bij(N,{f‘t. t∈N})" using func_imagedef FF by auto

then have "N≈{f‘t. t∈N}" unfolding eqpoll_def by auto

with ‘N≈n‘ have "{f‘t. t∈N}≈n" using eqpoll_sym eqpoll_trans by
blast

with ‘n∈nat‘ have "Finite({f‘t. t∈N})" unfolding Finite_def by auto

with ss have "{f‘t. t∈N}∈FinPow(M)" unfolding FinPow_def by auto

moreover
{

fix aa assume "aa∈A"
with ‘A⊆

⋃
N‘ obtain b where "b∈N" and "aa∈b" by auto

with ss have "B∩(f‘b)=b" by auto

with ‘aa∈b‘ have "aa∈B∩(f‘b)" by auto

then have "aa∈ f‘b" by auto

with ‘b∈N‘ have "aa∈
⋃
{f‘t. t∈N}" by auto

}
then have "A⊆

⋃
{f‘t. t∈N}" by auto ultimately

have "∃ R∈FinPow(M). A⊆
⋃
R" by auto

}
then show "∀ M∈Pow(T). A ⊆

⋃
M −→ (∃ N∈FinPow(M). A ⊆

⋃
N)" by auto

qed

If the axiom of choice holds for some cardinal, then we can drop the compact
sets of that cardial are compact of the same cardinal as subspaces of every
superspace.

lemma Kcompact_subspace_imp_Kcompact:

assumes "A{is compact of cardinal}Q{in}(T{restricted to}B)" "A⊆B" "({the

axiom of} Q {choice holds})"

shows "A{is compact of cardinal}Q{in}T"

proof -

from assms(1) have a1:"Card(Q)" unfolding IsCompactOfCard_def RestrictedTo_def

by auto

from assms(1) have a2:"A⊆
⋃
T" unfolding IsCompactOfCard_def RestrictedTo_def

by auto

{
fix M assume "M∈Pow(T)" "A⊆

⋃
M"

let ?M="M{restricted to}B"

from ‘M∈Pow(T)‘ have "?M∈Pow(T{restricted to}B)" unfolding RestrictedTo_def

by auto

from ‘A⊆
⋃
M‘ have "A⊆

⋃
?M" unfolding RestrictedTo_def using assms(2)

by auto

with assms ‘?M∈Pow(T{restricted to}B)‘ obtain N where N:"N∈Pow(?M)"
"A⊆

⋃
N" "N ≺ Q" unfolding IsCompactOfCard_def by blast

from N(3) have "N.Q" using lesspoll_imp_lepoll by auto moreover

{
fix BB assume "BB∈N"
with ‘N∈Pow(?M)‘ have "BB∈?M" unfolding FinPow_def by auto

then obtain S where "S∈M" and "BB=B∩S" unfolding RestrictedTo_def

by auto
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then have "S∈{S∈M. B∩S=BB}" by auto

then obtain "{S∈M. B∩S=BB} 6=0" by auto

}
then have "∀ BB∈N. ((λW∈N. {S∈M. B∩S=W})‘BB) 6=0" by auto moreover
have " (N . Q ∧ (∀ t∈N. (λW∈N. {S∈M. B∩S=W}) ‘ t 6= 0) −→ (∃ f. f

∈ Pi(N,λt. (λW∈N. {S∈M. B∩S=W}) ‘ t) ∧ (∀ t∈N. f ‘ t ∈ (λW∈N. {S∈M.
B∩S=W}) ‘ t)))"

using assms(3) unfolding AxiomCardinalChoiceGen_def by blast

ultimately
obtain f where AA:"f∈Pi(N,λt. (λW∈N. {S∈M. B∩S=W}) ‘ t)" "∀ t∈N.

f‘t∈(λW∈N. {S∈M. B∩S=W}) ‘ t" by blast

from AA(2) have ss:"∀ t∈N. f‘t∈{S∈M. B∩S=t}" using beta_if by auto

then have "{f‘t. t∈N}⊆M" by auto

{
fix t assume "t∈N"
with ss have "f‘t∈{S∈M. B∩S∈N}" by auto

}
with AA(1) have FF:"f:N→{S∈M. B∩S∈N}" unfolding Pi_def Sigma_def

using beta_if by auto moreover
{

fix aa bb assume AAA:"aa∈N" "bb∈N" "f‘aa=f‘bb"

from AAA(1) ss have "B∩ (f‘aa) =aa" by auto

with AAA(3) have "B∩(f‘bb)=aa" by auto

with ss AAA(2) have "aa=bb" by auto

}
ultimately have "f∈inj(N,{S∈M. B∩S∈N})" unfolding inj_def by auto

then have "f∈bij(N,range(f))" using inj_bij_range by auto

then have "f∈bij(N,f‘‘N)" using range_image_domain FF by auto

then have "f∈bij(N,{f‘t. t∈N})" using func_imagedef FF by auto

then have "N≈{f‘t. t∈N}" unfolding eqpoll_def by auto

with ‘N≺Q‘ have "{f‘t. t∈N}≺Q" using eqpoll_sym eq_lesspoll_trans

by blast moreover
with ss have "{f‘t. t∈N}∈Pow(M)" unfolding FinPow_def by auto more-

over
{

fix aa assume "aa∈A"
with ‘A⊆

⋃
N‘ obtain b where "b∈N" and "aa∈b" by auto

with ss have "B∩(f‘b)=b" by auto

with ‘aa∈b‘ have "aa∈B∩(f‘b)" by auto

then have "aa∈ f‘b" by auto

with ‘b∈N‘ have "aa∈
⋃
{f‘t. t∈N}" by auto

}
then have "A⊆

⋃
{f‘t. t∈N}" by auto ultimately

have "∃ R∈Pow(M). A⊆
⋃
R ∧ R≺Q" by auto

}
then show ?thesis using a1 a2 unfolding IsCompactOfCard_def by auto

qed

Every set, with the cofinite topology is compact.
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lemma cofinite_compact:

shows "X {is compact in}(CoFinite X)" unfolding IsCompact_def

proof
show "X⊆

⋃
(CoFinite X)" using union_cocardinal unfolding Cofinite_def

by auto

next
{

fix M assume "M∈Pow(CoFinite X)" "X⊆
⋃
M"

{
assume "M=0∨M={0}"
then have "M∈FinPow(M)" unfolding FinPow_def by auto

with ‘X⊆
⋃
M‘ have "∃ N∈FinPow(M). X⊆

⋃
N" by auto

}
moreover
{

assume "M6=0""M6={0}"

then obtain U where "U∈M""U6=0" by auto

with ‘M∈Pow(CoFinite X)‘ have "U∈CoFinite X" by auto

with ‘U 6=0‘ have "U⊆X" "(X-U)≺nat" unfolding Cofinite_def Cocardinal_def

by auto

then have "Finite(X-U)" using lesspoll_nat_is_Finite by auto

then have "(X-U){is in the spectrum of}(λT. (
⋃
T){is compact in}T)"

using compact_spectrum

by auto

then have "((
⋃
(CoFinite (X-U)))≈X-U) −→ ((

⋃
(CoFinite (X-U))){is

compact in}(CoFinite (X-U)))" unfolding Spec_def

using InfCard_nat CoCar_is_topology unfolding Cofinite_def by
auto

then have com:"(X-U){is compact in}(CoFinite (X-U))" using union_cocardinal

unfolding Cofinite_def by auto

have "(X-U)∩X=X-U" by auto

then have "(CoFinite X){restricted to}(X-U)=(CoFinite (X-U))" us-
ing subspace_cocardinal unfolding Cofinite_def by auto

with com have "(X-U){is compact in}(CoFinite X)" using compact_subspace_imp_compact[of

"X-U""CoFinite X""X-U"] by auto

moreover have "X-U⊆
⋃
M" using ‘X⊆

⋃
M‘ by auto

moreover note ‘M∈Pow(CoFinite X)‘

ultimately have "∃ N∈FinPow(M). X-U⊆
⋃
N" unfolding IsCompact_def

by auto

then obtain N where "N⊆M" "Finite(N)" "X-U⊆
⋃
N" unfolding FinPow_def

by auto

with ‘U∈M‘ have "N ∪{U}⊆M" "Finite(N ∪{U})" "X⊆
⋃
(N ∪{U})" by

auto

then have "∃ N∈FinPow(M). X⊆
⋃
N" unfolding FinPow_def by blast

}
ultimately
have "∃ N∈FinPow(M). X⊆

⋃
N" by auto

}
then show "∀ M∈Pow(CoFinite X). X ⊆

⋃
M −→ (∃ N∈FinPow(M). X ⊆

⋃
N)"
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by auto

qed

A corollary is then that the cofinite topology is locally compact; since every
subspace of a cofinite space is cofinite.

corollary cofinite_locally_compact:

shows "(CoFinite X){is locally-compact}"

proof-
have cof:"topology0(CoFinite X)" and cof1:"(CoFinite X){is a topology}"

using CoCar_is_topology InfCard_nat Cofinite_def unfolding topology0_def

by auto

{
fix x B assume "x∈

⋃
(CoFinite X)" "B∈(CoFinite X)" "x∈B"

then have "x∈Interior(B,CoFinite X)" using topology0.Top_2_L3[OF

cof] by auto moreover
from ‘B∈(CoFinite X)‘ have "B⊆X" unfolding Cofinite_def Cocardinal_def

by auto

then have "B∩X=B" by auto

then have "(CoFinite X){restricted to}B=CoFinite B" using subspace_cocardinal

unfolding Cofinite_def by auto

then have "B{is compact in}((CoFinite X){restricted to}B)" using
cofinite_compact

union_cocardinal unfolding Cofinite_def by auto

then have "B{is compact in}(CoFinite X)" using compact_subspace_imp_compact

by auto

ultimately have "∃ c∈Pow(B). x∈Interior(c,CoFinite X)∧ c{is compact

in}(CoFinite X)" by auto

}
then have "(∀ x∈

⋃
(CoFinite X). ∀ b∈(CoFinite X). x∈b −→ (∃ c∈Pow(b).

x∈Interior(c,CoFinite X) ∧ c{is compact in}(CoFinite X)))"

by auto

then show ?thesis unfolding IsLocallyComp_def IsLocally_def[OF cof1]

by auto

qed

In every locally compact space, by definition, every point has a compact
neighbourhood.

theorem (in topology0) locally_compact_exist_compact_neig:

assumes "T{is locally-compact}"

shows "∀ x∈
⋃
T. ∃ A∈Pow(

⋃
T). A{is compact in}T ∧ x∈int(A)"

proof-
{

fix x assume "x∈
⋃
T" moreover

then have "
⋃
T6=0" by auto

have "
⋃
T∈T" using union_open topSpaceAssum by auto

ultimately have "∃ c∈Pow(
⋃
T). x∈int(c)∧ c{is compact in}T" using

assms

IsLocally_def topSpaceAssum unfolding IsLocallyComp_def by auto
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then have "∃ c∈Pow(
⋃
T). c{is compact in}T ∧ x∈int(c)" by auto

}
then show ?thesis by auto

qed

In Hausdorff spaces, the previous result is an equivalence.

theorem (in topology0) exist_compact_neig_T2_imp_locally_compact:

assumes "∀ x∈
⋃
T. ∃ A∈Pow(

⋃
T). x∈int(A) ∧ A{is compact in}T" "T{is

T2}"

shows "T{is locally-compact}"

proof-
{

fix x assume "x∈
⋃
T"

with assms(1) obtain A where "A∈Pow(
⋃
T)" "x∈int(A)" and Acom:"A{is

compact in}T" by blast

then have Acl:"A{is closed in}T" using in_t2_compact_is_cl assms(2)

by auto

then have sub:"A⊆
⋃
T" unfolding IsClosed_def by auto

{
fix U assume "U∈T" "x∈U"
let ?V="int(A∩U)"
from ‘x∈U‘ ‘x∈int(A)‘ have "x∈U∩(int (A))" by auto

moreover from ‘U∈T‘ have "U∩(int(A))∈T" using Top_2_L2 topSpaceAssum

unfolding IsATopology_def

by auto moreover
have "U∩(int(A))⊆A∩U" using Top_2_L1 by auto

ultimately have "x∈?V" using Top_2_L5 by blast

have "?V⊆A" using Top_2_L1 by auto

then have "cl(?V)⊆A" using Acl Top_3_L13 by auto

then have "A∩cl(?V)=cl(?V)" by auto moreover
have clcl:"cl(?V){is closed in}T" using cl_is_closed ‘?V⊆A‘ ‘A⊆

⋃
T‘

by auto

ultimately have comp:"cl(?V){is compact in}T" using Acom compact_closed[of

"A""nat""T""cl(?V)"] Compact_is_card_nat

by auto

{
then have "cl(?V){is compact in}(T{restricted to}cl(?V))" us-

ing compact_imp_compact_subspace[of "cl(?V)""nat""T"] Compact_is_card_nat

by auto moreover
have "

⋃
(T{restricted to}cl(?V))=cl(?V)" unfolding RestrictedTo_def

using clcl unfolding IsClosed_def by auto moreover
ultimately have "(

⋃
(T{restricted to}cl(?V))){is compact in}(T{restricted

to}cl(?V))" by auto

}
then have "(

⋃
(T{restricted to}cl(?V))){is compact in}(T{restricted

to}cl(?V))" by auto moreover
have "(T{restricted to}cl(?V)){is T2}" using assms(2) T2_here clcl

unfolding IsClosed_def by auto

ultimately have "(T{restricted to}cl(?V)){is T4}" using topology0.T2_compact_is_normal
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unfolding topology0_def

using Top_1_L4 unfolding isT4_def using T2_is_T1 by auto

then have clvreg:"(T{restricted to}cl(?V)){is regular}" using topology0.T4_is_T3

unfolding topology0_def isT3_def using Top_1_L4

by auto

have "?V⊆cl(?V)" using cl_contains_set ‘?V⊆A‘ ‘A⊆
⋃
T‘ by auto

then have "?V∈(T{restricted to}cl(?V))" unfolding RestrictedTo_def

using Top_2_L2 by auto

with ‘x∈?V‘ obtain W where Wop:"W∈(T{restricted to}cl(?V))" and
clcont:"Closure(W,(T{restricted to}cl(?V)))⊆?V" and cinW:"x∈W"

using topology0.regular_imp_exist_clos_neig unfolding topology0_def

using Top_1_L4 clvreg

by blast

from clcont Wop have "W⊆?V" using topology0.cl_contains_set un-
folding topology0_def using Top_1_L4 by auto

with Wop have "W∈(T{restricted to}cl(?V)){restricted to}?V" un-
folding RestrictedTo_def by auto

moreover from ‘?V⊆A‘ ‘A⊆
⋃
T‘ have "?V⊆

⋃
T" by auto

then have "?V⊆cl(?V)""cl(?V)⊆
⋃
T" using ‘?V⊆cl(?V)‘ Top_3_L11(1)

by auto

then have "(T{restricted to}cl(?V)){restricted to}?V=(T{restricted

to}?V)" using subspace_of_subspace by auto

ultimately have "W∈(T{restricted to}?V)" by auto

then obtain UU where "UU∈T" "W=UU∩?V" unfolding RestrictedTo_def

by auto

then have "W∈T" using Top_2_L2 topSpaceAssum unfolding IsATopology_def

by auto moreover
have "W⊆Closure(W,(T{restricted to}cl(?V)))" using topology0.cl_contains_set

unfolding topology0_def

using Top_1_L4 Wop by auto

ultimately have A1:"x∈int(Closure(W,(T{restricted to}cl(?V))))"

using Top_2_L6 cinW by auto

from clcont have A2:"Closure(W,(T{restricted to}cl(?V)))⊆U" us-
ing Top_2_L1 by auto

have clwcl:"Closure(W,(T{restricted to}cl(?V))) {is closed in}(T{restricted

to}cl(?V))"

using topology0.cl_is_closed Top_1_L4 Wop unfolding topology0_def

by auto

from comp have "cl(?V){is compact in}(T{restricted to}cl(?V))"

using compact_imp_compact_subspace[of "cl(?V)""nat""T"] Compact_is_card_nat

by auto

with clwcl have "((cl(?V)∩(Closure(W,(T{restricted to}cl(?V)))))){is

compact in}(T{restricted to}cl(?V))"

using compact_closed Compact_is_card_nat by auto moreover
from clcont have cont:"(Closure(W,(T{restricted to}cl(?V))))⊆cl(?V)"

using cl_contains_set ‘?V⊆A‘‘A⊆
⋃
T‘

by blast

then have "((cl(?V)∩(Closure(W,(T{restricted to}cl(?V))))))=Closure(W,(T{restricted

to}cl(?V)))" by auto
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ultimately have "Closure(W,(T{restricted to}cl(?V))){is compact

in}(T{restricted to}cl(?V))" by auto

then have "Closure(W,(T{restricted to}cl(?V))){is compact in}T"

using compact_subspace_imp_compact[of "Closure(W,T{restricted to}cl(?V))"]

cont by auto

with A1 A2 have "∃ c∈Pow(U). x∈int(c)∧c{is compact in}T" by auto

}
then have "∀ U∈T. x∈U −→ (∃ c∈Pow(U). x∈int(c)∧c{is compact in}T)"

by auto

}
then show ?thesis unfolding IsLocally_def[OF topSpaceAssum] IsLocallyComp_def

by auto

qed

66.4 Compactification by one point

Given a topological space, we can always add one point to the space and get
a new compact topology; as we will check in this section.

definition
OPCompactification ("{one-point compactification of}_" 90)

where "{one-point compactification of}T≡T∪{{
⋃
T}∪((

⋃
T)-K). K∈{B∈Pow(

⋃
T).

B{is compact in}T ∧ B{is closed in}T}}"

Firstly, we check that what we defined is indeed a topology.

theorem (in topology0) op_comp_is_top:

shows "({one-point compactification of}T){is a topology}" unfolding
IsATopology_def

proof(safe)
fix M assume "M⊆{one-point compactification of}T"

then have disj:"M⊆T∪{{
⋃
T}∪((

⋃
T)-K). K∈{B∈Pow(

⋃
T). B{is compact

in}T ∧ B{is closed in}T}}" unfolding OPCompactification_def by auto

let ?MT="{A∈M. A∈T}"
have "?MT⊆T" by auto

then have c1:"
⋃
?MT∈T" using topSpaceAssum unfolding IsATopology_def

by auto

let ?MK="{A∈M. A/∈T}"
have "

⋃
M=
⋃
?MK ∪

⋃
?MT" by auto

from disj have "?MK⊆{A∈M. A∈{{
⋃
T}∪((

⋃
T)-K). K∈{B∈Pow(

⋃
T). B{is

compact in}T ∧ B{is closed in}T}}}" by auto

moreover have N:"
⋃
T/∈(

⋃
T)" using mem_not_refl by auto

{
fix B assume "B∈M" "B∈{{

⋃
T}∪((

⋃
T)-K). K∈{B∈Pow(

⋃
T). B{is compact

in}T ∧ B{is closed in}T}}"

then obtain K where "K∈Pow(
⋃
T)" "B={

⋃
T}∪((

⋃
T)-K)" by auto

with N have "
⋃
T∈B" by auto

with N have "B/∈T" by auto

with ‘B∈M‘ have "B∈?MK" by auto

}
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then have "{A∈M. A∈{{
⋃
T}∪((

⋃
T)-K). K∈{B∈Pow(

⋃
T). B{is compact in}T

∧ B{is closed in}T}}}⊆?MK" by auto

ultimately have MK_def:"?MK={A∈M. A∈{{
⋃
T}∪((

⋃
T)-K). K∈{B∈Pow(

⋃
T).

B{is compact in}T ∧ B{is closed in}T}}}" by auto

let ?KK="{K∈Pow(
⋃
T). {

⋃
T}∪((

⋃
T)-K)∈?MK}"

{
assume "?MK=0"

then have "
⋃
M=
⋃
?MT" by auto

then have "
⋃
M∈T" using c1 by auto

then have "
⋃
M∈{one-point compactification of}T" unfolding OPCompactification_def

by auto

}
moreover
{

assume "?MK 6=0"

then obtain A where "A∈?MK" by auto

then obtain K1 where "A={
⋃
T}∪((

⋃
T)-K1)" "K1∈Pow(

⋃
T)" "K1{is closed

in}T" "K1{is compact in}T" using MK_def by auto

with ‘A∈?MK‘ have "
⋂
?KK⊆K1" by auto

from ‘A∈?MK‘ ‘A={
⋃
T}∪((

⋃
T)-K1)‘ ‘K1∈Pow(

⋃
T)‘ have "?KK6=0" by

blast

{
fix K assume "K∈?KK"
then have "{

⋃
T}∪((

⋃
T)-K)∈?MK" "K⊆

⋃
T" by auto

then obtain KK where A:"{
⋃
T}∪((

⋃
T)-K)={

⋃
T}∪((

⋃
T)-KK)" "KK⊆

⋃
T"

"KK{is compact in}T" "KK{is closed in}T" using MK_def by auto

note A(1) moreover
have "(

⋃
T)-K⊆{

⋃
T}∪((

⋃
T)-K)" "(

⋃
T)-KK⊆{

⋃
T}∪((

⋃
T)-KK)" by auto

ultimately have "(
⋃
T)-K⊆{

⋃
T}∪((

⋃
T)-KK)" "(

⋃
T)-KK⊆{

⋃
T}∪((

⋃
T)-K)"

by auto moreover
from N have "

⋃
T/∈(

⋃
T)-K" "

⋃
T/∈(

⋃
T)-KK" by auto ultimately

have "(
⋃
T)-K⊆((

⋃
T)-KK)" "(

⋃
T)-KK⊆((

⋃
T)-K)" by auto

then have "(
⋃
T)-K=(

⋃
T)-KK" by auto moreover

from ‘K⊆
⋃
T‘ have "K=(

⋃
T)-((

⋃
T)-K)" by auto ultimately

have "K=(
⋃
T)-((

⋃
T)-KK)" by auto

with ‘KK⊆
⋃
T‘ have "K=KK" by auto

with A(4) have "K{is closed in}T" by auto

}
then have "∀ K∈?KK. K{is closed in}T" by auto

with ‘?KK6=0‘ have "(
⋂
?KK){is closed in}T" using Top_3_L4 by auto

with ‘K1{is compact in}T‘ have "(K1∩(
⋂
?KK)){is compact in}T" us-

ing Compact_is_card_nat

compact_closed[of "K1""nat""T""
⋂
?KK"] by auto moreover

from ‘
⋂
?KK⊆K1‘ have "K1∩(

⋂
?KK)=(

⋂
?KK)" by auto ultimately

have "(
⋂
?KK){is compact in}T" by auto

with ‘(
⋂
?KK){is closed in}T‘ ‘

⋂
?KK⊆K1‘ ‘K1∈Pow(

⋃
T)‘ have "({

⋃
T}∪((

⋃
T)-(

⋂
?KK)))∈({one-point

compactification of}T)"

unfolding OPCompactification_def by blast

have t:"
⋃
?MK=

⋃
{A∈M. A∈{{

⋃
T}∪((

⋃
T)-K). K∈{B∈Pow(

⋃
T). B{is compact
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in}T ∧ B{is closed in}T}}}"

using MK_def by auto

{
fix x assume "x∈

⋃
?MK"

with t have "x∈
⋃
{A∈M. A∈{{

⋃
T}∪((

⋃
T)-K). K∈{B∈Pow(

⋃
T). B{is

compact in}T ∧ B{is closed in}T}}}" by auto

then have "∃ AA∈{A∈M. A∈{{
⋃
T}∪((

⋃
T)-K). K∈{B∈Pow(

⋃
T). B{is compact

in}T ∧ B{is closed in}T}}}. x∈AA"
using Union_iff by auto

then obtain AA where AAp:"AA∈{A∈M. A∈{{
⋃
T}∪((

⋃
T)-K). K∈{B∈Pow(

⋃
T).

B{is compact in}T ∧ B{is closed in}T}}}" "x∈AA" by auto

then obtain K2 where "AA={
⋃
T}∪((

⋃
T)-K2)" "K2∈Pow(

⋃
T)""K2{is

compact in}T" "K2{is closed in}T" by auto

with ‘x∈AA‘ have "x=
⋃
T ∨ (x∈(

⋃
T) ∧ x/∈K2)" by auto

from ‘K2∈Pow(
⋃
T)‘ ‘AA={

⋃
T}∪((

⋃
T)-K2)‘ AAp(1) MK_def have "K2∈?KK"

by auto

then have "
⋂
?KK⊆K2" by auto

with ‘x=
⋃
T ∨ (x∈(

⋃
T) ∧ x/∈K2)‘ have "x=

⋃
T∨(x∈

⋃
T ∧ x/∈

⋂
?KK)"

by auto

then have "x∈{
⋃
T}∪((

⋃
T)-(

⋂
?KK))" by auto

}
then have "

⋃
?MK⊆{

⋃
T}∪((

⋃
T)-(

⋂
?KK))" by auto

moreover
{

fix x assume "x∈{
⋃
T}∪((

⋃
T)-(

⋂
?KK))"

then have "x=
⋃
T∨(x∈(

⋃
T)∧ x/∈

⋂
?KK)" by auto

with ‘?KK6=0‘ obtain K2 where "K2∈?KK" "x=
⋃
T∨(x∈

⋃
T∧ x/∈K2)" by

auto

then have "{
⋃
T}∪((

⋃
T)-K2)∈?MK" by auto

with ‘x=
⋃
T∨(x∈

⋃
T∧ x/∈K2)‘ have "x∈

⋃
?MK" by auto

}
then have "{

⋃
T}∪((

⋃
T)-(

⋂
?KK))⊆

⋃
?MK" by (safe,auto)

ultimately have "
⋃
?MK={

⋃
T}∪((

⋃
T)-(

⋂
?KK))" by blast

from ‘
⋃
?MT∈T‘ have "

⋃
T-(
⋃
T-
⋃
?MT)=

⋃
?MT" by auto

with ‘
⋃
?MT∈T‘ have "(

⋃
T-
⋃
?MT){is closed in}T" unfolding IsClosed_def

by auto

have "((
⋃
T)-(

⋂
?KK))∪(

⋃
T-(
⋃
T-
⋃
?MT))=(

⋃
T)-((

⋂
?KK)∩(

⋃
T-
⋃
?MT))"

by auto

then have "({
⋃
T}∪((

⋃
T)-(

⋂
?KK)))∪(

⋃
T-(
⋃
T-
⋃
?MT))={

⋃
T}∪((

⋃
T)-((

⋂
?KK)∩(

⋃
T-
⋃
?MT)))"

by auto

with ‘
⋃
?MK={

⋃
T}∪((

⋃
T)-(

⋂
?KK))‘‘

⋃
T-(
⋃
T-
⋃
?MT)=

⋃
?MT‘ have "

⋃
?MK∪

⋃
?MT={

⋃
T}∪((

⋃
T)-((

⋂
?KK)∩(

⋃
T-
⋃
?MT)))"

by auto

with ‘
⋃
M=
⋃
?MK ∪

⋃
?MT‘ have unM:"

⋃
M={
⋃
T}∪((

⋃
T)-((

⋂
?KK)∩(

⋃
T-
⋃
?MT)))"

by auto

have "((
⋂
?KK)∩(

⋃
T-
⋃
?MT)) {is closed in}T" using ‘(

⋂
?KK){is closed

in}T‘‘(
⋃
T-(
⋃
?MT)){is closed in}T‘

Top_3_L5 by auto

moreover
note ‘(

⋃
T-(
⋃
?MT)){is closed in}T‘ ‘(

⋂
?KK){is compact in}T‘
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then have "((
⋂
?KK)∩(

⋃
T-
⋃
?MT)){is compact of cardinal}nat{in}T"

using compact_closed[of "
⋂
?KK""nat""T""(

⋃
T-
⋃
?MT)"] Compact_is_card_nat

by auto

then have "((
⋂
?KK)∩(

⋃
T-
⋃
?MT)){is compact in}T" using Compact_is_card_nat

by auto

ultimately have "{
⋃
T}∪(

⋃
T-((

⋂
?KK)∩(

⋃
T-
⋃
?MT)))∈{one-point compactification

of}T"

unfolding OPCompactification_def IsClosed_def by auto

with unM have "
⋃
M∈{one-point compactification of}T" by auto

}
ultimately show "

⋃
M∈{one-point compactification of}T" by auto

next
fix U V assume "U∈{one-point compactification of}T" and "V∈{one-point

compactification of}T"

then have A:"U∈T∨(∃ KU∈Pow(
⋃
T). U={

⋃
T}∪(

⋃
T-KU)∧KU{is closed in}T∧KU{is

compact in}T)"

"V∈T∨(∃ KV∈Pow(
⋃
T). V={

⋃
T}∪(

⋃
T-KV)∧KV{is closed in}T∧KV{is compact

in}T)" unfolding OPCompactification_def

by auto

have N:"
⋃
T/∈(

⋃
T)" using mem_not_refl by auto

{
assume "U∈T""V∈T"
then have "U∩V∈T" using topSpaceAssum unfolding IsATopology_def by

auto

then have "U∩V∈{one-point compactification of}T" unfolding OPCompactification_def

by auto

}
moreover
{

assume "U∈T""V/∈T"
then obtain KV where V:"KV{is closed in}T""KV{is compact in}T""V={

⋃
T}∪(

⋃
T-KV)"

using A(2) by auto

with N ‘U∈T‘ have "
⋃
T/∈U" by auto

then have "
⋃
T/∈U∩V" by auto

then have "U∩V=U∩(
⋃
T-KV)" using V(3) by auto

moreover have "
⋃
T-KV∈T" using V(1) unfolding IsClosed_def by auto

with ‘U∈T‘ have "U∩(
⋃
T-KV)∈T" using topSpaceAssum unfolding IsATopology_def

by auto

with ‘U∩V=U∩(
⋃
T-KV)‘ have "U∩V∈T" by auto

then have "U∩V∈{one-point compactification of}T" unfolding OPCompactification_def

by auto

}
moreover
{

assume "U/∈T""V∈T"
then obtain KV where V:"KV{is closed in}T""KV{is compact in}T""U={

⋃
T}∪(

⋃
T-KV)"

using A(1) by auto

with N ‘V∈T‘ have "
⋃
T/∈V" by auto

then have "
⋃
T/∈U∩V" by auto

966



then have "U∩V=(
⋃
T-KV)∩V" using V(3) by auto

moreover have "
⋃
T-KV∈T" using V(1) unfolding IsClosed_def by auto

with ‘V∈T‘ have "(
⋃
T-KV)∩V∈T" using topSpaceAssum unfolding IsATopology_def

by auto

with ‘U∩V=(
⋃
T-KV)∩V‘ have "U∩V∈T" by auto

then have "U∩V∈{one-point compactification of}T" unfolding OPCompactification_def

by auto

}
moreover
{

assume "U/∈T""V/∈T"
then obtain KV KU where V:"KV{is closed in}T""KV{is compact in}T""V={

⋃
T}∪(

⋃
T-KV)"

and U:"KU{is closed in}T""KU{is compact in}T""U={
⋃
T}∪(

⋃
T-KU)"

using A by auto

with V(3) U(3) have "
⋃
T∈U∩V" by auto

then have "U∩V={
⋃
T}∪((

⋃
T-KV)∩(

⋃
T-KU))" using V(3) U(3) by auto

moreover have "
⋃
T-KV∈T""

⋃
T-KU∈T" using V(1) U(1) unfolding IsClosed_def

by auto

then have "(
⋃
T-KV)∩(

⋃
T-KU)∈T" using topSpaceAssum unfolding IsATopology_def

by auto

then have "(
⋃
T-KV)∩(

⋃
T-KU)=

⋃
T-(
⋃
T-((

⋃
T-KV)∩(

⋃
T-KU)))" by auto

moreover
with ‘(

⋃
T-KV)∩(

⋃
T-KU)∈T‘ have "(

⋃
T-(
⋃
T-KV)∩(

⋃
T-KU)){is closed

in}T" unfolding IsClosed_def

by auto moreover
from V(1) U(1) have "(

⋃
T-(
⋃
T-KV)∩(

⋃
T-KU))=KV∪KU" unfolding IsClosed_def

by auto

with V(2) U(2) have "(
⋃
T-(
⋃
T-KV)∩(

⋃
T-KU)){is compact in}T" us-

ing union_compact[of "KV""nat""T""KU"] Compact_is_card_nat

InfCard_nat by auto ultimately
have "U∩V∈{one-point compactification of}T" unfolding OPCompactification_def

by auto

}
ultimately show "U∩V∈{one-point compactification of}T" by auto

qed

The original topology is an open subspace of the new topology.

theorem (in topology0) open_subspace:

shows "
⋃
T∈{one-point compactification of}T" and "({one-point compactification

of}T){restricted to}
⋃
T=T"

proof-
show "

⋃
T∈{one-point compactification of}T"

unfolding OPCompactification_def using topSpaceAssum unfolding IsATopology_def

by auto

have "T⊆({one-point compactification of}T){restricted to}
⋃
T" unfold-

ing OPCompactification_def RestrictedTo_def by auto

moreover
{

fix A assume "A∈({one-point compactification of}T){restricted to}
⋃
T"
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then obtain R where "R∈({one-point compactification of}T)" "A=
⋃
T∩R"

unfolding RestrictedTo_def by auto

then obtain K where K:"R∈T ∨ (R={
⋃
T}∪(

⋃
T-K) ∧ K{is closed in}T)"

unfolding OPCompactification_def by auto

with ‘A=
⋃
T∩R‘ have "(A=R∧R∈T)∨(A=

⋃
T-K ∧ K{is closed in}T)" us-

ing mem_not_refl unfolding IsClosed_def by auto

with K have "A∈T" unfolding IsClosed_def by auto

}
ultimately
show "({one-point compactification of}T){restricted to}

⋃
T=T" by auto

qed

We added only one new point to the space.

lemma (in topology0) op_compact_total:

shows "
⋃
({one-point compactification of}T)={

⋃
T}∪(

⋃
T)"

proof-
have "0{is compact in}T" unfolding IsCompact_def FinPow_def by auto

moreover note Top_3_L2 ultimately have TT:"0∈{A∈Pow(
⋃
T). A{is compact

in}T ∧A{is closed in}T}" by auto

have "
⋃
({one-point compactification of}T)=(

⋃
T)∪(

⋃
{{
⋃
T}∪(

⋃
T-K).

K∈{B∈Pow(
⋃
T). B{is compact in}T∧B{is closed in}T}})" unfolding OPCompactification_def

by blast

also have ". . .=(
⋃
T)∪{

⋃
T}∪(

⋃
{(
⋃
T-K). K∈{B∈Pow(

⋃
T). B{is compact

in}T∧B{is closed in}T}})" using TT by auto

ultimately show "
⋃
({one-point compactification of}T)={

⋃
T}∪(

⋃
T)" by

auto

qed

The one point compactification, gives indeed a compact topological space.

theorem (in topology0) compact_op:

shows "({
⋃
T}∪(

⋃
T)){is compact in}({one-point compactification of}T)"

unfolding IsCompact_def

proof(safe)
have "0{is compact in}T" unfolding IsCompact_def FinPow_def by auto

moreover note Top_3_L2 ultimately have "0∈{A∈Pow(
⋃
T). A{is compact

in}T ∧A{is closed in}T}" by auto

then have "{
⋃
T}∪(

⋃
T)∈{one-point compactification of}T" unfolding

OPCompactification_def by auto

then show "
⋃
T ∈

⋃
{one-point compactification of}T" by auto

next
fix x B assume "x∈B""B∈T"
then show "x∈

⋃
({one-point compactification of}T)" using open_subspace

by auto

next
fix M assume A:"M⊆({one-point compactification of}T)" "{

⋃
T} ∪

⋃
T

⊆
⋃
M"

then obtain R where "R∈M""
⋃
T∈R" by auto

have "
⋃
T/∈
⋃
T" using mem_not_refl by auto

with ‘R∈M‘ ‘
⋃
T∈R‘ A(1) obtain K where K:"R={

⋃
T}∪(

⋃
T-K)" "K{is compact
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in}T""K{is closed in}T"

unfolding OPCompactification_def by auto

from K(1,2) have B:"{
⋃
T} ∪ (

⋃
T) = R ∪ K" unfolding IsCompact_def

by auto

with A(2) have "K⊆
⋃
M" by auto

from K(2) have "K{is compact in}(({one-point compactification of}T){restricted

to}
⋃
T)" using open_subspace(2)

by auto

then have "K{is compact in}({one-point compactification of}T)" using
compact_subspace_imp_compact

‘K{is closed in}T‘ unfolding IsClosed_def by auto

with ‘K⊆
⋃
M‘ A(1) have "(∃ N∈FinPow(M). K ⊆

⋃
N)" unfolding IsCompact_def

by auto

then obtain N where "N∈FinPow(M)" "K⊆
⋃
N" by auto

with ‘R∈M‘ have "(N ∪{R})∈FinPow(M)""R∪K⊆
⋃
(N∪{R})" unfolding FinPow_def

by auto

with B show "∃ N∈FinPow(M). {
⋃
T} ∪ (

⋃
T)⊆

⋃
N" by auto

qed

The one point compactification is Hausdorff iff the original space is also
Hausdorff and locally compact.

lemma (in topology0) op_compact_T2_1:

assumes "({one-point compactification of}T){is T2}"

shows "T{is T2}"

using T2_here[OF assms, of "
⋃
T"] open_subspace by auto

lemma (in topology0) op_compact_T2_2:

assumes "({one-point compactification of}T){is T2}"

shows "T{is locally-compact}"

proof-
{

fix x assume "x∈
⋃
T"

then have "x∈{
⋃
T}∪(

⋃
T)" by auto

moreover have "
⋃
T∈{

⋃
T}∪(

⋃
T)" by auto moreover

from ‘x∈
⋃
T‘ have "x 6=

⋃
T" using mem_not_refl by auto

ultimately have "∃ U∈{one-point compactification of}T. ∃ V∈{one-point
compactification of}T. x ∈ U ∧ (

⋃
T) ∈ V ∧ U ∩ V = 0"

using assms op_compact_total unfolding isT2_def by auto

then obtain U V where UV:"U∈{one-point compactification of}T""V∈{one-point
compactification of}T"

"x∈U""
⋃
T∈V""U∩V=0" by auto

from ‘V∈{one-point compactification of}T‘ ‘
⋃
T∈V‘ mem_not_refl ob-

tain K where K:"V={
⋃
T}∪(

⋃
T-K)""K{is closed in}T""K{is compact in}T"

unfolding OPCompactification_def by auto

from ‘U∈{one-point compactification of}T‘ have "U⊆{
⋃
T}∪(

⋃
T)" un-

folding OPCompactification_def

using op_compact_total by auto

with ‘U∩V=0‘ K have "U⊆K""K⊆
⋃
T" unfolding IsClosed_def by auto

then have "(
⋃
T)∩U=U" by auto moreover
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from UV(1) have "((
⋃
T)∩U)∈({one-point compactification of}T){restricted

to}
⋃
T"

unfolding RestrictedTo_def by auto

ultimately have "U∈T" using open_subspace(2) by auto

with ‘x∈U‘‘U⊆K‘ have "x∈int(K)" using Top_2_L6 by auto

with ‘K⊆
⋃
T‘ ‘K{is compact in}T‘ have "∃ A∈Pow(

⋃
T). x∈int(A)∧ A{is

compact in}T" by auto

}
then have "∀ x∈

⋃
T. ∃ A∈Pow(

⋃
T). x∈int(A)∧ A{is compact in}T" by auto

then show ?thesis using op_compact_T2_1[OF assms] exist_compact_neig_T2_imp_locally_compact

by auto

qed

lemma (in topology0) op_compact_T2_3:

assumes "T{is locally-compact}" "T{is T2}"

shows "({one-point compactification of}T){is T2}"

proof-
{

fix x y assume "x6=y""x∈
⋃
({one-point compactification of}T)""y∈

⋃
({one-point

compactification of}T)"

then have S:"x∈{
⋃
T}∪(

⋃
T)""y∈{

⋃
T}∪(

⋃
T)" using op_compact_total

by auto

{
assume "x∈

⋃
T""y∈

⋃
T"

with ‘x 6=y‘ have "∃ U∈T. ∃ V∈T. x∈U∧y∈V∧U∩V=0" using assms(2) un-
folding isT2_def by auto

then have "∃ U∈({one-point compactification of}T). ∃ V∈({one-point
compactification of}T). x∈U∧y∈V∧U∩V=0"

unfolding OPCompactification_def by auto

}
moreover
{

assume "x/∈
⋃
T∨y/∈

⋃
T"

with S have "x=
⋃
T∨y=

⋃
T" by auto

with ‘x 6=y‘ have "(x=
⋃
T∧y6=

⋃
T)∨(y=

⋃
T∧x6=

⋃
T)" by auto

with S have "(x=
⋃
T∧y∈

⋃
T)∨(y=

⋃
T∧x∈

⋃
T)" by auto

then obtain Ky Kx where "(x=
⋃
T∧ Ky{is compact in}T∧y∈int(Ky))∨(y=

⋃
T∧

Kx{is compact in}T∧x∈int(Kx))"
using assms(1) locally_compact_exist_compact_neig by blast

then have "(x=
⋃
T∧ Ky{is compact in}T∧ Ky{is closed in}T∧y∈int(Ky))∨(y=

⋃
T∧

Kx{is compact in}T∧ Kx{is closed in}T∧x∈int(Kx))"
using in_t2_compact_is_cl assms(2) by auto

then have "(x∈{
⋃
T}∪(

⋃
T-Ky)∧y∈int(Ky)∧ Ky{is compact in}T∧ Ky{is

closed in}T)∨(y∈{
⋃
T}∪(

⋃
T-Kx)∧x∈int(Kx)∧ Kx{is compact in}T∧ Kx{is

closed in}T)"

by auto moreover
{

fix K

assume A:"K{is closed in}T""K{is compact in}T"
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then have "K⊆
⋃
T" unfolding IsClosed_def by auto

moreover have "
⋃
T/∈
⋃
T" using mem_not_refl by auto

ultimately have "({
⋃
T}∪(

⋃
T-K))∩K=0" by auto

then have "({
⋃
T}∪(

⋃
T-K))∩int(K)=0" using Top_2_L1 by auto more-

over
from A have "{

⋃
T}∪(

⋃
T-K)∈({one-point compactification of}T)"

unfolding OPCompactification_def

IsClosed_def by auto moreover
have "int(K)∈({one-point compactification of}T)" using Top_2_L2

unfolding OPCompactification_def

by auto ultimately
have "int(K)∈({one-point compactification of}T)∧{

⋃
T}∪(

⋃
T-K)∈({one-point

compactification of}T)∧({
⋃
T}∪(

⋃
T-K))∩int(K)=0"

by auto

}
ultimately have "({

⋃
T} ∪ (

⋃
T - Ky)∈({one-point compactification

of}T)∧int(Ky)∈({one-point compactification of}T)∧x ∈ {
⋃
T} ∪ (

⋃
T - Ky)

∧ y ∈ int(Ky) ∧ ({
⋃
T}∪(

⋃
T-Ky))∩int(Ky)=0) ∨

({
⋃
T} ∪ (

⋃
T - Kx)∈({one-point compactification of}T)∧int(Kx)∈({one-point

compactification of}T)∧y ∈ {
⋃
T} ∪ (

⋃
T - Kx) ∧ x ∈ int(Kx) ∧ ({

⋃
T}∪(

⋃
T-Kx))∩int(Kx)=0)"

by auto

moreover
{

assume "({
⋃
T} ∪ (

⋃
T - Ky)∈({one-point compactification of}T)∧int(Ky)∈({one-point

compactification of}T)∧x ∈ {
⋃
T} ∪ (

⋃
T - Ky) ∧ y ∈ int(Ky) ∧ ({

⋃
T}∪(

⋃
T-Ky))∩int(Ky)=0)"

then have "∃ U∈({one-point compactification of}T). ∃ V∈({one-point
compactification of}T). x∈U∧y∈V∧U∩V=0" using exI[OF exI[of _ "int(Ky)"],of

"λU V. U∈({one-point compactification of}T)∧V∈({one-point compactification

of}T) ∧ x∈U∧y∈V∧U∩V=0" "{
⋃
T}∪(

⋃
T-Ky)"]

by auto

} moreover
{

assume "({
⋃
T} ∪ (

⋃
T - Kx)∈({one-point compactification of}T)∧int(Kx)∈({one-point

compactification of}T)∧y ∈ {
⋃
T} ∪ (

⋃
T - Kx) ∧ x ∈ int(Kx) ∧ ({

⋃
T}∪(

⋃
T-Kx))∩int(Kx)=0)"

then have "∃ U∈({one-point compactification of}T). ∃ V∈({one-point
compactification of}T). x∈U∧y∈V∧U∩V=0" using exI[OF exI[of _ "{

⋃
T}∪(

⋃
T-Kx)"],of

"λU V. U∈({one-point compactification of}T)∧V∈({one-point compactification

of}T) ∧ x∈U∧y∈V∧U∩V=0""int(Kx)" ]

by blast

}
ultimately have "∃ U∈({one-point compactification of}T). ∃ V∈({one-point

compactification of}T). x∈U∧y∈V∧U∩V=0" by auto

}
ultimately have "∃ U∈({one-point compactification of}T). ∃ V∈({one-point

compactification of}T). x∈U∧y∈V∧U∩V=0" by auto

}
then show ?thesis unfolding isT2_def by auto

qed

In conclusion, every locally compact Hausdorff topological space is regular;
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since this property is hereditary.

corollary (in topology0) locally_compact_T2_imp_regular:

assumes "T{is locally-compact}" "T{is T2}"

shows "T{is regular}"

proof-
from assms have "( {one-point compactification of}T) {is T2}" using

op_compact_T2_3 by auto

then have "({one-point compactification of}T) {is T4}" unfolding isT4_def

using T2_is_T1 topology0.T2_compact_is_normal

op_comp_is_top unfolding topology0_def using op_compact_total compact_op

by auto

then have "({one-point compactification of}T) {is T3}" using topology0.T4_is_T3

op_comp_is_top unfolding topology0_def

by auto

then have "({one-point compactification of}T) {is regular}" using isT3_def

by auto moreover
have "

⋃
T⊆
⋃
({one-point compactification of}T)" using op_compact_total

by auto

ultimately have "(({one-point compactification of}T){restricted to}
⋃
T)

{is regular}" using regular_here by auto

then show "T{is regular}" using open_subspace(2) by auto

qed

This last corollary has an explanation: In Hausdorff spaces, compact sets
are closed and regular spaces are exactly the ”locally closed spaces”(those
which have a neighbourhood basis of closed sets). So the neighbourhood
basis of compact sets also works as the neighbourhood basis of closed sets
we needed to find.

definition
IsLocallyClosed ("_{is locally-closed}")

where "T{is locally-closed} ≡ T{is locally}(λB TT. B{is closed in}TT)"

lemma (in topology0) regular_locally_closed:

shows "T{is regular} ←→ (T{is locally-closed})"

proof
assume "T{is regular}"

then have a:"∀ x∈
⋃
T. ∀ U∈T. (x∈U) −→ (∃ V∈T. x ∈ V ∧ cl(V) ⊆ U)"

using regular_imp_exist_clos_neig by auto

{
fix x b assume "x∈

⋃
T""b∈T""x∈b"

with a obtain V where "V∈T""x∈V""cl(V)⊆b" by blast

note ‘cl(V)⊆b‘ moreover
from ‘V∈T‘ have "V⊆

⋃
T" by auto

then have "V⊆cl(V)" using cl_contains_set by auto

with ‘x∈V‘‘V∈T‘ have "x∈int(cl(V))" using Top_2_L6 by auto more-
over

from ‘V⊆
⋃
T‘ have "cl(V){is closed in}T" using cl_is_closed by auto

ultimately have "x∈int(cl(V))""cl(V)⊆b""cl(V){is closed in}T" by
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auto

then have "∃ K∈Pow(b). x∈int(K)∧K{is closed in}T" by auto

}
then show "T{is locally-closed}" unfolding IsLocally_def[OF topSpaceAssum]

IsLocallyClosed_def

by auto

next
assume "T{is locally-closed}"

then have a:"∀ x∈
⋃
T. ∀ b∈T. x∈b −→ (∃ K∈Pow(b). x∈int(K)∧K{is closed

in}T)" unfolding IsLocally_def[OF topSpaceAssum]

IsLocallyClosed_def by auto

{
fix x b assume "x∈

⋃
T""b∈T""x∈b"

with a obtain K where K:"K⊆b""x∈int(K)""K{is closed in}T" by blast

have "int(K)⊆K" using Top_2_L1 by auto

with K(3) have "cl(int(K))⊆K" using Top_3_L13 by auto

with K(1) have "cl(int(K))⊆b" by auto moreover
have "int(K)∈T" using Top_2_L2 by auto moreover
note ‘x∈int(K)‘ ultimately have "∃ V∈T. x∈V∧ cl(V)⊆b" by auto

}
then have "∀ x∈

⋃
T. ∀ b∈T. x∈b −→ (∃ V∈T. x∈V∧ cl(V)⊆b)" by auto

then show "T{is regular}" using exist_clos_neig_imp_regular by auto

qed

66.5 Hereditary properties and local properties

In this section, we prove a relation between a property and its local property
for hereditary properties. Then we apply it to locally-Hausdorff or locally-
T2. We also prove the relation between locally-T2 and another property that
appeared when considering anti-properties, the anti-hyperconnectness.

If a property is hereditary in open sets, then local properties are equivalent
to find just one open neighbourhood with that property instead of a whole
local basis.

lemma (in topology0) her_P_is_loc_P:

assumes "∀ TT. ∀ B∈Pow(
⋃
TT). ∀ A∈TT. TT{is a topology}∧P(B,TT) −→

P(B∩A,TT)"
shows "(T{is locally}P) ←→ (∀ x∈

⋃
T. ∃ A∈T. x∈A∧P(A,T))"

proof
assume A:"T{is locally}P"

{
fix x assume x:"x∈

⋃
T"

with A have "∀ b∈T. x∈b −→ (∃ c∈Pow(b). x∈int(c)∧P(c,T))" unfold-
ing IsLocally_def[OF topSpaceAssum]

by auto moreover
note x moreover
have "

⋃
T∈T" using topSpaceAssum unfolding IsATopology_def by auto

ultimately have "∃ c∈Pow(
⋃
T). x∈int(c)∧ P(c,T)" by auto
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then obtain c where c:"c⊆
⋃
T""x∈int(c)""P(c,T)" by auto

have op:"int(c)∈T" using Top_2_L2 by auto moreover
from c(1,3) topSpaceAssum assms have "∀ A∈T. P(c∩A,T)" by auto

ultimately have "P(c∩int(c),T)" by auto moreover
from Top_2_L1[of "c"] have "int(c)⊆c" by auto

then have "c∩int(c)=int(c)" by auto

ultimately have "P(int(c),T)" by auto

with op c(2) have "∃ V∈T. x∈V∧P(V,T)" by auto

}
then show "∀ x∈

⋃
T. ∃ V∈T. x∈V∧P(V,T)" by auto

next
assume A:"∀ x∈

⋃
T. ∃ A∈T. x ∈ A ∧ P(A, T)"

{
fix x assume x:"x∈

⋃
T"

{
fix b assume b:"x∈b""b∈T"
from x A obtain A where A_def:"A∈T""x∈A""P(A,T)" by auto

from A_def(1,3) assms topSpaceAssum have "∀ G∈T. P(A∩G,T)" by auto

with b(2) have "P(A∩b,T)" by auto

moreover from b(1) A_def(2) have "x∈A∩b" by auto moreover
have "A∩b∈T" using b(2) A_def(1) topSpaceAssum IsATopology_def

by auto

then have "int(A∩b)=A∩b" using Top_2_L3 by auto

ultimately have "x∈int(A∩b)∧P(A∩b,T)" by auto

then have "∃ c∈Pow(b). x∈int(c)∧P(c,T)" by auto

}
then have "∀ b∈T. x∈b−→(∃ c∈Pow(b). x∈int(c)∧P(c,T))" by auto

}
then show "T{is locally}P" unfolding IsLocally_def[OF topSpaceAssum]

by auto

qed

definition
IsLocallyT2 ("_{is locally-T2}" 70)

where "T{is locally-T2}≡T{is locally}(λB. λT. (T{restricted to}B){is

T2})"

Since T2 is an hereditary property, we can apply the previous lemma.

corollary (in topology0) loc_T2:

shows "(T{is locally-T2}) ←→ (∀ x∈
⋃
T. ∃ A∈T. x∈A∧(T{restricted to}A){is

T2})"

proof-
{

fix TT B A assume TT:"TT{is a topology}" "(TT{restricted to}B){is

T2}" "A∈TT""B∈Pow(
⋃
TT)"

then have s:"B∩A⊆B""B⊆
⋃
TT" by auto

then have "(TT{restricted to}(B∩A))=(TT{restricted to}B){restricted

to}(B∩A)" using subspace_of_subspace
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by auto moreover
have "

⋃
(TT{restricted to}B)=B" unfolding RestrictedTo_def using s(2)

by auto

then have "B∩A⊆
⋃
(TT{restricted to}B)" using s(1) by auto more-

over
note TT(2) ultimately have "(TT{restricted to}(B∩A)){is T2}" using

T2_here

by auto

}
then have "∀ TT. ∀ B∈Pow(

⋃
TT). ∀ A∈TT. TT{is a topology}∧(TT{restricted

to}B){is T2} −→ (TT{restricted to}(B∩A)){is T2}"

by auto

with her_P_is_loc_P[where P="λA. λTT. (TT{restricted to}A){is T2}"]

show ?thesis unfolding IsLocallyT2_def by auto

qed

First, we prove that a locally-T2 space is anti-hyperconnected.

Before starting, let’s prove that an open subspace of an hyperconnected
space is hyperconnected.

lemma(in topology0) open_subspace_hyperconn:

assumes "T{is hyperconnected}" "U∈T"
shows "(T{restricted to}U){is hyperconnected}"

proof-
{

fix A B assume "A∈(T{restricted to}U)""B∈(T{restricted to}U)""A∩B=0"
then obtain AU BU where "A=U∩AU""B=U∩BU" "AU∈T""BU∈T" unfolding

RestrictedTo_def by auto

then have "A∈T""B∈T" using topSpaceAssum assms(2) unfolding IsATopology_def

by auto

with ‘A∩B=0‘ have "A=0∨B=0" using assms(1) unfolding IsHConnected_def

by auto

}
then show ?thesis unfolding IsHConnected_def by auto

qed

lemma(in topology0) locally_T2_is_antiHConn:

assumes "T{is locally-T2}"

shows "T{is anti-}IsHConnected"

proof-
{

fix A assume A:"A∈Pow(
⋃
T)""(T{restricted to}A){is hyperconnected}"

{
fix x assume "x∈A"
with A(1) have "x∈

⋃
T" by auto moreover

have "
⋃
T∈T" using topSpaceAssum unfolding IsATopology_def by auto

ultimately
have "∃ c∈Pow(

⋃
T). x ∈ int(c) ∧ (T {restricted to} c) {is T2}"

using assms
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unfolding IsLocallyT2_def IsLocally_def[OF topSpaceAssum] by auto

then obtain c where c:"c∈Pow(
⋃
T)""x∈int(c)""(T {restricted to}

c) {is T2}" by auto

have "
⋃
(T {restricted to} c)=(

⋃
T)∩c" unfolding RestrictedTo_def

by auto

with ‘c∈Pow(
⋃
T)‘‘

⋃
T∈T‘ have tot:"

⋃
(T {restricted to} c)=c" by

auto

have "int(c)∈T" using Top_2_L2 by auto

then have "A∩(int(c))∈(T{restricted to}A)" unfolding RestrictedTo_def

by auto

with A(2) have "((T{restricted to}A){restricted to}(A∩(int(c)))){is
hyperconnected}"

using topology0.open_subspace_hyperconn unfolding topology0_def

using Top_1_L4

by auto

then have "(T{restricted to}(A∩(int(c)))){is hyperconnected}" us-
ing subspace_of_subspace[of "A∩(int(c))"

"A""T"] A(1) by force moreover
have "int(c)⊆c" using Top_2_L1 by auto

then have sub:"A∩(int(c))⊆c" by auto

then have "A∩(int(c))⊆
⋃
(T {restricted to} c)" using tot by auto

then have "((T {restricted to} c){restricted to}(A∩(int(c)))) {is

T2}" using
T2_here[OF c(3)] by auto

with sub have "(T {restricted to}(A∩(int(c)))){is T2}" using subspace_of_subspace[of

"A∩(int(c))"
"c""T"] ‘c∈Pow(

⋃
T)‘ by auto

ultimately have "(T{restricted to}(A∩(int(c)))){is hyperconnected}""(T

{restricted to}(A∩(int(c)))){is T2}"

by auto

then have "(T{restricted to}(A∩(int(c)))){is hyperconnected}""(T

{restricted to}(A∩(int(c)))){is anti-}IsHConnected"

using topology0.T2_imp_anti_HConn unfolding topology0_def us-
ing Top_1_L4 by auto

moreover
have "

⋃
(T{restricted to}(A∩(int(c))))=(

⋃
T)∩A∩(int(c))" unfold-

ing RestrictedTo_def by auto

with A(1) Top_2_L2 have "
⋃
(T{restricted to}(A∩(int(c))))=A∩(int(c))"

by auto

then have "A∩(int(c))⊆
⋃
(T{restricted to}(A∩(int(c))))" by auto

moreover
have "A∩(int(c))⊆

⋃
T" using A(1) Top_2_L2 by auto

then have "(T{restricted to}(A∩(int(c)))){restricted to}(A∩(int(c)))=(T{restricted
to}(A∩(int(c))))"

using subspace_of_subspace[of "A∩(int(c))""A∩(int(c))""T"] by
auto

ultimately have "(A∩(int(c))){is in the spectrum of}IsHConnected"

unfolding antiProperty_def

by auto
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then have "A∩(int(c)).1" using HConn_spectrum by auto

then have "(A∩(int(c))={x})" using lepoll_1_is_sing ‘x∈A‘‘x∈int(c)‘
by auto

then have "{x}∈(T{restricted to}A)" using ‘(A∩(int(c))∈(T{restricted
to}A))‘ by auto

}
then have pointOpen:"∀ x∈A. {x}∈(T{restricted to}A)" by auto

{
fix x y assume "x 6=y""x∈A""y∈A"
with pointOpen have "{x}∈(T{restricted to}A)""{y}∈(T{restricted

to}A)""{x}∩{y}=0"
by auto

with A(2) have "{x}=0∨{y}=0" unfolding IsHConnected_def by auto

then have "False" by auto

}
then have uni:"∀ x∈A. ∀ y∈A. x=y" by auto

{
assume "A6=0"

then obtain x where "x∈A" by auto

with uni have "A={x}" by auto

then have "A≈1" using singleton_eqpoll_1 by auto

then have "A.1" using eqpoll_imp_lepoll by auto

}
moreover
{

assume "A=0"

then have "A≈0" by auto

then have "A.1" using empty_lepollI eq_lepoll_trans by auto

}
ultimately have "A.1" by auto

then have "A{is in the spectrum of}IsHConnected" using HConn_spectrum

by auto

}
then show ?thesis unfolding antiProperty_def by auto

qed

Now we find a counter-example for: Every anti-hyperconnected space is
locally-Hausdorff.

The example we are going to consider is the following. Put in X an anti-
hyperconnected topology, where an infinite number of points don’t have
finite sets as neighbourhoods. Then add a new point to the set, p /∈ X.
Consider the open sets on X ∪ p as the anti-hyperconnected topology and
the open sets that contain p are p ∪A where X \A is finite.

This construction equals the one-point compactification iffX is anti-compact;
i.e., the only compact sets are the finite ones. In general this topology is
contained in the one-point compactification topology, making it compact
too.
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It is easy to check that any open set containing p meets infinite other non-
empty open set. The question is if such a topology exists.

theorem (in topology0) COF_comp_is_top:

assumes "T{is T1}""¬(
⋃
T≺nat)"

shows "((({one-point compactification of}(CoFinite (
⋃
T)))-{{

⋃
T}})∪T)

{is a topology}"

proof-
have N:"

⋃
T/∈(

⋃
T)" using mem_not_refl by auto

{
fix M assume M:"M⊆((({one-point compactification of}(CoFinite (

⋃
T)))-{{

⋃
T}})∪T)"

let ?MT="{A∈M. A∈T}"
let ?MK="{A∈M. A/∈T}"
have MM:"(

⋃
?MT)∪(

⋃
?MK)=

⋃
M" by auto

have MN:"
⋃
?MT∈T" using topSpaceAssum unfolding IsATopology_def by

auto

then have sub:"?MK⊆({one-point compactification of}(CoFinite (
⋃
T)))-{{

⋃
T}}"

using M by auto

then have "?MK⊆({one-point compactification of}(CoFinite (
⋃
T)))"

by auto

then have CO:"
⋃
?MK∈({one-point compactification of}(CoFinite (

⋃
T)))"

using
topology0.op_comp_is_top[OF topology0_CoCardinal[OF InfCard_nat]]

unfolding Cofinite_def

IsATopology_def by auto

{
assume AS:"

⋃
?MK={

⋃
T}"

moreover have "∀ R∈?MK. R⊆
⋃
?MK" by auto

ultimately have "∀ R∈?MK. R⊆{
⋃
T}" by auto

then have "∀ R∈?MK. R={
⋃
T}∨R=0" by force moreover

with sub have "∀ R∈?MK. R=0" by auto

then have "
⋃
?MK=0" by auto

with AS have "False" by auto

}
with CO have CO2:"

⋃
?MK∈({one-point compactification of}(CoFinite

(
⋃
T)))-{{

⋃
T}}" by auto

{
assume "

⋃
?MK∈(CoFinite (

⋃
T))"

then have "
⋃
?MK∈T" using assms(1) T1_cocardinal_coarser by auto

with MN have "{
⋃
?MT,

⋃
?MK}⊆(T)" by auto

then have "(
⋃
?MT)∪(

⋃
?MK)∈T" using union_open[OF topSpaceAssum,

of "{
⋃
?MT,

⋃
?MK}"] by auto

then have "
⋃
M∈T" using MM by auto

}
moreover
{

assume "
⋃
?MK/∈(CoFinite (

⋃
T))"

with CO obtain B where "B{is compact in}(CoFinite (
⋃
T))""B{is

closed in}(CoFinite (
⋃
T))"

"
⋃
?MK={

⋃
CoFinite

⋃
T}∪(

⋃
(CoFinite

⋃
T)-B)" unfolding OPCompactification_def
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by auto

then have MK:"
⋃
?MK={

⋃
T}∪(

⋃
T-B)""B{is closed in}(CoFinite (

⋃
T))"

using union_cocardinal unfolding Cofinite_def by auto

then have B:"B⊆
⋃
T" "B≺nat∨B=

⋃
T" using closed_sets_cocardinal

unfolding Cofinite_def by auto

{
assume "B=

⋃
T"

with MK have "
⋃
?MK={

⋃
T}" by auto

then have "False" using CO2 by auto

}
with B have "B⊆

⋃
T" and natB:"B≺nat" by auto

have "(
⋃
T-(
⋃
?MT))∩B⊆B" by auto

then have "(
⋃
T-(
⋃
?MT))∩B.B" using subset_imp_lepoll by auto

then have "(
⋃
T-(
⋃
?MT))∩B≺nat" using natB lesspoll_trans1 by auto

then have "((
⋃
T-(
⋃
?MT))∩B){is closed in}(CoFinite (

⋃
T))" us-

ing closed_sets_cocardinal

B(1) unfolding Cofinite_def by auto

then have "
⋃
T-((

⋃
T-(
⋃
?MT))∩B)∈(CoFinite (

⋃
T))" unfolding IsClosed_def

using union_cocardinal unfolding Cofinite_def by auto

also have "
⋃
T-((

⋃
T-(
⋃
?MT))∩B)=(

⋃
T-(
⋃
T-(
⋃
?MT)))∪(

⋃
T-B)" by

auto

also have ". . .=(
⋃
?MT)∪(

⋃
T-B)" by auto

ultimately have op:"(
⋃
?MT)∪(

⋃
T-B)∈(CoFinite (

⋃
T))" by auto

then have eq:"
⋃
T-(
⋃
T-((

⋃
?MT)∪(

⋃
T-B)))=(

⋃
?MT)∪(

⋃
T-B)" by auto

from op eq have "(
⋃
T-((

⋃
?MT)∪(

⋃
T-B))){is closed in}(CoFinite

(
⋃
T))" unfolding IsClosed_def

using union_cocardinal[of "nat""
⋃
T"] unfolding Cofinite_def by

auto moreover
have "(

⋃
T-((

⋃
?MT)∪(

⋃
T-B)))∩

⋃
T=(
⋃
T-((

⋃
?MT)∪(

⋃
T-B)))" by auto

then have "(CoFinite
⋃
T){restricted to}(

⋃
T-((

⋃
?MT)∪(

⋃
T-B)))=CoFinite

(
⋃
T-((

⋃
?MT)∪(

⋃
T-B)))" using subspace_cocardinal unfolding Cofinite_def

by auto

then have "(
⋃
T-((

⋃
?MT)∪(

⋃
T-B))){is compact in}((CoFinite

⋃
T){restricted

to}(
⋃
T-((

⋃
?MT)∪(

⋃
T-B))))" using cofinite_compact

union_cocardinal unfolding Cofinite_def by auto

then have "(
⋃
T-((

⋃
?MT)∪(

⋃
T-B))){is compact in}(CoFinite

⋃
T)"

using compact_subspace_imp_compact by auto ultimately
have "{

⋃
T}∪(

⋃
T-(
⋃
T-((

⋃
?MT)∪(

⋃
T-B))))∈({one-point compactification

of}(CoFinite (
⋃
T)))"

unfolding OPCompactification_def using union_cocardinal unfold-
ing Cofinite_def by auto

with eq have "{
⋃
T}∪((

⋃
?MT)∪(

⋃
T-B))∈({one-point compactification

of}(CoFinite (
⋃
T)))" by auto

moreover have AA:"{
⋃
T}∪((

⋃
?MT)∪(

⋃
T-B))=((

⋃
?MT)∪(

⋃
?MK))" us-

ing MK(1) by auto

ultimately have AA2:"((
⋃
?MT)∪(

⋃
?MK))∈({one-point compactification

of}(CoFinite (
⋃
T)))" by auto

{
assume AS:"(

⋃
?MT)∪(

⋃
?MK)={

⋃
T}"
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from MN have T:"
⋃
T/∈
⋃
?MT" using N by auto

{
fix x assume G:"x∈

⋃
?MT"

then have "x∈(
⋃
?MT)∪(

⋃
?MK)" by auto

with AS have "x∈{
⋃
T}" by auto

then have "x=
⋃
T" by auto

with T have "False" using G by auto

}
then have "

⋃
?MT=0" by auto

with AS have "(
⋃
?MK)={

⋃
T}" by auto

then have "False" using CO2 by auto

}
with AA2 have "((

⋃
?MT)∪(

⋃
?MK))∈({one-point compactification of}(CoFinite

(
⋃
T)))-{{

⋃
T}}" by auto

with MM have "
⋃
M∈({one-point compactification of}(CoFinite (

⋃
T)))-{{

⋃
T}}"

by auto

}
ultimately
have "

⋃
M∈(({one-point compactification of}(CoFinite (

⋃
T)))-{{

⋃
T}})∪T"

by auto

}
then have "∀ M∈Pow((({one-point compactification of}(CoFinite (

⋃
T)))-{{

⋃
T}})∪T).⋃

M∈(({one-point compactification of}(CoFinite (
⋃
T)))-{{

⋃
T}})∪T"

by auto moreover
{

fix U V assume "U∈(({one-point compactification of}(CoFinite (
⋃
T)))-{{

⋃
T}})∪T""V∈(({one-point

compactification of}(CoFinite (
⋃
T)))-{{

⋃
T}})∪T" moreover

{
assume "U∈T""V∈T"
then have "U∩V∈T" using topSpaceAssum unfolding IsATopology_def

by auto

then have "U∩V∈(({one-point compactification of}(CoFinite (
⋃
T)))-{{

⋃
T}})∪T"

by auto

}
moreover
{

assume UV:"U∈(({one-point compactification of}(CoFinite (
⋃
T)))-{{

⋃
T}})""V∈(({one-point

compactification of}(CoFinite (
⋃
T)))-{{

⋃
T}})"

then have O:"U∩V∈({one-point compactification of}(CoFinite (
⋃
T)))"

using topology0.op_comp_is_top[OF topology0_CoCardinal[OF InfCard_nat]]

unfolding Cofinite_def

IsATopology_def by auto

then have "
⋃
T∩(U∩V)∈({one-point compactification of}(CoFinite

(
⋃
T))){restricted to}

⋃
T"

unfolding RestrictedTo_def by auto

then have "
⋃
T∩(U∩V)∈CoFinite

⋃
T" using topology0.open_subspace(2)[OF

topology0_CoCardinal[OF InfCard_nat]]

union_cocardinal unfolding Cofinite_def by auto

from UV have "U 6={
⋃
T}""V 6={

⋃
T}""

⋃
T∩U∈({one-point compactification
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of}(CoFinite (
⋃
T))){restricted to}

⋃
T""
⋃
T∩V∈({one-point compactification

of}(CoFinite (
⋃
T))){restricted to}

⋃
T"

unfolding RestrictedTo_def by auto

then have R:"U 6={
⋃
T}""V 6={

⋃
T}""

⋃
T∩U∈CoFinite

⋃
T""
⋃
T∩V∈CoFinite⋃

T" using topology0.open_subspace(2)[OF topology0_CoCardinal[OF InfCard_nat]]

union_cocardinal unfolding Cofinite_def by auto

from UV have "U⊆
⋃
({one-point compactification of}(CoFinite (

⋃
T)))""V⊆

⋃
({one-point

compactification of}(CoFinite (
⋃
T)))" by auto

then have "U⊆{
⋃
T}∪

⋃
T""V⊆{

⋃
T}∪

⋃
T" using topology0.op_compact_total[OF

topology0_CoCardinal[OF InfCard_nat]]

union_cocardinal unfolding Cofinite_def by auto

then have E:"U=(
⋃
T∩U)∪({

⋃
T}∩U)""V=(

⋃
T∩V)∪({

⋃
T}∩V)""U∩V=(

⋃
T∩U∩V)∪({

⋃
T}∩U∩V)"

by auto

{
assume Q:"U∩V={

⋃
T}"

then have RR:"
⋃
T∩(U∩V)=0" using N by auto

{
assume "

⋃
T∩U=0"

with E(1) have "U={
⋃
T}∩U" by auto

also have ". . .⊆{
⋃
T}" by auto

ultimately have "U⊆{
⋃
T}" by auto

then have "U=0∨U={
⋃
T}" by auto

with R(1) have "U=0" by auto

then have "U∩V=0" by auto

then have "False" using Q by auto

}
moreover
{

assume "
⋃
T∩V=0"

with E(2) have "V={
⋃
T}∩V" by auto

also have ". . .⊆{
⋃
T}" by auto

ultimately have "V⊆{
⋃
T}" by auto

then have "V=0∨V={
⋃
T}" by auto

with R(2) have "V=0" by auto

then have "U∩V=0" by auto

then have "False" using Q by auto

}
moreover
{

assume "
⋃
T∩U6=0""

⋃
T∩V6=0"

with R(3,4) have "(
⋃
T∩U)∩(

⋃
T∩V) 6=0" using Cofinite_nat_HConn[OF

assms(2)]

unfolding IsHConnected_def by auto

then have "
⋃
T∩(U∩V)6=0" by auto

then have "False" using RR by auto

}
ultimately have "False" by auto

}
with O have "U∩V∈(({one-point compactification of}(CoFinite (

⋃
T)))-{{

⋃
T}})∪T"
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by auto

}
moreover
{

assume UV:"U∈T""V∈({one-point compactification of}(CoFinite (
⋃
T)))-{{

⋃
T}}"

from UV(2) obtain B where "V∈(CoFinite
⋃
T)∨(V={

⋃
T}∪(

⋃
T-B)∧B{is

closed in}(CoFinite (
⋃
T)))" unfolding OPCompactification_def

using union_cocardinal unfolding Cofinite_def by auto

with assms(1) have "V∈T∨(V={
⋃
T}∪(

⋃
T-B)∧B{is closed in}(CoFinite

(
⋃
T)))" using T1_cocardinal_coarser by auto

then have "V∈T∨(U∩V=U∩(
⋃
T-B)∧B{is closed in}(CoFinite (

⋃
T)))"

using UV(1) N by auto

then have "V∈T∨(U∩V=U∩(
⋃
T-B)∧(

⋃
T-B)∈(CoFinite (

⋃
T)))" unfold-

ing IsClosed_def using union_cocardinal unfolding Cofinite_def by auto

then have "V∈T∨(U∩V=U∩(
⋃
T-B)∧(

⋃
T-B)∈T)" using assms(1) T1_cocardinal_coarser

by auto

with UV(1) have "U∩V∈T" using topSpaceAssum unfolding IsATopology_def

by auto

then have "U∩V∈(({one-point compactification of}(CoFinite (
⋃
T)))-{{

⋃
T}})∪T"

by auto

}
moreover
{

assume UV:"U∈({one-point compactification of}(CoFinite (
⋃
T)))-{{

⋃
T}}""V∈T"

from UV(1) obtain B where "U∈(CoFinite
⋃
T)∨(U={

⋃
T}∪(

⋃
T-B)∧B{is

closed in}(CoFinite (
⋃
T)))" unfolding OPCompactification_def

using union_cocardinal unfolding Cofinite_def by auto

with assms(1) have "U∈T∨(U={
⋃
T}∪(

⋃
T-B)∧B{is closed in}(CoFinite

(
⋃
T)))" using T1_cocardinal_coarser by auto

then have "U∈T∨(U∩V=(
⋃
T-B)∩V∧B{is closed in}(CoFinite (

⋃
T)))"

using UV(2) N by auto

then have "U∈T∨(U∩V=(
⋃
T-B)∩V∧(

⋃
T-B)∈(CoFinite (

⋃
T)))" unfold-

ing IsClosed_def using union_cocardinal unfolding Cofinite_def by auto

then have "U∈T∨(U∩V=(
⋃
T-B)∩V∧(

⋃
T-B)∈T)" using assms(1) T1_cocardinal_coarser

by auto

with UV(2) have "U∩V∈T" using topSpaceAssum unfolding IsATopology_def

by auto

then have "U∩V∈(({one-point compactification of}(CoFinite (
⋃
T)))-{{

⋃
T}})∪T"

by auto

}
ultimately
have "U∩V∈(({one-point compactification of}(CoFinite (

⋃
T)))-{{

⋃
T}})∪T"

by auto

}
ultimately show ?thesis unfolding IsATopology_def by auto

qed

The previous construction preserves anti-hyperconnectedness.

theorem (in topology0) COF_comp_antiHConn:

982



assumes "T{is anti-}IsHConnected" "¬(
⋃
T≺nat)"

shows "((({one-point compactification of}(CoFinite (
⋃
T)))-{{

⋃
T}})∪T)

{is anti-}IsHConnected"

proof-
have N:"

⋃
T/∈(

⋃
T)" using mem_not_refl by auto

from assms(1) have T1:"T{is T1}" using anti_HConn_imp_T1 by auto

have tot1:"
⋃
({one-point compactification of}(CoFinite (

⋃
T)))={

⋃
T}∪

⋃
T"

using topology0.op_compact_total[OF topology0_CoCardinal[OF InfCard_nat],

of "
⋃
T"]

union_cocardinal[of "nat""
⋃
T"] unfolding Cofinite_def by auto

then have "(
⋃
({one-point compactification of}(CoFinite (

⋃
T))))∪

⋃
T={
⋃
T}∪

⋃
T"

by auto moreover
have "

⋃
(({one-point compactification of}(CoFinite (

⋃
T)))∪T)=(

⋃
({one-point

compactification of}(CoFinite (
⋃
T))))∪

⋃
T"

by auto

ultimately have tot2:"
⋃
(({one-point compactification of}(CoFinite (

⋃
T)))∪T)={

⋃
T}∪

⋃
T"

by auto

have "{
⋃
T}∪

⋃
T∈({one-point compactification of}(CoFinite (

⋃
T)))"

using union_open[OF topology0.op_comp_is_top[OF topology0_CoCardinal[OF

InfCard_nat]],of "{one-point compactification of}(CoFinite (
⋃
T))"]

tot1 unfolding Cofinite_def by auto moreover
{

assume "
⋃
T=0"

with assms(2) have "¬(0≺nat)" by auto

then have "False" unfolding lesspoll_def using empty_lepollI eqpoll_0_is_0

eqpoll_sym by auto

}
then have "

⋃
T6=0" by auto

with N have Not:"¬(
⋃
T⊆{

⋃
T})" by auto

{
assume "{

⋃
T}∪

⋃
T={
⋃
T}" moreover

have "
⋃
T⊆{

⋃
T}∪

⋃
T" by auto ultimately

have "
⋃
T⊆{

⋃
T}" by auto

with Not have "False" by auto

}
then have "{

⋃
T}∪

⋃
T6={

⋃
T}" by auto ultimately

have "{
⋃
T}∪

⋃
T∈({one-point compactification of}(CoFinite (

⋃
T)))-{{

⋃
T}}"

by auto

then have "{
⋃
T}∪

⋃
T∈({one-point compactification of}(CoFinite (

⋃
T)))-{{

⋃
T}}∪T"

by auto

then have "{
⋃
T}∪

⋃
T⊆
⋃
(({one-point compactification of}(CoFinite (

⋃
T)))-{{

⋃
T}}∪T)"

by auto moreover
have "({one-point compactification of}(CoFinite (

⋃
T)))-{{

⋃
T}}∪T⊆({one-point

compactification of}(CoFinite (
⋃
T)))∪T" by auto

then have "
⋃
(({one-point compactification of}(CoFinite (

⋃
T)))-{{

⋃
T}}∪T)⊆

⋃
(({one-point

compactification of}(CoFinite (
⋃
T)))∪T)" by auto

with tot2 have "
⋃
(({one-point compactification of}(CoFinite (

⋃
T)))-{{

⋃
T}}∪T)⊆{

⋃
T}∪

⋃
T"

by auto
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ultimately have TOT:"
⋃
((({one-point compactification of}(CoFinite (

⋃
T)))-{{

⋃
T}})∪T)={

⋃
T}∪

⋃
T"

by auto

{
fix A assume AS:"A⊆

⋃
T" "(((({one-point compactification of}(CoFinite

(
⋃
T)))-{{

⋃
T}})∪T){restricted to}A) {is hyperconnected}"

from AS(1,2) have e0:"((({one-point compactification of}(CoFinite

(
⋃
T)))-{{

⋃
T}})∪T){restricted to}A=(((({one-point compactification of}(CoFinite

(
⋃
T)))-{{

⋃
T}})∪T){restricted to}

⋃
T){restricted to}A"

using subspace_of_subspace[of "A""
⋃
T""((({one-point compactification

of}(CoFinite (
⋃
T)))-{{

⋃
T}})∪T)"] TOT by auto

have e1:"(((({one-point compactification of}(CoFinite (
⋃
T)))-{{

⋃
T}})∪T){restricted

to}(
⋃
T))=((({one-point compactification of}(CoFinite (

⋃
T)))-{{

⋃
T}}){restricted

to}
⋃
T)∪(T{restricted to}

⋃
T)"

unfolding RestrictedTo_def by auto

{
fix A assume "A∈T{restricted to}

⋃
T"

then obtain B where "B∈T""A=B∩
⋃
T" unfolding RestrictedTo_def by

auto

then have "A=B" by auto

with ‘B∈T‘ have "A∈T" by auto

}
then have "T{restricted to}

⋃
T⊆T" by auto moreover

{
fix A assume "A∈T"
then have "

⋃
T∩A=A" by auto

with ‘A∈T‘ have "A∈T{restricted to}
⋃
T" unfolding RestrictedTo_def

by auto

}
ultimately have "T{restricted to}

⋃
T=T" by auto moreover

{
fix A assume "A∈(({one-point compactification of}(CoFinite (

⋃
T)))-{{

⋃
T}}){restricted

to}
⋃
T"

then obtain B where "B∈({one-point compactification of}(CoFinite

(
⋃
T)))-{{

⋃
T}}""

⋃
T∩B=A" unfolding RestrictedTo_def by auto

then have "B∈({one-point compactification of}(CoFinite (
⋃
T)))""

⋃
T∩B=A"

by auto

then have "A∈({one-point compactification of}(CoFinite (
⋃
T))){restricted

to}
⋃
T" unfolding RestrictedTo_def by auto

then have "A∈(CoFinite (
⋃
T))" using topology0.open_subspace(2)[OF

topology0_CoCardinal[OF InfCard_nat]]

union_cocardinal unfolding Cofinite_def by auto

with T1 have "A∈T" using T1_cocardinal_coarser by auto

}
then have "(({one-point compactification of}(CoFinite (

⋃
T)))-{{

⋃
T}}){restricted

to}
⋃
T⊆T" by auto

moreover note e1 ultimately
have "((({one-point compactification of}(CoFinite

⋃
T)) - {{

⋃
T}}

∪ T) {restricted to} (
⋃
T)) =T" by auto

with e0 have "((({one-point compactification of}(CoFinite (
⋃
T)))-{{

⋃
T}})∪T){restricted
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to}A=T{restricted to}A" by auto

with assms(1) AS have "A{is in the spectrum of}IsHConnected" un-
folding antiProperty_def by auto

}
then have reg:"∀ A∈Pow(

⋃
T). ((((({one-point compactification of}(CoFinite

(
⋃
T)))-{{

⋃
T}})∪T){restricted to}A) {is hyperconnected}) −→(A{is in

the spectrum of}IsHConnected)" by auto

have "
⋃
T∈T" using topSpaceAssum unfolding IsATopology_def by auto

then have op:"
⋃
T∈((({one-point compactification of}(CoFinite (

⋃
T)))-{{

⋃
T}})∪T)"

by auto

{
fix B assume sub:"B∈Pow(

⋃
T ∪{

⋃
T})" and hyp:"((((({one-point compactification

of}(CoFinite (
⋃
T)))-{{

⋃
T}})∪T){restricted to}B) {is hyperconnected})"

from op have subop:"
⋃
T∩B∈(((({one-point compactification of}(CoFinite

(
⋃
T)))-{{

⋃
T}})∪T){restricted to}B)" unfolding RestrictedTo_def by auto

with hyp have hypSub:"((((({one-point compactification of}(CoFinite

(
⋃
T)))-{{

⋃
T}})∪T){restricted to}B){restricted to}(

⋃
T∩B)){is hyperconnected}"

using topology0.open_subspace_hyperconn

topology0.Top_1_L4 COF_comp_is_top[OF T1 assms(2)] unfolding topology0_def

by auto

from sub TOT have "B ⊆
⋃
(({one-point compactification of}(CoFinite⋃

T)) - {{
⋃
T}} ∪ T)" by auto

then have "(((({one-point compactification of}(CoFinite (
⋃
T)))-{{

⋃
T}})∪T){restricted

to}(
⋃
T∩B))=(((({one-point compactification of}(CoFinite (

⋃
T)))-{{

⋃
T}})∪T){restricted

to}B){restricted to}(
⋃
T∩B)"

using subspace_of_subspace[of "
⋃
T∩B""B""((({one-point compactification

of}(CoFinite (
⋃
T)))-{{

⋃
T}})∪T)"] by auto

with hypSub have "((({one-point compactification of}(CoFinite
⋃
T))

- {{
⋃
T}} ∪ T) {restricted to} (

⋃
T ∩ B)){is hyperconnected}" by auto

with reg have "(
⋃
T∩B){is in the spectrum of}IsHConnected" by auto

then have le:"
⋃
T∩B.1" using HConn_spectrum by auto

{
fix x assume x:"x∈

⋃
T∩B"

with le have sing:"
⋃
T∩B={x}" using lepoll_1_is_sing by auto

{
fix y assume y:"y∈B"
then have "y∈

⋃
T ∪{

⋃
T}" using sub by auto

with y have "y∈
⋃
T∩B∨y=

⋃
T" by auto

with sing have "y=x∨y=
⋃
T" by auto

}
then have "B⊆{x,

⋃
T}" by auto

with x have disj:"B={x}∨B={x,
⋃
T}" by auto

{
assume "

⋃
T∈B"

with disj have B:"B={x,
⋃
T}" by auto

from sing subop have singOp:"{x}∈(((({one-point compactification

of}(CoFinite (
⋃
T)))-{{

⋃
T}})∪T){restricted to}B)"

by auto

have "{x}{is closed in}(CoFinite
⋃
T)" using topology0.T1_iff_singleton_closed[OF
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topology0_CoCardinal[OF InfCard_nat]] cocardinal_is_T1[OF InfCard_nat]

x union_cocardinal unfolding Cofinite_def by auto

moreover
have "Finite({x})" by auto

then have spec:"{x}{is in the spectrum of} (λT. (
⋃
T) {is compact

in}T)" using compact_spectrum by auto

have "((CoFinite
⋃
T){restricted to}{x}){is a topology}""

⋃
((CoFinite⋃

T){restricted to}{x})={x}"

using topology0.Top_1_L4[OF topology0_CoCardinal[OF InfCard_nat]]

unfolding RestrictedTo_def Cofinite_def

using x union_cocardinal by auto

with spec have "{x}{is compact in}((CoFinite
⋃
T){restricted to}{x})"

unfolding Spec_def

by auto

then have "{x}{is compact in}(CoFinite
⋃
T)" using compact_subspace_imp_compact

by auto moreover note x

ultimately have "{
⋃
T}∪(

⋃
T-{x})∈{one-point compactification of}(CoFinite

(
⋃
T))" unfolding OPCompactification_def

using union_cocardinal unfolding Cofinite_def by auto more-
over

{
assume A:"{

⋃
T}∪(

⋃
T-{x})={

⋃
T}"

{
fix y assume P:"y∈

⋃
T-{x}"

then have "y∈{
⋃
T}∪(

⋃
T-{x})" by auto

then have "y=
⋃
T" using A by auto

with N P have "False" by auto

}
then have "

⋃
T-{x}=0" by auto

with x have "
⋃
T={x}" by auto

then have "
⋃
T≈1" using singleton_eqpoll_1 by auto moreover

have "1≺nat" using n_lesspoll_nat by auto

ultimately have "
⋃
T≺nat" using eq_lesspoll_trans by auto

then have "False" using assms(2) by auto

}
ultimately have "{

⋃
T}∪(

⋃
T-{x})∈({one-point compactification

of}(CoFinite (
⋃
T)))-{{

⋃
T}}" by auto

then have "{
⋃
T}∪(

⋃
T-{x})∈(((({one-point compactification of}(CoFinite

(
⋃
T)))-{{

⋃
T}})∪T))" by auto

then have "B∩({
⋃
T}∪(

⋃
T-{x}))∈(((({one-point compactification

of}(CoFinite (
⋃
T)))-{{

⋃
T}})∪T){restricted to}B)" unfolding RestrictedTo_def

by auto

moreover have "B∩({
⋃
T}∪(

⋃
T-{x}))={

⋃
T}" using B by auto

ultimately have "{
⋃
T}∈(((({one-point compactification of}(CoFinite

(
⋃
T)))-{{

⋃
T}})∪T){restricted to}B)" by auto

with singOp hyp N x have "False" unfolding IsHConnected_def by
auto

}
with disj have "B={x}" by auto
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then have "B≈1" using singleton_eqpoll_1 by auto

then have "B.1" using eqpoll_imp_lepoll by auto

}
then have "

⋃
T∩B6=0−→B.1" by blast

moreover
{

assume "
⋃
T∩B=0"

with sub have "B⊆{
⋃
T}" by auto

then have "B.{
⋃
T}" using subset_imp_lepoll by auto

then have "B.1" using singleton_eqpoll_1 lepoll_eq_trans by auto

}
ultimately have "B.1" by auto

then have "B{is in the spectrum of}IsHConnected" using HConn_spectrum

by auto

}
then show ?thesis unfolding antiProperty_def using TOT by auto

qed

The previous construction, applied to a densely ordered topology, gives the
desired counterexample. What happends is that every neighbourhood of

⋃
T

is dense; because there are no finite open sets, and hence meets every non-
empty open set. In conclusion,

⋃
T cannot be separated from other points

by disjoint open sets.

Every open set that contains
⋃
T is dense, when considering the order topol-

ogy in a densely ordered set with more than two points.

theorem neigh_infPoint_dense:

fixes T X r

defines T_def:"T ≡ (OrdTopology X r)"

assumes "IsLinOrder(X,r)" "X{is dense with respect to}r"

"∃ x y. x6=y∧x∈X∧y∈X" "U∈(({one-point compactification of}(CoFinite

(
⋃
T)))-{{

⋃
T}})∪T" "

⋃
T∈U"

"V∈(({one-point compactification of}(CoFinite (
⋃
T)))-{{

⋃
T}})∪T"

"V 6=0"

shows "U∩V6=0"

proof
have N:"

⋃
T/∈(

⋃
T)" using mem_not_refl by auto

have tot1:"
⋃
({one-point compactification of}(CoFinite (

⋃
T)))={

⋃
T}∪

⋃
T"

using topology0.op_compact_total[OF topology0_CoCardinal[OF InfCard_nat],

of "
⋃
T"]

union_cocardinal[of "nat""
⋃
T"] unfolding Cofinite_def by auto

then have "(
⋃
({one-point compactification of}(CoFinite (

⋃
T))))∪

⋃
T={
⋃
T}∪

⋃
T"

by auto moreover
have "

⋃
(({one-point compactification of}(CoFinite (

⋃
T)))∪T)=(

⋃
({one-point

compactification of}(CoFinite (
⋃
T))))∪

⋃
T"

by auto

ultimately have tot2:"
⋃
(({one-point compactification of}(CoFinite (

⋃
T)))∪T)={

⋃
T}∪

⋃
T"

by auto
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have "{
⋃
T}∪

⋃
T∈({one-point compactification of}(CoFinite (

⋃
T)))"

using union_open[OF topology0.op_comp_is_top[OF topology0_CoCardinal[OF

InfCard_nat]],of "{one-point compactification of}(CoFinite (
⋃
T))"]

tot1 unfolding Cofinite_def by auto moreover
{

assume "
⋃
T=0"

then have "X=0" unfolding T_def using union_ordtopology[OF assms(2)]

assms(4) by auto

then have "False" using assms(4) by auto

}
then have "

⋃
T6=0" by auto

with N have Not:"¬(
⋃
T⊆{

⋃
T})" by auto

{
assume "{

⋃
T}∪

⋃
T={
⋃
T}" moreover

have "
⋃
T⊆{

⋃
T}∪

⋃
T" by auto ultimately

have "
⋃
T⊆{

⋃
T}" by auto

with Not have "False" by auto

}
then have "{

⋃
T}∪

⋃
T 6={

⋃
T}" by auto ultimately

have "{
⋃
T}∪

⋃
T∈({one-point compactification of}(CoFinite (

⋃
T)))-{{

⋃
T}}"

by auto

then have "{
⋃
T}∪

⋃
T∈({one-point compactification of}(CoFinite (

⋃
T)))-{{

⋃
T}}∪T"

by auto

then have "{
⋃
T}∪

⋃
T⊆
⋃
(({one-point compactification of}(CoFinite (

⋃
T)))-{{

⋃
T}}∪T)"

by auto moreover
have "({one-point compactification of}(CoFinite (

⋃
T)))-{{

⋃
T}}∪T⊆({one-point

compactification of}(CoFinite (
⋃
T)))∪T" by auto

then have "
⋃
(({one-point compactification of}(CoFinite (

⋃
T)))-{{

⋃
T}}∪T)⊆

⋃
(({one-point

compactification of}(CoFinite (
⋃
T)))∪T)" by auto

with tot2 have "
⋃
(({one-point compactification of}(CoFinite (

⋃
T)))-{{

⋃
T}}∪T)⊆{

⋃
T}∪

⋃
T"

by auto

ultimately have TOT:"
⋃
((({one-point compactification of}(CoFinite (

⋃
T)))-{{

⋃
T}})∪T)={

⋃
T}∪

⋃
T"

by auto

assume A:"U∩V=0"
with assms(6) have NN:"

⋃
T/∈V" by auto

with assms(7) have "V∈(CoFinite
⋃
T)∪T" unfolding OPCompactification_def

using union_cocardinal

unfolding Cofinite_def by auto

moreover have "T{is T2}" unfolding T_def using order_top_T2[OF assms(2)]

assms(4) by auto

then have T1:"T{is T1}" using T2_is_T1 by auto

ultimately have VopT:"V∈T" using topology0.T1_cocardinal_coarser[OF

topology0_ordtopology(1)[OF assms(2)]]

unfolding T_def by auto

from A assms(7) have "V⊆
⋃
((({one-point compactification of}(CoFinite

(
⋃
T)))-{{

⋃
T}})∪T)-U" by auto

then have "V⊆({
⋃
T}∪

⋃
T)-U" using TOT by auto

then have "V⊆(
⋃
T)-U" using NN by auto

from N have "U/∈T" using assms(6) by auto
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then have "U/∈(CoFinite
⋃
T)∪T" using T1 topology0.T1_cocardinal_coarser[OF

topology0_ordtopology(1)[OF assms(2)]]

unfolding T_def using union_cocardinal union_ordtopology[OF assms(2)]

assms(4) by auto

with assms(5,6) obtain B where U:"U={
⋃
T}∪(

⋃
T-B)" "B{is closed in}(CoFinite⋃

T)" "B6=
⋃
T"

unfolding OPCompactification_def using union_cocardinal unfolding
Cofinite_def by auto

then have "U={
⋃
T}∪(

⋃
T-B)" "B=

⋃
T ∨ B≺nat" "B6=

⋃
T" using closed_sets_cocardinal

unfolding Cofinite_def

by auto

then have "U={
⋃
T}∪(

⋃
T-B)" "B≺nat" by auto

with N have "
⋃
T-U=

⋃
T-(
⋃
T-B)" by auto

then have "
⋃
T-U=B" using U(2) unfolding IsClosed_def using union_cocardinal

unfolding Cofinite_def

by auto

with ‘B≺nat‘ have "Finite(
⋃
T-U)" using lesspoll_nat_is_Finite by auto

with ‘V⊆(
⋃
T)-U‘ have "Finite(V)" using subset_Finite by auto

from assms(8) obtain v where "v∈V" by auto

with VopT have "∃ R∈{IntervalX(X, r, b, c) . 〈b,c〉 ∈ X × X} ∪ {LeftRayX(X,

r, b) . b ∈ X} ∪{RightRayX(X, r, b) . b ∈ X}. R ⊆ V ∧ v ∈ R" using
point_open_base_neigh[OF Ordtopology_is_a_topology(2)[OF assms(2)]]

unfolding T_def by auto

then obtain R where R_def:"R∈{IntervalX(X, r, b, c) . 〈b,c〉 ∈ X × X}

∪ {LeftRayX(X, r, b) . b ∈ X} ∪{RightRayX(X, r, b) . b ∈ X}" "R⊆V" "v∈R"
by blast

moreover
{

assume "R∈{IntervalX(X, r, b, c) . 〈b,c〉 ∈ X × X}"

then obtain b c where lim:"b∈X""c∈X""R=IntervalX(X, r, b, c)" by
auto

with ‘v∈R‘ have " ¬ Finite(R)" using dense_order_inf_intervals[OF

assms(2) _ _ _ assms(3)]

by auto

with ‘R⊆V‘ ‘Finite(V)‘ have "False" using subset_Finite by auto

} moreover
{

assume "R∈{LeftRayX(X, r, b) . b ∈ X}"

then obtain b where lim:"b∈X""R=LeftRayX(X, r, b)" by auto

with ‘v∈R‘ have " ¬ Finite(R)" using dense_order_inf_lrays[OF assms(2)

_ _ assms(3)] by auto

with ‘R⊆V‘ ‘Finite(V)‘ have "False" using subset_Finite by auto

} moreover
{

assume "R∈{RightRayX(X, r, b) . b ∈ X}"

then obtain b where lim:"b∈X""R=RightRayX(X, r, b)" by auto

with ‘v∈R‘ have " ¬ Finite(R)" using dense_order_inf_rrays[OF assms(2)_

_ assms(3)] by auto

with ‘R⊆V‘ ‘Finite(V)‘ have "False" using subset_Finite by auto
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} ultimately
show "False" by auto

qed

A densely ordered set with more than one point gives an order topology.
Applying the previous construction to this topology we get a non locally-
Hausdorff space.

theorem OPComp_cofinite_dense_order_not_loc_T2:

fixes T X r

defines T_def:"T ≡ (OrdTopology X r)"

assumes "IsLinOrder(X,r)" "X{is dense with respect to}r"

"∃ x y. x6=y∧x∈X∧y∈X"
shows "¬((({one-point compactification of}(CoFinite (

⋃
T)))-{{

⋃
T}}∪T){is

locally-T2})"

proof
have N:"

⋃
T/∈(

⋃
T)" using mem_not_refl by auto

have tot1:"
⋃
({one-point compactification of}(CoFinite (

⋃
T)))={

⋃
T}∪

⋃
T"

using topology0.op_compact_total[OF topology0_CoCardinal[OF InfCard_nat],

of "
⋃
T"]

union_cocardinal[of "nat""
⋃
T"] unfolding Cofinite_def by auto

then have "(
⋃
({one-point compactification of}(CoFinite (

⋃
T))))∪

⋃
T={
⋃
T}∪

⋃
T"

by auto moreover
have "

⋃
(({one-point compactification of}(CoFinite (

⋃
T)))∪T)=(

⋃
({one-point

compactification of}(CoFinite (
⋃
T))))∪

⋃
T"

by auto

ultimately have tot2:"
⋃
(({one-point compactification of}(CoFinite (

⋃
T)))∪T)={

⋃
T}∪

⋃
T"

by auto

have "{
⋃
T}∪

⋃
T∈({one-point compactification of}(CoFinite (

⋃
T)))"

using union_open[OF topology0.op_comp_is_top[OF topology0_CoCardinal[OF

InfCard_nat]],of "{one-point compactification of}(CoFinite (
⋃
T))"]

tot1 unfolding Cofinite_def by auto moreover
{

assume "
⋃
T=0"

then have "X=0" unfolding T_def using union_ordtopology[OF assms(2)]

assms(4) by auto

then have "False" using assms(4) by auto

}
then have "

⋃
T6=0" by auto

with N have Not:"¬(
⋃
T⊆{

⋃
T})" by auto

{
assume "{

⋃
T}∪

⋃
T={
⋃
T}" moreover

have "
⋃
T⊆{

⋃
T}∪

⋃
T" by auto ultimately

have "
⋃
T⊆{

⋃
T}" by auto

with Not have "False" by auto

}
then have "{

⋃
T}∪

⋃
T6={

⋃
T}" by auto ultimately

have "{
⋃
T}∪

⋃
T∈({one-point compactification of}(CoFinite (

⋃
T)))-{{

⋃
T}}"

by auto
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then have "{
⋃
T}∪

⋃
T∈({one-point compactification of}(CoFinite (

⋃
T)))-{{

⋃
T}}∪T"

by auto

then have "{
⋃
T}∪

⋃
T⊆
⋃
(({one-point compactification of}(CoFinite (

⋃
T)))-{{

⋃
T}}∪T)"

by auto moreover
have "({one-point compactification of}(CoFinite (

⋃
T)))-{{

⋃
T}}∪T⊆({one-point

compactification of}(CoFinite (
⋃
T)))∪T" by auto

then have "
⋃
(({one-point compactification of}(CoFinite (

⋃
T)))-{{

⋃
T}}∪T)⊆

⋃
(({one-point

compactification of}(CoFinite (
⋃
T)))∪T)" by auto

with tot2 have "
⋃
(({one-point compactification of}(CoFinite (

⋃
T)))-{{

⋃
T}}∪T)⊆{

⋃
T}∪

⋃
T"

by auto

ultimately have TOT:"
⋃
((({one-point compactification of}(CoFinite (

⋃
T)))-{{

⋃
T}})∪T)={

⋃
T}∪

⋃
T"

by auto

have T1:"T{is T1}" using order_top_T2[OF assms(2,4)] T2_is_T1 unfold-
ing T_def by auto moreover

from assms(4) obtain b c where B:"b∈X""c∈X""b6=c" by auto

{
assume "〈b,c〉/∈r"
with assms(2) have "〈c,b〉∈r" unfolding IsLinOrder_def IsTotal_def

using ‘b∈X‘‘c∈X‘ by auto

with assms(3) B obtain z where "z∈X-{b,c}""〈c,z〉∈r""〈z,b〉∈r" un-
folding IsDense_def by auto

then have "IntervalX(X,r,c,b)6=0" unfolding IntervalX_def using Order_ZF_2_L1

by auto

then have "¬(Finite(IntervalX(X,r,c,b)))" using dense_order_inf_intervals[OF

assms(2) _ ‘c∈X‘‘b∈X‘ assms(3)]

by auto moreover
have "IntervalX(X,r,c,b)⊆X" unfolding IntervalX_def by auto

ultimately have "¬(Finite(X))" using subset_Finite by auto

then have "¬(X≺nat)" using lesspoll_nat_is_Finite by auto

}
moreover
{

assume "〈b,c〉∈r"
with assms(3) B obtain z where "z∈X-{b,c}""〈b,z〉∈r""〈z,c〉∈r" un-

folding IsDense_def by auto

then have "IntervalX(X,r,b,c)6=0" unfolding IntervalX_def using Order_ZF_2_L1

by auto

then have "¬(Finite(IntervalX(X,r,b,c)))" using dense_order_inf_intervals[OF

assms(2) _ ‘b∈X‘‘c∈X‘ assms(3)]

by auto moreover
have "IntervalX(X,r,b,c)⊆X" unfolding IntervalX_def by auto

ultimately have "¬(Finite(X))" using subset_Finite by auto

then have "¬(X≺nat)" using lesspoll_nat_is_Finite by auto

}
ultimately have "¬(X≺nat)" by auto

with T1 have top:"(({one-point compactification of}(CoFinite (
⋃
T)))-{{

⋃
T}}∪T){is

a topology}" using topology0.COF_comp_is_top[OF topology0_ordtopology[OF

assms(2)]] unfolding T_def

using union_ordtopology[OF assms(2,4)] by auto
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assume "(({one-point compactification of}(CoFinite (
⋃
T)))-{{

⋃
T}}∪T){is

locally-T2}" moreover
have "

⋃
T∈
⋃
(({one-point compactification of}(CoFinite (

⋃
T)))-{{

⋃
T}}∪T)"

using TOT by auto

moreover have "
⋃
(({one-point compactification of}(CoFinite (

⋃
T)))-{{

⋃
T}}∪T)∈(({one-point

compactification of}(CoFinite (
⋃
T)))-{{

⋃
T}}∪T)"

using top unfolding IsATopology_def by auto

ultimately have "∃ c∈Pow(
⋃
(({one-point compactification of}(CoFinite

(
⋃
T)))-{{

⋃
T}}∪T)).

⋃
T ∈ Interior(c, (({one-point compactification of}(CoFinite⋃

T)) - {{
⋃
T}}) ∪ T) ∧
((({one-point compactification of}CoFinite

⋃
T) - {{

⋃
T}}

∪ T) {restricted to} c) {is T2}" unfolding IsLocallyT2_def IsLocally_def[OF

top] by auto

then obtain C where C:"C⊆
⋃
(({one-point compactification of}(CoFinite

(
⋃
T)))-{{

⋃
T}}∪T)" "

⋃
T ∈ Interior(C, (({one-point compactification of}(CoFinite⋃

T)) - {{
⋃
T}}) ∪ T)" and T2:"((({one-point compactification of}CoFinite⋃

T) - {{
⋃
T}} ∪ T) {restricted to} C) {is T2}"

by auto

have sub:"Interior(C, (({one-point compactification of}(CoFinite
⋃
T))

- {{
⋃
T}}) ∪ T)⊆C" using topology0.Top_2_L1

top unfolding topology0_def by auto

have "(((({one-point compactification of}(CoFinite
⋃
T)) - {{

⋃
T}})

∪ T){restricted to}C){restricted to}(Interior(C, (({one-point compactification

of}(CoFinite
⋃
T)) - {{

⋃
T}}) ∪ T))=((({one-point compactification of}(CoFinite⋃

T)) - {{
⋃
T}}) ∪ T){restricted to}(Interior(C, (({one-point compactification

of}(CoFinite
⋃
T)) - {{

⋃
T}}) ∪ T))"

using subspace_of_subspace[OF sub C(1)] by auto moreover
have "(

⋃
((({one-point compactification of}CoFinite

⋃
T) - {{

⋃
T}} ∪

T) {restricted to} C))⊆C" unfolding RestrictedTo_def by auto

with C(1) have "(
⋃
((({one-point compactification of}CoFinite

⋃
T) -

{{
⋃
T}} ∪ T) {restricted to} C))=C" unfolding RestrictedTo_def by auto

with sub have pp:"Interior(C, (({one-point compactification of}(CoFinite⋃
T)) - {{

⋃
T}}) ∪ T)∈Pow(

⋃
((({one-point compactification of}CoFinite⋃

T) - {{
⋃
T}} ∪ T) {restricted to} C))" by auto

ultimately have T2_2:"(((({one-point compactification of}(CoFinite
⋃
T))

- {{
⋃
T}}) ∪ T){restricted to}(Interior(C, (({one-point compactification

of}(CoFinite
⋃
T)) - {{

⋃
T}}) ∪ T))){is T2}"

using T2_here[OF T2 pp] by auto

have top2:"(((({one-point compactification of}(CoFinite
⋃
T)) - {{

⋃
T}})

∪ T){restricted to}(Interior(C, (({one-point compactification of}(CoFinite⋃
T)) - {{

⋃
T}}) ∪ T))){is a topology}"

using topology0.Top_1_L4 top unfolding topology0_def by auto

from C(2) pp have p1:"
⋃
T∈
⋃
(((({one-point compactification of}(CoFinite⋃

T)) - {{
⋃
T}}) ∪ T){restricted to}(Interior(C, (({one-point compactification

of}(CoFinite
⋃
T)) - {{

⋃
T}}) ∪ T)))"

unfolding RestrictedTo_def by auto

from top topology0.Top_2_L2 have intOP:"(Interior(C, (({one-point

compactification of}(CoFinite
⋃
T)) - {{

⋃
T}}) ∪ T))∈(({one-point compactification

of}(CoFinite
⋃
T)) - {{

⋃
T}}) ∪ T" unfolding topology0_def by auto
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{
fix x assume "x6=

⋃
T" "x∈

⋃
(((({one-point compactification of}(CoFinite⋃

T)) - {{
⋃
T}}) ∪ T){restricted to}(Interior(C, (({one-point compactification

of}(CoFinite
⋃
T)) - {{

⋃
T}}) ∪ T)))"

with p1 have "∃ U∈(((({one-point compactification of}(CoFinite
⋃
T))

- {{
⋃
T}}) ∪ T){restricted to}(Interior(C, (({one-point compactification

of}(CoFinite
⋃
T)) - {{

⋃
T}}) ∪ T))). ∃ V∈(((({one-point compactification

of}(CoFinite
⋃
T)) - {{

⋃
T}}) ∪ T){restricted to}(Interior(C, (({one-point

compactification of}(CoFinite
⋃
T)) - {{

⋃
T}}) ∪ T))).

x∈U∧
⋃
T∈V∧U∩V=0" using T2_2 unfolding isT2_def by auto

then obtain U V where UV:"U∈(((({one-point compactification of}(CoFinite⋃
T)) - {{

⋃
T}}) ∪ T){restricted to}(Interior(C, (({one-point compactification

of}(CoFinite
⋃
T)) - {{

⋃
T}}) ∪ T)))"

"V∈(((({one-point compactification of}(CoFinite
⋃
T)) - {{

⋃
T}})

∪ T){restricted to}(Interior(C, (({one-point compactification of}(CoFinite⋃
T)) - {{

⋃
T}}) ∪ T)))"

"U 6=0""
⋃
T∈V""U∩V=0" by auto

from UV(1) obtain UC where "U=(Interior(C, (({one-point compactification

of}(CoFinite
⋃
T)) - {{

⋃
T}}) ∪ T))∩UC""UC∈(((({one-point compactification

of}(CoFinite
⋃
T)) - {{

⋃
T}}) ∪ T))"

unfolding RestrictedTo_def by auto

with top intOP have Uop:"U∈(({one-point compactification of}(CoFinite⋃
T)) - {{

⋃
T}}) ∪ T" unfolding IsATopology_def by auto

from UV(2) obtain VC where "V=(Interior(C, (({one-point compactification

of}(CoFinite
⋃
T)) - {{

⋃
T}}) ∪ T))∩VC""VC∈(((({one-point compactification

of}(CoFinite
⋃
T)) - {{

⋃
T}}) ∪ T))"

unfolding RestrictedTo_def by auto

with top intOP have "V∈(({one-point compactification of}(CoFinite⋃
T)) - {{

⋃
T}}) ∪ T" unfolding IsATopology_def by auto

with UV(3-5) Uop neigh_infPoint_dense[OF assms(2-4),of "V""U"] union_ordtopology[OF

assms(2,4)]

have "False" unfolding T_def by auto

}
then have "

⋃
(((({one-point compactification of}(CoFinite

⋃
T)) - {{

⋃
T}})

∪ T){restricted to}(Interior(C, (({one-point compactification of}(CoFinite⋃
T)) - {{

⋃
T}}) ∪ T)))⊆{

⋃
T}"

by auto

with p1 have "
⋃
(((({one-point compactification of}(CoFinite

⋃
T)) -

{{
⋃
T}}) ∪ T){restricted to}(Interior(C, (({one-point compactification

of}(CoFinite
⋃
T)) - {{

⋃
T}}) ∪ T)))={

⋃
T}"

by auto

with top2 have "{
⋃
T}∈(((({one-point compactification of}(CoFinite⋃

T)) - {{
⋃
T}}) ∪ T){restricted to}(Interior(C, (({one-point compactification

of}(CoFinite
⋃
T)) - {{

⋃
T}}) ∪ T)))"

unfolding IsATopology_def by auto

then obtain W where UT:"{
⋃
T}=(Interior(C, (({one-point compactification

of}(CoFinite
⋃
T)) - {{

⋃
T}}) ∪ T))∩W""W∈(({one-point compactification

of}(CoFinite
⋃
T)) - {{

⋃
T}}) ∪ T"

unfolding RestrictedTo_def by auto
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from this(2) have "(Interior(C, (({one-point compactification of}(CoFinite⋃
T)) - {{

⋃
T}}) ∪ T))∩W∈(({one-point compactification of}(CoFinite

⋃
T))

- {{
⋃
T}}) ∪ T" using intOP

top unfolding IsATopology_def by auto

with UT(1) have "{
⋃
T}∈(({one-point compactification of}(CoFinite

⋃
T))

- {{
⋃
T}}) ∪ T" by auto

then have "{
⋃
T}∈T" by auto

with N show "False" by auto

qed

This topology, from the previous result, gives a counter-example for anti-
hyperconnected implies locally-T2.

theorem antiHConn_not_imp_loc_T2:

fixes T X r

defines T_def:"T ≡ (OrdTopology X r)"

assumes "IsLinOrder(X,r)" "X{is dense with respect to}r"

"∃ x y. x6=y∧x∈X∧y∈X"
shows "¬((({one-point compactification of}(CoFinite (

⋃
T)))-{{

⋃
T}}∪T){is

locally-T2})"

and "(({one-point compactification of}(CoFinite (
⋃
T)))-{{

⋃
T}}∪T){is

anti-}IsHConnected"

using OPComp_cofinite_dense_order_not_loc_T2[OF assms(2-4)] dense_order_infinite[OF

assms(2-4)] union_ordtopology[OF assms(2,4)]

topology0.COF_comp_antiHConn[OF topology0_ordtopology[OF assms(2)] topology0.T2_imp_anti_HConn[OF

topology0_ordtopology[OF assms(2)] order_top_T2[OF assms(2,4)]]]

unfolding T_def by auto

Let’s prove that T2 spaces are locally-T2, but that there are locally-T2 spaces
which aren’t T2. In conclusion T2 ⇒ locally -T2 ⇒ anti-hyperconnected; all
implications proper.

theorem(in topology0) T2_imp_loc_T2:

assumes "T{is T2}"

shows "T{is locally-T2}"

proof-
{

fix x assume "x∈
⋃
T"

{
fix b assume b:"b∈T""x∈b"
then have "(T{restricted to}b){is T2}" using T2_here assms by auto

moreover
from b have "x∈int(b)" using Top_2_L3 by auto

ultimately have "∃ c∈Pow(b). x∈int(c)∧(T{restricted to}c){is T2}"

by auto

}
then have "∀ b∈T. x∈b −→(∃ c∈Pow(b). x∈int(c)∧(T{restricted to}c){is

T2})" by auto

}
then show ?thesis unfolding IsLocallyT2_def IsLocally_def[OF topSpaceAssum]

by auto
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qed

If there is a closed singleton, then we can consider a topology that makes
this point doble.

theorem(in topology0) doble_point_top:

assumes "{m}{is closed in}T"

shows "(T ∪{(U-{m})∪{
⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}) {is a topology}"

proof-
{

fix M assume M:"M⊆T ∪{(U-{m})∪{
⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}"

let ?MT="{V∈M. V∈T}"
let ?Mm="{V∈M. V/∈T}"
have unm:"

⋃
M=(
⋃
?MT)∪(

⋃
?Mm)" by auto

have tt:"
⋃
?MT∈T" using topSpaceAssum unfolding IsATopology_def by

auto

{
assume "?Mm=0"

then have "
⋃
?Mm=0" by auto

with unm have "
⋃
M=(
⋃
?MT)" by auto

with tt have "
⋃
M∈T" by auto

then have "
⋃
M∈T ∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}" by auto

}
moreover
{

assume AS:"?Mm6=0"

then obtain V where V:"V∈M""V/∈T" by auto

with M have "V∈{(U - {m}) ∪{
⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}" by blast

then obtain U W where U:"V=(U-{m})∪{
⋃
T}∪W" "U∈T""m∈U" "W∈T" by

auto

let ?U="{〈V,W〉∈T×T. m∈V∧ (V-{m})∪{
⋃
T}∪W∈?Mm}"

let ?fU="{fst(B). B∈?U}"
let ?sU="{snd(B). B∈?U}"
have "?fU⊆T""?sU⊆T" by auto

then have op:"
⋃
?fU∈T""

⋃
?sU∈T" using topSpaceAssum unfolding IsATopology_def

by auto moreover
have "〈U,W〉∈?U" using U V by auto

then have "m∈
⋃
?fU" by auto

ultimately have s:"〈
⋃
?fU,

⋃
?sU〉∈{V∈T. m∈V}×T" by auto

moreover have r:"∀ S. ∀ R. S∈{V∈T. m∈V}−→ R∈T−→(S-{m})∪{
⋃
T}∪R∈{(U-{m})∪{

⋃
T}∪W.

〈U,W〉∈{V∈T. m∈V}×T}"
by auto

ultimately have "(
⋃
?fU-{m})∪{

⋃
T}∪

⋃
?sU∈{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T.

m∈V}×T}" by auto

{
fix v assume "v∈

⋃
?Mm"

then obtain V where v:"v∈V""V∈?Mm" by auto

then have V:"V∈M""V/∈T" by auto

with M have "V∈{U - {m} ∪{
⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}" by blast

then obtain U W where U:"V=(U-{m})∪{
⋃
T}∪W" "U∈T""m∈U" "W∈T"
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by auto

with v(1) have "v∈(U-{m})∪{
⋃
T}∪W" by auto

then have "v∈U-{m}∨v=
⋃
T∨v∈W" by auto

then have "(v∈U∧v6=m)∨v=
⋃
T∨v∈W" by auto

moreover from U V have "〈U,W〉∈?U" by auto

ultimately have "v∈((
⋃
?fU)-{m})∪{

⋃
T}∪(

⋃
?sU)" by auto

}
then have "

⋃
?Mm⊆((

⋃
?fU)-{m})∪{

⋃
T}∪(

⋃
?sU)" by blast moreover

{
fix v assume v:"v∈((

⋃
?fU)-{m})∪{

⋃
T}∪(

⋃
?sU)"

{
assume "v=

⋃
T"

then have "v∈(U-{m})∪{
⋃
T}∪W" by auto

with ‘〈U,W〉∈?U‘ have "v∈
⋃
?Mm" by auto

}
moreover
{

assume "v 6=
⋃
T""v/∈

⋃
?sU"

with v have "v∈((
⋃
?fU)-{m})" by auto

then have "(v∈
⋃
?fU∧v6=m)" by auto

then obtain W where "(v∈W∧W∈?fU∧v6=m)" by auto

then have "v∈(W-{m})∪{
⋃
T}" "W∈?fU" by auto

then obtain B where "fst(B)=W" "B∈?U" "v∈(W-{m})∪{
⋃
T}" by

blast

then have "v∈
⋃
?Mm" by auto

}
ultimately have "v∈

⋃
?Mm" by auto

}
then have "((

⋃
?fU)-{m})∪{

⋃
T}∪(

⋃
?sU)⊆

⋃
?Mm" by auto

ultimately have "
⋃
?Mm=((

⋃
?fU)-{m})∪{

⋃
T}∪(

⋃
?sU)" by auto

then have "
⋃
M=((

⋃
?fU)-{m})∪{

⋃
T}∪((

⋃
?sU)∪(

⋃
?MT))" using unm

by auto

moreover from op(2) tt have "(
⋃
?sU)∪(

⋃
?MT)∈T" using topSpaceAssum

union_open[OF topSpaceAssum, of "{
⋃
?sU,

⋃
?MT}"] by auto

with s have "〈
⋃
?fU,(

⋃
?sU)∪(

⋃
?MT)〉∈{V∈T. m∈V}×T" by auto

then have "((
⋃
?fU)-{m})∪{

⋃
T}∪((

⋃
?sU)∪(

⋃
?MT))∈{(U-{m})∪{

⋃
T}∪W.

〈U,W〉∈{V∈T. m∈V}×T}" using r

by auto

ultimately have "
⋃
M∈{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}" by

auto

then have "
⋃
M∈T ∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}" by auto

}
ultimately
have "

⋃
M∈T ∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}" by auto

}
then have "∀ M∈Pow(T∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}).

⋃
M∈T∪{(U-{m})∪{

⋃
T}∪W.

〈U,W〉∈{V∈T. m∈V}×T}" by auto

moreover
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{
fix A B assume ass:"A∈T ∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}""B∈T

∪{(U-{m})∪{
⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}"

{
assume A:"A∈T"
{

assume "B∈T"
with A have "A∩B∈T" using topSpaceAssum unfolding IsATopology_def

by auto

}
moreover
{

assume "B/∈T"
with ass(2) have "B∈{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}" by

auto

then obtain U W where U:"U∈T""m∈U""W∈T""B=(U-{m})∪{
⋃
T}∪W" by

auto moreover
from A mem_not_refl have "

⋃
T/∈A" by auto

ultimately have "A∩B=A∩((U-{m})∪W)" by auto

then have eq:"A∩B=(A∩(U-{m}))∪(A∩W)" by auto

have "
⋃
T-{m}∈T" using assms unfolding IsClosed_def by auto

with U(1) have O:"U∩(
⋃
T-{m})∈T" using topSpaceAssum unfold-

ing IsATopology_def

by auto

have "U∩(
⋃
T-{m})=U-{m}" using U(1) by auto

with O have "U-{m}∈T" by auto

with A have "(A∩(U-{m}))∈T" using topSpaceAssum unfolding IsATopology_def

by auto

moreover
from A U(3) have "A∩W∈T" using topSpaceAssum unfolding IsATopology_def

by auto

ultimately have "(A∩(U-{m}))∪(A∩W)∈T" using
union_open[OF topSpaceAssum, of "{A∩(U-{m}),A∩W}"] by auto

with eq have "A∩B∈T" by auto

}
ultimately have "A∩B∈T" by auto

}
moreover
{

assume "A/∈T"
with ass(1) have A:"A∈{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}" by

auto

{
assume B:"B∈T"
from A obtain U W where U:"U∈T""m∈U""W∈T""A=(U-{m})∪{

⋃
T}∪W"

by auto moreover
from B mem_not_refl have "

⋃
T/∈B" by auto

ultimately have "A∩B=((U-{m})∪W)∩B" by auto

then have eq:"A∩B=((U-{m})∩B)∪(W∩B)" by auto
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have "
⋃
T-{m}∈T" using assms unfolding IsClosed_def by auto

with U(1) have O:"U∩(
⋃
T-{m})∈T" using topSpaceAssum unfold-

ing IsATopology_def

by auto

have "U∩(
⋃
T-{m})=U-{m}" using U(1) by auto

with O have "U-{m}∈T" by auto

with B have "((U-{m})∩B)∈T" using topSpaceAssum unfolding IsATopology_def

by auto

moreover
from B U(3) have "W∩B∈T" using topSpaceAssum unfolding IsATopology_def

by auto

ultimately have "((U-{m})∩B)∪(W∩B)∈T" using
union_open[OF topSpaceAssum, of "{((U-{m})∩B),(W∩B)}"] by auto

with eq have "A∩B∈T" by auto

}
moreover
{

assume "B/∈T"
with ass(2) have "B∈{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}" by

auto

then obtain U W where U:"U∈T""m∈U""W∈T""B=(U-{m})∪{
⋃
T}∪W" by

auto moreover
from A obtain UA WA where UA:"UA∈T""m∈UA""WA∈T""A=(UA-{m})∪{

⋃
T}∪WA"

by auto

ultimately have "A∩B=(((UA-{m})∪WA)∩((U-{m})∪W))∪{
⋃
T}" by auto

then have eq:"A∩B=((UA-{m})∩(U-{m}))∪(WA∩(U-{m}))∪((UA-{m})∩W)∪(WA∩W)∪{
⋃
T}"

by auto

have "
⋃
T-{m}∈T" using assms unfolding IsClosed_def by auto

with U(1) UA(1) have O:"U∩(
⋃
T-{m})∈T""UA∩(

⋃
T-{m})∈T" using

topSpaceAssum unfolding IsATopology_def

by auto

have "U∩(
⋃
T-{m})=U-{m}""UA∩(

⋃
T-{m})=UA-{m}" using U(1) UA(1)

by auto

with O have OO:"U-{m}∈T""UA-{m}∈T" by auto

then have "((UA-{m})∩(U-{m}))=UA∩U-{m}" by auto

moreover
have "UA∩U∈T""m∈UA∩U" using U(1,2) UA(1,2) topSpaceAssum un-

folding IsATopology_def

by auto

moreover
from OO U(3) UA(3) have TT:"WA∩(U-{m})∈T""(UA-{m})∩W∈T""WA∩W∈T"

using topSpaceAssum unfolding IsATopology_def

by auto

from TT(2,3) have "((UA-{m})∩W)∪(WA∩W)∈T" using union_open[OF

topSpaceAssum,

of "{(UA-{m})∩W,WA∩W}"] by auto

with TT(1) have "(WA∩(U-{m}))∪(((UA-{m})∩W)∪(WA∩W))∈T" using
union_open[OF topSpaceAssum,

of "{WA∩(U-{m}),((UA-{m})∩W)∪(WA∩W)}"] by auto

998



ultimately
have "A∩B=(UA∩U-{m})∪{

⋃
T}∪((WA∩(U-{m}))∪(((UA-{m})∩W)∪(WA∩W)))"

"(WA∩(U-{m}))∪(((UA-{m})∩W)∪(WA∩W))∈T" "UA∩U∈{V∈T. m∈V}"
using eq by auto

then have "∃ W∈T. A∩B=(UA∩U-{m})∪{
⋃
T}∪W" "UA∩U∈{V∈T. m∈V}"

by auto

then have "A∩B∈{(U-{m})∪{
⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}" by auto

}
ultimately
have "A∩B∈T ∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}" by auto

}
ultimately have "A∩B∈T∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}" by

auto

}
then have "∀ A∈T∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}. ∀ B∈T∪{(U-{m})∪{

⋃
T}∪W.

〈U,W〉∈{V∈T. m∈V}×T}.
A∩B∈T∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}" by blast

ultimately show ?thesis unfolding IsATopology_def by auto

qed

The previous topology is defined over a set with one more point.

lemma(in topology0) union_doublepoint_top:

assumes "{m}{is closed in}T"

shows "
⋃
(T∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T})=

⋃
T ∪{

⋃
T}"

proof
{

fix x assume "x∈
⋃
(T∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T})"

then obtain R where x:"x∈R""R∈T∪{(U-{m})∪{
⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}"

by blast

{
assume "R∈T"
with x(1) have "x∈

⋃
T" by auto

}
moreover
{

assume "R/∈T"
with x(2) have "R∈{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}" by auto

then obtain U W where "R=(U-{m})∪{
⋃
T}∪W""W∈T""U∈T""m∈U" by auto

with x(1) have "x=
⋃
T∨x∈

⋃
T" by auto

}
ultimately have "x∈

⋃
T ∪{

⋃
T}" by auto

}
then show "

⋃
(T∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T})⊆

⋃
T ∪{

⋃
T}"

by auto

{
fix x assume "x∈

⋃
T ∪{

⋃
T}"

then have dis:"x∈
⋃
T∨x=

⋃
T" by auto

{
assume "x∈

⋃
T"
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then have "x∈
⋃
(T∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T})" by

auto

}
moreover
{

assume "x/∈
⋃
T"

with dis have "x=
⋃
T" by auto

moreover from assms have "
⋃
T-{m}∈T""m∈

⋃
T" unfolding IsClosed_def

by auto

moreover have "0∈T" using empty_open topSpaceAssum by auto

ultimately have "x∈(
⋃
T-{m})∪{

⋃
T}∪0" "(

⋃
T-{m})∪{

⋃
T}∪0∈{(U-{m})∪{

⋃
T}∪W.

〈U,W〉∈{V∈T. m∈V}×T}"
using union_open[OF topSpaceAssum] by auto

then have "x∈(
⋃
T-{m})∪{

⋃
T}∪0" "(

⋃
T-{m})∪{

⋃
T}∪0∈T ∪{(U-{m})∪{

⋃
T}∪W.

〈U,W〉∈{V∈T. m∈V}×T}"
by auto

then have "x∈
⋃
(T∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T})" by

blast

}
ultimately have "x∈

⋃
(T∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T})"

by auto

}
then show "

⋃
T ∪{

⋃
T}⊆

⋃
(T∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T})"

by auto

qed

In this topology, the previous topological space is an open subspace.

theorem(in topology0) open_subspace_double_point:

assumes "{m}{is closed in}T"

shows "(T∪{(U-{m})∪{
⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}){restricted to}

⋃
T=T"

and "
⋃
T∈(T∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T})"

proof-
have N:"

⋃
T/∈
⋃
T" using mem_not_refl by auto

{
fix x assume "x∈(T∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}){restricted

to}
⋃
T"

then obtain U where U:"U∈(T∪{(U-{m})∪{
⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T})""x=

⋃
T∩U"

unfolding RestrictedTo_def by blast

{
assume "U/∈T"
with U(1) have "U∈{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}" by auto

then obtain V W where VW:"U=(V-{m})∪{
⋃
T}∪W""V∈T""m∈V""W∈T" by

auto

with N U(2) have x:"x=(V-{m})∪W" by auto

have "
⋃
T-{m}∈T" using assms unfolding IsClosed_def by auto

then have "V∩(
⋃
T-{m})∈T" using VW(2) topSpaceAssum unfolding IsATopology_def

by auto moreover
have "V-{m}=V∩(

⋃
T-{m})" using VW(2,3) by auto ultimately

have "V-{m}∈T" by auto

1000



with VW(4) have "(V-{m})∪W∈T" using union_open[OF topSpaceAssum,

of "{V-{m},W}"]

by auto

with x have "x∈T" by auto

}
moreover
{

assume A:"U∈T"
with U(2) have "x=U" by auto

with A have "x∈T" by auto

}
ultimately have "x∈T" by auto

}
then have "(T∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}){restricted to}

⋃
T⊆T"

by auto

moreover
{

fix x assume x:"x∈T"
then have "x∈(T∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T})" by auto

moreover
from x have "

⋃
T∩x=x" by auto ultimately

have "∃ M∈(T∪{(U-{m})∪{
⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}).

⋃
T∩M=x" by

blast

then have "x∈(T∪{(U-{m})∪{
⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}){restricted

to}
⋃
T" unfolding RestrictedTo_def

by auto

}
ultimately show "(T∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}){restricted

to}
⋃
T=T" by auto

have P:"
⋃
T∈T" using topSpaceAssum unfolding IsATopology_def by auto

then show "
⋃
T∈(T∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T})" by auto

qed

The previous topology construction applied to a T2 non-discrite space topol-
ogy, gives a counter-example to: Every locally-T2 space is T2.

If there is a singleton which is not open, but closed; then the construction
on that point is not T2.

theorem(in topology0) loc_T2_imp_T2_counter_1:

assumes "{m}/∈T" "{m}{is closed in}T"

shows "¬((T∪{(U-{m})∪{
⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}) {is T2})"

proof
assume ass:"(T∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}) {is T2}"

then have tot1:"
⋃
(T∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T})=

⋃
T ∪{

⋃
T}"

using union_doublepoint_top

assms(2) by auto

have "m 6=
⋃
T" using mem_not_refl assms(2) unfolding IsClosed_def by

auto moreover
from ass tot1 have "∀ x y. x∈

⋃
T ∪{

⋃
T} ∧ y∈

⋃
T ∪{

⋃
T}∧x6=y −→ (∃U∈(T∪{(U-{m})∪{

⋃
T}∪W.
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〈U,W〉∈{V∈T. m∈V}×T}).
∃V∈(T∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}). x∈U∧y∈V∧U∩V=0)"

unfolding isT2_def by auto

moreover
from assms(2) have "m∈

⋃
T ∪{

⋃
T}" unfolding IsClosed_def by auto more-

over
have "

⋃
T∈
⋃
T ∪{

⋃
T}" by auto ultimately

have "∃U∈(T∪{(U-{m})∪{
⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}). ∃V∈(T∪{(U-{m})∪{

⋃
T}∪W.

〈U,W〉∈{V∈T. m∈V}×T}). m∈U∧
⋃
T∈V∧U∩V=0"

by auto

then obtain U V where UV:"U∈(T∪{(U-{m})∪{
⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T})"

"V∈(T∪{(U-{m})∪{
⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T})""m∈U""

⋃
T∈V""U∩V=0"

using tot1 by blast

then have "
⋃
T/∈U" by auto

with UV(1) have op:"U∈T" by auto

{
assume "V∈T"
then have "V⊆

⋃
T" by auto

with UV(4) have "
⋃
T∈
⋃
T" using tot1 by auto

then have "False" using mem_not_refl by auto

}
with UV(2) have "V∈{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}" by auto

then obtain U W where V:"V=(U-{m})∪{
⋃
T}∪W" "U∈T""m∈U""W∈T" by auto

from V(2,3) op have int:"U∩U∈T""m∈U∩U" using UV(3) topSpaceAssum

unfolding IsATopology_def by auto

have "(U∩U-{m})⊆U" "(U∩U-{m})⊆V" using V(1) by auto

then have "(U∩U-{m})=0" using UV(5) by auto

with int(2) have "U∩U={m}" by auto

with int(1) assms(1) show "False" by auto

qed

This topology is locally-T2.

theorem(in topology0) loc_T2_imp_T2_counter_2:

assumes "{m}/∈T" "m∈
⋃
T" "T{is T2}"

shows "(T∪{(U-{m})∪{
⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}) {is locally-T2}"

proof-
from assms(3) have "T{is T1}" using T2_is_T1 by auto

with assms(2) have mc:"{m}{is closed in}T" using T1_iff_singleton_closed

by auto

have N:"
⋃
T/∈
⋃
T" using mem_not_refl by auto

have res:"(T∪{(U-{m})∪{
⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}){restricted to}

⋃
T=T"

and P:"
⋃
T∈T" and op:"

⋃
T∈(T∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T})"

using open_subspace_double_point mc

topSpaceAssum unfolding IsATopology_def by auto

{
fix A assume ass:"A∈

⋃
T ∪{

⋃
T}"

{
assume "A 6=

⋃
T"

with ass have "A∈
⋃
T" by auto
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with op res assms(3) have "
⋃
T∈(T∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T.

m∈V}×T})∧ A∈
⋃
T ∧ (((T∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}){restricted

to}
⋃
T){is T2})" by auto

then have "∃ Z∈(T∪{(U-{m})∪{
⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}). A∈Z∧(((T∪{(U-{m})∪{

⋃
T}∪W.

〈U,W〉∈{V∈T. m∈V}×T}){restricted to}Z){is T2})"

by blast

}
moreover
{

assume A:"A=
⋃
T"

have "
⋃
T∈T""m∈

⋃
T""0∈T" using assms(2) empty_open[OF topSpaceAssum]

unfolding IsClosed_def using P by auto

then have "(
⋃
T-{m})∪{

⋃
T}∪0∈{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}"

by auto

then have opp:"(
⋃
T-{m})∪{

⋃
T}∈(T∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T.

m∈V}×T})" by auto

{
fix A1 A2 assume points:"A1∈(

⋃
T-{m})∪{

⋃
T}""A2∈(

⋃
T-{m})∪{

⋃
T}""A16=A2"

from points(1,2) have notm:"A16=m""A2 6=m" using assms(2) unfold-
ing IsClosed_def

using mem_not_refl by auto

{
assume or:"A1∈

⋃
T""A2∈

⋃
T"

with points(3) assms(3) obtain U V where UV:"U∈T""V∈T""A1∈U""A2∈V"
"U∩V=0" unfolding isT2_def by blast

from UV(1,2) have "U∩((
⋃
T-{m})∪{

⋃
T})∈(T∪{(U-{m})∪{

⋃
T}∪W.

〈U,W〉∈{V∈T. m∈V}×T}){restricted to}((
⋃
T-{m})∪{

⋃
T})"

"V∩((
⋃
T-{m})∪{

⋃
T})∈(T∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}){restricted

to}((
⋃
T-{m})∪{

⋃
T})"

unfolding RestrictedTo_def by auto moreover
then have "U∩(

⋃
T-{m})=U∩((

⋃
T-{m})∪{

⋃
T})" "V∩(

⋃
T-{m})=V∩((

⋃
T-{m})∪{

⋃
T})"

using UV(1,2) mem_not_refl[of "
⋃
T"]

by auto

ultimately have opUV:"U∩(
⋃
T-{m})∈(T∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T.

m∈V}×T}){restricted to}((
⋃
T-{m})∪{

⋃
T})"

"V∩(
⋃
T-{m})∈(T∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}){restricted

to}((
⋃
T-{m})∪{

⋃
T})" by auto

moreover have "U∩(
⋃
T-{m})∩(V∩(

⋃
T-{m}))=0" using UV(5) by

auto moreover
from UV(3) or(1) notm(1) have "A1∈U∩(

⋃
T-{m})" by auto more-

over
from UV(4) or(2) notm(2) have "A2∈V∩(

⋃
T-{m})" by auto ul-

timately
have "∃ V. V∈(T∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}){restricted

to}((
⋃
T-{m})∪{

⋃
T})∧ A1∈U∩(

⋃
T-{m})∧A2∈V∧(U∩(

⋃
T-{m}))∩V=0" using exI[where

x="V∩(
⋃
T-{m})" and P="λW. W∈(T∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}){restricted

to}((
⋃
T-{m})∪{

⋃
T})∧A1∈(U∩(

⋃
T-{m}))∧A2∈W∧(U∩(

⋃
T-{m}))∩W=0"]

using opUV(2) by auto

then have "∃ U. U∈(T∪{(U-{m})∪{
⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}){restricted
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to}((
⋃
T-{m})∪{

⋃
T})∧(∃ V. V∈(T∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}){restricted

to}((
⋃
T-{m})∪{

⋃
T})∧

A1∈U∧A2∈V∧U∩V=0)" using exI[where x="U∩(
⋃
T-{m})" and P="λW.

W∈(T∪{(U-{m})∪{
⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}){restricted to}((

⋃
T-{m})∪{

⋃
T})∧(∃ V.

V∈(T∪{(U-{m})∪{
⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}){restricted to}((

⋃
T-{m})∪{

⋃
T})∧

A1∈W∧A2∈V∧W∩V=0)"]
using opUV(1) by auto

then have "∃ U∈(T∪{(U-{m})∪{
⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}){restricted

to}((
⋃
T-{m})∪{

⋃
T}). (∃ V. V∈(T∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}){restricted

to}((
⋃
T-{m})∪{

⋃
T})∧A1∈U∧A2∈V∧U∩V=0)" by blast

then have "∃ U∈(T∪{(U-{m})∪{
⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}){restricted

to}((
⋃
T-{m})∪{

⋃
T}). (∃ V∈(T∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}){restricted

to}((
⋃
T-{m})∪{

⋃
T}). A1∈U∧A2∈V∧U∩V=0)" by blast

}
moreover
{

assume "A1/∈
⋃
T"

then have ig:"A1=
⋃
T" using points(1) by auto

{
assume "A2/∈

⋃
T"

then have "A2=
⋃
T" using points(2) by auto

with points(3) ig have "False" by auto

}
then have igA2:"A2∈

⋃
T" by auto moreover

have "m∈
⋃
T" using assms(2) unfolding IsClosed_def by auto

moreover note notm(2) assms(3) ultimately obtain U V where
UV:"U∈T""V∈T"

"m∈U""A2∈V""U∩V=0" unfolding isT2_def by blast

from UV(1,3) have "U∈{W∈T. m∈W}" by auto moreover
have "0∈T" using empty_open topSpaceAssum by auto ultimately
have "(U-{m})∪{

⋃
T}∈{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}"

by auto

then have Uop:"(U-{m})∪{
⋃
T}∈(T ∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T.

m∈V}×T})" by auto

from UV(2) have Vop:"V∈(T ∪{(U-{m})∪{
⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T})"

by auto

from UV(1-3,5) have sub:"V⊆(
⋃
T-{m})∪{

⋃
T}" "((U-{m})∪{

⋃
T})⊆(

⋃
T-{m})∪{

⋃
T}"

by auto

from sub(1) have "V=((
⋃
T-{m})∪{

⋃
T})∩V" by auto

then have VV:"V∈(T ∪{(U-{m})∪{
⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}){restricted

to}((
⋃
T-{m})∪{

⋃
T})" unfolding RestrictedTo_def

using Vop by blast moreover
from sub(2) have "((U-{m})∪{

⋃
T})=((

⋃
T-{m})∪{

⋃
T})∩((U-{m})∪{

⋃
T})"

by auto

then have UU:"((U-{m})∪{
⋃
T})∈(T ∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T.

m∈V}×T}){restricted to}((
⋃
T-{m})∪{

⋃
T})" unfolding RestrictedTo_def

using Uop by blast moreover
from UV(2) have "((U-{m})∪{

⋃
T})∩V=(U-{m})∩V" using mem_not_refl

by auto
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then have "((U-{m})∪{
⋃
T})∩V=0" using UV(5) by auto

with UV(4) VV ig igA2 have "∃ V∈(T ∪{(U-{m})∪{
⋃
T}∪W. 〈U,W〉∈{V∈T.

m∈V}×T}){restricted to}((
⋃
T-{m})∪{

⋃
T}).

A1∈(U-{m})∪{
⋃
T}∧A2∈V∧((U-{m})∪{

⋃
T})∩V=0" by auto

with UU ig have "∃ U. U∈(T ∪{(U-{m})∪{
⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}){restricted

to}((
⋃
T-{m})∪{

⋃
T})∧ (∃ V∈(T ∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}){restricted

to}((
⋃
T-{m})∪{

⋃
T}).

A1∈U∧A2∈V∧U∩V=0)" using exI[where x="((U-{m})∪{
⋃
T})" and

P="λU. U∈(T ∪{(U-{m})∪{
⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}){restricted to}((

⋃
T-{m})∪{

⋃
T})∧

(∃ V∈(T ∪{(U-{m})∪{
⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}){restricted to}((

⋃
T-{m})∪{

⋃
T}).

A1∈U∧A2∈V∧U∩V=0)"] by auto

then have "∃ U∈(T ∪{(U-{m})∪{
⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}){restricted

to}((
⋃
T-{m})∪{

⋃
T}). (∃ V∈(T ∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}){restricted

to}((
⋃
T-{m})∪{

⋃
T}).

A1∈U∧A2∈V∧U∩V=0)" by blast

}
moreover
{

assume "A2/∈
⋃
T"

then have ig:"A2=
⋃
T" using points(2) by auto

{
assume "A1/∈

⋃
T"

then have "A1=
⋃
T" using points(1) by auto

with points(3) ig have "False" by auto

}
then have igA2:"A1∈

⋃
T" by auto moreover

have "m∈
⋃
T" using assms(2) unfolding IsClosed_def by auto

moreover note notm(1) assms(3) ultimately obtain U V where
UV:"U∈T""V∈T"

"m∈U""A1∈V""U∩V=0" unfolding isT2_def by blast

from UV(1,3) have "U∈{W∈T. m∈W}" by auto moreover
have "0∈T" using empty_open topSpaceAssum by auto ultimately
have "(U-{m})∪{

⋃
T}∈{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}"

by auto

then have Uop:"(U-{m})∪{
⋃
T}∈(T ∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T.

m∈V}×T})" by auto

from UV(2) have Vop:"V∈(T ∪{(U-{m})∪{
⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T})"

by auto

from UV(1-3,5) have sub:"V⊆(
⋃
T-{m})∪{

⋃
T}" "((U-{m})∪{

⋃
T})⊆(

⋃
T-{m})∪{

⋃
T}"

by auto

from sub(1) have "V=((
⋃
T-{m})∪{

⋃
T})∩V" by auto

then have VV:"V∈(T ∪{(U-{m})∪{
⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}){restricted

to}((
⋃
T-{m})∪{

⋃
T})" unfolding RestrictedTo_def

using Vop by blast moreover
from sub(2) have "((U-{m})∪{

⋃
T})=((

⋃
T-{m})∪{

⋃
T})∩((U-{m})∪{

⋃
T})"

by auto

then have UU:"((U-{m})∪{
⋃
T})∈(T ∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T.

m∈V}×T}){restricted to}((
⋃
T-{m})∪{

⋃
T})" unfolding RestrictedTo_def

using Uop by blast moreover
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from UV(2) have "V∩((U-{m})∪{
⋃
T})=V∩(U-{m})" using mem_not_refl

by auto

then have "V∩((U-{m})∪{
⋃
T})=0" using UV(5) by auto

with UU UV(4) ig igA2 have "∃ U∈(T ∪{(U-{m})∪{
⋃
T}∪W. 〈U,W〉∈{V∈T.

m∈V}×T}){restricted to}((
⋃
T-{m})∪{

⋃
T}).

A1∈V∧A2∈U∧V∩U=0" by auto

with VV igA2 have "∃ U. U∈(T ∪{(U-{m})∪{
⋃
T}∪W. 〈U,W〉∈{V∈T.

m∈V}×T}){restricted to}((
⋃
T-{m})∪{

⋃
T})∧ (∃ V∈(T ∪{(U-{m})∪{

⋃
T}∪W.

〈U,W〉∈{V∈T. m∈V}×T}){restricted to}((
⋃
T-{m})∪{

⋃
T}).

A1∈U∧A2∈V∧U∩V=0)" using exI[where x="V" and P="λU. U∈(T
∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}){restricted to}((

⋃
T-{m})∪{

⋃
T})∧

(∃ V∈(T ∪{(U-{m})∪{
⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}){restricted to}((

⋃
T-{m})∪{

⋃
T}).

A1∈U∧A2∈V∧U∩V=0)"] by auto

then have "∃ U∈(T ∪{(U-{m})∪{
⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}){restricted

to}((
⋃
T-{m})∪{

⋃
T}). (∃ V∈(T ∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}){restricted

to}((
⋃
T-{m})∪{

⋃
T}).

A1∈U∧A2∈V∧U∩V=0)" by blast

}
ultimately have "∃ U∈(T ∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}){restricted

to}((
⋃
T-{m})∪{

⋃
T}). (∃ V∈(T ∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}){restricted

to}((
⋃
T-{m})∪{

⋃
T}).

A1∈U∧A2∈V∧U∩V=0)" by blast

}
then have "∀ A1∈(

⋃
T-{m})∪{

⋃
T}. ∀ A2∈(

⋃
T-{m})∪{

⋃
T}. A16=A2 −→

(∃ U∈(T ∪{(U-{m})∪{
⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}){restricted to}((

⋃
T-{m})∪{

⋃
T}).

(∃ V∈(T ∪{(U-{m})∪{
⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}){restricted to}((

⋃
T-{m})∪{

⋃
T}).

A1∈U∧A2∈V∧U∩V=0))" by auto moreover
have "

⋃
((T ∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}){restricted

to}((
⋃
T-{m})∪{

⋃
T}))=(

⋃
(T ∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}))∩((

⋃
T-{m})∪{

⋃
T})"

unfolding RestrictedTo_def by auto

then have "
⋃
((T ∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}){restricted

to}((
⋃
T-{m})∪{

⋃
T}))=(

⋃
T ∪{

⋃
T})∩((

⋃
T-{m})∪{

⋃
T})" using

union_doublepoint_top mc by auto

then have "
⋃
((T ∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}){restricted

to}((
⋃
T-{m})∪{

⋃
T}))=(

⋃
T-{m})∪{

⋃
T}" by auto

ultimately have "∀ A1∈
⋃
((T ∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}){restricted

to}((
⋃
T-{m})∪{

⋃
T})). ∀ A2∈

⋃
((T ∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}){restricted

to}((
⋃
T-{m})∪{

⋃
T})). A1 6=A2 −→ (∃ U∈(T ∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T.

m∈V}×T}){restricted to}((
⋃
T-{m})∪{

⋃
T}). (∃ V∈(T ∪{(U-{m})∪{

⋃
T}∪W.

〈U,W〉∈{V∈T. m∈V}×T}){restricted to}((
⋃
T-{m})∪{

⋃
T}).

A1∈U∧A2∈V∧U∩V=0))" by auto

then have "((T ∪{(U-{m})∪{
⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}){restricted

to}((
⋃
T-{m})∪{

⋃
T})){is T2}" unfolding isT2_def

by force

with opp A have "∃ Z∈(T∪{(U-{m})∪{
⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}).

A∈Z∧(((T∪{(U-{m})∪{
⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}){restricted to}Z){is

T2})"

by blast

}
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ultimately
have "∃ Z∈(T∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}). A∈Z∧(((T∪{(U-{m})∪{

⋃
T}∪W.

〈U,W〉∈{V∈T. m∈V}×T}){restricted to}Z){is T2})"

by blast

}
then have "∀ A∈

⋃
(T∪{(U-{m})∪{

⋃
T}∪W. 〈U,W〉∈{V∈T. m∈V}×T}). ∃ Z∈T ∪

{U - {m} ∪ {
⋃
T} ∪ W . 〈U,W〉 ∈ {V ∈ T . m ∈ V} × T}.

A ∈ Z ∧ ((T ∪ {U - {m} ∪ {
⋃
T} ∪ W . 〈U,W〉 ∈ {V ∈ T . m ∈ V} ×

T}) {restricted to} Z) {is T2}"

using union_doublepoint_top mc by auto

with topology0.loc_T2 show "(T ∪ {U - {m} ∪ {
⋃
T} ∪ W . 〈U,W〉 ∈ {V

∈ T . m ∈ V} × T}){is locally-T2}"

unfolding topology0_def using doble_point_top mc by auto

qed

There can be considered many more local properties, which; as happens with
locally-T2; can distinguish between spaces other properties cannot.

end

67 Topological groups 1

theory TopologicalGroup_ZF_1 imports TopologicalGroup_ZF Topology_ZF_properties_2

begin

This theory deals with some topological properties of topological groups.

67.1 Separation properties of topological groups

The topological groups have very specific properties. For instance, G is T0

iff it is T3.

theorem(in topgroup) cl_point:

assumes "x∈G"
shows "cl({x}) = (

⋂
H∈N 0. x+H)"

proof-
{

have c:"cl({x}) = (
⋂
H∈N 0. {x}+H)" using cl_topgroup assms by auto

{
fix H

assume "H∈N 0"

then have "{x}+H=x+ H" using interval_add(3) assms

by auto

with ‘H∈N 0‘ have "{x}+H∈{x+H. H∈N 0}" by auto

}
then have "{{x}+H. H∈N 0}⊆{x+H. H∈N 0}" by auto

moreover
{

fix H
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assume "H∈N 0"

then have "{x}+H=x+ H" using interval_add(3) assms

by auto

with ‘H∈N 0‘ have "x+ H∈{{x}+H. H∈N 0}" by auto

}
then have "{x+H. H∈N 0}⊆{{x}+H. H∈N 0}" by auto

ultimately have "{{x}+H. H∈N 0}={x+H. H∈N 0}" by auto

then have "(
⋂
H∈N 0. {x}+H) = (

⋂
H∈N 0. x+H)" by auto

with c show "cl({x})=(
⋂
H∈N 0. x+H)" by auto

}
qed

We prove the equivalence between T0 and T1 first.

theorem (in topgroup) neu_closed_imp_T1:

assumes "{0}{is closed in}T"

shows "T{is T1}"

proof-
{

fix x z assume xG:"x∈G" and zG:"z∈G" and dis:"x6=z"

then have clx:"cl({x})=(
⋂
H∈N 0. x+H)" using cl_point by auto

{
fix y

assume "y∈cl({x})"
with clx have "y∈(

⋂
H∈N 0. x+H)" by auto

then have t:"∀ H∈N 0. y∈x+H" by auto

from ‘y∈cl({x})‘ xG have yG:"y∈G" using Top_3_L11(1) G_def by
auto

{
fix H

assume HNeig:"H∈N 0"

with t have "y∈x+H" by auto

then obtain n where "y=x+n" and "n∈H" unfolding ltrans_def grop_def

LeftTranslation_def by auto

with HNeig have nG:"n∈G" unfolding zerohoods_def by auto

from ‘y=x+n‘ and ‘n∈H‘ have "(-x)+y∈H" using group0.group0_2_L18(2)

group0_valid_in_tgroup xG nG yG unfolding grinv_def grop_def

by auto

}
then have el:"(-x)+y∈(

⋂
N 0)" using zneigh_not_empty by auto

have "cl({0})=(
⋂
H∈N 0. 0+H)" using cl_point zero_in_tgroup by

auto

moreover
{

fix H assume "H∈N 0"

then have "H⊆G" unfolding zerohoods_def by auto

then have "0+H=H" using image_id_same group0.trans_neutral(2)

group0_valid_in_tgroup unfolding gzero_def ltrans_def

by auto

with ‘H∈N 0‘ have "0+H∈N 0" "H∈{0+H. H∈N 0}" by auto
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}
then have "{0+H. H∈N 0}=N 0" by blast

ultimately have "cl({0})=(
⋂
N 0)" by auto

with el have "(-x)+y∈cl({0})" by auto

then have "(-x)+y∈{0}" using assms Top_3_L8 G_def zero_in_tgroup

by auto

then have "(-x)+y=0" by auto

then have "y=-(-x)" using group0.group0_2_L9(2) group0_valid_in_tgroup

neg_in_tgroup xG yG unfolding grop_def grinv_def by auto

then have "y=x" using group0.group_inv_of_inv group0_valid_in_tgroup

xG unfolding grinv_def by auto

}
then have "cl({x})⊆{x}" by auto

then have "cl({x})={x}" using xG cl_contains_set G_def by blast

then have "{x}{is closed in}T" using Top_3_L8 xG G_def by auto

then have "(
⋃
T)-{x}∈T" using IsClosed_def by auto moreover

from dis zG G_def have "z∈((
⋃
T)-{x}) ∧ x/∈((

⋃
T)-{x})" by auto

ultimately have "∃ V∈T. z∈V∧x/∈V" by(safe,auto)
}
then show "T{is T1}" using isT1_def by auto

qed

theorem (in topgroup) T0_imp_neu_closed:

assumes "T{is T0}"

shows "{0}{is closed in}T"

proof-
{

fix x assume "x∈cl({0})" and "x 6=0"
have "cl({0})=(

⋂
H∈N 0. 0+H)" using cl_point zero_in_tgroup by auto

moreover
{

fix H assume "H∈N 0"

then have "H⊆G" unfolding zerohoods_def by auto

then have "0+H=H" using image_id_same group0.trans_neutral(2)

group0_valid_in_tgroup unfolding gzero_def ltrans_def

by auto

with ‘H∈N 0‘ have "0+H∈N 0" "H∈{0+H. H∈N 0}" by auto

}
then have "{0+H. H∈N 0}=N 0" by blast

ultimately have "cl({0})=(
⋂
N 0)" by auto

from ‘x 6=0‘ and ‘x∈cl({0})‘ obtain U where "U∈T" and "(x/∈U∧0∈U)∨(0/∈U∧x∈U)"
using assms Top_3_L11(1)

zero_in_tgroup unfolding isT0_def G_def by blast moreover
{

assume "0∈U"
with ‘U∈T‘ have "U∈N 0" using zerohoods_def G_def Top_2_L3 by auto

with ‘x∈cl({0})‘ and ‘cl({0})=(
⋂
N 0)‘ have "x∈U" by auto

}
ultimately have "0/∈U" and "x∈U" by auto
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with ‘U∈T‘ ‘x∈cl({0})‘ have "False" using cl_inter_neigh zero_in_tgroup

unfolding G_def by blast

}
then have "cl({0})⊆{0}" by auto

then have "cl({0})={0}" using zero_in_tgroup cl_contains_set G_def

by blast

then show ?thesis using Top_3_L8 zero_in_tgroup unfolding G_def by
auto

qed

67.2 Existence of nice neighbourhoods.

theorem(in topgroup) exists_sym_zerohood:

assumes "U∈N 0"

shows "∃ V∈N 0. (V⊆U∧ (-V)=V)"

proof
let ?V="U∩(-U)"
have "U⊆G" using assms unfolding zerohoods_def by auto

then have "?V⊆G" by auto

have invg:" GroupInv(G, f) ∈ G → G" using group0_2_T2 Ggroup by auto

have invb:"GroupInv(G, f) ∈bij(G,G)" using group0.group_inv_bij(2)

group0_valid_in_tgroup by auto

have "(-?V)=GroupInv(G,f)-‘‘?V" unfolding setninv_def using group0.inv_image_vimage

group0_valid_in_tgroup by auto

also have ". . .=(GroupInv(G,f)-‘‘U)∩(GroupInv(G,f)-‘‘(-U))" using invim_inter_inter_invim

invg by auto

also have ". . .=(-U)∩(GroupInv(G,f)-‘‘(GroupInv(G,f)‘‘U))" unfolding setninv_def

using group0.inv_image_vimage group0_valid_in_tgroup by auto

also with ‘U⊆G‘ have ". . .=(-U)∩U" using inj_vimage_image invb unfold-
ing bij_def

by auto

finally have "(-?V)=?V" by auto

then show "?V ⊆ U ∧ (- ?V) = ?V" by auto

from assms have "(-U)∈N 0" using neg_neigh_neigh by auto

with assms have "0∈int(U)∩int(-U)" unfolding zerohoods_def by auto

moreover
have "int(U)∩int(-U)∈T" using Top_2_L3 IsATopology_def topSpaceAssum

Top_2_L4 by auto

then have int:"int(int(U)∩int(-U))=int(U)∩int(-U)" using Top_2_L3 by
auto

have "int(U)∩int(-U)⊆?V" using Top_2_L1 by auto

from interior_mono[OF this] int have "int(U)∩int(-U)⊆int(?V)" by auto

ultimately have "0∈int(?V)" by auto

with ‘?V⊆G‘ show "?V∈N 0" using zerohoods_def by auto

qed

theorem(in topgroup) exists_procls_zerohood:

assumes "U∈N 0"

shows "∃ V∈N 0. (V⊆U∧ (V+V)⊆U ∧ (-V)=V)"
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proof-
have "int(U)∈T" using Top_2_L2 by auto

then have "f-‘‘(int(U))∈τ" using fcon IsContinuous_def by auto

moreover
have fne:"f ‘ 〈0, 0〉 = 0" using group0.group0_2_L2 group0_valid_in_tgroup

by auto

have "0∈int(U)" using assms unfolding zerohoods_def by auto

then have "f -‘‘ {0}⊆f-‘‘(int(U))" using func1_1_L8 vimage_def by auto

then have "GroupInv(G,f)⊆f-‘‘(int(U))" using group0.group0_2_T3 group0_valid_in_tgroup

by auto

then have "〈0,0〉∈f-‘‘(int(U))" using fne zero_in_tgroup unfolding GroupInv_def

by auto

ultimately obtain W V where wop:"W∈T" and vop:"V∈T" and cartsub:"W×V⊆f-‘‘(int(U))"
and zerhood:"〈0,0〉∈W×V" using prod_top_point_neighb topSpaceAssum

unfolding prodtop_def by force

then have "0∈W" and "0∈V" by auto

then have "0∈W∩V" by auto

have sub:"W∩V⊆G" using wop vop G_def by auto

have assoc:"f∈G×G→G" using group0.group_oper_assocA group0_valid_in_tgroup

by auto

{
fix t s assume "t∈W∩V" and "s∈W∩V"
then have "t∈W" and "s∈V" by auto

then have "〈t,s〉∈W×V" by auto

then have "〈t,s〉∈f-‘‘(int(U))" using cartsub by auto

then have "f‘〈t,s〉∈int(U)" using func1_1_L15 assoc by auto

}
then have "{f‘〈t,s〉. 〈t,s〉∈(W∩V)×(W∩V)}⊆int(U)" by auto

then have "(W∩V)+(W∩V)⊆int(U)" unfolding setadd_def using lift_subsets_explained(4)

assoc sub

by auto

then have "(W∩V)+(W∩V)⊆U" using Top_2_L1 by auto

from topSpaceAssum have "W∩V∈T" using vop wop unfolding IsATopology_def

by auto

then have "int(W∩V)=W∩V" using Top_2_L3 by auto

with sub ‘0∈W∩V‘ have "W∩V∈N 0" unfolding zerohoods_def by auto

then obtain Q where "Q∈N 0" and "Q⊆W∩V" and "(-Q)=Q" using exists_sym_zerohood

by blast

then have "Q×Q⊆(W∩V)×(W∩V)" by auto

moreover from ‘Q⊆W∩V‘ have "W∩V⊆G" and "Q⊆G" using vop wop unfold-
ing G_def by auto

ultimately have "Q+Q⊆(W∩V)+(W∩V)" using interval_add(2) func1_1_L8

by auto

with ‘(W∩V)+(W∩V)⊆U‘ have "Q+Q⊆U" by auto

from ‘Q∈N 0‘ have "0∈Q" unfolding zerohoods_def using Top_2_L1 by auto

with ‘Q+Q⊆U‘ ‘Q⊆G‘ have "0+Q⊆U" using interval_add(3) by auto

with ‘Q⊆G‘ have "Q⊆U" unfolding ltrans_def using group0.trans_neutral(2)

group0_valid_in_tgroup

unfolding gzero_def using image_id_same by auto
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with ‘Q∈N 0‘ ‘Q+Q⊆U‘ ‘(-Q)=Q‘ show ?thesis by auto

qed

lemma (in topgroup) exist_basehoods_closed:

assumes "U∈N 0"

shows "∃ V∈N 0. cl(V)⊆U"
proof-

from assms obtain V where "V∈N 0" "V⊆U" "(V+V)⊆U" "(-V)=V" using exists_procls_zerohood

by blast

have inv_fun:"GroupInv(G,f)∈G→G" using group0_2_T2 Ggroup by auto

have f_fun:"f∈G×G→G" using group0.group_oper_assocA group0_valid_in_tgroup

by auto

{
fix x assume "x∈cl(V)"
with ‘V∈N 0‘ have "x∈

⋃
T" "V⊆

⋃
T" using Top_3_L11(1) unfolding zerohoods_def

G_def by blast+

with ‘V∈N 0‘ have "x∈int(x+V)" using elem_in_int_trans G_def by auto

with ‘V⊆
⋃
T‘‘x∈cl(V)‘ have "int(x+V)∩V6=0" using cl_inter_neigh Top_2_L2

by blast

then have "(x+V)∩V 6=0" using Top_2_L1 by blast

then obtain q where "q∈(x+V)" and "q∈V" by blast

with ‘V⊆
⋃
T‘‘x∈

⋃
T‘ obtain v where "q=x+v" "v∈V" unfolding ltrans_def

grop_def using group0.ltrans_image

group0_valid_in_tgroup unfolding G_def by auto

from ‘V⊆
⋃
T‘ ‘v∈V‘‘q∈V‘ have "v∈

⋃
T" "q∈

⋃
T" by auto

with ‘q=x+v‘‘x∈
⋃
T‘ have "q-v=x" using group0.group0_2_L18(1) group0_valid_in_tgroup

unfolding G_def

unfolding grsub_def grinv_def grop_def by auto moreover
from ‘v∈V‘ have "(-v)∈(-V)" unfolding setninv_def grinv_def using

func_imagedef inv_fun ‘V⊆
⋃
T‘ G_def by auto

then have "(-v)∈V" using ‘(-V)=V‘ by auto

with ‘q∈V‘ have "〈q,-v〉∈V×V" by auto

then have "f‘〈q,-v〉∈V+V" using lift_subset_suff f_fun ‘V⊆
⋃
T‘ un-

folding setadd_def by auto

with ‘V+V⊆U‘ have "q-v∈U" unfolding grsub_def grop_def by auto

with ‘q-v=x‘ have "x∈U" by auto

}
then have "cl(V)⊆U" by auto

with ‘V∈N 0‘ show ?thesis by auto

qed

67.3 Rest of separation axioms

theorem(in topgroup) T1_imp_T2:

assumes "T{is T1}"

shows "T{is T2}"

proof-
{
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fix x y assume ass:"x∈
⋃
T" "y∈

⋃
T" "x 6=y"

{
assume "(-y)+x=0"
with ass(1,2) have "y=x" using group0.group0_2_L11[where a="y"

and b="x"] group0_valid_in_tgroup by auto

with ass(3) have "False" by auto

}
then have "(-y)+x 6=0" by auto

then have "06=(-y)+x" by auto

from ‘y∈
⋃
T‘ have "(-y)∈

⋃
T" using neg_in_tgroup G_def by auto

with ‘x∈
⋃
T‘ have "(-y)+x∈

⋃
T" using group0.group_op_closed[where

a="-y" and b="x"] group0_valid_in_tgroup unfolding
G_def by auto

with assms ‘06=(-y)+x‘ obtain U where "U∈T" and "(-y)+x/∈U" and "0∈U"
unfolding isT1_def using zero_in_tgroup

by auto

then have "U∈N 0" unfolding zerohoods_def G_def using Top_2_L3 by
auto

then obtain Q where "Q∈N 0" "Q⊆U" "(Q+Q)⊆U" "(-Q)=Q" using exists_procls_zerohood

by blast

with ‘(-y)+x/∈U‘ have "(-y)+x/∈Q" by auto

from ‘Q∈N 0‘ have "Q⊆G" unfolding zerohoods_def by auto

{
assume "x∈y+Q"
with ‘Q⊆G‘ ‘y∈

⋃
T‘ obtain u where "u∈Q" and "x=y+u" unfolding

ltrans_def grop_def using group0.ltrans_image group0_valid_in_tgroup

unfolding G_def by auto

with ‘Q⊆G‘ have "u∈
⋃
T" unfolding G_def by auto

with ‘x=y+u‘ ‘y∈
⋃
T‘ ‘x∈

⋃
T‘ ‘Q⊆G‘ have "(-y)+x=u" using group0.group0_2_L18(2)

group0_valid_in_tgroup unfolding G_def

unfolding grsub_def grinv_def grop_def by auto

with ‘u∈Q‘ have "(-y)+x∈Q" by auto

then have "False" using ‘(-y)+x/∈Q‘ by auto

}
then have "x/∈y+Q" by auto moreover
{

assume "y∈x+Q"
with ‘Q⊆G‘ ‘x∈

⋃
T‘ obtain u where "u∈Q" and "y=x+u" unfolding

ltrans_def grop_def using group0.ltrans_image group0_valid_in_tgroup

unfolding G_def by auto

with ‘Q⊆G‘ have "u∈
⋃
T" unfolding G_def by auto

with ‘y=x+u‘ ‘y∈
⋃
T‘ ‘x∈

⋃
T‘ ‘Q⊆G‘ have "(-x)+y=u" using group0.group0_2_L18(2)

group0_valid_in_tgroup unfolding G_def

unfolding grsub_def grinv_def grop_def by auto

with ‘u∈Q‘ have "(-y)+x=-u" using group0.group_inv_of_two[OF group0_valid_in_tgroup

group0.inverse_in_group[OF group0_valid_in_tgroup,of x],of y]

using ‘x∈
⋃
T‘ ‘y∈

⋃
T‘ using group0.group_inv_of_inv[OF group0_valid_in_tgroup]

unfolding G_def grinv_def grop_def by auto

moreover from ‘u∈Q‘ have "(-u)∈(-Q)" unfolding setninv_def grinv_def
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using func_imagedef[OF group0_2_T2[OF Ggroup] ‘Q⊆G‘] by auto

ultimately have "(-y)+x∈Q" using ‘(-y)+x/∈Q‘ ‘(-Q)=Q‘ unfolding
setninv_def grinv_def by auto

then have "False" using ‘(-y)+x/∈Q‘ by auto

}
then have "y/∈x+Q" by auto moreover
{

fix t

assume "t∈(x+Q)∩(y+Q)"
then have "t∈(x+Q)" "t∈(y+Q)" by auto

with ‘Q⊆G‘ ‘x∈
⋃
T‘ ‘y∈

⋃
T‘ obtain u v where "u∈Q" "v∈Q" and "t=x+u"

"t=y+v" unfolding ltrans_def grop_def using group0.ltrans_image[OF group0_valid_in_tgroup]

unfolding G_def by auto

then have "x+u=y+v" by auto

moreover from ‘u∈Q‘ ‘v∈Q‘ ‘Q⊆G‘ have "u∈
⋃
T" "v∈

⋃
T" unfold-

ing G_def by auto

moreover note ‘x∈
⋃
T‘ ‘y∈

⋃
T‘

ultimately have "(-y)+(x+u)=v" using group0.group0_2_L18(2)[OF group0_valid_in_tgroup,

of y v "x+u"] group0.group_op_closed[OF group0_valid_in_tgroup, of x u]

unfolding G_def

unfolding grsub_def grinv_def grop_def by auto

then have "((-y)+x)+u=v" using group0.group_oper_assoc[OF group0_valid_in_tgroup]

unfolding grop_def using ‘x∈
⋃
T‘ ‘y∈

⋃
T‘ ‘u∈

⋃
T‘ using group0.inverse_in_group[OF

group0_valid_in_tgroup] unfolding G_def

by auto

then have "((-y)+x)=v-u" using group0.group0_2_L18(1)[OF group0_valid_in_tgroup,of

"(-y)+x" u v]

using ‘(-y)+x∈
⋃
T‘ ‘u∈

⋃
T‘ ‘v∈

⋃
T‘ unfolding G_def grsub_def grinv_def

grop_def by force

moreover
from ‘u∈Q‘ have "(-u)∈(-Q)" unfolding setninv_def grinv_def us-

ing func_imagedef[OF group0_2_T2[OF Ggroup] ‘Q⊆G‘] by auto

then have "(-u)∈Q" using ‘(-Q)=Q‘ by auto

with ‘v∈Q‘ have "〈v,-u〉∈Q×Q" by auto

then have "f‘〈v,-u〉∈Q+Q" using lift_subset_suff[OF group0.group_oper_assocA[OF

group0_valid_in_tgroup] ‘Q⊆G‘ ‘Q⊆G‘]
unfolding setadd_def by auto

with ‘Q+Q⊆U‘ have "v-u∈U" unfolding grsub_def grop_def by auto

ultimately have "(-y)+x∈U" by auto

with ‘(-y)+x/∈U‘ have "False" by auto

}
then have "(x+Q)∩(y+Q)=0" by auto

moreover have "x∈int(x+Q)""y∈int(y+Q)" using elem_in_int_trans ‘Q∈N 0‘

‘x∈
⋃
T‘ ‘y∈

⋃
T‘ unfolding G_def by auto moreover

have "int(x+Q)⊆(x+Q)""int(y+Q)⊆(y+Q)" using Top_2_L1 by auto

moreover have "int(x+Q)∈T" "int(y+Q)∈T" using Top_2_L2 by auto

ultimately have "int(x+Q)∈T ∧ int(y+Q)∈T ∧ x ∈ int(x+Q) ∧ y ∈ int(y+Q)

∧ int(x+Q) ∩ int(y+Q) = 0"

by blast
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then have "∃ U∈T. ∃ V∈T. x∈U∧y∈V∧U∩V=0" by auto

}
then show ?thesis using isT2_def by auto

qed

Here follow some auxiliary lemmas.

lemma (in topgroup) trans_closure:

assumes "x∈G" "A⊆G"
shows "cl(x+A)=x+cl(A)"

proof-
have "

⋃
T-(
⋃
T-(x+A))=(x+A)" unfolding ltrans_def using group0.group0_5_L1(2)[OF

group0_valid_in_tgroup assms(1)]

unfolding image_def range_def domain_def converse_def Pi_def by auto

then have "cl(x+A)=
⋃
T-int(

⋃
T-(x+A))" using Top_3_L11(2)[of "

⋃
T-(x+A)"]

by auto moreover
have "x+G=G" using surj_image_eq group0.trans_bij(2)[OF group0_valid_in_tgroup

assms(1)] bij_def by auto

then have "
⋃
T-(x+A)=x+(

⋃
T-A)" using inj_image_dif[of "LeftTranslation(G,

f, x)""G""G", OF _ assms(2)]

unfolding ltrans_def G_def using group0.trans_bij(2)[OF group0_valid_in_tgroup

assms(1)] bij_def by auto

then have "int(
⋃
T-(x+A))=int(x+(

⋃
T-A))" by auto

then have "int(
⋃
T-(x+A))=x+int(

⋃
T-A)" using trans_interior[OF assms(1),of

"
⋃
T-A"] unfolding G_def by force

have "
⋃
T-int(

⋃
T-A)=cl(

⋃
T-(
⋃
T-A))" using Top_3_L11(2)[of "

⋃
T-A"]

by force

have "
⋃
T-(
⋃
T-A)=A" using assms(2) G_def by auto

with ‘
⋃
T-int(

⋃
T-A)=cl(

⋃
T-(
⋃
T-A))‘ have "

⋃
T-int(

⋃
T-A)=cl(A)" by

auto

have "
⋃
T-(
⋃
T-int(

⋃
T-A))=int(

⋃
T-A)" using Top_2_L2 by auto

with ‘
⋃
T-int(

⋃
T-A)=cl(A)‘ have "int(

⋃
T-A)=

⋃
T-cl(A)" by auto

with ‘int(
⋃
T-(x+A))=x+int(

⋃
T-A)‘ have "int(

⋃
T-(x+A))=x+(

⋃
T-cl(A))"

by auto

with ‘x+G=G‘ have "int(
⋃
T-(x+A))=

⋃
T-(x+cl(A))" using inj_image_dif[of

"LeftTranslation(G, f, x)""G""G""cl(A)"]

unfolding ltrans_def using group0.trans_bij(2)[OF group0_valid_in_tgroup

assms(1)] Top_3_L11(1) assms(2) unfolding bij_def G_def

by auto

then have "
⋃
T-int(

⋃
T-(x+A))=

⋃
T-(
⋃
T-(x+cl(A)))" by auto

then have "
⋃
T-int(

⋃
T-(x+A))=x+cl(A)" unfolding ltrans_def using group0.group0_5_L1(2)[OF

group0_valid_in_tgroup assms(1)]

unfolding image_def range_def domain_def converse_def Pi_def by auto

with ‘cl(x+A)=
⋃
T-int(

⋃
T-(x+A))‘ show ?thesis by auto

qed

lemma (in topgroup) trans_interior2: assumes A1: "g∈G" and A2: "A⊆G"

shows "int(A)+g = int(A+g)"

proof -
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from assms have "A ⊆
⋃
T" and "IsAhomeomorphism(T,T,RightTranslation(G,f,g))"

using tr_homeo by auto

then show ?thesis using int_top_invariant by simp

qed

lemma (in topgroup) trans_closure2:

assumes "x∈G" "A⊆G"
shows "cl(A+x)=cl(A)+x"

proof-
have "

⋃
T-(
⋃
T-(A+x))=(A+x)" unfolding ltrans_def using group0.group0_5_L1(1)[OF

group0_valid_in_tgroup assms(1)]

unfolding image_def range_def domain_def converse_def Pi_def by auto

then have "cl(A+x)=
⋃
T-int(

⋃
T-(A+x))" using Top_3_L11(2)[of "

⋃
T-(A+x)"]

by auto moreover
have "G+x=G" using surj_image_eq group0.trans_bij(1)[OF group0_valid_in_tgroup

assms(1)] bij_def by auto

then have "
⋃
T-(A+x)=(

⋃
T-A)+x" using inj_image_dif[of "RightTranslation(G,

f, x)""G""G", OF _ assms(2)]

unfolding rtrans_def G_def using group0.trans_bij(1)[OF group0_valid_in_tgroup

assms(1)] bij_def by auto

then have "int(
⋃
T-(A+x))=int((

⋃
T-A)+x)" by auto

then have "int(
⋃
T-(A+x))=int(

⋃
T-A)+x" using trans_interior2[OF assms(1),of

"
⋃
T-A"] unfolding G_def by force

have "
⋃
T-int(

⋃
T-A)=cl(

⋃
T-(
⋃
T-A))" using Top_3_L11(2)[of "

⋃
T-A"]

by force

have "
⋃
T-(
⋃
T-A)=A" using assms(2) G_def by auto

with ‘
⋃
T-int(

⋃
T-A)=cl(

⋃
T-(
⋃
T-A))‘ have "

⋃
T-int(

⋃
T-A)=cl(A)" by

auto

have "
⋃
T-(
⋃
T-int(

⋃
T-A))=int(

⋃
T-A)" using Top_2_L2 by auto

with ‘
⋃
T-int(

⋃
T-A)=cl(A)‘ have "int(

⋃
T-A)=

⋃
T-cl(A)" by auto

with ‘int(
⋃
T-(A+x))=int(

⋃
T-A)+x‘ have "int(

⋃
T-(A+x))=(

⋃
T-cl(A))+x"

by auto

with ‘G+x=G‘ have "int(
⋃
T-(A+x))=

⋃
T-(cl(A)+x)" using inj_image_dif[of

"RightTranslation(G, f, x)""G""G""cl(A)"]

unfolding rtrans_def using group0.trans_bij(1)[OF group0_valid_in_tgroup

assms(1)] Top_3_L11(1) assms(2) unfolding bij_def G_def

by auto

then have "
⋃
T-int(

⋃
T-(A+x))=

⋃
T-(
⋃
T-(cl(A)+x))" by auto

then have "
⋃
T-int(

⋃
T-(A+x))=cl(A)+x" unfolding ltrans_def using group0.group0_5_L1(1)[OF

group0_valid_in_tgroup assms(1)]

unfolding image_def range_def domain_def converse_def Pi_def by auto

with ‘cl(A+x)=
⋃
T-int(

⋃
T-(A+x))‘ show ?thesis by auto

qed

lemma (in topgroup) trans_subset:

assumes "A⊆((-x)+B)""x∈G""A⊆G""B⊆G"
shows "x+A⊆B"

proof-
{
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fix t assume "t∈x+A"
with ‘x∈G‘ ‘A⊆G‘ obtain u where "u∈A" "t=x+u" unfolding ltrans_def

grop_def using group0.ltrans_image[OF group0_valid_in_tgroup]

unfolding G_def by auto

with ‘x∈G‘ ‘A⊆G‘ ‘u∈A‘ have "(-x)+t=u" using group0.group0_2_L18(2)[OF

group0_valid_in_tgroup, of "x""u""t"]

group0.group_op_closed[OF group0_valid_in_tgroup,of x u] unfold-
ing grop_def grinv_def by auto

with ‘u∈A‘ have "(-x)+t∈A" by auto

with ‘A⊆(-x)+B‘ have "(-x)+t∈(-x)+B" by auto

with ‘B⊆G‘ obtain v where "(-x)+t=(-x)+v" "v∈B" unfolding ltrans_def

grop_def using neg_in_tgroup[OF ‘x∈G‘] group0.ltrans_image[OF group0_valid_in_tgroup]

unfolding G_def by auto

have "LeftTranslation(G,f,-x)∈inj(G,G)" using group0.trans_bij(2)[OF

group0_valid_in_tgroup neg_in_tgroup[OF ‘x∈G‘]] bij_def by auto

then have eq:"∀ A∈G. ∀ B∈G. LeftTranslation(G,f,-x)‘A=LeftTranslation(G,f,-x)‘B

−→ A=B" unfolding inj_def by auto

{
fix A B assume "A∈G""B∈G"
assume "f‘〈-x,A〉=f‘〈-x,B〉"
then have "LeftTranslation(G,f,-x)‘A=LeftTranslation(G,f,-x)‘B"

using group0.group0_5_L2(2)[OF group0_valid_in_tgroup neg_in_tgroup[OF

‘x∈G‘]]
‘A∈G‘‘B∈G‘ by auto

with eq ‘A∈G‘‘B∈G‘ have "A=B" by auto

}
then have eq1:"∀ A∈G. ∀ B∈G. f‘〈-x,A〉=f‘〈-x,B〉 −→ A=B" by auto

from ‘A⊆G‘ ‘u∈A‘ have "u∈G" by auto

with ‘v∈B‘ ‘B⊆G‘ ‘t=x+u‘ have "t∈G" "v∈G" using group0.group_op_closed[OF

group0_valid_in_tgroup ‘x∈G‘,of u] unfolding grop_def

by auto

with eq1 ‘(-x)+t=(-x)+v‘ have "t=v" unfolding grop_def by auto

with ‘v∈B‘ have "t∈B" by auto

}
then show ?thesis by auto

qed

Every topological group is regular, and hence T3. The proof is in the next
section, since it uses local properties.

67.4 Local properties

In a topological group, all local properties depend only on the neighbour-
hoods of the neutral element; when considering topological properties. The
next result of regularity, will use this idea, since translations preserve closed
sets.

lemma (in topgroup) local_iff_neutral:
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assumes "∀ U∈T∩N 0. ∃ N∈N 0. N⊆U∧ P(N,T)" "∀ N∈Pow(G). ∀ x∈G. P(N,T)

−→ P(x+N,T)"

shows "T{is locally}P"

proof-
{

fix x U assume "x∈
⋃
T""U∈T""x∈U"

then have "(-x)+U∈T∩N 0" using open_tr_open(1) open_trans_neigh neg_in_tgroup

unfolding G_def

by auto

with assms(1) obtain N where "N⊆((-x)+U)""P(N,T)""N∈N 0" by auto

note ‘x∈
⋃
T‘‘N⊆((-x)+U)‘ moreover

from ‘U∈T‘ have "U⊆
⋃
T" by auto moreover

from ‘N∈N 0‘ have "N⊆G" unfolding zerohoods_def by auto

ultimately have "(x+N)⊆U" using trans_subset unfolding G_def by auto

moreover
from ‘N⊆G‘‘x∈

⋃
T‘ assms(2) ‘P(N,T)‘ have "P((x+N),T)" unfolding G_def

by auto moreover
from ‘N∈N 0‘‘x∈

⋃
T‘ have "x∈int(x+N)" using elem_in_int_trans un-

folding G_def by auto

ultimately have "∃ N∈Pow(U). x∈int(N)∧P(N,T)" by auto

}
then show ?thesis unfolding IsLocally_def[OF topSpaceAssum] by auto

qed

lemma (in topgroup) trans_closed:

assumes "A{is closed in}T""x∈G"
shows "(x+A){is closed in}T"

proof-
from assms(1) have "cl(A)=A" using Top_3_L8 unfolding IsClosed_def

by auto

then have "x+cl(A)=x+A" by auto

then have "cl(x+A)=x+A" using trans_closure assms unfolding IsClosed_def

by auto

moreover have "x+A⊆G" unfolding ltrans_def using group0.group0_5_L1(2)[OF

group0_valid_in_tgroup ‘x∈G‘]
unfolding image_def range_def domain_def converse_def Pi_def by

auto

ultimately show ?thesis using Top_3_L8 unfolding G_def by auto

qed

As it is written in the previous section, every topological group is regular.

theorem (in topgroup) topgroup_reg:

shows "T{is regular}"

proof-
{

fix U assume "U∈T∩N 0"

then obtain V where "cl(V)⊆U""V∈N 0" using exist_basehoods_closed

by blast

then have "V⊆cl(V)" using cl_contains_set unfolding zerohoods_def
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G_def by auto

then have "int(V)⊆int(cl(V))" using interior_mono by auto

with ‘V∈N 0‘ have "cl(V)∈N 0" unfolding zerohoods_def G_def using
Top_3_L11(1) by auto

from ‘V∈N 0‘ have "cl(V){is closed in}T" using cl_is_closed unfold-
ing zerohoods_def G_def by auto

with ‘cl(V)∈N 0‘‘cl(V)⊆U‘ have "∃ N∈N 0. N⊆U∧N{is closed in}T" by
auto

}
then have "∀ U∈T∩N 0. ∃ N∈N 0. N⊆U∧N{is closed in}T" by auto more-

over
have "∀ N∈Pow(G).( ∀ x∈G. (N{is closed in}T−→(x+N){is closed in}T))"

using trans_closed by auto

ultimately have "T{is locally-closed}" using local_iff_neutral unfold-
ing IsLocallyClosed_def by auto

then show "T{is regular}" using regular_locally_closed by auto

qed

The promised corollary follows:

corollary (in topgroup) T2_imp_T3:

assumes "T{is T2}"

shows "T{is T3}" using T2_is_T1 topgroup_reg isT3_def assms by auto

end

68 Topological groups 2

theory TopologicalGroup_ZF_2 imports Topology_ZF_8 TopologicalGroup_ZF

Group_ZF_2

begin

This theory deals with quotient topological groups.

68.1 Quotients of topological groups

The quotient topology given by the quotient group equivalent relation, has
an open quotient map.

theorem(in topgroup) quotient_map_topgroup_open:

assumes "IsAsubgroup(H,f)" "A∈T"
defines "r ≡ QuotientGroupRel(G,f,H)"

shows "{〈b,r‘‘{b}〉. b∈
⋃
T}‘‘A∈(T{quotient by}r)"

proof-
have eqT:"equiv(

⋃
T,r)" and eqG:"equiv(G,r)" using group0.Group_ZF_2_4_L3

assms(1) unfolding r_def IsAnormalSubgroup_def

using group0_valid_in_tgroup by auto

have subA:"A⊆G" using assms(2) by auto

have subH:"H⊆G" using group0.group0_3_L2[OF group0_valid_in_tgroup

assms(1)].
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have A1:"{〈b,r‘‘{b}〉. b∈
⋃
T}-‘‘({〈b,r‘‘{b}〉. b∈

⋃
T}‘‘A)=H+A"

proof
{

fix t assume "t∈{〈b,r‘‘{b}〉. b∈
⋃
T}-‘‘({〈b,r‘‘{b}〉. b∈

⋃
T}‘‘A)"

then have "∃ m∈({〈b,r‘‘{b}〉. b∈
⋃
T}‘‘A). 〈t,m〉∈{〈b,r‘‘{b}〉. b∈

⋃
T}"

using vimage_iff by auto

then obtain m where "m∈({〈b,r‘‘{b}〉. b∈
⋃
T}‘‘A)""〈t,m〉∈{〈b,r‘‘{b}〉.

b∈
⋃
T}" by auto

then obtain b where "b∈A""〈b,m〉∈{〈b,r‘‘{b}〉. b∈
⋃
T}""t∈G" and rel:"r‘‘{t}=m"

using image_iff by auto

then have "r‘‘{b}=m" by auto

then have "r‘‘{t}=r‘‘{b}" using rel by auto

with ‘b∈A‘subA have "〈t,b〉∈r" using eq_equiv_class[OF _ eqT] by
auto

then have "f‘〈t,GroupInv(G,f)‘b〉∈H" unfolding r_def QuotientGroupRel_def

by auto

then obtain h where "h∈H" and prd:"f‘〈t,GroupInv(G,f)‘b〉=h" by
auto

then have "h∈G" using subH by auto

have "b∈G" using ‘b∈A‘‘A∈T‘ by auto

then have "(-b)∈G" using neg_in_tgroup by auto

from prd have "t=f‘〈h, GroupInv(G, f) ‘ (- b)〉" using group0.group0_2_L18(1)[OF

group0_valid_in_tgroup ‘t∈G‘‘(-b)∈G‘‘h∈G‘]
unfolding grinv_def by auto

then have "t=f‘〈h,b〉" using group0.group_inv_of_inv[OF group0_valid_in_tgroup

‘b∈G‘]
unfolding grinv_def by auto

then have "〈〈h,b〉,t〉∈f" using apply_Pair[OF topgroup_f_binop] ‘h∈G‘‘b∈G‘
by auto moreover

from ‘h∈H‘‘b∈A‘ have "〈h,b〉∈H×A" by auto

ultimately have "t∈f‘‘(H×A)" using image_iff by auto

with subA subH have "t∈H+A" using interval_add(2) by auto

}
then show "({〈b,r‘‘{b}〉. b∈

⋃
T}-‘‘({〈b,r‘‘{b}〉. b∈

⋃
T}‘‘A))⊆H+A"

by force

{
fix t assume "t∈H+A"
with subA subH have "t∈f‘‘(H×A)" using interval_add(2) by auto

then obtain ha where "ha∈H×A""〈ha,t〉∈f" using image_iff by auto

then obtain h aa where "ha=〈h,aa〉""h∈H""aa∈A" by auto

then have "h∈G""aa∈G" using subH subA by auto

from ‘〈ha,t〉∈f‘ have "t∈G" using topgroup_f_binop unfolding Pi_def

by auto

from ‘ha=〈h,aa〉‘ ‘〈ha,t〉∈f‘ have "t=f‘〈h,aa〉" using apply_equality[OF

_ topgroup_f_binop] by auto

then have "f‘〈t,-aa〉=h" using group0.group0_2_L18(1)[OF group0_valid_in_tgroup

‘h∈G‘‘aa∈G‘‘t∈G‘]
by auto

with ‘h∈H‘‘t∈G‘‘aa∈G‘ have "〈t,aa〉∈r" unfolding r_def QuotientGroupRel_def
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by auto

then have "r‘‘{t}=r‘‘{aa}" using eqT equiv_class_eq by auto

with ‘aa∈G‘ have "〈aa,r‘‘{t}〉∈{〈b,r‘‘{b}〉. b∈
⋃
T}" by auto

with ‘aa∈A‘ have A1:"r‘‘{t}∈({〈b,r‘‘{b}〉. b∈
⋃
T}‘‘A)" using image_iff

by auto

from ‘t∈G‘ have "〈t,r‘‘{t}〉∈{〈b,r‘‘{b}〉. b∈
⋃
T}" by auto

with A1 have "t∈{〈b,r‘‘{b}〉. b∈
⋃
T}-‘‘({〈b,r‘‘{b}〉. b∈

⋃
T}‘‘A)"

using vimage_iff by auto

}
then show "H+A⊆{〈b,r‘‘{b}〉. b∈

⋃
T}-‘‘({〈b,r‘‘{b}〉. b∈

⋃
T}‘‘A)" by

auto

qed
have "H+A=(

⋃
x∈H. x + A)" using interval_add(3) subH subA by auto more-

over
have "∀ x∈H. x + A∈T" using open_tr_open(1) assms(2) subH by blast

then have "{x + A. x∈H}⊆T" by auto

then have "(
⋃
x∈H. x + A)∈T" using topSpaceAssum unfolding IsATopology_def

by auto

ultimately have "H+A∈T" by auto

with A1 have "{〈b,r‘‘{b}〉. b∈
⋃
T}-‘‘({〈b,r‘‘{b}〉. b∈

⋃
T}‘‘A)∈T" by auto

then have "({〈b,r‘‘{b}〉. b∈
⋃
T}‘‘A)∈{quotient topology in}((

⋃
T)//r){by}{〈b,r‘‘{b}〉.

b∈
⋃
T}{from}T"

using QuotientTop_def topSpaceAssum quotient_proj_surj using
func1_1_L6(2)[OF quotient_proj_fun] by auto

then show "({〈b,r‘‘{b}〉. b∈
⋃
T}‘‘A)∈(T{quotient by}r)" using EquivQuo_def[OF

eqT] by auto

qed

A quotient of a topological group is just a quotient group with an appropiate
topology that makes product and inverse continuous.

theorem (in topgroup) quotient_top_group_F_cont:

assumes "IsAnormalSubgroup(G,f,H)"

defines "r ≡ QuotientGroupRel(G,f,H)"

defines "F ≡ QuotientGroupOp(G,f,H)"

shows "IsContinuous(ProductTopology(T{quotient by}r,T{quotient by}r),T{quotient

by}r,F)"

proof-
have eqT:"equiv(

⋃
T,r)" and eqG:"equiv(G,r)" using group0.Group_ZF_2_4_L3

assms(1) unfolding r_def IsAnormalSubgroup_def

using group0_valid_in_tgroup by auto

have fun:"{〈〈b,c〉,〈r‘‘{b},r‘‘{c}〉〉. 〈b,c〉∈
⋃
T×
⋃
T}:G×G→(G//r)×(G//r)"

using product_equiv_rel_fun unfolding G_def by auto

have C:"Congruent2(r,f)" using Group_ZF_2_4_L5A[OF Ggroup assms(1)]

unfolding r_def.
with eqT have "IsContinuous(ProductTopology(T,T),ProductTopology(T{quotient

by}r,T{quotient by}r),{〈〈b,c〉,〈r‘‘{b},r‘‘{c}〉〉. 〈b,c〉∈
⋃
T×
⋃
T})"

using product_quo_fun by auto

have tprod:"topology0(ProductTopology(T,T))" unfolding topology0_def

using Top_1_4_T1(1)[OF topSpaceAssum topSpaceAssum].
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have Hfun:"{〈〈b,c〉,〈r‘‘{b},r‘‘{c}〉〉. 〈b,c〉∈
⋃
T×
⋃
T}∈surj(

⋃
ProductTopology(T,T),

⋃
(({quotient

topology in}(((
⋃
T)//r)×((

⋃
T)//r)){by}{〈〈b,c〉,〈r‘‘{b},r‘‘{c}〉〉. 〈b,c〉∈

⋃
T×
⋃
T}{from}(ProductTopology(T,T)))))"

using prod_equiv_rel_surj

total_quo_equi[OF eqT] topology0.total_quo_func[OF tprod prod_equiv_rel_surj]

unfolding F_def QuotientGroupOp_def r_def

by auto

have Ffun:"F:
⋃
(({quotient topology in}(((

⋃
T)//r)×((

⋃
T)//r)){by}{〈〈b,c〉,〈r‘‘{b},r‘‘{c}〉〉.

〈b,c〉∈
⋃
T×
⋃
T}{from}(ProductTopology(T,T))))→

⋃
(T{quotient by}r)"

using EquivClass_1_T1[OF eqG C] using total_quo_equi[OF eqT] topology0.total_quo_func[OF

tprod prod_equiv_rel_surj] unfolding F_def QuotientGroupOp_def r_def

by auto

have cc:"(F O {〈〈b,c〉,〈r‘‘{b},r‘‘{c}〉〉. 〈b,c〉∈
⋃
T×
⋃
T}):G×G→G//r" us-

ing comp_fun[OF fun EquivClass_1_T1[OF eqG C]]

unfolding F_def QuotientGroupOp_def r_def by auto

then have "(F O {〈〈b,c〉,〈r‘‘{b},r‘‘{c}〉〉. 〈b,c〉∈
⋃
T×
⋃
T}):

⋃
(ProductTopology(T,T))→

⋃
(T{quotient

by}r)" using Top_1_4_T1(3)[OF topSpaceAssum topSpaceAssum]

total_quo_equi[OF eqT] by auto

then have two:"two_top_spaces0(ProductTopology(T,T),T{quotient by}r,(F

O {〈〈b,c〉,〈r‘‘{b},r‘‘{c}〉〉. 〈b,c〉∈
⋃
T×
⋃
T}))" unfolding two_top_spaces0_def

using Top_1_4_T1(1)[OF topSpaceAssum topSpaceAssum] equiv_quo_is_top[OF

eqT] by auto

have "IsContinuous(ProductTopology(T,T),T,f)" using fcon prodtop_def

by auto moreover
have "IsContinuous(T,T{quotient by}r,{〈b,r‘‘{b}〉. b∈

⋃
T})" using quotient_func_cont[OF

quotient_proj_surj]

unfolding EquivQuo_def[OF eqT] by auto

ultimately have cont:"IsContinuous(ProductTopology(T,T),T{quotient by}r,{〈b,r‘‘{b}〉.
b∈
⋃
T} O f)"

using comp_cont by auto

{
fix A assume A:"A∈G×G"
then obtain g1 g2 where A_def:"A=〈g1,g2〉" "g1∈G""g2∈G" by auto

then have "f‘A=g1+g2" and p:"g1+g2∈
⋃
T" unfolding grop_def using

apply_type[OF topgroup_f_binop] by auto

then have "{〈b,r‘‘{b}〉. b∈
⋃
T}‘(f‘A)={〈b,r‘‘{b}〉. b∈

⋃
T}‘(g1+g2)"

by auto

with p have "{〈b,r‘‘{b}〉. b∈
⋃
T}‘(f‘A)=r‘‘{g1+g2}" using apply_equality[OF

_ quotient_proj_fun]

by auto

then have Pr1:"({〈b,r‘‘{b}〉. b∈
⋃
T} O f)‘A=r‘‘{g1+g2}" using comp_fun_apply[OF

topgroup_f_binop A] by auto

from A_def(2,3) have "〈g1,g2〉∈
⋃
T×
⋃
T" by auto

then have "〈〈g1,g2〉,〈r‘‘{g1},r‘‘{g2}〉〉∈{〈〈b,c〉,〈r‘‘{b},r‘‘{c}〉〉. 〈b,c〉∈
⋃
T×
⋃
T}"

by auto

then have "{〈〈b,c〉,〈r‘‘{b},r‘‘{c}〉〉. 〈b,c〉∈
⋃
T×
⋃
T}‘A=〈r‘‘{g1},r‘‘{g2}〉"

using A_def(1) apply_equality[OF _ product_equiv_rel_fun]

by auto

then have "F‘({〈〈b,c〉,〈r‘‘{b},r‘‘{c}〉〉. 〈b,c〉∈
⋃
T×
⋃
T}‘A)=F‘〈r‘‘{g1},r‘‘{g2}〉"
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by auto

then have "F‘({〈〈b,c〉,〈r‘‘{b},r‘‘{c}〉〉. 〈b,c〉∈
⋃
T×
⋃
T}‘A)=r‘‘({g1+g2})"

using group0.Group_ZF_2_2_L2[OF group0_valid_in_tgroup eqG C

_ A_def(2,3)] unfolding F_def QuotientGroupOp_def r_def by auto

moreover
note fun ultimately have "(F O {〈〈b,c〉,〈r‘‘{b},r‘‘{c}〉〉. 〈b,c〉∈

⋃
T×
⋃
T})‘A=r‘‘({g1+g2})"

using comp_fun_apply[OF _ A] by auto

then have "(F O {〈〈b,c〉,〈r‘‘{b},r‘‘{c}〉〉. 〈b,c〉∈
⋃
T×
⋃
T})‘A=({〈b,r‘‘{b}〉.

b∈
⋃
T} O f)‘A" using Pr1 by auto

}
then have "(F O {〈〈b,c〉,〈r‘‘{b},r‘‘{c}〉〉. 〈b,c〉∈

⋃
T×
⋃
T})=({〈b,r‘‘{b}〉.

b∈
⋃
T} O f)" using fun_extension[OF cc comp_fun[OF topgroup_f_binop quotient_proj_fun]]

unfolding F_def QuotientGroupOp_def r_def by auto

then have A:"IsContinuous(ProductTopology(T,T),T{quotient by}r,F O

{〈〈b,c〉,〈r‘‘{b},r‘‘{c}〉〉. 〈b,c〉∈
⋃
T×
⋃
T})" using cont by auto

have "IsAsubgroup(H,f)" using assms(1) unfolding IsAnormalSubgroup_def

by auto

then have "∀ A∈T. {〈b, r ‘‘ {b}〉 . b ∈
⋃
T} ‘‘ A ∈ ({quotient by}r)"

using quotient_map_topgroup_open unfolding r_def by auto

with eqT have "ProductTopology({quotient by}r,{quotient by}r)=({quotient

topology in}(((
⋃
T)//r)×((

⋃
T)//r)){by}{〈〈b,c〉,〈r‘‘{b},r‘‘{c}〉〉. 〈b,c〉∈

⋃
T×
⋃
T}{from}(ProductTopology(T,T)))"

using prod_quotient

by auto

with A show "IsContinuous(ProductTopology(T{quotient by}r,T{quotient

by}r),T{quotient by}r,F)"

using two_top_spaces0.cont_quotient_top[OF two Hfun Ffun] topology0.total_quo_func[OF

tprod prod_equiv_rel_surj] unfolding F_def QuotientGroupOp_def r_def

by auto

qed

lemma (in group0) Group_ZF_2_4_L8:

assumes "IsAnormalSubgroup(G,P,H)"

defines "r ≡ QuotientGroupRel(G,P,H)"

and "F ≡ QuotientGroupOp(G,P,H)"

shows "GroupInv(G//r,F):G//r→G//r"

using group0_2_T2[OF Group_ZF_2_4_T1[OF _ assms(1)]] groupAssum us-
ing assms(2,3)

by auto

theorem (in topgroup) quotient_top_group_INV_cont:

assumes "IsAnormalSubgroup(G,f,H)"

defines "r ≡ QuotientGroupRel(G,f,H)"

defines "F ≡ QuotientGroupOp(G,f,H)"

shows "IsContinuous(T{quotient by}r,T{quotient by}r,GroupInv(G//r,F))"

proof-
have eqT:"equiv(

⋃
T,r)" and eqG:"equiv(G,r)" using group0.Group_ZF_2_4_L3

assms(1) unfolding r_def IsAnormalSubgroup_def

using group0_valid_in_tgroup by auto

have two:"two_top_spaces0(T,T{quotient by}r,{〈b,r‘‘{b}〉. b∈G})" un-
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folding two_top_spaces0_def

using topSpaceAssum equiv_quo_is_top[OF eqT] quotient_proj_fun total_quo_equi[OF

eqT] by auto

have "IsContinuous(T,T,GroupInv(G,f))" using inv_cont. moreover
{

fix g assume G:"g∈G"
then have "GroupInv(G,f)‘g=-g" using grinv_def by auto

then have "r‘‘({GroupInv(G,f)‘g})=GroupInv(G//r,F)‘(r‘‘{g})" using
group0.Group_ZF_2_4_L7

[OF group0_valid_in_tgroup assms(1) G] unfolding r_def F_def by
auto

then have "{〈b,r‘‘{b}〉. b∈G}‘(GroupInv(G,f)‘g)=GroupInv(G//r,F)‘({〈b,r‘‘{b}〉.
b∈G}‘g)"

using apply_equality[OF _ quotient_proj_fun] G neg_in_tgroup un-
folding grinv_def

by auto

then have "({〈b,r‘‘{b}〉. b∈G}O GroupInv(G,f))‘g=(GroupInv(G//r,F)O

{〈b,r‘‘{b}〉. b∈G})‘g"
using comp_fun_apply[OF quotient_proj_fun G] comp_fun_apply[OF group0_2_T2[OF

Ggroup] G] by auto

}
then have A1:"{〈b,r‘‘{b}〉. b∈G}O GroupInv(G,f)=GroupInv(G//r,F)O {〈b,r‘‘{b}〉.

b∈G}" using fun_extension[

OF comp_fun[OF quotient_proj_fun group0.Group_ZF_2_4_L8[OF group0_valid_in_tgroup

assms(1)]]

comp_fun[OF group0_2_T2[OF Ggroup] quotient_proj_fun[of "G""r"]]]

unfolding r_def F_def by auto

have "IsContinuous(T,T{quotient by}r,{〈b,r‘‘{b}〉. b∈
⋃
T})" using quotient_func_cont[OF

quotient_proj_surj]

unfolding EquivQuo_def[OF eqT] by auto

ultimately have "IsContinuous(T,T{quotient by}r,{〈b,r‘‘{b}〉. b∈
⋃
T}O

GroupInv(G,f))"

using comp_cont by auto

with A1 have "IsContinuous(T,T{quotient by}r,GroupInv(G//r,F)O {〈b,r‘‘{b}〉.
b∈G})" by auto

then have "IsContinuous({quotient topology in}(
⋃
T) // r{by}{〈b, r ‘‘

{b}〉 . b ∈
⋃
T}{from}T,T{quotient by}r,GroupInv(G//r,F))"

using two_top_spaces0.cont_quotient_top[OF two quotient_proj_surj,

of "GroupInv(G//r,F)""r"] group0.Group_ZF_2_4_L8[OF group0_valid_in_tgroup

assms(1)]

using total_quo_equi[OF eqT] unfolding r_def F_def by auto

then show ?thesis unfolding EquivQuo_def[OF eqT].
qed

Finally we can prove that quotient groups of topological groups are topo-
logical groups.

theorem(in topgroup) quotient_top_group:

assumes "IsAnormalSubgroup(G,f,H)"

defines "r ≡ QuotientGroupRel(G,f,H)"
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defines "F ≡ QuotientGroupOp(G,f,H)"

shows "IsAtopologicalGroup({quotient by}r,F)"

unfolding IsAtopologicalGroup_def using total_quo_equi equiv_quo_is_top

Group_ZF_2_4_T1 Ggroup assms(1) quotient_top_group_INV_cont quotient_top_group_F_cont

group0.Group_ZF_2_4_L3 group0_valid_in_tgroup assms(1) unfolding r_def

F_def IsAnormalSubgroup_def

by auto

end

69 Topological groups 3

theory TopologicalGroup_ZF_3 imports Topology_ZF_10 TopologicalGroup_ZF_2

TopologicalGroup_ZF_1

Group_ZF_4

begin

This theory deals with topological properties of subgroups, quotient groups
and relations between group theorical properties and topological properties.

69.1 Subgroups topologies

The closure of a subgroup is a subgroup.

theorem (in topgroup) closure_subgroup:

assumes "IsAsubgroup(H,f)"

shows "IsAsubgroup(cl(H),f)"

proof-
have two:"two_top_spaces0(ProductTopology(T,T),T,f)" unfolding two_top_spaces0_def

using
topSpaceAssum Top_1_4_T1(1,3) topgroup_f_binop by auto

from fcon have cont:"IsContinuous(ProductTopology(T,T),T,f)" by auto

then have closed:"∀ D. D{is closed in}T −→ f-‘‘D{is closed in}τ" us-
ing two_top_spaces0.TopZF_2_1_L1

two by auto

then have closure:"∀ A∈Pow(
⋃
τ). f‘‘(Closure(A,τ))⊆cl(f‘‘A)" using

two_top_spaces0.Top_ZF_2_1_L2

two by force

have sub1:"H⊆G" using group0.group0_3_L2 group0_valid_in_tgroup assms

by force

then have sub:"(H)×(H)⊆
⋃
τ" using prod_top_on_G(2) by auto

from sub1 have clHG:"cl(H)⊆G" using Top_3_L11(1) by auto

then have clHsub1:"cl(H)×cl(H)⊆G×G" by auto

have "Closure(H×H,ProductTopology(T,T))=cl(H)×cl(H)" using cl_product

topSpaceAssum group0.group0_3_L2 group0_valid_in_tgroup assms by auto

then have "f‘‘(Closure(H×H,ProductTopology(T,T)))=f‘‘(cl(H)×cl(H))"
by auto
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with closure sub have clcl:"f‘‘(cl(H)×cl(H))⊆cl(f‘‘(H×H))" by force

from assms have fun:"restrict(f,H×H):H×H→H" unfolding IsAsubgroup_def

using
group0.group_oper_assocA unfolding group0_def by auto

then have "restrict(f,H×H)‘‘(H×H)=f‘‘(H×H)" using restrict_image by
auto

moreover from fun have "restrict(f,H×H)‘‘(H×H)⊆H" using func1_1_L6(2)

by blast

ultimately have "f‘‘(H×H)⊆H" by auto

with sub1 have "f‘‘(H×H)⊆H""f‘‘(H×H)⊆G""H⊆G" by auto

then have "cl(f‘‘(H×H))⊆cl(H)" using top_closure_mono by auto

with clcl have img:"f‘‘(cl(H)×cl(H))⊆cl(H)" by auto

{
fix x y assume "x∈cl(H)""y∈cl(H)"
then have "〈x,y〉∈cl(H)×cl(H)" by auto moreover
have "f‘‘(cl(H)×cl(H))={f‘t. t∈cl(H)×cl(H)}" using func_imagedef

topgroup_f_binop

clHsub1 by auto ultimately
have "f‘〈x,y〉∈f‘‘(cl(H)×cl(H))" by auto

with img have "f‘〈x,y〉∈cl(H)" by auto

}
then have A1:"cl(H){is closed under} f" unfolding IsOpClosed_def by

auto

have two:"two_top_spaces0(T,T,GroupInv(G,f))" unfolding two_top_spaces0_def

using
topSpaceAssum Ggroup group0_2_T2 by auto

from inv_cont have cont:"IsContinuous(T,T,GroupInv(G,f))" by auto

then have closed:"∀ D. D{is closed in}T −→ GroupInv(G,f)-‘‘D{is closed

in}T" using two_top_spaces0.TopZF_2_1_L1

two by auto

then have closure:"∀ A∈Pow(
⋃
T). GroupInv(G,f)‘‘(cl(A))⊆cl(GroupInv(G,f)‘‘A)"

using two_top_spaces0.Top_ZF_2_1_L2

two by force

with sub1 have Inv:"GroupInv(G,f)‘‘(cl(H))⊆cl(GroupInv(G,f)‘‘H)" by
auto moreover

have "GroupInv(H,restrict(f,H×H)):H→H" using assms unfolding IsAsubgroup_def

using group0_2_T2 by auto then
have "GroupInv(H,restrict(f,H×H))‘‘H⊆H" using func1_1_L6(2) by auto

then have "restrict(GroupInv(G,f),H)‘‘H⊆H" using group0.group0_3_T1

assms group0_valid_in_tgroup by auto

then have sss:"GroupInv(G,f)‘‘H⊆H" using restrict_image by auto

then have "H⊆G" "GroupInv(G,f)‘‘H⊆G" using sub1 by auto

with sub1 sss have "cl(GroupInv(G,f)‘‘H)⊆cl(H)" using top_closure_mono

by auto ultimately
have img:"GroupInv(G,f)‘‘(cl(H))⊆cl(H)" by auto

{
fix x assume "x∈cl(H)" moreover
have "GroupInv(G,f)‘‘(cl(H))={GroupInv(G,f)‘t. t∈cl(H)}" using func_imagedef

Ggroup group0_2_T2
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clHG by force ultimately
have "GroupInv(G,f)‘x∈GroupInv(G,f)‘‘(cl(H))" by auto

with img have "GroupInv(G,f)‘x∈cl(H)" by auto

}
then have A2:"∀ x∈cl(H). GroupInv(G,f)‘x∈cl(H)" by auto

from assms have "H 6=0" using group0.group0_3_L5 group0_valid_in_tgroup

by auto moreover
have "H⊆cl(H)" using cl_contains_set sub1 by auto ultimately
have "cl(H)6=0" by auto

with clHG A2 A1 show ?thesis using group0.group0_3_T3 group0_valid_in_tgroup

by auto

qed

The closure of a normal subgroup is normal.

theorem (in topgroup) normal_subg:

assumes "IsAnormalSubgroup(G,f,H)"

shows "IsAnormalSubgroup(G,f,cl(H))"

proof-
have A:"IsAsubgroup(cl(H),f)" using closure_subgroup assms unfolding

IsAnormalSubgroup_def by auto

have sub1:"H⊆G" using group0.group0_3_L2 group0_valid_in_tgroup assms

unfolding IsAnormalSubgroup_def by auto

then have sub2:"cl(H)⊆G" using Top_3_L11(1) by auto

{
fix g assume g:"g∈G"
then have cl1:"cl(g+H)=g+cl(H)" using trans_closure sub1 by auto

have ss:"g+cl(H)⊆G" unfolding ltrans_def LeftTranslation_def by auto

have "g+H⊆G" unfolding ltrans_def LeftTranslation_def by auto

moreover from g have "(-g)∈G" using neg_in_tgroup by auto

ultimately have cl2:"cl((g+H)+(-g))=cl(g+H)+(-g)" using trans_closure2

by auto

with cl1 have clcon:"cl((g+H)+(-g))=(g+(cl(H)))+(-g)" by auto

{
fix r assume "r∈(g+H)+(-g)"
then obtain q where q:"q∈g+H" "r=q+(-g)" unfolding rtrans_def RightTranslation_def

by force

from q(1) obtain h where "h∈H" "q=g+h" unfolding ltrans_def LeftTranslation_def

by auto

with q(2) have "r=(g+h)+(-g)" by auto

with ‘h∈H‘ ‘g∈G‘ ‘(-g)∈G‘ have "r∈H" using assms unfolding IsAnormalSubgroup_def

grinv_def grop_def by auto

}
then have "(g+H)+(-g)⊆H" by auto

moreover then have "(g+H)+(-g)⊆G""H⊆G" using sub1 by auto ulti-
mately

have "cl((g+H)+(-g))⊆cl(H)" using top_closure_mono by auto

with clcon have "(g+(cl(H)))+(-g)⊆cl(H)" by auto moreover
{

fix b assume "b∈{g+(d-g). d∈cl(H)}"
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then obtain d where d:"d∈cl(H)" "b=g+(d-g)" by auto moreover
then have "d∈G" using sub2 by auto

then have "g+d∈G" using group0.group_op_closed[OF group0_valid_in_tgroup

‘g∈G‘] by auto

from d(2) have b:"b=(g+d)-g" using group0.group_oper_assoc[OF group0_valid_in_tgroup

‘g∈G‘ ‘d∈G‘‘(-g)∈G‘]
unfolding grsub_def grop_def grinv_def by blast

have "(g+d)=LeftTranslation(G,f,g)‘d" using group0.group0_5_L2(2)[OF

group0_valid_in_tgroup]

‘g∈G‘‘d∈G‘ by auto

with ‘d∈cl(H)‘ have "g+d∈g+cl(H)" unfolding ltrans_def using func_imagedef[OF

group0.group0_5_L1(2)[

OF group0_valid_in_tgroup ‘g∈G‘] sub2] by auto

moreover from b have "b=RightTranslation(G,f,-g)‘(g+d)" using
group0.group0_5_L2(1)[OF group0_valid_in_tgroup]

‘(-g)∈G‘‘g+d∈G‘ by auto

ultimately have "b∈(g+cl(H))+(-g)" unfolding rtrans_def using func_imagedef[OF

group0.group0_5_L1(1)[

OF group0_valid_in_tgroup ‘(-g)∈G‘] ss] by force

}
ultimately have "{g+(d-g). d∈cl(H)}⊆cl(H)" by force

}
then show ?thesis using A group0.cont_conj_is_normal[OF group0_valid_in_tgroup,

of "cl(H)"]

unfolding grsub_def grinv_def grop_def by auto

qed

Every open subgroup is also closed.

theorem (in topgroup) open_subgroup_closed:

assumes "IsAsubgroup(H,f)" "H∈T"
shows "H{is closed in}T"

proof-
from assms(1) have sub:"H⊆G" using group0.group0_3_L2 group0_valid_in_tgroup

by force

{
fix t assume "t∈G-H"
then have tnH:"t/∈H" and tG:"t∈G" by auto

from assms(1) have sub:"H⊆G" using group0.group0_3_L2 group0_valid_in_tgroup

by force

from assms(1) have nSubG:"0∈H" using group0.group0_3_L5 group0_valid_in_tgroup

by auto

from assms(2) tG have op:"t+H∈T" using open_tr_open(1) by auto

from nSubG sub tG have tp:"t∈t+H" using group0_valid_in_tgroup group0.neut_trans_elem

by auto

{
fix x assume "x∈(t+H)∩H"
then obtain u where "x=t+u" "u∈H" "x∈H" unfolding ltrans_def LeftTranslation_def

by auto

then have "u∈G""x∈G""t∈G" using sub tG by auto
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with ‘x=t+u‘ have "x+(-u)=t" using group0.group0_2_L18(1) group0_valid_in_tgroup

unfolding grop_def grinv_def by auto

from ‘u∈H‘ have "(-u)∈H" unfolding grinv_def using assms(1) group0.group0_3_T3A

group0_valid_in_tgroup

by auto

with ‘x∈H‘ have "x+(-u)∈H" unfolding grop_def using assms(1) group0.group0_3_L6

group0_valid_in_tgroup

by auto

with ‘x+(-u)=t‘ have "False" using tnH by auto

}
then have "(t+H)∩H=0" by auto moreover
have "t+H⊆G" unfolding ltrans_def LeftTranslation_def by auto ul-

timately
have "(t+H)⊆G-H" by auto

with tp op have "∃ V∈T. t∈V ∧ V⊆G-H" unfolding Bex_def by auto

}
then have "∀ t∈G-H. ∃ V∈T. t∈V ∧ V⊆G-H" by auto

then have "G-H∈T" using open_neigh_open by auto

then show ?thesis unfolding IsClosed_def using sub by auto

qed

Any subgroup with non-empty interior is open.

theorem (in topgroup) clopen_or_emptyInt:

assumes "IsAsubgroup(H,f)" "int(H)6=0"

shows "H∈T"
proof-

from assms(1) have sub:"H⊆G" using group0.group0_3_L2 group0_valid_in_tgroup

by force

{
fix h assume "h∈H"
have intsub:"int(H)⊆H" using Top_2_L1 by auto

from assms(2) obtain u where "u∈int(H)" by auto

with intsub have "u∈H" by auto

then have "(-u)∈H" unfolding grinv_def using assms(1) group0.group0_3_T3A

group0_valid_in_tgroup

by auto

with ‘h∈H‘ have "h-u∈H" unfolding grop_def using assms(1) group0.group0_3_L6

group0_valid_in_tgroup

by auto

{
fix t assume "t∈(h-u)+(int(H))"
then obtain r where "r∈int(H)""t=(h-u)+r" unfolding grsub_def grinv_def

grop_def

ltrans_def LeftTranslation_def by auto

then have "r∈H" using intsub by auto

with ‘h-u∈H‘ have "(h-u)+r∈H" unfolding grop_def using assms(1)

group0.group0_3_L6 group0_valid_in_tgroup

by auto

with ‘t=(h-u)+r‘ have "t∈H" by auto
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}
then have ss:"(h-u)+(int(H))⊆H" by auto

have op:"(h-u)+(int(H))∈T" using open_tr_open(1) ‘h-u∈H‘ Top_2_L2

sub by blast

from ‘h-u∈H‘‘u∈H‘‘h∈H‘ sub have "(h-u)∈G" "u∈G""h∈G" by auto

have "int(H)⊆G" using sub intsub by auto moreover
have "LeftTranslation(G,f,(h-u))∈G→G" using group0.group0_5_L1(2)

group0_valid_in_tgroup ‘(h-u)∈G‘
by auto ultimately

have "LeftTranslation(G,f,(h-u))‘‘(int(H))={LeftTranslation(G,f,(h-u))‘r.

r∈int(H)}"
using func_imagedef by auto moreover

from ‘(h-u)∈G‘ ‘u∈G‘ have "LeftTranslation(G,f,(h-u))‘u=(h-u)+u"

using group0.group0_5_L2(2) group0_valid_in_tgroup

by auto

with ‘u∈int(H)‘ have "(h-u)+u∈{LeftTranslation(G,f,(h-u))‘r. r∈int(H)}"
by force ultimately

have "(h-u)+u∈(h-u)+(int(H))" unfolding ltrans_def by auto more-
over

have "(h-u)+u=h" using group0.inv_cancel_two(1) group0_valid_in_tgroup

‘u∈G‘‘h∈G‘ by auto ultimately
have "h∈(h-u)+(int(H))" by auto

with op ss have "∃ V∈T. h∈V∧ V⊆H" unfolding Bex_def by auto

}
then show ?thesis using open_neigh_open by auto

qed

In conclusion, a subgroup is either open or has empty interior.

corollary(in topgroup) emptyInterior_xor_op:

assumes "IsAsubgroup(H,f)"

shows "(int(H)=0) Xor (H∈T)"
unfolding Xor_def using clopen_or_emptyInt assms Top_2_L3

group0.group0_3_L5 group0_valid_in_tgroup by force

Then no connected topological groups has proper subgroups with non-empty
interior.

corollary(in topgroup) connected_emptyInterior:

assumes "IsAsubgroup(H,f)" "T{is connected}"

shows "(int(H)=0) Xor (H=G)"

proof-
have "(int(H)=0) Xor (H∈T)" using emptyInterior_xor_op assms(1) by

auto moreover
{

assume "H∈T" moreover
then have "H{is closed in}T" using open_subgroup_closed assms(1)

by auto ultimately
have "H=0∨H=G" using assms(2) unfolding IsConnected_def by auto

then have "H=G" using group0.group0_3_L5 group0_valid_in_tgroup assms(1)

by auto
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} moreover
have "G∈T" using topSpaceAssum unfolding IsATopology_def G_def by auto

ultimately show ?thesis unfolding Xor_def by auto

qed

Every locally-compact subgroup of a T0 group is closed.

theorem (in topgroup) loc_compact_T0_closed:

assumes "IsAsubgroup(H,f)" "(T{restricted to}H){is locally-compact}"

"T{is T0}"

shows "H{is closed in}T"

proof-
from assms(1) have clsub:"IsAsubgroup(cl(H),f)" using closure_subgroup

by auto

then have subcl:"cl(H)⊆G" using group0.group0_3_L2 group0_valid_in_tgroup

by force

from assms(1) have sub:"H⊆G" using group0.group0_3_L2 group0_valid_in_tgroup

by force

from assms(3) have "T{is T2}" using T1_imp_T2 neu_closed_imp_T1 T0_imp_neu_closed

by auto

then have "(T{restricted to}H){is T2}" using T2_here sub by auto

have tot:"
⋃
(T{restricted to}H)=H" using sub unfolding RestrictedTo_def

by auto

with assms(2) have "∀ x∈H. ∃ A∈Pow(H). A {is compact in} (T{restricted

to}H) ∧ x ∈ Interior(A, (T{restricted to}H))" using
topology0.locally_compact_exist_compact_neig[of "T{restricted to}H"]

Top_1_L4 unfolding topology0_def

by auto

then obtain K where K:"K⊆H" "K{is compact in} (T{restricted to}H)""0∈Interior(K,(T{restricted
to}H))"

using group0.group0_3_L5 group0_valid_in_tgroup assms(1) unfolding
gzero_def by force

from K(1,2) have "K{is compact in} T" using compact_subspace_imp_compact

by auto

with ‘T{is T2}‘ have Kcl:"K{is closed in}T" using in_t2_compact_is_cl

by auto

have "Interior(K,(T{restricted to}H))∈(T{restricted to}H)" using topology0.Top_2_L2

unfolding topology0_def

using Top_1_L4 by auto

then obtain U where U:"U∈T""Interior(K,(T{restricted to}H))=H∩U" un-
folding RestrictedTo_def by auto

then have "H∩U⊆K" using topology0.Top_2_L1[of "T{restricted to}H"]

unfolding topology0_def using Top_1_L4 by force

moreover have U2:"U⊆U∪K" by auto

have ksub:"K⊆H" using tot K(2) unfolding IsCompact_def by auto

ultimately have int:"H∩(U∪K)=K" by auto

from U(2) K(3) have "0∈U" by auto

with U(1) U2 have "0∈int(U ∪ K)" using Top_2_L6 by auto

then have "U∪K∈N 0" unfolding zerohoods_def using U(1) ksub sub by
auto
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then obtain V where V:"V⊆U∪K" "V∈N 0" "V+V⊆U∪K""(- V) = V" using exists_procls_zerohood[of

"U∪K"]
by auto

{
fix h assume AS:"h∈cl(H)"
with clsub have "(-h)∈cl(H)" using group0.group0_3_T3A group0_valid_in_tgroup

by auto moreover
then have "(-h)∈G" using subcl by auto

with V(2) have "(-h)∈int((-h)+V)" using elem_in_int_trans by auto

ultimately
have "(-h)∈(cl(H))∩(int((-h)+V))" by auto moreover
have "int((-h)+V)∈T" using Top_2_L2 by auto moreover
note sub ultimately
have "H∩(int((-h)+V))6=0" using cl_inter_neigh by auto moreover
from ‘(-h)∈G‘ V(2) have "int((-h)+V)=(-h)+int(V)" unfolding zerohoods_def

using trans_interior by force

ultimately have "H∩((-h)+int(V)) 6=0" by auto

then obtain y where y:"y∈H" "y∈(-h)+int(V)" by blast

then obtain v where v:"v∈int(V)" "y=(-h)+v" unfolding ltrans_def

LeftTranslation_def by auto

with ‘(-h)∈G‘ V(2) y(1) sub have "v∈G""(-h)∈G""y∈G" using Top_2_L1[of

"V"] unfolding zerohoods_def by auto

with v(2) have "(-(-h))+y=v" using group0.group0_2_L18(2) group0_valid_in_tgroup

unfolding grop_def grinv_def by auto moreover
have "h∈G" using AS subcl by auto

then have "(-(-h))=h" using group0.group_inv_of_inv group0_valid_in_tgroup

by auto ultimately
have "h+y=v" by auto

with v(1) have hyV:"h+y∈int(V)" by auto

have "y∈cl(H)" using y(1) cl_contains_set sub by auto

with AS have hycl:"h+ y∈cl(H)" using clsub group0.group0_3_L6 group0_valid_in_tgroup

by auto

{
fix W assume W:"W∈T""h+y∈W"
with hyV have "h+y∈int(V)∩W" by auto moreover
from W(1) have "int(V)∩W∈T" using Top_2_L2 topSpaceAssum unfold-

ing IsATopology_def by auto moreover
note hycl sub

ultimately have "(int(V)∩W)∩H6=0" using cl_inter_neigh[of "H""int(V)∩W""h+y"]
by auto

then have "V∩W∩H6=0" using Top_2_L1 by auto

with V(1) have "(U∪K)∩W∩H6=0" by auto

then have "(H∩(U∪K))∩W 6=0" by auto

with int have "K∩W6=0" by auto

}
then have "∀ W∈T. h+y∈W −→ K∩W6=0" by auto moreover
have "K⊆G" "h+y∈G" using ksub sub hycl subcl by auto ultimately
have "h+y∈cl(K)" using inter_neigh_cl[of "K""h+y"] unfolding G_def

by force

1032



then have "h+y∈K" using Kcl Top_3_L8 ‘K⊆G‘ by auto

with ksub have "h+y∈H" by auto

moreover from y(1) have "(-y)∈H" using group0.group0_3_T3A assms(1)

group0_valid_in_tgroup

by auto

ultimately have "(h+y)-y∈H" unfolding grsub_def using group0.group0_3_L6

group0_valid_in_tgroup

assms(1) by auto

moreover
have "(-y)∈G" using ‘(-y)∈H‘ sub by auto

then have "h+(y-y)=(h+y)-y" using ‘y∈G‘‘h∈G‘ group0.group_oper_assoc

group0_valid_in_tgroup unfolding grsub_def by auto

then have "h+0=(h+y)-y" using group0.group0_2_L6 group0_valid_in_tgroup

‘y∈G‘
unfolding grsub_def grinv_def grop_def gzero_def by auto

then have "h=(h+y)-y" using group0.group0_2_L2 group0_valid_in_tgroup

‘h∈G‘ unfolding gzero_def by auto

ultimately have "h∈H" by auto

}
then have "cl(H)⊆H" by auto

then have "H=cl(H)" using cl_contains_set sub by auto

then show ?thesis using Top_3_L8 sub by auto

qed

We can always consider a factor group which is T2.

theorem(in topgroup) factor_haus:

shows "(T{quotient by}QuotientGroupRel(G,f,cl({0}))){is T2}"

proof-
let ?r="QuotientGroupRel(G,f,cl({0}))"
let ?f="QuotientGroupOp(G,f,cl({0}))"
let ?i="GroupInv(G//?r,?f)"

have "IsAnormalSubgroup(G,f,{0})" using group0.trivial_normal_subgroup

Ggroup unfolding group0_def

by auto

then have normal:"IsAnormalSubgroup(G,f,cl({0}))" using normal_subg

by auto

then have eq:"equiv(
⋃
T,?r)" using group0.Group_ZF_2_4_L3[OF group0_valid_in_tgroup]

unfolding IsAnormalSubgroup_def by auto

then have tot:"
⋃
(T{quotient by}?r)=G//?r" using total_quo_equi by

auto

have neu:"?r‘‘{0}=TheNeutralElement(G//?r,?f)" using Group_ZF_2_4_L5B[OF

Ggroup normal] by auto

then have "?r‘‘{0}∈G//?r" using group0.group0_2_L2 Group_ZF_2_4_T1[OF

Ggroup normal] unfolding group0_def by auto

then have sub1:"{?r‘‘{0}}⊆G//?r" by auto

then have sub:"{?r‘‘{0}}⊆
⋃
(T{quotient by}?r)" using tot by auto

have zG:"0∈
⋃
T" using group0.group0_2_L2[OF group0_valid_in_tgroup]

by auto

from zG have cla:"?r‘‘{0}∈G//?r" unfolding quotient_def by auto
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let ?x="G//?r-{?r‘‘{0}}"
{

fix s assume A:"s∈
⋃
(G//?r-{?r‘‘{0}})"

then obtain U where "s∈U" "U∈G//?r-{?r‘‘{0}}" by auto

then have "U∈G//?r" "U6=?r‘‘{0}" "s∈U" by auto

then have "U∈G//?r" "s∈U" "s/∈?r‘‘{0}" using cla quotient_disj[OF

eq] by auto

then have "s∈
⋃
(G//?r)-?r‘‘{0}" by auto

}
moreover
{

fix s assume A:"s∈
⋃
(G//?r)-?r‘‘{0}"

then obtain U where "s∈U" "U∈G//?r" "s/∈?r‘‘{0}" by auto

then have "s∈U" "U∈G//?r-{?r‘‘{0}}" by auto

then have "s∈
⋃
(G//?r-{?r‘‘{0}})" by auto

}
ultimately have "

⋃
(G//?r-{?r‘‘{0}})=

⋃
(G//?r)-?r‘‘{0}" by auto

then have A:"
⋃
(G//?r-{?r‘‘{0}})=G-?r‘‘{0}" using Union_quotient eq

by auto

{
fix s assume A:"s∈?r‘‘{0}"
then have "〈0,s〉∈?r" by auto

then have "〈s,0〉∈?r" using eq unfolding equiv_def sym_def by auto

then have "s∈cl({0})" using group0.Group_ZF_2_4_L5C[OF group0_valid_in_tgroup]

unfolding QuotientGroupRel_def by auto

}
moreover
{

fix s assume A:"s∈cl({0})"
then have "s∈G" using Top_3_L11(1) zG by auto

then have "〈s,0〉∈?r" using group0.Group_ZF_2_4_L5C[OF group0_valid_in_tgroup]

A by auto

then have "〈0,s〉∈?r" using eq unfolding equiv_def sym_def by auto

then have "s∈?r‘‘{0}" by auto

}
ultimately have "?r‘‘{0}=cl({0})" by blast

with A have "
⋃
(G//?r-{?r‘‘{0}})=G-cl({0})" by auto

moreover have "cl({0}){is closed in}T" using cl_is_closed zG by auto

ultimately have "
⋃
(G//?r-{?r‘‘{0}})∈T" unfolding IsClosed_def by auto

then have "(G//?r-{?r‘‘{0}})∈{quotient by}?r" using quotient_equiv_rel

eq by auto

then have "(
⋃
(T{quotient by}?r)-{?r‘‘{0}})∈{quotient by}?r" using

total_quo_equi[OF eq] by auto

moreover from sub1 have "{?r‘‘{0}}⊆(
⋃
(T{quotient by}?r))" using total_quo_equi[OF

eq] by auto

ultimately have "{?r‘‘{0}}{is closed in}(T{quotient by}?r)" unfold-
ing IsClosed_def by auto

then have "{TheNeutralElement(G//?r,?f)}{is closed in}(T{quotient by}?r)"

using neu by auto
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then have "(T{quotient by}?r){is T1}" using topgroup.neu_closed_imp_T1[OF

topGroupLocale[OF quotient_top_group[OF normal]]]

total_quo_equi[OF eq] by auto

then show ?thesis using topgroup.T1_imp_T2[OF topGroupLocale[OF quotient_top_group[OF

normal]]] by auto

qed

end

70 Metamath introduction

theory MMI_prelude imports Order_ZF_1

begin

Metamath’s set.mm features a large (over 8000) collection of theorems proven
in the ZFC set theory. This theory is part of an attempt to translate those
theorems to Isar so that they are available for Isabelle/ZF users. A to-
tal of about 1200 assertions have been translated, 600 of that with proofs
(the rest was proven automatically by Isabelle). The translation was done
with the support of the mmisar tool, whose source is included in the Is-
arMathLib distributions prior to version 1.6.4. The translation tool was
doing about 99 percent of work involved, with the rest mostly related to the
difference between Isabelle/ZF and Metamath metalogics. Metamath uses
Tarski-Megill metalogic that does not have a notion of bound variables (see
http://planetx.cc.vt.edu/AsteroidMeta/Distinctors_vs_binders for details
and discussion). The translation project is closed now as I decided that it
was too boring and tedious even with the support of mmisar software. Also,
the translated proofs are not as readable as native Isar proofs which goes
against IsarMathLib philosophy.

70.1 Importing from Metamath - how is it done

We are interested in importing the theorems about complex numbers that
start from the ”recnt” theorem on. This is done mostly automatically by
the mmisar tool that is included in the IsarMathLib distributions prior to
version 1.6.4. The tool works as follows:

First it reads the list of (Metamath) names of theorems that are already
imported to IsarMathlib (”known theorems”) and the list of theorems that
are intended to be imported in this session (”new theorems”). The new
theorems are consecutive theorems about complex numbers as they appear
in the Metamath database. Then mmisar creates a ”Metamath script” that
contains Metamath commands that open a log file and put the statements
and proofs of the new theorems in that file in a readable format. The tool
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writes this script to a disk file and executes metamath with standard input
redirected from that file. Then the log file is read and its contents converted
to the Isar format. In Metamath, the proofs of theorems about complex
numbers depend only on 28 axioms of complex numbers and some basic
logic and set theory theorems. The tool finds which of these dependencies
are not known yet and repeats the process of getting their statements from
Metamath as with the new theorems. As a result of this process mmisar
creates files new theorems.thy, new deps.thy and new known theorems.txt.
The file new theorems.thy contains the theorems (with proofs) imported
from Metamath in this session. These theorems are added (by hand) to the
current MMI_Complex_ZF_x.thy file. The file new deps.thy contains the state-
ments of new dependencies with generic proofs ”by auto”. These are added
to the MMI_logic_and_sets.thy. Most of the dependencies can be proven au-
tomatically by Isabelle. However, some manual work has to be done for the
dependencies that Isabelle can not prove by itself and to correct problems
related to the fact that Metamath uses a metalogic based on distinct vari-
able constraints (Tarski-Megill metalogic), rather than an explicit notion of
free and bound variables.

The old list of known theorems is replaced by the new list and mmisar is
ready to convert the next batch of new theorems. Of course this rarely works
in practice without tweaking the mmisar source files every time a new batch
is processed.

70.2 The context for Metamath theorems

We list the Metamth’s axioms of complex numbers and define notation here.

The next definition is what Metamath X ∈ V is translated to. I am not
sure why it works, probably because Isabelle does a type inference and the
”=” sign indicates that both sides are sets.

definition
IsASet :: "i⇒o" ("_ isASet" [90] 90) where

IsASet_def[simp]: "X isASet ≡ X = X"

The next locale sets up the context to which Metamath theorems about
complex numbers are imported. It assumes the axioms of complex numbers
and defines the notation used for complex numbers.

One of the problems with importing theorems from Metamath is that Meta-
math allows direct infix notation for binary operations so that the notation
afb is allowed where f is a function (that is, a set of pairs). To my knowl-
edge, Isar allows only notation f‘〈a,b〉 with a possibility of defining a syntax
say a + b to mean the same as f‘〈a,b〉 (please correct me if I am wrong here).
This is why we have two objects for addition: one called caddset that repre-
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sents the binary function, and the second one called ca which defines the a

+ b notation for caddset‘〈a,b〉. The same applies to multiplication of real
numbers.

Another difficulty is that Metamath allows to define sets with syntax {x|p}
where p is some formula that (usually) depends on x. Isabelle allows the set
comprehension like this only as a subset of another set i.e. {x ∈ A.p(x)}.
This forces us to have a sligtly different definition of (complex) natural num-
bers, requiring explicitly that natural numbers is a subset of reals. Because
of that, the proofs of Metamath theorems that reference the definition di-
rectly can not be imported.

locale MMIsar0 =

fixes real ("IR")

fixes complex ("C")

fixes one ("1")
fixes zero ("0")
fixes iunit ("i")
fixes caddset ("+")

fixes cmulset ("·")
fixes lessrrel ("<R")

fixes ca (infixl "+" 69)

defines ca_def: "a + b ≡ +‘〈a,b〉"
fixes cm (infixl "·" 71)

defines cm_def: "a · b ≡ ·‘〈a,b〉"
fixes sub (infixl "-" 69)

defines sub_def: "a - b ≡
⋃

{ x ∈ C. b + x = a }"

fixes cneg ("-_" 95)

defines cneg_def: "- a ≡ 0 - a"

fixes cdiv (infixl "/" 70)

defines cdiv_def: "a / b ≡
⋃

{ x ∈ C. b · x = a }"

fixes cpnf ("+∞")

defines cpnf_def: "+∞ ≡ C"

fixes cmnf ("−∞")

defines cmnf_def: "−∞ ≡ {C}"

fixes cxr ("IR∗")

defines cxr_def: "IR∗ ≡ IR ∪ {+∞,−∞}"

fixes cxn ("IN")

defines cxn_def: "IN ≡
⋂

{N ∈ Pow(IR). 1 ∈ N ∧ (∀ n. n∈N −→ n+1 ∈
N)}"

fixes lessr (infix "<R" 68)

defines lessr_def: "a <R b ≡ 〈a,b〉 ∈ <R"
fixes cltrrset ("<")

defines cltrrset_def:

"< ≡ (<R ∩ IR×IR) ∪ {〈−∞,+∞〉} ∪
(IR×{+∞}) ∪ ({−∞}×IR )"

fixes cltrr (infix "<" 68)

defines cltrr_def: "a < b ≡ 〈a,b〉 ∈ <"

fixes convcltrr (infix ">" 68)
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defines convcltrr_def: "a > b ≡ 〈a,b〉 ∈ converse(<)"

fixes lsq (infix "≤" 68)

defines lsq_def: "a ≤ b ≡ ¬ (b < a)"

fixes two ("2")
defines two_def: "2 ≡ 1+1"
fixes three ("3")
defines three_def: "3 ≡ 2+1"
fixes four ("4")
defines four_def: "4 ≡ 3+1"
fixes five ("5")
defines five_def: "5 ≡ 4+1"
fixes six ("6")
defines six_def: "6 ≡ 5+1"
fixes seven ("7")
defines seven_def: "7 ≡ 6+1"
fixes eight ("8")
defines eight_def: "8 ≡ 7+1"
fixes nine ("9")
defines nine_def: "9 ≡ 8+1"

assumes MMI_pre_axlttri:

"A ∈ IR ∧ B ∈ IR −→ (A <R B ←→ ¬(A=B ∨ B <R A))"

assumes MMI_pre_axlttrn:

"A ∈ IR ∧ B ∈ IR ∧ C ∈ IR −→ ((A <R B ∧ B <R C) −→ A <R C)"

assumes MMI_pre_axltadd:

"A ∈ IR ∧ B ∈ IR ∧ C ∈ IR −→ (A <R B −→ C+A <R C+B)"

assumes MMI_pre_axmulgt0:

"A ∈ IR ∧ B ∈ IR −→ ( 0 <R A ∧ 0 <R B −→ 0 <R A·B)"
assumes MMI_pre_axsup:

"A ⊆ IR ∧ A 6= 0 ∧ (∃ x∈IR. ∀ y∈A. y <R x) −→
(∃ x∈IR. (∀ y∈A. ¬(x <R y)) ∧ (∀ y∈IR. (y <R x −→ (∃ z∈A. y <R z))))"

assumes MMI_axresscn: "IR ⊆ C"

assumes MMI_ax1ne0: "1 6= 0"
assumes MMI_axcnex: "C isASet"

assumes MMI_axaddopr: "+ : ( C × C ) → C"

assumes MMI_axmulopr: "· : ( C × C ) → C"

assumes MMI_axmulcom: "A ∈ C ∧ B ∈ C −→ A · B = B · A"
assumes MMI_axaddcl: "A ∈ C ∧ B ∈ C −→ A + B ∈ C"

assumes MMI_axmulcl: "A ∈ C ∧ B ∈ C −→ A · B ∈ C"

assumes MMI_axdistr:

"A ∈ C ∧ B ∈ C ∧ C ∈ C −→ A·(B + C) = A·B + A·C"
assumes MMI_axaddcom: "A ∈ C ∧ B ∈ C −→ A + B = B + A"

assumes MMI_axaddass:

"A ∈ C ∧ B ∈ C ∧ C ∈ C −→ A + B + C = A + (B + C)"

assumes MMI_axmulass:

"A ∈ C ∧ B ∈ C ∧ C ∈ C −→ A · B · C = A · (B · C)"
assumes MMI_ax1re: "1 ∈ IR"

assumes MMI_axi2m1: "i · i + 1 = 0"
assumes MMI_ax0id: "A ∈ C −→ A + 0 = A"
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assumes MMI_axicn: "i ∈ C"

assumes MMI_axnegex: "A ∈ C −→ ( ∃ x ∈ C. ( A + x ) = 0 )"

assumes MMI_axrecex: "A ∈ C ∧ A 6= 0 −→ ( ∃ x ∈ C. A · x = 1)"
assumes MMI_ax1id: "A ∈ C −→ A · 1 = A"

assumes MMI_axaddrcl: "A ∈ IR ∧ B ∈ IR −→ A + B ∈ IR"

assumes MMI_axmulrcl: "A ∈ IR ∧ B ∈ IR −→ A · B ∈ IR"

assumes MMI_axrnegex: "A ∈ IR −→ ( ∃ x ∈ IR. A + x = 0 )"

assumes MMI_axrrecex: "A ∈ IR ∧ A 6= 0 −→ ( ∃ x ∈ IR. A · x = 1 )"

end

71 Metamath interface

theory Metamath_Interface imports Complex_ZF MMI_prelude

begin

This theory contains some lemmas that make it possible to use the theorems
translated from Metamath in a the complex0 context.

71.1 MMisar0 and complex0 contexts.

In the section we show a lemma that the assumptions in complex0 context
imply the assumptions of the MMIsar0 context. The Metamath_sampler theory
provides examples how this lemma can be used.

The next lemma states that we can use the theorems proven in the MMIsar0

context in the complex0 context. Unfortunately we have to use low level
Isabelle methods ”rule” and ”unfold” in the proof, simp and blast fail on
the order axioms.

lemma (in complex0) MMIsar_valid:

shows "MMIsar0(IR,C,1,0,i,CplxAdd(R,A),CplxMul(R,A,M),
StrictVersion(CplxROrder(R,A,r)))"

proof -

let ?real = "IR"

let ?complex = "C"

let ?zero = "0"
let ?one = "1"
let ?iunit = "i"
let ?caddset = "CplxAdd(R,A)"

let ?cmulset = "CplxMul(R,A,M)"

let ?lessrrel = "StrictVersion(CplxROrder(R,A,r))"

have "(∀ a b. a ∈ ?real ∧ b ∈ ?real −→
〈a, b〉 ∈ ?lessrrel ←→ ¬ (a = b ∨ 〈b, a〉 ∈ ?lessrrel))"

proof -

have I:
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"∀ a b. a ∈ IR ∧ b ∈ IR −→ (a <R b ←→ ¬(a=b ∨ b <R a))"

using pre_axlttri by blast

{ fix a b assume "a ∈ ?real ∧ b ∈ ?real"

with I have "(a <R b ←→ ¬(a=b ∨ b <R a))"

by blast

hence
"〈a, b〉 ∈ ?lessrrel ←→ ¬ (a = b ∨ 〈b, a〉 ∈ ?lessrrel)"

by simp

} thus "(∀ a b. a ∈ ?real ∧ b ∈ ?real −→
(〈a, b〉 ∈ ?lessrrel ←→ ¬ (a = b ∨ 〈b, a〉 ∈ ?lessrrel)))"

by blast

qed
moreover
have "(∀ a b c.

a ∈ ?real ∧ b ∈ ?real ∧ c ∈ ?real −→
〈a, b〉 ∈ ?lessrrel ∧ 〈b, c〉 ∈ ?lessrrel −→ 〈a, c〉 ∈ ?lessrrel)"

proof -

have II: "∀ a b c. a ∈ IR ∧ b ∈ IR ∧ c ∈ IR −→
((a <R b ∧ b <R c) −→ a <R c)"

using pre_axlttrn by blast

{ fix a b c assume "a ∈ ?real ∧ b ∈ ?real ∧ c ∈ ?real"

with II have "(a <R b ∧ b <R c) −→ a <R c"

by blast

hence
"〈a, b〉 ∈ ?lessrrel ∧ 〈b, c〉 ∈ ?lessrrel −→ 〈a, c〉 ∈ ?lessrrel"

by simp

} thus "(∀ a b c.

a ∈ ?real ∧ b ∈ ?real ∧ c ∈ ?real −→
〈a, b〉 ∈ ?lessrrel ∧ 〈b, c〉 ∈ ?lessrrel −→ 〈a, c〉 ∈ ?lessrrel)"

by blast

qed
moreover have "(∀ A B C.

A ∈ ?real ∧ B ∈ ?real ∧ C ∈ ?real −→
〈A, B〉 ∈ ?lessrrel −→
〈?caddset ‘ 〈C, A〉, ?caddset ‘ 〈C, B〉〉 ∈ ?lessrrel)"

using pre_axltadd by simp

moreover have "(∀ A B. A ∈ ?real ∧ B ∈ ?real −→
〈?zero, A〉 ∈ ?lessrrel ∧ 〈?zero, B〉 ∈ ?lessrrel −→
〈?zero, ?cmulset ‘ 〈A, B〉〉 ∈ ?lessrrel)"

using pre_axmulgt0 by simp

moreover have
"(∀ S. S ⊆ ?real ∧ S 6= 0 ∧ (∃ x∈?real. ∀ y∈S. 〈y, x〉 ∈ ?lessrrel)

−→
(∃ x∈?real.
(∀ y∈S. 〈x, y〉 /∈ ?lessrrel) ∧
(∀ y∈?real. 〈y, x〉 ∈ ?lessrrel −→ (∃ z∈S. 〈y, z〉 ∈ ?lessrrel))))"

using pre_axsup by simp

moreover have "IR ⊆ C" using axresscn by simp

moreover have "1 6= 0" using ax1ne0 by simp
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moreover have "C isASet" by simp

moreover have " CplxAdd(R,A) : C × C → C"

using axaddopr by simp

moreover have "CplxMul(R,A,M) : C × C → C"

using axmulopr by simp

moreover have
"∀ a b. a ∈ C ∧ b ∈ C −→ a· b = b · a"
using axmulcom by simp

hence "(∀ a b. a ∈ C ∧ b ∈ C −→
?cmulset ‘ 〈a, b〉 = ?cmulset ‘ 〈b, a〉

)" by simp

moreover have "∀ a b. a ∈ C ∧ b ∈ C −→ a + b ∈ C"

using axaddcl by simp

hence "(∀ a b. a ∈ C ∧ b ∈ C −→
?caddset ‘ 〈a, b〉 ∈ C

)" by simp

moreover have "∀ a b. a ∈ C ∧ b ∈ C −→ a · b ∈ C"

using axmulcl by simp

hence "(∀ a b. a ∈ C ∧ b ∈ C −→
?cmulset ‘ 〈a, b〉 ∈ C )" by simp

moreover have
"∀ a b C. a ∈ C ∧ b ∈ C ∧ C ∈ C −→
a · (b + C) = a · b + a · C"
using axdistr by simp

hence "∀ a b C.

a ∈ C ∧ b ∈ C ∧ C ∈ C −→
?cmulset ‘ 〈a, ?caddset ‘ 〈b, C〉〉 =

?caddset ‘

〈?cmulset ‘ 〈a, b〉, ?cmulset ‘ 〈a, C〉〉"
by simp

moreover have "∀ a b. a ∈ C ∧ b ∈ C −→
a + b = b + a"

using axaddcom by simp

hence "∀ a b.

a ∈ C ∧ b ∈ C −→
?caddset ‘ 〈a, b〉 = ?caddset ‘ 〈b, a〉" by simp

moreover have "∀ a b C. a ∈ C ∧ b ∈ C ∧ C ∈ C −→
a + b + C = a + (b + C)"

using axaddass by simp

hence "∀ a b C.

a ∈ C ∧ b ∈ C ∧ C ∈ C −→
?caddset ‘ 〈?caddset ‘ 〈a, b〉, C〉 =

?caddset ‘ 〈a, ?caddset ‘ 〈b, C〉〉" by simp

moreover have
"∀ a b c. a ∈ C ∧ b ∈ C ∧ c ∈ C −→ a·b·c = a·(b·c)"
using axmulass by simp

hence "∀ a b C.

a ∈ C ∧ b ∈ C ∧ C ∈ C −→
?cmulset ‘ 〈?cmulset ‘ 〈a, b〉, C〉 =
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?cmulset ‘ 〈a, ?cmulset ‘ 〈b, C〉〉" by simp

moreover have "1 ∈ IR" using ax1re by simp

moreover have "i·i + 1 = 0"
using axi2m1 by simp

hence "?caddset ‘ 〈?cmulset ‘ 〈i, i〉, 1〉 = 0" by simp

moreover have "∀ a. a ∈ C −→ a + 0 = a"

using ax0id by simp

hence "∀ a. a ∈ C −→ ?caddset ‘ 〈a, 0〉 = a" by simp

moreover have "i ∈ C" using axicn by simp

moreover have "∀ a. a ∈ C −→ (∃ x∈C. a + x = 0)"
using axnegex by simp

hence "∀ a. a ∈ C −→
(∃ x∈C. ?caddset ‘ 〈a, x〉 = 0)" by simp

moreover have "∀ a. a ∈ C ∧ a 6= 0 −→ (∃ x∈C. a · x = 1)"
using axrecex by simp

hence "∀ a. a ∈ C ∧ a 6= 0 −→
( ∃ x∈C. ?cmulset ‘ 〈a, x〉 = 1 )" by simp

moreover have "∀ a. a ∈ C −→ a·1 = a"

using ax1id by simp

hence " ∀ a. a ∈ C −→
?cmulset ‘ 〈a, 1〉 = a" by simp

moreover have "∀ a b. a ∈ IR ∧ b ∈ IR −→ a + b ∈ IR"

using axaddrcl by simp

hence "∀ a b. a ∈ IR ∧ b ∈ IR −→
?caddset ‘ 〈a, b〉 ∈ IR" by simp

moreover have "∀ a b. a ∈ IR ∧ b ∈ IR −→ a · b ∈ IR"

using axmulrcl by simp

hence "∀ a b. a ∈ IR ∧ b ∈ IR −→
?cmulset ‘ 〈a, b〉 ∈ IR" by simp

moreover have "∀ a. a ∈ IR −→ (∃ x∈IR. a + x = 0)"
using axrnegex by simp

hence "∀ a. a ∈ IR −→
( ∃ x∈IR. ?caddset ‘ 〈a, x〉 = 0 )" by simp

moreover have "∀ a. a ∈ IR ∧ a6=0 −→ (∃ x∈IR. a · x = 1)"
using axrrecex by simp

hence "∀ a. a ∈ IR ∧ a 6= 0 −→
( ∃ x∈IR. ?cmulset ‘ 〈a, x〉 = 1)" by simp

ultimately have
"(

(

(

( ∀ a b.

a ∈ IR ∧ b ∈ IR −→
〈a, b〉 ∈ ?lessrrel ←→
¬ (a = b ∨ 〈b, a〉 ∈ ?lessrrel)

) ∧

( ∀ a b C.
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a ∈ IR ∧ b ∈ IR ∧ C ∈ IR −→
〈a, b〉 ∈ ?lessrrel ∧
〈b, C〉 ∈ ?lessrrel −→
〈a, C〉 ∈ ?lessrrel

) ∧

(∀ a b C.

a ∈ IR ∧ b ∈ IR ∧ C ∈ IR −→
〈a, b〉 ∈ ?lessrrel −→
〈?caddset ‘ 〈C, a〉, ?caddset ‘ 〈C, b〉〉 ∈
?lessrrel

)

) ∧

(

( ∀ a b.

a ∈ IR ∧ b ∈ IR −→
〈0, a〉 ∈ ?lessrrel ∧
〈0, b〉 ∈ ?lessrrel −→
〈0, ?cmulset ‘ 〈a, b〉〉 ∈
?lessrrel

) ∧

( ∀ S. S ⊆ IR ∧ S 6= 0 ∧
( ∃ x∈IR. ∀ y∈S. 〈y, x〉 ∈ ?lessrrel

) −→
( ∃ x∈IR.

( ∀ y∈S. 〈x, y〉 /∈ ?lessrrel

) ∧
( ∀ y∈IR. 〈y, x〉 ∈ ?lessrrel −→

( ∃ z∈S. 〈y, z〉 ∈ ?lessrrel

)

)

)

)

) ∧

IR ⊆ C ∧
1 6= 0

) ∧

( C isASet ∧ ?caddset ∈ C × C → C ∧
?cmulset ∈ C × C → C
) ∧

(

(∀ a b.

a ∈ C ∧ b ∈ C −→
?cmulset ‘ 〈a, b〉 = ?cmulset ‘ 〈b, a〉
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) ∧

(∀ a b. a ∈ C ∧ b ∈ C −→
?caddset ‘ 〈a, b〉 ∈ C

)

) ∧

(∀ a b. a ∈ C ∧ b ∈ C −→
?cmulset ‘ 〈a, b〉 ∈ C

) ∧

(∀ a b C.

a ∈ C ∧ b ∈ C ∧ C ∈ C −→
?cmulset ‘ 〈a, ?caddset ‘ 〈b, C〉〉 =

?caddset ‘

〈?cmulset ‘ 〈a, b〉, ?cmulset ‘ 〈a, C〉〉
)

) ∧

(

(

(∀ a b.

a ∈ C ∧ b ∈ C −→
?caddset ‘ 〈a, b〉 = ?caddset ‘ 〈b, a〉

) ∧

(∀ a b C.

a ∈ C ∧ b ∈ C ∧ C ∈ C −→
?caddset ‘ 〈?caddset ‘ 〈a, b〉, C〉 =

?caddset ‘ 〈a, ?caddset ‘ 〈b, C〉〉
) ∧

(∀ a b C.

a ∈ C ∧ b ∈ C ∧ C ∈ C −→
?cmulset ‘ 〈?cmulset ‘ 〈a, b〉, C〉 =

?cmulset ‘ 〈a, ?cmulset ‘ 〈b, C〉〉
)

) ∧

(1 ∈ IR ∧
?caddset ‘ 〈?cmulset ‘ 〈i, i〉, 1〉 = 0
) ∧

(∀ a. a ∈ C −→ ?caddset ‘ 〈a, 0〉 = a

) ∧
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i ∈ C
) ∧

(

(∀ a. a ∈ C −→
(∃ x∈C. ?caddset ‘ 〈a, x〉 = 0
)

) ∧

( ∀ a. a ∈ C ∧ a 6= 0 −→
( ∃ x∈C. ?cmulset ‘ 〈a, x〉 = 1
)

) ∧

( ∀ a. a ∈ C −→
?cmulset ‘ 〈a, 1〉 = a

)

) ∧

(

( ∀ a b. a ∈ IR ∧ b ∈ IR −→
?caddset ‘ 〈a, b〉 ∈ IR

) ∧

( ∀ a b. a ∈ IR ∧ b ∈ IR −→
?cmulset ‘ 〈a, b〉 ∈ IR

)

) ∧

( ∀ a. a ∈ IR −→
( ∃ x∈IR. ?caddset ‘ 〈a, x〉 = 0
)

) ∧

( ∀ a. a ∈ IR ∧ a 6= 0 −→
( ∃ x∈IR. ?cmulset ‘ 〈a, x〉 = 1
)

)"

by blast

then show "MMIsar0(IR,C,1,0,i,CplxAdd(R,A),CplxMul(R,A,M),
StrictVersion(CplxROrder(R,A,r)))" unfolding MMIsar0_def by blast

qed

end

72 Metamath sampler

theory Metamath_Sampler imports Metamath_Interface MMI_Complex_ZF_2
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begin

The theorems translated from Metamath reside in the MMI_Complex_ZF, MMI_Complex_ZF_1
and MMI_Complex_ZF_2 theories. The proofs of these theorems are very ver-
bose and for this reason the theories are not shown in the proof document
or the FormaMath.org site. This theory file contains some examples of the-
orems translated from Metamath and formulated in the complex0 context.
This serves two purposes: to give an overview of the material covered in the
translated theorems and to provide examples of how to take a translated
theorem (proven in the MMIsar0 context) and transfer it to the complex0 con-
text. The typical procedure for moving a theorem from MMIsar0 to complex0

is as follows: First we define certain aliases that map names defined in the
complex0 to their corresponding names in the MMIsar0 context. This makes
it easy to copy and paste the statement of the theorem as displayed with
ProofGeneral. Then we run the Isabelle from ProofGeneral up to the theo-
rem we want to move. When the theorem is verified ProofGeneral displays
the statement in the raw set theory notation, stripped from any notation
defined in the MMIsar0 locale. This is what we copy to the proof in the
complex0 locale. After that we just can write ”then have ?thesis by simp”
and the simplifier translates the raw set theory notation to the one used in
complex0.

72.1 Extended reals and order

In this sectin we import a couple of theorems about the extended real line
and the linear order on it.

Metamath uses the set of real numbers extended with +∞ and −∞. The
+∞ and −∞ symbols are defined quite arbitrarily as C and {C}, respec-
tively. The next lemma that corresponds to Metamath’s renfdisj states
that +∞ and −∞ are not elements of R.

lemma (in complex0) renfdisj: shows "IR ∩ {+∞,−∞} = 0"

proof -

let ?real = "IR"

let ?complex = "C"

let ?one = "1"
let ?zero = "0"
let ?iunit = "i"
let ?caddset = "CplxAdd(R,A)"

let ?cmulset = "CplxMul(R,A,M)"

let ?lessrrel = "StrictVersion(CplxROrder(R,A,r))"

have "MMIsar0

(?real, ?complex, ?one, ?zero, ?iunit, ?caddset, ?cmulset, ?lessrrel)"

using MMIsar_valid by simp

then have "?real ∩ {?complex, {?complex}} = 0"
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by (rule MMIsar0.MMI_renfdisj)

thus "IR ∩ {+∞,−∞} = 0" by simp

qed

The order relation used most often in Metamath is defined on the set of
complex reals extended with +∞ and −∞. The next lemma allows to use
Metamath’s xrltso that states that the < relations is a strict linear order on
the extended set.

lemma (in complex0) xrltso: shows "< Orders IR∗"

proof -

let ?real = "IR"

let ?complex = "C"

let ?one = "1"
let ?zero = "0"
let ?iunit = "i"
let ?caddset = "CplxAdd(R,A)"

let ?cmulset = "CplxMul(R,A,M)"

let ?lessrrel = "StrictVersion(CplxROrder(R,A,r))"

have "MMIsar0

(?real, ?complex, ?one, ?zero, ?iunit, ?caddset, ?cmulset, ?lessrrel)"

using MMIsar_valid by simp

then have
"(?lessrrel ∩ ?real × ?real ∪
{〈{?complex}, ?complex〉} ∪ ?real × {?complex} ∪
{{?complex}} × ?real) Orders (?real ∪ {?complex, {?complex}})"

by (rule MMIsar0.MMI_xrltso)

moreover have "?lessrrel ∩ ?real × ?real = ?lessrrel"

using cplx_strict_ord_on_cplx_reals by auto

ultimately show "< Orders IR∗" by simp

qed

Metamath defines the usual < and ≤ ordering relations for the extended
real line, including +∞ and −∞.

lemma (in complex0) xrrebndt: assumes A1: "x ∈ IR∗"

shows "x ∈ IR ←→ ( −∞ < x ∧ x < +∞ )"

proof -

let ?real = "IR"

let ?complex = "C"

let ?one = "1"
let ?zero = "0"
let ?iunit = "i"
let ?caddset = "CplxAdd(R,A)"

let ?cmulset = "CplxMul(R,A,M)"

let ?lessrrel = "StrictVersion(CplxROrder(R,A,r))"

have "MMIsar0

(?real, ?complex, ?one, ?zero, ?iunit, ?caddset, ?cmulset, ?lessrrel)"

using MMIsar_valid by simp

then have "x ∈ IR ∪ {C, {C}} −→
x ∈ IR ←→ 〈{C}, x〉 ∈ ?lessrrel ∩ IR × IR ∪ {〈{C}, C〉} ∪
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IR × {C} ∪ {{C}} × IR ∧
〈x, C〉 ∈ ?lessrrel ∩ IR × IR ∪ {〈{C}, C〉} ∪
IR × {C} ∪ {{C}} × IR"

by (rule MMIsar0.MMI_xrrebndt)

then have "x ∈ IR∗ −→ ( x ∈ IR ←→ ( −∞ < x ∧ x < +∞ ) )"

by simp

with A1 show ?thesis by simp

qed

A quite involved inequality.

lemma (in complex0) lt2mul2divt:

assumes A1: "a ∈ IR" "b ∈ IR" "c ∈ IR" "d ∈ IR" and
A2: "0 < b" "0 < d"

shows "a·b < c·d ←→ a/d < c/b"

proof -

let ?real = "IR"

let ?complex = "C"

let ?one = "1"
let ?zero = "0"
let ?iunit = "i"
let ?caddset = "CplxAdd(R,A)"

let ?cmulset = "CplxMul(R,A,M)"

let ?lessrrel = "StrictVersion(CplxROrder(R,A,r))"

have "MMIsar0

(?real, ?complex, ?one, ?zero, ?iunit, ?caddset, ?cmulset, ?lessrrel)"

using MMIsar_valid by simp

then have
"(a ∈ ?real ∧ b ∈ ?real) ∧
(c ∈ ?real ∧ d ∈ ?real) ∧
〈?zero, b〉 ∈ ?lessrrel ∩ ?real × ?real ∪
{〈{?complex}, ?complex〉} ∪ ?real × {?complex} ∪ {{?complex}} × ?real

∧
〈?zero, d〉 ∈ ?lessrrel ∩ ?real × ?real ∪
{〈{?complex}, ?complex〉} ∪ ?real × {?complex} ∪ {{?complex}} × ?real

−→
〈?cmulset ‘ 〈a, b〉, ?cmulset ‘ 〈c, d〉〉 ∈
?lessrrel ∩ ?real × ?real ∪ {〈{?complex}, ?complex〉} ∪
?real × {?complex} ∪ {{?complex}} × ?real ←→
〈
⋃
{x ∈ ?complex . ?cmulset ‘ 〈d, x〉 = a},⋃
{x ∈ ?complex . ?cmulset ‘ 〈b, x〉 = c}〉 ∈

?lessrrel ∩ ?real × ?real ∪ {〈{?complex}, ?complex〉} ∪
?real × {?complex} ∪ {{?complex}} × ?real"

by (rule MMIsar0.MMI_lt2mul2divt)

with A1 A2 show ?thesis by simp

qed

A real number is smaller than its half iff it is positive.

lemma (in complex0) halfpos: assumes A1: "a ∈ IR"

shows "0 < a ←→ a/2 < a"
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proof -

let ?real = "IR"

let ?complex = "C"

let ?one = "1"
let ?zero = "0"
let ?iunit = "i"
let ?caddset = "CplxAdd(R,A)"

let ?cmulset = "CplxMul(R,A,M)"

let ?lessrrel = "StrictVersion(CplxROrder(R,A,r))"

from A1 have "MMIsar0

(?real, ?complex, ?one, ?zero, ?iunit, ?caddset, ?cmulset, ?lessrrel)"

and "a ∈ ?real"

using MMIsar_valid by auto

then have
"〈?zero, a〉 ∈
?lessrrel ∩ ?real × ?real ∪ {〈{?complex}, ?complex〉} ∪
?real × {?complex} ∪ {{?complex}} × ?real ←→
〈
⋃
{x ∈ ?complex . ?cmulset ‘ 〈?caddset ‘ 〈?one, ?one〉, x〉 = a}, a〉

∈
?lessrrel ∩ ?real × ?real ∪
{〈{?complex}, ?complex〉} ∪ ?real × {?complex} ∪ {{?complex}} × ?real"

by (rule MMIsar0.MMI_halfpos)

then show ?thesis by simp

qed

One more inequality.

lemma (in complex0) ledivp1t:

assumes A1: "a ∈ IR" "b ∈ IR" and
A2: "0 ≤ a" "0 ≤ b"

shows "(a/(b + 1))·b ≤ a"

proof -

let ?real = "IR"

let ?complex = "C"

let ?one = "1"
let ?zero = "0"
let ?iunit = "i"
let ?caddset = "CplxAdd(R,A)"

let ?cmulset = "CplxMul(R,A,M)"

let ?lessrrel = "StrictVersion(CplxROrder(R,A,r))"

have "MMIsar0

(?real, ?complex, ?one, ?zero, ?iunit, ?caddset, ?cmulset, ?lessrrel)"

using MMIsar_valid by simp

then have
"(a ∈ ?real ∧ 〈a, ?zero〉 /∈
?lessrrel ∩ ?real × ?real ∪ {〈{?complex}, ?complex〉} ∪
?real × {?complex} ∪ {{?complex}} × ?real) ∧
b ∈ ?real ∧ 〈b, ?zero〉 /∈ ?lessrrel ∩ ?real × ?real ∪
{〈{?complex}, ?complex〉} ∪ ?real × {?complex} ∪
{{?complex}} × ?real −→
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〈a,?cmulset‘〈
⋃
{x ∈ ?complex . ?cmulset‘〈?caddset‘〈b, ?one〉, x〉 = a},

b〉〉 /∈
?lessrrel ∩ ?real × ?real ∪ {〈{?complex}, ?complex〉} ∪
?real × {?complex} ∪ {{?complex}} × ?real"

by (rule MMIsar0.MMI_ledivp1t)

with A1 A2 show ?thesis by simp

qed

72.2 Natural real numbers

In standard mathematics natural numbers are treated as a subset of real
numbers. From the set theory point of view however those are quite differ-
ent objects. In this section we talk about ”real natural” numbers i.e. the
conterpart of natural numbers that is a subset of the reals.

Two ways of saying that there are no natural numbers between n and n+ 1.

lemma (in complex0) no_nats_between:

assumes A1: "n ∈ IN" "k ∈ IN"

shows
"n≤k ←→ n < k+1"
"n < k ←→ n + 1 ≤ k"

proof -

let ?real = "IR"

let ?complex = "C"

let ?one = "1"
let ?zero = "0"
let ?iunit = "i"
let ?caddset = "CplxAdd(R,A)"

let ?cmulset = "CplxMul(R,A,M)"

let ?lessrrel = "StrictVersion(CplxROrder(R,A,r))"

have I: "MMIsar0

(?real, ?complex, ?one, ?zero, ?iunit, ?caddset, ?cmulset, ?lessrrel)"

using MMIsar_valid by simp

then have
"n ∈

⋂
{N ∈ Pow(?real) . ?one ∈ N ∧

(∀ n. n ∈ N −→ ?caddset ‘ 〈n, ?one〉 ∈ N)} ∧
k ∈

⋂
{N ∈ Pow(?real) . ?one ∈ N ∧

(∀ n. n ∈ N −→ ?caddset ‘ 〈n, ?one〉 ∈ N)} −→
〈k, n〉 /∈
?lessrrel ∩ ?real × ?real ∪ {〈{?complex}, ?complex〉} ∪ ?real × {?complex}

∪
{{?complex}} × ?real ←→
〈n, ?caddset ‘ 〈k, ?one〉〉 ∈
?lessrrel ∩ ?real × ?real ∪ {〈{?complex}, ?complex〉} ∪ ?real × {?complex}

∪
{{?complex}} × ?real" by (rule MMIsar0.MMI_nnleltp1t)

then have "n ∈ IN ∧ k ∈ IN −→ n ≤ k ←→ n < k + 1"
by simp

with A1 show "n≤k ←→ n < k+1" by simp
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from I have
"n ∈

⋂
{N ∈ Pow(?real) . ?one ∈ N ∧

(∀ n. n ∈ N −→ ?caddset ‘ 〈n, ?one〉 ∈ N)} ∧
k ∈

⋂
{N ∈ Pow(?real) . ?one ∈ N ∧

(∀ n. n ∈ N −→ ?caddset ‘ 〈n, ?one〉 ∈ N)} −→
〈n, k〉 ∈
?lessrrel ∩ ?real × ?real ∪
{〈{?complex}, ?complex〉} ∪ ?real × {?complex} ∪
{{?complex}} × ?real ←→ 〈k, ?caddset ‘ 〈n, ?one〉〉 /∈
?lessrrel ∩ ?real × ?real ∪ {〈{?complex}, ?complex〉} ∪ ?real × {?complex}

∪
{{?complex}} × ?real" by (rule MMIsar0.MMI_nnltp1let)

then have "n ∈ IN ∧ k ∈ IN −→ n < k ←→ n + 1 ≤ k"

by simp

with A1 show "n < k ←→ n + 1 ≤ k" by simp

qed

Metamath has some very complicated and general version of induction on
(complex) natural numbers that I can’t even understand. As an exercise I
derived a more standard version that is imported to the complex0 context
below.

lemma (in complex0) cplx_nat_ind: assumes A1: "ψ(1)" and
A2: "∀ k ∈ IN. ψ(k) −→ ψ(k+1)" and
A3: "n ∈ IN"

shows "ψ(n)"
proof -

let ?real = "IR"

let ?complex = "C"

let ?one = "1"
let ?zero = "0"
let ?iunit = "i"
let ?caddset = "CplxAdd(R,A)"

let ?cmulset = "CplxMul(R,A,M)"

let ?lessrrel = "StrictVersion(CplxROrder(R,A,r))"

have I: "MMIsar0

(?real, ?complex, ?one, ?zero, ?iunit, ?caddset, ?cmulset, ?lessrrel)"

using MMIsar_valid by simp

moreover from A1 A2 A3 have
"ψ(?one)"
"∀ k∈

⋂
{N ∈ Pow(?real) . ?one ∈ N ∧

(∀ n. n ∈ N −→ ?caddset ‘ 〈n, ?one〉 ∈ N)}.

ψ(k) −→ ψ(?caddset ‘ 〈k, ?one〉)"
"n ∈

⋂
{N ∈ Pow(?real) . ?one ∈ N ∧

(∀ n. n ∈ N −→ ?caddset ‘ 〈n, ?one〉 ∈ N)}"

by auto

ultimately show "ψ(n)" by (rule MMIsar0.nnind1)

qed

Some simple arithmetics.
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lemma (in complex0) arith: shows
"2 + 2 = 4"
"2·2 = 4"
"3·2 = 6"
"3·3 = 9"

proof -

let ?real = "IR"

let ?complex = "C"

let ?one = "1"
let ?zero = "0"
let ?iunit = "i"
let ?caddset = "CplxAdd(R,A)"

let ?cmulset = "CplxMul(R,A,M)"

let ?lessrrel = "StrictVersion(CplxROrder(R,A,r))"

have I: "MMIsar0

(?real, ?complex, ?one, ?zero, ?iunit, ?caddset, ?cmulset, ?lessrrel)"

using MMIsar_valid by simp

then have
"?caddset ‘ 〈?caddset ‘ 〈?one, ?one〉, ?caddset ‘ 〈?one, ?one〉〉 =

?caddset ‘ 〈?caddset ‘ 〈?caddset ‘ 〈?one, ?one〉, ?one〉, ?one〉"
by (rule MMIsar0.MMI_2p2e4)

thus "2 + 2 = 4" by simp

from I have
"?cmulset‘〈?caddset‘〈?one, ?one〉, ?caddset‘〈?one, ?one〉〉 =

?caddset‘〈?caddset‘〈?caddset‘〈?one, ?one〉, ?one〉, ?one〉"
by (rule MMIsar0.MMI_2t2e4)

thus "2·2 = 4" by simp

from I have
"?cmulset‘〈?caddset‘〈?caddset‘〈?one, ?one〉, ?one〉, ?caddset‘〈?one, ?one〉〉

=

?caddset ‘〈?caddset‘〈?caddset‘〈?caddset‘〈?caddset‘
〈?one, ?one〉, ?one〉, ?one〉, ?one〉, ?one〉"
by (rule MMIsar0.MMI_3t2e6)

thus "3·2 = 6" by simp

from I have "?cmulset ‘

〈?caddset‘〈?caddset‘〈?one, ?one〉, ?one〉,
?caddset‘〈?caddset‘〈?one, ?one〉, ?one〉〉 =

?caddset‘〈?caddset‘〈?caddset ‘〈?caddset ‘

〈?caddset‘〈?caddset‘〈?caddset‘〈?caddset‘〈?one, ?one〉, ?one〉, ?one〉,
?one〉,

?one〉, ?one〉, ?one〉, ?one〉"
by (rule MMIsar0.MMI_3t3e9)

thus "3·3 = 9" by simp

qed

72.3 Infimum and supremum in real numbers

Real numbers form a complete ordered field. Here we import a couple of
Metamath theorems about supremu and infimum.
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If a set S has a smallest element, then the infimum of S belongs to it.

lemma (in complex0) lbinfmcl: assumes A1: "S ⊆ IR" and
A2: "∃ x∈S. ∀ y∈S. x ≤ y"

shows "Infim(S,IR,<) ∈ S"

proof -

let ?real = "IR"

let ?complex = "C"

let ?one = "1"
let ?zero = "0"
let ?iunit = "i"
let ?caddset = "CplxAdd(R,A)"

let ?cmulset = "CplxMul(R,A,M)"

let ?lessrrel = "StrictVersion(CplxROrder(R,A,r))"

have I: "MMIsar0

(?real, ?complex, ?one, ?zero, ?iunit, ?caddset, ?cmulset, ?lessrrel)"

using MMIsar_valid by simp

then have
"S ⊆ ?real ∧ (∃ x∈S. ∀ y∈S. 〈y, x〉 /∈
?lessrrel ∩ ?real × ?real ∪ {〈{?complex}, ?complex〉} ∪
?real × {?complex} ∪ {{?complex}} × ?real) −→
Sup(S, ?real,

converse(?lessrrel ∩ ?real × ?real ∪
{〈{?complex}, ?complex〉} ∪ ?real × {?complex} ∪
{{?complex}} × ?real)) ∈ S"

by (rule MMIsar0.MMI_lbinfmcl)

then have
"S ⊆IR ∧ ( ∃ x∈S. ∀ y∈S. x ≤ y) −→
Sup(S,IR,converse(<)) ∈ S" by simp

with A1 A2 show ?thesis using Infim_def by simp

qed

Supremum of any subset of reals that is bounded above is real.

lemma (in complex0) sup_is_real:

assumes "A ⊆ IR " and "A 6= 0" and "∃ x∈IR. ∀ y∈A. y ≤ x"

shows "Sup(A,IR,<) ∈ IR"

proof -

let ?real = "IR"

let ?complex = "C"

let ?one = "1"
let ?zero = "0"
let ?iunit = "i"
let ?caddset = "CplxAdd(R,A)"

let ?cmulset = "CplxMul(R,A,M)"

let ?lessrrel = "StrictVersion(CplxROrder(R,A,r))"

have "MMIsar0

(?real, ?complex, ?one, ?zero, ?iunit, ?caddset, ?cmulset, ?lessrrel)"

using MMIsar_valid by simp

then have
"A ⊆ ?real ∧ A 6= 0 ∧ (∃ x∈?real. ∀ y∈A. 〈x, y〉 /∈
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?lessrrel ∩ ?real × ?real ∪ {〈{?complex}, ?complex〉} ∪
?real × {?complex} ∪ {{?complex}} × ?real) −→
Sup(A, ?real,

?lessrrel ∩ ?real × ?real ∪ {〈{?complex}, ?complex〉} ∪
?real × {?complex} ∪ {{?complex}} × ?real) ∈ ?real"

by (rule MMIsar0.MMI_suprcl)

with assms show ?thesis by simp

qed

If a real number is smaller that the supremum of A, then we can find an
element of A greater than it.

lemma (in complex0) suprlub:

assumes "A ⊆IR" and "A 6= 0" and "∃ x∈IR. ∀ y∈A. y ≤ x"

and "B ∈ IR" and "B < Sup(A,IR,<)"

shows "∃ z∈A. B < z"

proof -

let ?real = "IR"

let ?complex = "C"

let ?one = "1"
let ?zero = "0"
let ?iunit = "i"
let ?caddset = "CplxAdd(R,A)"

let ?cmulset = "CplxMul(R,A,M)"

let ?lessrrel = "StrictVersion(CplxROrder(R,A,r))"

have "MMIsar0

(?real, ?complex, ?one, ?zero, ?iunit, ?caddset, ?cmulset, ?lessrrel)"

using MMIsar_valid by simp

then have "(A ⊆ ?real ∧ A 6= 0 ∧ (∃ x∈?real. ∀ y∈A. 〈x, y〉 /∈
?lessrrel ∩ ?real × ?real ∪ {〈{?complex}, ?complex〉} ∪
?real × {?complex} ∪
{{?complex}} × ?real)) ∧ B ∈ ?real ∧ 〈B, Sup(A, ?real,

?lessrrel ∩ ?real × ?real ∪ {〈{?complex}, ?complex〉} ∪
?real × {?complex} ∪
{{?complex}} × ?real)〉 ∈ ?lessrrel ∩ ?real × ?real ∪
{〈{?complex}, ?complex〉} ∪ ?real × {?complex} ∪
{{?complex}} × ?real −→
(∃ z∈A. 〈B, z〉 ∈ ?lessrrel ∩ ?real × ?real ∪
{〈{?complex}, ?complex〉} ∪ ?real × {?complex} ∪
{{?complex}} × ?real)"

by (rule MMIsar0.MMI_suprlub)

with assms show ?thesis by simp

qed

Something a bit more interesting: infimum of a set that is bounded below is
real and equal to the minus supremum of the set flipped around zero.

lemma (in complex0) infmsup:

assumes "A ⊆ IR" and "A 6= 0" and "∃ x∈IR. ∀ y∈A. x ≤ y"

shows
"Infim(A,IR,<) ∈ IR"
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"Infim(A,IR,<) = ( -Sup({z ∈ IR. (-z) ∈ A },IR,<) )"

proof -

let ?real = "IR"

let ?complex = "C"

let ?one = "1"
let ?zero = "0"
let ?iunit = "i"
let ?caddset = "CplxAdd(R,A)"

let ?cmulset = "CplxMul(R,A,M)"

let ?lessrrel = "StrictVersion(CplxROrder(R,A,r))"

have I: "MMIsar0

(?real, ?complex, ?one, ?zero, ?iunit, ?caddset, ?cmulset, ?lessrrel)"

using MMIsar_valid by simp

then have
"A ⊆ ?real ∧ A 6= 0 ∧ (∃ x∈?real. ∀ y∈A. 〈y, x〉 /∈
?lessrrel ∩ ?real × ?real ∪ {〈{?complex}, ?complex〉} ∪
?real × {?complex} ∪
{{?complex}} × ?real) −→ Sup(A, ?real, converse

(?lessrrel ∩ ?real × ?real ∪ {〈{?complex}, ?complex〉} ∪
?real × {?complex} ∪
{{?complex}} × ?real)) =⋃
{x ∈ ?complex . ?caddset‘

〈Sup({z ∈ ?real .
⋃
{x ∈ ?complex . ?caddset‘〈z, x〉 = ?zero} ∈ A},

?real,

?lessrrel ∩ ?real × ?real ∪ {〈{?complex}, ?complex〉} ∪
?real × {?complex} ∪ {{?complex}} × ?real), x〉 = ?zero}"

by (rule MMIsar0.MMI_infmsup)

then have "A ⊆IR ∧ ¬(A = 0) ∧ ( ∃ x∈IR. ∀ y∈A. x ≤ y) −→
Sup(A,IR,converse(<)) = ( -Sup({z ∈ IR. (-z) ∈ A },IR,<) )"

by simp

with assms show
"Infim(A,IR,<) = ( -Sup({z ∈ IR. (-z) ∈ A },IR,<) )"

using Infim_def by simp

from I have
"A ⊆ ?real ∧ A 6= 0 ∧ (∃ x∈?real. ∀ y∈A. 〈y, x〉 /∈
?lessrrel ∩ ?real × ?real ∪ {〈{?complex}, ?complex〉} ∪
?real × {?complex} ∪
{{?complex}} × ?real) −→ Sup(A, ?real, converse

(?lessrrel ∩ ?real × ?real ∪ {〈{?complex}, ?complex〉} ∪
?real × {?complex} ∪ {{?complex}} × ?real)) ∈ ?real"

by (rule MMIsar0.MMI_infmrcl)

with assms show "Infim(A,IR,<) ∈ IR"

using Infim_def by simp

qed

end
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